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Abstract
Easy access to audio-visual content on social media, combined with the availability of modern tools such as Tensorflow or Keras,
and open-source trained models, along with economical computing infrastructure, and the rapid evolution of deep-learning (DL)
methods have heralded a new and frightening trend. Particularly, the advent of easily available and ready to use Generative
Adversarial Networks (GANs), have made it possible to generate deepfakes media partially or completely fabricated with the
intent to deceive to disseminate disinformation and revenge porn, to perpetrate financial frauds and other hoaxes, and to disrupt
government functioning. Existing surveys have mainly focused on the detection of deepfake images and videos; this paper
provides a comprehensive review and detailed analysis of existing tools and machine learning (ML) based approaches for
deepfake generation, and the methodologies used to detect such manipulations in both audio and video. For each category of
deepfake, we discuss information related to manipulation approaches, current public datasets, and key standards for the evalu-
ation of the performance of deepfake detection techniques, along with their results. Additionally, we also discuss open challenges
and enumerate future directions to guide researchers on issues which need to be considered in order to improve the domains of
both deepfake generation and detection. This work is expected to assist readers in understanding how deepfakes are created and
detected, along with their current limitations and where future research may lead.
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1 Introduction

A boom in the availability of economical smart devices, such
as cellphones, tablets, laptops, and digital cameras, has result-
ed in the exponential growth of digital multimedia content
(e.g. images, audio, and video). Additionally, easy access to
digital multimedia, along with the evolution of social media
over the last decade, has allowed people to easily and rapidly
share captured content. At the same time, we have witnessed
tremendous advances in the field of machine learning (ML)
with the introduction of sophisticated algorithms, like gener-
ative adversarial networks (GANs) [1], which can easily ma-
nipulate multimedia content and thus spread disinformation

online through social media platforms. Moreover, today we
live in a “post-truth” era, where a piece of information or
disinformationmay be utilized by malevolent actors to manip-
ulate public opinion. Disinformation campaigns are very real,
and have the potential to cause severe damage: election ma-
nipulation, defamation of any public person, or inflammation
of popular sentiment. They may even be used to spark or
justify a war. Given the ease with which false information
may be created and spread it has become increasingly difficult
to know what is true and trustworthy. One emerging technol-
ogy is ‘Deepfakes,’ an AI-based synthesis or alteration of
audio and visual content. The generation of deepfakes has
advanced significantly, and they could be used to propagate
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disinformation around the globe and may pose a severe threat,
in the form of fake news, in the future [2], if they have not
already.

Multimedia content as evidence is the current standard of
proof in every sector of the legal world. It goes without saying
that the audio-visual content admitted as evidence must be
authentic and its integrity must be verified. At the same time,
the introduction of easy to use manipulation tools (e.g. Zao
[3], REFACE [4], FaceApp [5], Audacity [6], Soundforge [7])
has increased the perceived realism of fabricated data, which
makes the authentication and integrity verification of such
content even more challenging. Soon deepfakes are expected
to be routinely used as weapons of disinformation, which will
lead to a loss of credibility in state institutions, electronic
media, and others due to the inability of common people to
differentiate between original and fake videos. Moreover, the
emergence ofmachine-generated text, along with manipulated
audio-visual data, on social sites will bring more devastating
effects and mislead decision-makers [8]. Currently, most of
the existing multimedia forensic examiners focus on facing
the challenge of analyzing multimedia files from social net-
works and sharing websites, e.g., YouTube, Facebook, etc.
Satisfying the authentication and integrity requirements when
flagging manipulated videos on social media is a challenging
task because sophisticated deepfake generation algorithms
with the potential to create more realistic fake videos have
become more readily available.

Deepfake video can be categorized into the following
types: i) face-swap ii) lip-synching iii) puppet-master iv) face
synthesis and attribute manipulation, and v) audio-only
deepfakes. In face-swap deepfakes, the face of the source per-
son is replaced with the face of a victim to generate a fake
video of the victim which in reality the source person has
done. Face-swap-oriented deepfakes usually target a famous
person by showing them in scenarios in which they never
appeared in order to damage their reputation in the face of
the public, for example, in non-consensual pornography. In
lip-synching-based deepfakes, the movement of the target per-
son’s lips is manipulated to make them consistent with a spe-
cific audio recording so that the victim appears to say what-
ever is in the recording. In puppet-master deepfakes, video is
created which mimics the expressions of the target person,
such as eye movement, facial expressions, and head move-
ment. Puppet-master deepfakes aim to hijack the source per-
son’s expression, or even full-body, in a video in order to
animate it according to the impersonator’s desire [9]. Face
synthesis and attribute manipulation involve the generation
of photo-realistic face images as well as facial attribute
editing. This manipulation has been used to spread disinfor-
mation on social media using fake profiles. Lastly, audio
deepfakes focus on the generation of the target speaker’s voice
using deep learning techniques to portray the speaker saying
something they have not said [10, 11]. The fake voices can be

generated using either text-to-speech synthesis (TTS) or voice
conversion (VC). TTS aims to produce natural and intelligible
voice waveforms, based on the provided text, that sounds like
they have been spoken by the target identity. VC techniques
transform the speech signal produced by a source speaker to
seem like it was spoken by a target speaker while keeping the
linguistic contents intact.

Unlike deepfake videos, less attention has been paid to the
detection of audio deepfakes. In the last few years, voice ma-
nipulation has also become very sophisticated. Synthetic
voices are not only a threat to automated speaker verification
systems, but also to voice-controlled systems deployed in the
Internet of Things (IoT) [12, 13]. Voice cloning has tremen-
dous potential to destroy public trust and to empower crimi-
nals to manipulate business dealings, even private phone calls.
For example, recently a case was reported in which bank rob-
bers cloned a company executive’s speech to dupe their sub-
ordinates into transferring hundreds of thousands of dollars
into a secret account [14]. Voice cloning is expected to be-
come a unique challenge in the future of deepfake detection.
Therefore, it is important that unlike current approaches that
focus only on detecting video signal manipulations, audio
forgeries should also be examined.

