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Abstract—The Third Generation Partnership Project (3GPP)
introduced the fifth generation new radio (5G NR) specifica-
tions which offer much higher flexibility than legacy cellular
communications standards to better handle the heterogeneous
service and performance requirements of the emerging use cases.
This flexibility, however, makes the resources management more
complex. This paper therefore designs a data driven resource
allocation method based on the deep Q-network (DQN). The
objective of the proposed model is to maximize the 5G NR
cell throughput while providing a fair resource allocation across
all users. Numerical results using a 3GPP compliant 5G NR
simulator demonstrate that the DQN scheduler better balances
the cell throughput and user fairness than existing schedulers.

Index Terms—5G, deep learning, reinforcement learning, Q-
learning, resource allocation, scheduling.

I. INTRODUCTION

New radio (NR) is the fifth generation (5G) cellular com-
munications technology that offers many new features for
enabling flexible communications services and achieving the
5G performance targets. Among the new features is the sup-
port of a multi-numerology structure, which is characterized
by the subcarrier spacing (SCS) and the transmission time
interval (TTI) [1]. This flexibility enhancement has two sides:
On the one hand, it is the enabler for enhanced mobile
broadband (eMBB), ultra-reliable and low latency communi-
cations (URLLC), and massive machine-type communications
(mMTC). On the other hand, it makes the system and resource
management more complex and, therefore, only one or a few
modes may be initially supported by a network.

Radio resource management (RRM) in NR is responsible for
allocating, managing, and orchestrating resource blocks (RBs).
State-of-the-art RRM schemes, such as proportional fair [2],
round-robin [3], and channel-dependent scheduling [4], focus
on design goals that revolve around network-oriented objec-
tives, such as fairness or throughput, and making them insensi-
tive to time-sensitive applications. Other scheduling strategies
may be designed based on the human’s understanding of
the network. These cannot react to the rapid changes in the
network dynamics, including wireless channel statistics, user
mobility patterns, instantaneous radio resource availability, and
traffic load variability [5].

Schedulers commonly consider the buffer state information
and the channel quality indicator (CQI) for optimizing the
allocation of radio resources to user equipment (UEs). This
corresponds to an optimal control problem of a Markov
decision process (MDP) that requires reinforcement learning
(RL) [6]. In particular, deep RL (DRL) has shown tremendous
potential in solving complex problems by approximating the
interactions between the resource allocation decisions and

different performance metrics. It is capable of learning the
best policy for a network [6]. Ye, et al. [7] leverage DRL
for resource allocation in a vehicle-to-vehicle (V2V) com-
munications context in order to minimize the interference
of the V2V links to the vehicle-to-infrastructure links while
respecting the latency constraints of V2V communications.
Zheng, et al. [8] propose a single agent DRL algorithm to
address the problem of channel assignment for hybrid non-
orthogonal multiple access-based cellular networks. Similarly,
[9] introduce a framework that combines multiple scheduling
rules to meet the quality of service requirements in terms of
packet delay and packet delivery ratio.

Classic RL algorithms have inevitably high computational
complexity and are only applicable to problems with small
state-action spaces. In this regard, the deep Q-network (DQN)
is considered where the neural network (NN) is applied to
approximate the state-action value function. A DQN model is
developed in [10] where a number of networks using different
MAC protocols try to access the time slots of a common
wireless medium. The DRL agent learns by interacting with
users employing different channel access mechanisms and
learns to transmit in those slots where other users are idle.

In this paper we leverage the benefits of machine learning
for solving the complex RRM problem of 5G NR by designing
a DQN-based downlink scheduler. The goal of the proposed
scheduler is to solve the dynamic resources allocation problem
and optimize the cell throughout while allocating a fair amount
of radio resources to the UEs requesting service. We evaluate
the performance of the proposed scheduler against state-of-
the-art benchmark schedulers. The results show that our DQN
design makes best use of the available resources to achieve a
very high cell throughput without sacrificing user fairness.

While we consider a system model that is compliant with
the Third Generation Partnership Project (3GPP) Release 16
[11], the proposed strategy is data driven which makes it
an ideal candidate for the open radio access network (O-
RAN) architecture. O-RAN, which is standardized by the
O-RAN Alliance [12], is transforming the RAN industry
by enabling open, intelligent, virtualized, and interoperable
RAN implementation and operation. O-RAN provisions for
the integration of artificial intelligence (AI) for its xApps
and rApps that implement the near real-time and non-real-
time RAN intelligent controllers, respectively. Specifically, the
open and virtualized architecture facilitates the development of
a variety of xAPPs for near-real-time control, including AI-
enhanced schedulers, that can be integrated into operational 5G
and Beyond 5G networks for offering differentiated network
services [13].
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The rest of the paper is organized as follows: Section
II introduces the system model and problem formulation.
Section III describes the design of the proposed DQN-based
scheduling for 5G NR. Section IV provides the performance
evaluation and Section V draws the conclusions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. 5G NR Resource Allocation

The 5G NR carrier can be of different bandwidths up to 400
MHz. In order to be able to serve UEs that can only handle a
subset of the carrier bandwidth, 5G introduces the bandwidth
part (BWP) as a subset of the carrier bandwidth.

The smallest resource to be allocated is the resource block
(RB) which contains 12 consecutive resource elements across
the subcarrier space within one OFDM symbol, irrespective
of the SCS. Different RBs can be allocated to different UEs
in a cell within the TTI and reallocated across TTIs; each RB
is allocated to only one UE per TTI.

The 5G NR downlink supports two resources allocation
types: Type 0 and Type 1. Type 0 uses a bitmap to indicate the
resources block groups (RBGs) which are allocated to the UEs.
The RBG combines a certain number of consecutive RBs to
be assigned to a single UE. Type 1 assigns contiguous virtual
RBs UEs. The network encodes the starting virtual resource
block (RBstart) and the length of the contiguously allocated
RBs (LRBs) in the resource indication value and includes this
field in the downlink control channel. While Type 0 incurs
more control overhead than Type 1 to inform the UE about
the allocated RBs, it is more flexible than Type 1.

Because of its higher flexibility we consider the resource
allocation Type 0 where the BWP is divided into RBGs whose
number is determined by the following formula [11]:

NRBG =
⌈
(Nsize

BWP + mod (Nstart
BWP , P ))/P

⌉
. (1)

Parameter NRBG captures the number of RBGs in a BWP of
size Nsize

BWP RBs, Nstart
BWP is the RB index indicating the start

of the BWP, and P is the size of the RBG and is determined
by the higher layer parameter rbg-Size and Nsize

BWP [11].
In each TTI, the 5G base station (gNB) allocates a RBG to

a particular user for downlink data transfer, assuming there is
data to be transferred. The user is determined by the allocation
strategy and the performance metric to be optimized, such
as throughput or resource fairness. This centralized resource
allocation method takes certain inputs, including the CQI, the
buffer status, and the served data rate from each UE. The
scheduler may process some or all of this information to make
its decision.

B. Performance Metrics

We consider the downlink transmission where N active UEs
are requesting to be served by the gNB as shown in Fig. 1.
These UEs are requesting packets from the gNB, and the gNB
performs the RBG allocation in each TTI. There are NRBG

RBGs, RBG1 to RBGNRBG . Our objective is to effectively
balance between throughput and fairness which is why the
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Fig. 1: General radio resources allocation model.

performance metrics are the cell throughput and the resource
allocation fairness among the active UEs.

The achievable throughput d in Mbps for the n-th UE on
RBGi is given by the following formula assuming we have
one carrier [14]:

(2)
dUEn,i = Vlayer,UEn ·QM

UEn,i · f ·Ri,UEn

· RBGi
size · 12

TTIdur
· (1−OH) · 10−6 [Mbps].

Parameter Vlayer,UEn
indicates the number of layers, QM

UEn,i

the modulation order, and Ri,UEn
the code rate efficiency

on RBGi. The values for QM
UEn,i

and Ri,UEn
are obtained

from the modulation and coding scheme, which depends on
the channel quality for the scheduled UE in the given TTI.
Parameter f is a scaling factor which does not depend on the
scheduled UE. Symbol RBGi

size indicates the number of RBs
in RBGi, OH captures the control channel overhead, which
is determined by the direction of the transmission (uplink or
downlink) and the frequency range (FR1 or FR2), and TTIdur
indicates the duration of the TTI in seconds and depends on
the SCS.