Most of the existing surveys focus only on reviewing
deepfake still images and video detection [15–17]. There is
no recently published survey on deepfakes that specifically
focuses on the generation and detection of both the audio
and video. The discussion of generic image manipulation
and multimedia forensic techniques was addressed in detail
in [18], however deepfake generation techniques were not
included. In [19], an overview of face manipulation and de-
tection techniques was presented. Another survey, [20], re-
viewed visual deepfake detection approaches but does not
discuss speech manipulation and its detection. The latest work
presented by Mirsky et al. [21] gives an in-depth analysis of
visual deepfake creation techniques,. Deepfake detection ap-
proaches are, however, only briefly discussed, and moreover,
it lacks a discussion of audio deepfakes. To the best of our
knowledge this paper is the first attempt to provide a detailed
analysis and review of both audio and visual deepfake detec-
tion techniques and generative approaches. The following are
the main contributions of our work:

i. To give the research community an insight into the various
types of video and audio-based deepfake generation and
detection methods.

ii. To provide the reader with the latest improvements,
trends, limitations, and challenges in the field of audio-
visual deepfakes.

iii. To give an understanding to the reader about the possible
implications of audio-visual deepfakes.

iv. To act as a guide to the reader to understand the future
trends of audio and visual deepfakes.
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1.1 Literature collection and selection criteria

In this survey we reviewed the existing publications which
approach techniques for the generation and detection of ma-
nipulated audio and video. A detailed description of the ap-
proach and protocols employed for the review is given in
Table 1, Figs. 1 and 2.

The rest of the paper is organized as follows: Section 2
presents a discussion of deepfakes as a source of disinforma-
tion. In Section 3, the history and evolution of deepfakes are
briefly discussed. Section 4 presents an overview of state-of-
the-art audio and visual deepfake generation and detection
techniques. Section 5 presents the details of available datasets
used for both audio and video deepfakes detection. We have
identified the open challenges for both audio-visual deepfake
generation and detection in Section 6. In Section 7, we have
discussed the possible future trends of both deepfake genera-
tion and detection, and finally, we conclude our work in
Section 8.

2 Disinformation and misinformation using
deepfakes

Misinformation is defined as false or inaccurate information
that is communicated, regardless of an intention to deceive,

whereas disinformation is the set of strategies employed to
fabricate original “information” in order to achieve planned
political or financial objectives, and is becoming increasingly
prevalent. Because of the extensive use of social media plat-
forms, it is now very easy to spread false information [22].
Although all categories of fakemultimedia (i.e. video, images,
and audio) could be sources of both disinformation and mis-
information, audiovisual-based deepfakes are expected to be
much more devastating. Historically, deepfakes were created
to defame or discredit public figures. For example, in 2017 a
female celebrity faced such situation when her fake porno-
graphic video was circulated in cyberspace [20]. This is an
evidence that deepfakes can be used to damage reputations,
i.e., the character assassination of renowned people in order to
defame them [20], blackmail of individuals for monetary ben-
efits, or to create political or religious unrest by targeting pol-
iticians or religious figures with fake video/speech [23], etc.
This damage is not limited to targeting individuals; rather
deepfakes can be used to manipulate elections or even to the-
oretically start wars or used to deceive military analysts with
fake information, and so on. Deepfakes are expected to ad-
vance these archtypes of disinformation and misinformation
to the next level.

Trolls Trolls are hobbyists who spread inflammatory informa-
tion solely to cause disorder or to get a reaction [14]. For

Table 1 Literature collection and preparation protocol

Preparation Protocol Description

Purpose • To provide a brief overview of existing state-of-the-art techniques and identify potential gaps in both audio-visual
deepfake generation and detection.

• To provide systematic review and structure to the existing state-of-the-art techniques with respect to each category of
audio-visual deepfake generation and detection.

Data sources Google Scholar, Springer Link, ACM digital library, IEEE explorer, and DBLP

Query A methodical approach was designed to systematically utilize the data sources mentioned above and the following query
strings were used:

Deepfakes/Faceswap/ Face reenactment/ lip-syncing /Deepfakes AND Faceswap/ Deepfakes AND Face reenactment/
Deepfakes AND lip-syncing/ GAN synthesized/ face manipulation/ Attribute Manipulation/GAN AND Puppet
Mastery/ GAN AND Expression Manipulation/ Video Synthesis/ Audio synthesis/ Deep learning AND TTS/ Deep
learning AND Voice Conversion/ Deep learning AND Voice Cloning/Deepfakes AND Dataset/ Deepfakes AND
Audio/ Deepfakes AND Video/Deepfakes AND image

Method We have systematically categorized the literature on video and audio deepfakes as follows (Fig. 1):
a) Video deepfake generation and detection into the following categories: face swap, lip-syncing, puppet-mastery, entire

face synthesis, and facial attribute manipulation.
b) Audio deepfake generation and detection into the following categories: text-to-speech synthesis and voice conversion.

Size A total of 436 papers were retrieved using the method and query mentioned above from listed data sources up to
−03-15-2022.We selected only those studies that were relevant and included the criteria ‘deepfakes’ in the positive set.
Other relevant publications, where ‘deepfake’ was not in the positive set, were included in the negative set. All other
studies were excluded from the final selection of papers, i.e., white papers and articles. The number of publications in
the deepfake research area and distribution category, based on year, are presented in Fig. 2. It can be observed that the
majority of the related articles are from conferences and informal publications i.e., arXiv. This is because the articles
that have been published in top-tier journals make up only a small portion of the total currently available research.

Study types/inclusion and
exclusion

Peer-reviewed journal papers and articles from conference proceedings were given more importance. Additionally,
articles from archive literature were also considered.
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example, posting audio-visual manipulated racist or sexist
content to promote hatred. Similarly, during the 2020 US
presidential campaign, conflicting narratives about Trump
and Biden were circulated on social media, contributing to
an environment of fear [24]. In contrast to independent trolls,
who spread the disinformation for their own satisfaction, hired
trolls perform the same for monetary benefit. Different actors,
like political parties, businessmen, and companies routinely
hire people to forge news related to their competitors and
spread it in the market [25]. Deepfake videos generated by
hired trolls are the latest weapon in the ongoing fabricated
news war that can bring a more devastating effect on society
[26].

BotsBots are automated software or algorithms used to spread
fabricated or misleading content among the people [27]. A
study published in [28] concluded that during the 2016 US
presidential election, bots generated one-fifth of the tweets
during the last month of the campaign. The emergence of
deepfakes has bolstered the negative impact of bots i.e., re-
cently, a messaging app named telegram used bots to post
nude pictures of women [14].

Conspiracy theorists Conspiracy theorists range from nonpro-
fessional filmmakers to Reddit agents who spread vague and
doubtful claims on the internet either through “documen-
taries” or by posting stories and memes [29]. Recently, several
conspiracy theorists have connected the current COVID

pandemic with the China [30]. In such a situation, the use of
fabricated audio-visual deepfake content by these theorists can
increase controversy in global politics.