The achievable data rate per TTI can be formulated as

D(TTI) =

NRBG∑
i=1

Di(TTI)× Ci(TTI), (3)

where Di(TTI) is of size 1×N and captures the achievable
data rates of the N UEs if they were individually scheduled on
the current RBG in the current TTI, and Ci(TTI) is a binary
vector of size N × 1 indicating the scheduled user to receive
data on RBGi.

As the fairness metric, we compute the Jain fairness index
(JFI) [15]:

JFI =
(
∑

n∈N xn)
2

N
∑

n∈N x2
n

. (4)

Parameter xn is the fraction of RBs assigned to UEn. The
maximum fairness (JFI = 1) is achieved when each UE gets
the same share of RBs. If the scheduler allocate most of the
RBs to a small subset of UEs, the JFI will be low, or close to
zero, and this indicates that the RBs are not allocated fairly
among the UEs.
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C. Problem Formulation
The objective of the scheduler is to assign UEs to RBGs

in such a way to maximize the total achievable data rate
in the scheduled TTI across all RBGs while achieving high
users fairness in accessing the available resources. Hence, it
becomes a joint optimization problem:

max {D,JFI} , (5)

s.t.
N∑

n=1

ci,n(TTI) ≤ 1,∀i ∈ [1, 2, ..., NRBG]. (6)

D is the accumulated or average cell throughput and JFI the
resulting JFI. Constraint (6) ensures RBG exclusivity in each
TTI. That is, at most one UE can be selected for each RBGi

per TTI.

III. DQN FOR RESOURCE ALLOCATION IN 5G NR
DRL is a learning scheme for sequential decision problems

with the aim of maximizing a cumulative future reward.
It contains two important components, the agents and the
environment, where agents use deep NN (DNNs) to learn
by interacting with the environment [16]. The environment is
modeled as a MDP which provides the mathematical frame-
work for modeling decision making problems whose outcome
is random and controlled by a decision maker, or agent.

We start by modeling the problem as a MDP and define
the state and action spaces, and the reward function. Then we
introduce the DQN agent. Finally, we define the agent training
and the DQN agent engagement for 5G resources allocation.

The scheduler operates on the basis of a TTI. Hence, the
throughput and fairness are evaluated in each TTI. We drop
TTI from the symbols used here for improving the readability

A. MDP for Modeling the Environment
Each RBG is characterized by states based on the achievable

data rate and the fairness indicator for each UE. Therefore, we
group the UE data rates and the associated fairness indicators
in a unique state vector as,

(7)si = [dUE1,i, ..., dUEN ,i, PFUE1,i, ..., PFUEN ,i],

where the proportional fairness (PF) indicator is given as,

PFUEn,i =
dUEn,i

dsUEn

, (8)

and dsUEn is the historical served data rate of UEn. Recall
that i indexes the RBG as RBGi.

The action space A are the UEs to be served:

A = [UE1, UE2, ..., UEN ]. (9)

The reward function guides the actions and encourages the
agent to learn about the best actions. Since our goal is to
maximize cell throughput and user fairness, we define the
reward function as,

ri = dUEn,i ×
min
UEn

PFUEn,i

max
UEn

PFUEn,i
. (10)

This reward function discounts the expected data rate by
decreasing the gap between the UEs associated with the
minimum and maximum PF to maintain a high fairness by
preventing the reservation of resources exclusively to the UE
that has the best channel state. Here we do not consider
punishment because all UEs are eligible for being scheduled
and have data in their buffers.

B. DQN Agent

After formalizing the problem as a MDP, next we need to
choose the algorithm to implement the agent. Q-learning [16]
is a method that can be used to implement the agent side of
the RL system. It has the ability to solve dynamic decision
making problems by finding good policies and choosing
the actions that maximize the accumulative reward function
without requiring prior knowledge about the system model.
Since we have a continuous state space and a discrete action
space, Q-learning is the method that best fits this problem.

The Q-values for all state-action pairs {s, a} are presented
in a lookup table and tell the agent how good it is to be in state
s and take action a. The Q-values are randomly initialized and
updated in each iteration until they converge to the optimal Q∗.