Hyper-partisan media Hyper-partisan media includes fake
news websites and blogs which intentionally spread false in-
formation to a specific political demographic. Because of the
extensive usage of social media, Hyper-partisan media is one
of the biggest potential incubators for the spread of fabricated
news [31]. Convincing AI-generated fake content assists these
bloggers to easily spread disinformation, to attract visitors, or
to increase views. As social platforms are largely independent
and ad-driven mediums, spreading fabricated information
may purely be a profit-making strategy [32].

Politicians One of the main sources of disinformation is the
political parties themselves, which may spread manipulated
information for point-scoring. Due to a large number of fol-
lowers on social platforms, politicians are central nodes in
online networks. So, politicians may use their fame and public
support to spread false news among their followers. To de-
fame opponent parties, politicians may use deepfakes to post
controversial content about their competitors on conventional
media [29].

Foreign governments As the Internet has converted the world
into a “Global Village,” it has become easier for conflicting
countries to spread false news to target the reputation of any

Fig. 1 Categorization of Audio and Visual Deepfakes

Fig. 2 Number of papers in the area of Deepfake research by a year-wise publication count, and b the number of publications by year belonging to
studied categories, obtained from Google Scholar
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country in the world. Many countries are running
government-sponsored social media accounts, websites, and
applications, contributing to political propaganda globally
[14]. These non-state actors are anticipated to become more
active in this sector as deepfakes techniques cut the costs of
online propaganda. This raises the risk that extremist groups
skilled in information warfare may exploit the technology and
initiate foreign attacks on their own to increase the stress
among countries.

3 DeepFakes evolution

The earliest example of manipulated multimedia content oc-
curred in 1860 when a portrait of southern politician John
Calhoun was skillfullymanipulated by replacing his headwith
that of US President for propaganda purposes [33]. Usually,
such manipulation is accomplished by adding (splicing), re-
moving (inpainting), and replicating (copy-move) the objects
within or between two images [18]. Then, suitable post-
processing steps, such as scaling, rotating, and color adjust-
ment are applied to improve the visual appearance, scale, and
perspective coherence [34].

Aside from these traditional manipulation methods, ad-
vancements in Computer Graphics and deep learning (DL)
techniques now offer a variety of different automated ap-
proaches for digital manipulation with better semantic consis-
tency. A recent trend involves the synthesis of videos from
scratch using autoencoders, or generative adversarial net-
works (GANs), for different applications [35] and, more spe-
cifically, photorealistic human face generation based on any
attribute [36–39]. Another pervasive manipulation, called
“shallow fakes” or “cheap fakes,” are audio-visual manipula-
tions created using cheaper and more accessible software.

Shallow fakes involve basic editing of a video utilizing
slowing, speeding, cutting, and selectively splicing together
unaltered existing footage that can alter the whole context of
the information delivered. In May 2019, a video of US
Speaker Nancy Pelosi was selectively edited to make it appear
that she was slurring her words and was drunk or confused
[14]. The video was shared on Facebook and received more
than 2.2 million views within 48 hours. Video manipulation
for the entertainment industry, specifically in film production,
has been done for decades. Figure 3 shows the evolution of
deepfakes over the years. An early notable academic project
was the Video Rewrite Program [40], intended for applica-
tions in movie dubbing, and published in 1997. It was the first
software which was able to automatically reanimate facial
movements in an existing video to a different audio track,
and it achieved surprisingly convincing results.

The first true deepfake appeared online in September 2017
when a Reddit user named “deepfake” posted a series of
computer-generated videos of famous actresses with their
faces swapped onto pornographic content [20]. Another noto-
rious deepfake case was the release of the deepNude applica-
tion that allowed users to generate fake nude images [41]. This
was the beginning of when deepfakes gained wider recogni-
tion within a large community. Today deepfake technology/
applications, i.e. FakeApp [42], FaceSwap [43], and ZAO [3]
are easily accessible, and users without a computer engineer-
ing background can create a fake video within seconds.
Moreover, open-source projects on GitHub, such as
DeepFaceLab [44] and related tutorials, are easily available
on YouTube. A list of other available deepfake creation ap-
plications, software, and open-source projects is given in
Table 2. Contemporary academic projects that lea to the de-
velopment of deepfake technology are Face2Face [38] and
Synthesizing Obama [37], published in 2016 and 2017

Fig. 3 Timeline of the evolution of Deepfakes
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Table 2 An overview of Audio-visual deepfakes generation software, applications, and open-source projects

Tool Type Reference/Developer Technique

Cheap fakes
Adobe
Premiere

Commercial Desktop
Software

Adobe Audio Video Editing, AI-powered video reframing

Corel
VideoStudio

Commercial Desktop
Software

Corel Proprietary AI

Lip-sync
dynalips Commercial Web App www.dynalips.com/ Proprietary
crazytalk Commercial Web App www.reallusion.com/crazytalk/ Proprietary
Wav2Lip Open source

implementation
github.com/Rudrabha/Wav2Lip GAN with pre-trained discriminator network and

visual quality loss function
Facial Attribute Manipulation
FaceApp MobileApp FaceApp Inc Deep generative CNNs
Adobe Commercial Desktop

Software
Adobe DNNs + filters

Rosebud Commercial Web App www.rosebud.ai/ Proprietary AI
Face Swap
ZAO Mobile app Momo Inc Proprietary
REFACE Mobile app Neocortext, Inc Proprietary
Reflect Mobile app Neocortext, Inc Proprietary
Impressions Mobile app Synthesized Media, Inc. Proprietary
FakeApp Desktop App www.malavida.com/en/soft/fakeapp/ GAN
FaceSwap Open source

implementation
faceswapweb.com/ Employed two seperate pairs of encoder-decoder

with shared encoder parameters.
DFaker Open source

implementation
github.com/dfaker/df -For facial reconstruction a DSSIM loss function is

utilized.
-Keras library-based implementation.

DeepFaceLab Open source
implementation

github.com/iperov/DeepFaceLab - Several face extraction methods, e.g. dlib,
MTCNN, S3FD etc.

- Extends different Faceswap models i.e. H64,
H128, LIAEF128, SAE [44].

FaceSwapGAN Open source
implementation

github.com/shaoanlu/faceswap-GAN Uses two loss functions, namely adversarial loss
and perceptual loss, to the auto-encoder.

DeepFake-tf Open source
implementation

github.com/StromWine/DeepFake-tf Same as DFaker however, uses tensor-flow for
implementation.

Faceswapweb Commercial Web App faceswapweb.com/ GAN
Face Reenactment
Face2Face Open source

implementation
web.stanford.edu/~zollhoef/papers/CVPR2016_

Face2Face/page.html
Uses 3DMM and ML technique

Dynamixyz Commercial Desktop
Software

www.dynamixyz.com/ Machine-learning

FaceIT3 Open source
implementation

github.com/alew3/faceit_live3 GAN

Face Generation
Generated
Photos

Commercial Web App generated.photos/ StyleGAN

Voice Synthesis
Overdub Commercial Web App www.descript.com/overdub Proprietary (AI based)
Respeecher Commercial Web App www.respeecher.com/ Combines traditional digital signal processing

algorithms with proprietary deep generative
modeling techniques

SV2TTS Open source
implementation

github.com/CorentinJ/Real-Time-Voice-Cloning LSTM with Generalized end-to-end loss

ResembleAI Commercial Web App www.resemble.ai/ Proprietary (AI based)
Voicery Commercial Web App www.voicery.com/ Proprietary AI and deep learning
VoiceApp Mobile app Zoezi AB Proprietary (AI-based)
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respectively. Face2Face [38] captures the real-time facial ex-
pressions of the source person as they talk into a commodity
webcam. It modifies the target person’s face in the original
video to depict them, mimicking the source facial expressions.
Synthesizing Obama [37] is a video rewrite 2.0 program, used
to modify mouth movements in video footage of a person in
order to depict the person “saying” the words contained in an
arbitrary audio clip. These works [37, 38] are focused on the
manipulation of the head and facial region only. Recent de-
velopment expands the application of deepfakes to the entire
body [9, 45, 46], the generation of deepfakes from a single
image [47–50], and temporally smooth video synthesis [51].

Most of the deepfakes currently present on social platforms
like YouTube, Facebook or Twitter may be regarded as harm-
less, entertaining, or artistic. There are also some examples,
however, where deepfakes have been used for revenge porn,
hoaxes, political or non-political influence, and financial fraud
[52]. In 2018, a deepfake video went viral online in which
former U.S. President Barak Obama appeared to insult the
current president, Donald Trump [53]. In June 2019, a fake
video of Facebook CEO Mark Zuckerberg was posted to
Instagram by the Israeli advertising company “Canny” [52].
More recently, extremely realistic deepfake videos of Tom
Cruise posted on the TikTok platform gained 1.4million views
within just a few days [54].

Apart from visual manipulation, audio deepfakes are a new
form of cyber-attack, with the potential to cause severe dam-
age to individuals due to highly sophisticated speech synthesis
techniques i.e. WaveNet [55], Tacotron [56], and deep voice1
[57]. Fake audio-assisted financial scams increased signifi-
cantly in 2019 as a direct result of the progression in speech
synthesis technology. In August 2019, a European company’s
chief executive officer, tricked by an audio deepfake, made a
fraudulent transfer of $243,000 [58]. A voice-mimicking AI
software was used to clone the voice patterns of the victim by
training ML algorithms using audio recordings obtained from
the internet. If such techniques can be used to imitate the voice
of a top government official or a military leader and applied at
scale, it could have serious national security implications [59].

4 Audio-visual deepfake types
and categorization of the literature

This section provides an in-depth analysis of existing state-of-
the-art methods for audio and visual deepfakes. A review for
each category of deepfake in terms of creation and detection is
provided to give a deeper understanding of the various ap-
proaches. We provide a critical investigation of existing liter-
ature which includes the technologies, their capabilities, lim-
itations, challenges, and future trends for both deepfake crea-
tion and detection. Deepfakes are broadly categorized into two
groups, visual and audio manipulations, depending on the

targeted forged modality (Fig. 1). Visual deepfakes are further
grouped into the following types based on manipulation level:
(i) face swap or identity swap, (ii) lip-syncing, (iii) face-
reenactment or puppet-mastery, iv) entire face synthesis and
v) facial attribute manipulation. Audio deepfakes are further
classified as i) text-to-speech synthesis and ii) voice
conversion.

Numerous models have been created to perform video ma-
nipulation. For manipulating both audio and video, different
variants and combinations of GANs and encoder-decoder ar-
chitectures are used. We have presented a generic pipeline for
deepfakes generation in Fig. 4. To perform manipulation, an
image or audio of the target identity and the conditioned
source types including an image, video, sketch map, etc. are
used. First, the facial region is detected and then cropped
before translating both the target face and the source data to
intermediate representations such as deep features, facial land-
mark keypoints, UV maps, and 3D morphable model param-
eters. The intermediate representations are then passed to dif-
ferent synthesis models, or combinations of models, such as
GANs [1], encoder-decoder, Pix2Pix network [60], and RNN/
LSTM. For audio deepfake generation the input can be either
text or voice signal. In the case of text input, a linguistic
analyzer is used to generate linguistic features such as pho-
nemes, duration, and other different granularities. The obtain-
ed features are then passed to an acoustic analyzer for inter-
mediate representation i.e., MCC (mel-cepstral coefficients),
MGC (mel-generalized coefficients), and mel-spectrograms,
etc., that are later used to generate output audio waveform.
Finally, the output is acquired by re-rendering the generated
face into the target frame. For the detection of audiovisual
deepfakes, Fig. 5 shows general processing steps. Most of
the deepfake detection approaches have employed either
handcrafted features-based or deep learning-based methods
for feature extraction. Few approaches are focused to employ
the fusion of both handcrafted and deep features and using
multiple modalities such as both audio and visual signals for
effective manipulation. The computed key points are then
used to classify the input media as real or fake. In the follow-
ing sub-sections, we have analyzed the above-mentioned ma-
nipulation types in detail in terms of both synthesis and detec-
tion techniques.