For our problem, we define step t ∈ [1, 2, ..., NRBG],
which corresponds to i that is used to index the RBGs,
whereas episodes correspond to the TTIs. Since the TTI is
the scheduling interval in 5G NR, the proposed trained DQN
method allocates all RBGs in a TTI in real time, before moving
on to the next TTI.

A drawback of Q-learning is scalability when the state and
the action spaces become prohibitively large. For large state
and action space problems, it is infeasible to keep track of each
{s, a}-pair. In order to overcome this limitation, the DQN has
been developed where DNNs are considered to approximate
the Q-values, completely removing the lookup table. Such a
DQN agent consists of three main parts: the main network,
the target network, and the replay memory D. At each time
t, the main network takes the observed state st from the
environment and outputs Q(st, at|θ) for each action at in A,
where θ represents the training parameters, or weights, of the
DNN. Then the action is selected using the ϵ-greedy algorithm
where the agent selects the action at = argmaxá∈A Q(s, á)
with probability 1− ϵ or a random action with probability ϵ.
This ϵ-greedy algorithm helps the agent balancing between
exploration and exploitation to avoid ending up in a local
minimum. After choosing the action, the reward function rt
is calculated, the next state st+1 is observed, and the resultant
tuple (st, at, rt, st+1) is added to D.

In each training iteration, the agent randomly samples mini-
batches from D to train the DNN. This way, the temporal
correlation between the training samples can be broken and
this is the main purpose of using the replay memory. The
DQN is optimized by updating the weights θ. This is an
iterative process that minimizes the mean square error between
the main DNN and the target DNN estimations. This error is
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Fig. 2: The training stage of the DQN based RBG allocation.

known as the mean-squared Bellman error (MSBE) [16]:

(11)
L(θt) = Est,at,rt,st+1∈D[rt(st, at)

+ γmax
at+1

Q(st+1, at|θ́)−Q(st, at|θ)]2.

Parameter θ́ is the weight of the target DNN which is a delayed
version of θ. The target DNN is an identical copy of the main
DNN and is used to calculate the target Q-values. Employing
a target DNN enhances the stability of the learning process
because the target is calculated from a more mature network
whose weights are periodically updated every T steps by a
smoothing update approach,

θ́ = βθ + (1− β)θ́, (12)

where β is the small, real-valued smoothing parameter. The
main DNN weights are updated using the stochastic gradient
descent (SGD) method,

θ = θ +
α

M
(TD)∇θQ(s, a, θ), (13)

where TD is the temporal difference error between the outputs
of the target and main DNNs,

TD = Q(s, a, θ)−Qtarget(s, a, θ́). (14)

C. DQN Based RBG Allocation

The DQN consists of two stages, the training stage and
the testing stage. Fig. 2 illustrates the training stage which
Algorithm 1 summarizes. During this stage, the DQN agent
is trained for a number of episodes while interacting with
the environment until the accumulated reward converges. One
episode is one TTI during which the agent and the environment
interact until the allocation of all available RBGs has been
completed. The DNN weights and the replay memory content
are transferred to the next episode. At the end of the training
stage, the trained agent is saved and engages in the MAC layer
of the gNB for resource allocation as per Algorithm 2.

Algorithm 1 DQN based RBG allocation training stage
1: Input: DQN structures, Environment simulator;
2: Start:
3: Initialize θ and replay memory D;
4: for each episode (i.e. TTI) do
5: for step t = i = 1 to NRBG do
6: Observe si using (2), (8), and (7);
7: Forward si to the main DNN and get select ai using ϵ-

greedy;
8: Calculate ri using (9);
9: Observe si+1 using (2), (8), and (7);

10: Store the sample (si,ai,ri,si+1) in D;
11: Sample mini-batch from D optimize θ using (11), (13), and

(14);
12: Update θ́ every T steps using (12);
13: end for
14: end for
15: Output: Trained DQN agent

Algorithm 2 DQN based RBG allocation test stage
1: Input: Trained DQN agent, Environment simulator;
2: Start:
3: for each TTI do
4: for each RBGi do
5: Observe si using (2), (8) and (7);
6: Forward si to the trained DQN agent and select ai using

greedy method;
7: Calculate ri using (9);
8: Selected UE = ai;
9: Allocate RBGi to the selected UE;

10: end for
11: end for

IV. PERFORMANCE EVALUATION

We evaluate the proposed scheduler numerically against
state-of-the-art scheduling techniques using 5G NR compliant
system parameters of 3GPP Release 16.