4.1 Visual manipulations

4.1.1 Face-swap

Generation Visual manipulation is nothing new; images and
videos have been forged since the early days of
phototography. In face-swap [61], or face replacement, the
face of the person in the source video is replaced by the face
in the target video, as shown in Fig. 6. Traditional face-swap
approaches [62–64] generally take three steps to perform a

Deepfakes generation and detection: state-of-the-art, open challenges, countermeasures, and way forward



face-swap operation. First, these tools detect the face in source
images and then select a target’s candidate face image from
the facial library that is similar to the input facial appearance
and pose. Second, the method replaces the eyes, nose, and
mouth of the face and further adjusts the lighting and color
of the candidate face image to match the appearance of input
images, and seamlessly blends the two faces. Finally, the third
step positions the blended candidate replacement by comput-
ing a match distance over the overlap region. These

approaches generally offer good results but have two major
limitations. First, they completely replace the input face with
the target face, and expressions of the input face image are
lost. Second, the synthetic result is very rigid, and the replaced
face looks unnatural i.e., it requires a matching pose to gener-
ate good results.

Recently, DL-based approaches have become popular for
synthetic media creation due to their realistic results. Recent
deepfakes have shown how these approaches can be applied

Fig. 4 Processing pipeline of audio-visual deepfakes generation approaches

Fig. 5 The general processing pipeline for deepfake detection
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with automated digital multimedia manipulation. In 2017, the
first deepfake video that appeared online was created using a
face-swap approach, where the face of a celebrity was shown
in pornographic content [20]. This approach used a neural
network tomorph a victim’s face onto someone else’s features
while preserving the original facial expression. As time went
on, face-swap software i.e. FakeApp [42] and FaceSwap [43]
made it both easier and quicker to produce deepfakes with
more convincing results by replacing the face in a video.
These approaches typically use two encoder-decoder pairs.
In this technique, an encoder is used to extract latent features
of the face from the image and afterward the decoder is used to
reconstruct the face. To swap faces between the source and
target image, two pairs of encoder and decoder are required,
where each encoder is first trained on the source and then the
target image. Once training is complete, the decoders are
swapped, so that an original encoder of the source image
and a decoder of the target image are used to regenerate the
target image with the features of the source image. The result-
ing image has the source’s face on the target’s face, while
keeping the target’s facial expressions. Fig. 7 is an example
of a deepfake crafted in such a way that the feature set of face
A is connected with the decoder B to reconstruct face B from
the original face A. The recently launched ZAO [3], REFACE
[4], and FakeApp [42] applications are more popular due to
their effectiveness in producing realistic face swap-based
deepfakes. FakeApp allows the selective modification of fa-
cial parts. ZAO and REFACE have gone viral lately, used by
less tech-savvy users to swap their faces with movie stars and
embed themselves into well-known movies and TV clips.
There are many publicly available implementations of face-
swap technology using deep neural networks, such as
FaceSwap [43], DeepFaceLab [44], and FaceSwapGAN [65]
leading to the creation of a growing number of synthesized
media clips.

Until recently, most of the research focused on advances in
face-swapping technology, either using a reconstructed 3D

morphable model (3DMM) [61, 66], or GAN based models
[65, 67]. Korshunova et al. [66] proposed a convolution neural
network (CNN) based approach that transferred the semantic
content, e.g., face posture, facial expression, and illumination
conditions, of the input image to create the same effects in
another image. They introduced a loss function that was a
weighted combination of style loss, content loss, light loss,
and total variation regularization. This method [66] generates
more realistic deepfakes compared to [62], however, it re-
quires a large amount of training data. Moreover, the trained
model can be used to transform only one image at a time.
Nirkin et al. [61] presented a method that used a full convo-
lution network (FCN) for face segmentation and replacement
in concert with a 3DMM to estimate facial geometry and
corresponding texture. Then the face reconstruction was per-
formed on the target image by adjusting the model parameters.
These approaches [61, 66] have the limitation of subject-
specific or pair-specific training. Recently subject agnos-
tic approaches have been proposed to address this limita-
tion [65, 67]. In [65], an improved deepfake generation
approach using a GAN was proposed which adds adver-
sarial loss and perceptual loss to VGGface, implemented
in the auto-encoder architecture [43]. The addition of
VGGFace perceptual loss made the direction of the eyes
appear more realistic and consistent with the input, and
also helped to smooth the artifacts added in the segmen-
tation mask, resulting in a high-quality output video.
FSGAN [67] allowed face swapping and reenactment in
real-time by following the reenact and blend strategy.
This method simultaneously manipulates pose, expres-
sion, and identity while producing high-quality and tem-
porally coherent results. These GAN-based approaches
[65, 67] outperform several existing autoencoder-decoder
methods [42, 43] as they work without being explicitly
trained on subject-specific images. Moreover, their itera-
tive nature makes them well-suited for face manipulation
tasks such as generating realistic images of fake faces.

Fig. 6 A visual representation of
Face-Swap based deepfakes

Deepfakes generation and detection: state-of-the-art, open challenges, countermeasures, and way forward



Some of the work used a disentanglement concept for face
swap by using VAEs. RSGAN [68] employed two separate
VAEs to encode the latent representation of facial and hair
regions respectively. Both encoders were conditioned to pre-
dict the attributes that describe the target identity. Another
approach, FSNet [69], presented a framework to achieve
face-swapping using a latent space, to separately encode the
face region of the source identity and landmarks of the target
identity, which were later combined to generate the swapped
face. However, these approaches [68, 69] do not preserve
target attributes, like target occlusion and illumination condi-
tions, well.

Facial occlusions are always challenging to handle in face-
swapping methods. In many cases, the facial region in the
source or target is partially covered with hair, glasses, a hand,
or some other object. This results in visual artifacts and incon-
sistencies in the resultant image. FaceShifter [70] generates a
swapped face with high fidelity and preserves the target attri-
butes such as pose, expression, and occlusion. The identity
encoder was used to encode the source identity and the target
attributes, with feature maps being obtained via the U-Net

decoder. These encoded features are passed to a novel gener-
ator with cascaded Adaptive Attentional Denormalization
layers inside residual blocks which adaptively adjust the iden-
tity region and target attributes. Finally, another network is
used to fix occlusion inconsistencies and refine the results.
Table 3 presents details of Face-swap based deepfake creation
approaches.

Detection Several recent studies have developed novel
methods to identify face swap manipulations. Table 4, shows
the comparison of faceswap detection techniques using both
handcrafted and deep features.