A. Simulation Parameters

The DQN related parameters and the simulation parameters
are summarized in Tables I and II, respectively. We design
a DNN with three fully connected layers of 100 neurons in
each layer and the relu activation function. The DQN agent is
trained for 1000 episodes, where each episode has 100 steps,
i.e 100 RBGs, and employ the adaptive moment estimation
method (Adam) for training. We consider a single gNB and
20 associated UEs. The UEs experience different channels and
have different downlink packet sizes, but the periodicity of
the packet generation is the same for all UEs. The channels
between the gNB and each of the UEs are changing over time.

The simulations are performed in MATLAB using the 5G
Toolbox and the NR TDD Symbol Based Scheduling Perfor-
mance Evaluation example. The RL Toolbox is leveraged to
design the DQN agent and the MDP environment.

The benchmark schedulers are:
• Round-robin (RR): Each UEs is allocated RBGs, one UE

after another, regardless of the channel.
• Best CQI (BestCQI): Each RBG is allocated to the UE

that has the best CQI among all UEs in the current TTI.

WS22 IEEE ICC 2022 the 4th International Workshop on Data Driven Intelligence for Networks and Systems

315Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on September 18,2022 at 21:37:42 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: DQN hyperparameters.

Parameter Value
Number of episodes 1000

γ 0.99
Dsize 106

Initial ϵ 0.99
ϵ decay 0.0001
min ϵ 0.001
β 0.001
T 10

Training rate α 0.001
Mini-Batch size M 32

TABLE II: 5G NR system simulation parameters.

Parameter Value
Bandwidth 20 MHz

SCS (NRB) 15 kHz (100), 30 kHz (50)
P (SCS) 8 (15 kHz), 4 (30 kHz)

No. of UEs N 20
TTI (SCS) 1 ms (15 kHz), 0.5 ms (30 kHz)

CQI periodicity 10 ms
Simulation time 100 radio frames

• Proportional Fair (PF): RGBs are allocated to UEs bal-
ancing cell throughput and user fairness according to (8).

B. Results and Analysis

We consider three performance metrics: throughput (2)–(3),
fairness (6), and cell goodput, which is the amount of downlink
data that is successfully transferred from the gNB to the UEs
and is calculated by subtracting the unacknowledged packets
from the sent packets.

Fig. 3 plots the reward over the episode to illustrate con-
vergence during the training process. The average reward and
the episode reward converge after fewer than 400 episodes.

The simulation time is 100 radio frames, i.e. 1 s. Figs. 4
plots the cell throughput and 5 captures the throughput distri-
bution. Fig. 4 shows the superiority of BestCQI over the other
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schedulers. Fig. 5 reveals that BestCQI does not schedule all
UEs in 100 radio frames and the median throughput is much
lower than that of the other schedulers. This figure indicates
the high variance of the achieved UE throughput values when
employing BestCQI. The proposed DQN, PF and RR show
a fair distribution of achieved throughput values among the
UEs where each UEs gets scheduled. The proposed DQN-
based allocation scheme considerably outperforms PF and RR
for both SCSs. BestCQI outperforms the DQN but at the cost
of starving some of the UEs. The BestCQI scheduler tends to
starve the users who report a poor channel quality as it always
prioritizes the UEs experiencing good channels and enabling
higher bit loading.

As mentioned before, the goodput is the amount of data
received correctly by the receivers. Figs. 6 and 7 provide the
goodput results. We observe the same behaviors as for the
throughput and conclude that our proposed schemes performs
much better than PF and RR, irrespective of the SCS. It
achieves lower cell throughput performance than BestCQI but
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all the UEs are served during a radio frame and the median
throughput is the highest for the DQN scheduler.

For the fairness comparison, we calculate the JFI of the
accumulated resources allocated to the different UEs over the
simulation time of one radio frame. Fig. 8 shows the JFI
for both SCSs. As expected, RR has the best JFI because it
schedules UEs in cycles, offering each UEs an equal share of
resource. The proposed method performs considerably better
than BestCQI and it is very close to the PF scheduler, which
emphasizes both fairness and throughput, just like the DQN.
As expected, the BestCQI has a very low JFI compared to the
other schedulers.