Techniques based on handcrafted Features: Zhang et al.
[73] propose a technique to detect swapped faces by using a
Speeded Up Robust Features (SURF) descriptor for feature
extraction. This is then used to train an SVM for classification,
and then tested on a set of Gaussian blurred images. While this
approach has improved deepfake image detection perfor-
mance it is unable to detect manipulated videos. Yang et al.
[74] introduce an approach to detect deepfakes by estimating
the 3D head position from 2D facial landmarks. The

Fig. 7 Creation of a Deepfake using an auto-encoder and decoder. The same encoder-decoder pair is used to learn the latent features of the faces during
training, while during generation decoders are swapped, such that latent face A is subjected to decoder B to generate face A with the features of face B
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computed difference among the head poses is used as a feature
vector to train an SVM classifier which is later used to differ-
entiate between original and forged content. This technique
exhibits good performance for deepfake detection but has a
limitation in estimating landmark orientation in blurred im-
ages, which degrades the performance of this method under
those conditions. Guera et al. [75] present a method for de-
tecting synthesized faces from videos. Multimedia stream de-
scriptors [76] are used to extract features, which are then used
to train both an SVM and a random forest classifier to differ-
entiate between the real and manipulated faces in a sample
video. This technique gives an effective solution to deepfake
detection but is unable to perform well against video re-
encoding attacks. Ciftci et al. [77] introduce an approach to
detect forensic changes within videos by computing biological
signals (e.g. heart rate) from the face portion of the videos.
Temporal and spatial characteristics of facial features are com-
puted to train SVM and CNN models to differentiate between
bonafide and fake videos. This technique has improved
deepfake detection accuracy, however, it has a large feature
vector space and its detection accuracy drops significantly

when dimensionality reduction techniques are applied. Jung
et al. [78] propose a technique to detect deepfakes by identi-
fying an anomaly based on the time, repetition, and intervened
eye-blinking duration within videos. This method combined
the Fast-HyperFace [79] and EAR techniques (eye detect)
[80] to detect eye blinking. An integrity authenticationmethod
is employed by tracking the fluctuation of eye blinks based on
gender, age, behavior, and time factor to spot real and fake
videos. The approach in [78] exhibits better deepfake detec-
tion performance, however, it is not appropriate if the subject
in the video is suffering from mental illness, as abnormal eye
blinking patterns are often observed in that population.
Furthermore, the work in [81, 83] presents ML based ap-
proaches for face-swap detection, however, it still requires
performance improvement in the presence of post-
processing attacks.

Techniques based on Deep Features: Several studies
have employed a DL-based method for Face-swap manipula-
tion detection. Li et al. [84] proposed a method for detecting
forensic modifications made within video. First, facial land-
marks are extracted using the dlib software package [96].

Table 3 An overview of Face-swap based deepfake generation techniques

Reference Technique Features Dataset Output
Quality

Limitations

Faceswap [43] Encoder-decoder Facial landmarks Private 256×256 ▪ Blurry results due to lossy compression
▪ Lack of pose, facial expression, gaze

direction, hairstyle, and lighting
▪ Requires massive number of target

images

FaceSwapGAN
[65]

GAN VGGFace VGGFace 256×256 ▪ Lack of texture details; generates overly
smooth results

DeepFaceLab
[71]

Encoder-decoder Facial landmarks Private 256×256 ▪ Fails to blend very different facial hues
▪ Requires target training data

Fast Face-swap
[66]

CNN VGGFace ▪ CelebA (200,000 images)
▪ Yale Face Database B

(different pose and lighting
conditions)

256×256 ▪ Works for a single person only
▪Gives better results for frontal face view
▪ Lack of skin texture details, e.g.,

smooth results and Facial Expression
transfer

▪ Does not deal well with occluding
objects i.e. glasses

Nirkin et al. [61] FCN-8 s-VGG
architecture

▪ Basel Face Model to
represent faces

▪ 3DDFA model for
expression

IARPA Janus CS2 (1275 face
videos)

256×256 ▪ Poor results in case of different image
resolutions

▪ Fails to blend very different facial hues

Chen et al. [72] VGG-16 net 68 facial landmarks Helen (2330 images) 256×256 ▪ Provide more realistic results but are
sensitive to variation in posture and
gaze

FSNet [69] GAN Facial landmarks CelebA 128×128 ▪ Sensitive to variation in angle
RSGAN [68] GAN Facial landmarks,

segmentation mask
CelebA 128×128 ▪ Sensitive to variation in angle,

occlusion, lightning
▪ Limited output resolution

FaceShifter [70] GAN Attributes (face,
occlusions, lighting
or styles)

▪ VGG Face
▪ CelebA-HQ
▪ FFHQ

256×256 ▪ Stripped artifacts
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Table 4 An overview of face swap deepfake detection techniques

Author Technique Features Best Evaluation performance Dataset Limitations

Handcrafted features
Zhang
et al. [73]

SURF + SVM 64-D features using
SURF

▪ Precision=97%
▪ Recall=88%
▪ Accuracy=92%

Generate deepfake
dataset using LFW
face database.

▪ Unable to preserve facial
expressions

▪ Works with static images
only.

Yang et al.
[74]

SVM Classifier 68-D facial landmarks
using DLib

ROC=89% ▪ UADFV ▪ Degraded performance for
blurry images.ROC=84% ▪ DARPA MediFor

GAN Image/ Video
Challenge.

Guera et al.
[75]

SVM, RF
Classifier

Multimedia stream
descriptor [76]

AUC=93% (SVM)
AUC=96% (RF)

Custom dataset. ▪ Fails on video re-encoding
attacks

Ciftci et al.
[77]

CNN medical signals features Accuracy=96% Face Forensics dataset ▪ Large feature vector space.

Jung et al.
[78]

Fast-HyperFace
[79], EAR [80]

Landmark features Accuracy=87.5% Eye Blinking
Prediction dataset

▪ Inappropriate for people
with mental illness

Matern
et al. [81]

MLP, Logreg 16-D texture energy
based features of eyes
and teeth [82]

▪ AUC=.0.851(MLP)
▪ AUC=0.784 (LogReg)

FF++ ▪ Only applicable to face
images with open eyes and
clear teeth.

Agarwal
et al. [83]

SVM Classifier 16 AU’s using
OpenFace2 toolkit

AUC=93% Own dataset. ▪ Degraded performance in
cases where a person is
looking off-camera.

Deep Learning-based features
Li e al. [84] VGG16,

ResNet50,
ResNet101,
ResNet152

DLib facial landmarks AUC=84.5 (VGG16), 97.4
(ResNet50), 95.4
(ResNet101), 93.8
(ResNet152)

DeepFake-TIMIT ▪ Not robust for multiple
video compression.

Guera et al.
[33]

CNN/ RNN Deep features Accuracy=97.1% Customized dataset ▪ Applicable to short videos
only (2 sec).