These results show the effectiveness of the proposed DQN
scheduler that implements a new way of resource allocation in
5G NR. It balances two competing objectives—cell through-
put/goodput and user fairness—and performs very close to
methods tailored to one or the other objective. While the
PF has been designed to balance the same objectives, its
performance is inferior to that of the proposed DQN design
for 5G NR downlink scheduling

C. Computational Complexity
We start by calculating the complexity of the training,

according to Algorithm 1. In each step, the computational
complexity order is O(F ), where F is according to the DNN
structure and is found to be F ≜ 2Nd1+

∑G−1
g=1 dgdg+1+dGN

[17], where G is the number of hidden layers, dg is the
number of neurons in hidden layer g, and 2N and N are the
dimensions of the input and output layers, respectively. As the
operation is repeated across steps and episodes, the overall
complexity of the training phase becomes O(FMNRBG),
where M symbolizes the number of episodes and NRBG

the number of steps per episode. After training, the DQN
scheduler performs FNRBG operations every TTI. This com-
putational complexity is affordable with current computing
technology as opposed to an exhaustive search scheduler
whose complexity is O(NNRBG) per TTI.

The complexity of the DQN allocation stage according to
Algorithm 2 is O(F ) for each RBG in a given TTI. The
corresponding complexity of the PF scheduler is O(N) as is
the complexity of the BestCQI approach because both evaluate
all N UEs for each RBG, unlike the RR scheduler which is
characterized by O(1).

V. CONCLUSIONS

In this paper we have proposed, designed, and numerically
analyzed a DQN-based scheduler for the 5G NR downlink.
Using DNNs and training data, the propose scheduler balances
the maximization of the cell throughput and fairness among the
UEs. The simulation results show that the proposed data driven
scheduler learns quickly and outperforms benchmark methods
by best balancing the two performance metrics. The main
advantage of the proposed DQN scheduler is its flexibility,

where the reward function can be customized to the radio
environment and other performance indicators. For example,
designing a DQN scheduler that minimizes the radio frequency
interference level in shared spectrum among active and passive
users is an emerging research direction for next generation
wireless. Another direction to extend this work is to add power
control to the reward function and use multiple agents for
different cells in order to manage the inter cell interference.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under grant numbers ECCS-2030291 and CNS-
2120442.

REFERENCES

[1] E. Dahlman and S. Parkvall, “NR – the new 5G radio-access technol-
ogy,” in IEEE VTC Spring, 3-6 June, 2018, pp. 1–5.

[2] R. Kwan, C. Leung, and J. Zhang, “Proportional Fair Multiuser Schedul-
ing in LTE,” IEEE Signal Processing Letters, vol. 16, no. 6, pp. 461–464,
2009.

[3] O. Østerbø, “Scheduling and capacity estimation in LTE,” in 2011 23rd
International Teletraffic Congress (ITC), 2011, pp. 63–70.

[4] W. Fang, G. Wang, G. B. Giannakis, Q. Liu, X. Wang, and H. Deng,
“Channel-Dependent Scheduling in Wireless Energy Transfer for Mobile
Devices,” IEEE Transactions on Vehicular Technology, vol. 69, no. 3,
pp. 3330–3340, 2020.

[5] H. B. Pasandi and T. Nadeem, “Challenges and limitations in automating
the design of MAC protocols using machine-learning,” in 1st ICAIIC,
2019, pp. 107–112.

[6] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.
Liang, and D. I. Kim, “Applications of deep reinforcement learning
in communications and networking: A survey,” IEEE Communications
Surveys Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[7] H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep reinforcement learning based
resource allocation for V2V communications,” IEEE Trans. Vehicular
Technology, vol. 68, no. 4, pp. 3163–3173, 2019.

[8] J. Zheng, X. Tang, X. Wei, H. Shen, and L. Zhao, “Channel assignment
for hybrid NOMA systems with deep reinforcement learning,” IEEE
Wireless Communications Letters, vol. 10, no. 7, pp. 1370–1374, 2021.
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