Li et al.
[85]

CNN/RNN DLib facial landmarks TPR=99% Customized dataset ▪ Fails over frequent closed
eyes or blinking.

Montserrat
et al. [86]

CNN+RNN Deep features Accuracy=92.61% DFDC ▪ Performance needs
improvement.

Lima et al.
[87]

VGG11+LSTM Deep features Accuracy=98.26%, AUC=
99.73%

Celeb-DF ▪ Computationally complex.

Agarwal
et al. [88]

VGG6+
encoder--
decoder
network

Deep features +
behavioral biometrics

AUC=99% WLDR ▪ Unable to generalize well to
unseen deepfakes.AUC=99% FF

AUC=93% DFD
AUC=99% Celeb-DF

Fernandes
et al. [89]

Neural-ODE
model

Heart-rate Loss=0.0215 Custom ▪ Computationally complex
Loss=0.0327 DeepfakeTIMIT

Yang et al.
[90]

GAN Deep features Accuracy=97.37% FF++ ▪ Low generalization abilty
AUC=0.9999 CelebDF
AUC=0.9579 DFDC
Accuracy=99.86% DeeperForensics

Sabir et al.
[91]

CNN/RNN Deep features Accuracy=96.3% FF++ ▪ Results are reported for
static images only.

Afchar
et al. [92]

MesoInception-4 Deep features TPR=81.3% FF++ ▪ Performance degrades on
low quality videos.

Nguyen
et al. [93]

CNN Deep features Accuracy=83.71% FF++ ▪ Degraded detection
performance for unseen
cases.

Stehouwer
et al. [94]

CNN Deep features Accuracy=99.43% Diverse Fake Face
Dataset (DFFD)

▪ Computationally complex
due to large feature vector
space.

Rossle
et al. [95]

SVM+CNN Co-Occurance matrix +
DF

Accuracy=90.29% FF++ ▪ Low performance on
compressed videos.
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Next, CNN-based models, named ResNet152, ResNet101,
ResNet50, and VGG16 are trained to detect forged content
from video. This approach is more robust in detecting forensic
changes but it exhibits low performance on multi-time com-
pressed videos. Guera et al. [33] propose a novel CNN to
extract the features at the frame level. Then the RNN is trained
on the set of extracted features to detect deepfakes from input
video. This work achieves good detection performance but
only on videos of short duration i.e. videos of 2 seconds or
less. Li et al. [85] propose a technique to detect deepfakes by
using the fact that the manipulated videos lack accurate eye
blinking in synthesized faces. A CNN/RNN approach is used
to detect a lack of eye blinking in the videos in order to expose
the forged content. This technique shows better deepfake de-
tection performance, however, it only uses the lack of eye
blinking as a clue to detect the deepfakes. This approach has
the following potential limitations: i) it is unable to detect
forgeries in videos with frequent eye blinking, ii) it is unable
to detect manipulated faces with closed eyes in training, and
iii) it is inapplicable in scenarios where forgers can create
realistic eye blinking in synthesized faces. Montserrat et al.
[86] introduce a method for detecting visual manipulation in a
video. Initially, a Multi-task convolutional neural network
(MTCNN) [97] is employed to detect the faces from all video
frames to compute the features. In the next step, an Automatic
Face Weighting (AFW) mechanism, along with a Gated
Recurrent Unit, is used to discard incorrectly identified faces.
Finally, an RNN is employed to combine the features from all
steps and locate the manipulated content in the video samples.
The approach in [86] works well for deepfake detection, how-
ever, it is unable to obtain a prediction from the features in
multiple frames. Lima et al. [87] introduce a technique to
detect video manipulation by learning the temporal informa-
tion of frames. Initially, VGG-11 is employed to compute the
features from video frames, on which LSTM is applied for
temporal sequence analysis. Several CNN frameworks,
named R3D, ResNet, I3D, are trained on the temporal se-
quence descriptors outputted by the LSTM, in order to iden-
tify original and manipulated video. This approach [87] im-
proves deepfake detection accuracy but at the expense of high
computational cost. Agarwal et al. [88] present an approach to
locate face-swap-based manipulations by combining both fa-
cial and behavioral biometrics. Behavioral biometrics are rec-
ognized with the encoder-decoder network (Facial Attributes-
Net, FAb-Net) [98], whereas VGG-16 is employed for facial
feature computation. Finally, by merging both metrics the
inconsistencies in matching identities are revealed in order to
locate face-swap deepfakes. The approach in [88] works well
for unseen cases, however, it may not generalize well to lip-
synch-based deepfakes. Fernandes et al. [89] introduce a tech-
nique to locate visual manipulation by measuring the heart-
rate of the subjects. Initially, three techniques: skin color var-
iation [99], average optical intensity [100], and Eulerian video

magnification [101], are used to measure heart rate. The com-
puted heart-rate was used to train a Neural Ordinary
Differential Equations (Neural-ODE) model [102] to differen-
tiate the original and altered content. This technique [89]
works well for deepfake detection but also has increased com-
putational complexity. In [103] a multi-scale texture differ-
ence network is introduced for face manipulation detection.
The model is comprised of a ResNet-18 based textural differ-
ence information block and a multi-scale information extrac-
tion block. Then, the obtained features at different scales are
fused to perform classification using cross-entropy loss. Yang
et al. [90] propose a multi-scale self-texture attention deepfake
detection framework based on facial texture analysis. The ar-
chitecture work by identifying the potential texture difference
between real and fake faces. It consists of a trace generator and
a classification network. The trace generator network is com-
prised of an image analysis encoder followed by a self-texture
attention module for the calculation of texture autocorrelation
in features in order to differentiate between real and forged
faces. For trace generation, the triplet loss is used to generate
fake faces, and logistic regression for the actual face images.
The loss function, based on probability-constrained trace con-
trol loss for trace construction and confined by classification
probability, is applied. This method is robust to different tex-
tural post-processing operations, however the overall detec-
tion accuracy is low due to lack of generalizability. Other
works [91–95] have explored CNN-based methods for the
detection of swapped faces, however, there is a need for a
more robust approach.

4.1.2 Lip-syncing

Generation The Lip-syncing approach involves synthesizing a
video of a target identity such that the mouth region in the
manipulated video is consistent with a specific audio input
[37] (Fig. 8). A key aspect of the synthesis of a video with
an audio segment is the movement and appearance of the
lower portion of the mouth and its surrounding region. To
convey a message more effectively and naturally, it is impor-
tant to generate proper lip movements along with expressions.
From a scientific point of view, lip-syncing has many appli-
cations in the entertainment industry, such as making audio-
driven photorealistic digital characters in films or games,
voice-bots, and dubbing films in foreign languages.
Moreover, it can also help the hearing-impaired understand a
scenario by lip-reading from a video created using genuine
audio.

Existing works on lip-syncing [104, 105] require the
reselection of frames from a video or transcription, along with
target emotions, to synthesize lip motions. These approaches
are limited to a dedicated emotional state and don’t generalize
well to unseen faces. However, DL models are capable of
learning and predicting movements from audio features. A
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detailed analysis of existing DL-based methods used for Lip-
sync-based deepfake generation are presented in Table 5.
Suwajanakorn et al. [37] proposes an approach to generate a
photo-realistic lip-synced video using a target’s video and an
arbitrary audio clip as input. A recurrent neural network
(RNN) based model is employed to learn the mapping be-
tween audio features and mouth shape for every frame and
later used frame reselection to fill in the texture around the
mouth based on the landmarks. This synthesis is performed on
the lower facial regions i.e. mouth, chin, nose, and cheeks, and
applies a series of post-processing steps, such as smoothing
jaw location and re-timing the video to align vocal pauses, or
talking head motion, to produce videos that appear more nat-
ural and realistic. In this work, Barak Obama is considered as

a case study due to the sufficient availability of online video
footage. Thus, this model requires retraining and large amount
of data for each individual. The Speech2Vid [106] model
takes an audio clip and a static image of a target subject as
input and generates a video that is lip-synced with the audio
clip. This model uses Mel Frequency Cepstral Coefficient
(MFCC) features, extracted from the audio input, and feeds
them into a CNN-based encoder-decoder. As a post-
processing step, a separate CNN is used for frame deblurring
and sharpening in order to preserve the quality of visual con-
tent. This model generalizes well to unseen faces and thus
does not need retraining for new identities. However, this
work is unable to synthesize a variety of emotions on facial
expressions.

Fig. 8 A visual representation of lip-syncing of an existing video to an arbitrary audio clip

Table 5 An overview of Lip sync-based deepfake generation techniques

Reference Technique Features Dataset Output
Quality

Limitations

Suwajanakorn
et al. [37]

RNN (single-layer
unidirectional LSTM)

▪ Mouth landmarks
(36-D features)

▪ MFCC audio
features (28-D)

Youtube videos
(17 hours)

2048×1024 ▪ Requires a large amount of training data for the
target person.

▪ Require retraining for each identity.
▪ Sensitive to the 3D movement of the head
▪ No direct control over facial expressions

Speech2Vid
[106]

Encoder–decoder CNN ▪ VGG-M network
▪ MFCC audio

features

▪ VGG Face
▪ LRS2

(41.3-hour
video)

▪ VoxCeleb2
(test)

109×109 ▪ lacks the ability to synthesize emotional facial
expressions

Vougioukas
et al. [107]

Temporal GAN MFCC audio features ▪ GRID
▪ TCD TIMIT

96×128 ▪ lacks the ability to synthesize emotional facial
expressions flickering and jitter

▪ sensitive to large facial motions

Zhou et al.
[108]

Temporal GAN Deep audio-video
features

▪ LRW
▪MS-Celeb-1 M

256×256 ▪ lacks the ability to synthesize emotional facial
expressions

Vdub [109] 3DMM ▪ 66 facial feature
points

▪ MFCC features

▪ Private 1024×1024 ▪ Requires video of the target

LipGAN [110] GAN ▪ VGG-M network
▪ MFCC features

▪ LRS 2 1280×720 ▪ visual artifacts and temporal inconsistency
▪ unable to preserve source lip region

characteristics

Wav2Lip [111] GAN ▪ Mel-spectrogram
representation

▪ LRS2 1280×720 ▪ lacks the ability to synthesize emotional facial
expressions
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The GAN-based manipulations, such as [107] employ a
temporal GAN, consisting of an RNN, to generate a
photorealistic video directly from a still image and speech
signal. The resulting video includes synchronized lip move-
ments, eye-blinking, and natural facial expressions without
relying on manually handcrafted audio-visual features.
Multiple discriminators are employed to control frame quality,
audio-visual synchronization, and overall video quality. This
model can generate lip-syncing for any individual in real-time.
In [108], an adversarial learning method is employed to learn
disentangled audio-visual representation. The speech encoder
is trained to project both audio and visual representations into
the same latent space. The advantage of using a disentangled
representation was that both the audio and video can serve as a
source of speech information during the generation process.
As a result, it is possible to generate realistic talking face
sequences on an arbitrary identity with synchronized lip
movement. Garrido et al. [109] present a Vdub system that
captures the high-quality 3D facial model of both the source
and the target actor. The computed facial model is used to
photo-realistically reconstruct a 3D mouth model of the dub-
ber to be applied on the target actor. An audio channel analysis
is performed to better align the synthesized visual content with
the audio. This approach better renders a coarse-textured teeth
proxy, however it fails to synthesize a high-quality interior
mouth region. In [110] a face-to-face translation method,
LipGAN, is proposed which can synthesize a talking face
video of any individual utilizing a given single image and
audio segment as input. LipGAN consists of a generator net-
work to synthesize portrait video frames with a modified
mouth and jaw area from the given audio and target frames
and uses a discriminator network to decide whether the syn-
thesized face is synchronized with the given audio. This ap-
proach is unable to ensure temporal consistency in the synthe-
sized content, as blurriness and jitter can be observed in the
resultant video. Recently, Prajwal et al. [111] proposed a
wav2lip speaker-independent model that can accurately syn-
chronize lip movements in a video recording to a given audio
clip. This approach employs a pre-trained lip-sync discrimi-
nator that is further trained on noisy generated videos in the
absence of a generator. This model uses several consecutive
frames instead of a single frame in the discriminator and em-
ploys visual quality loss, along with contrastive loss, thus
increasing the visual quality by considering temporal
correlation.

Recent approaches can synthesize photo-realistic fake
videos from speech (audio-to-video) or text (text-to-video)
with convincing video results. The methods proposed in [37,
112] can alter existing video of a person to the desired speech
to be spoken from text input by modifying the mouth move-
ment and speech accordingly. These approaches are more fo-
cused on synchronizing lip movements by synthesizing the
region around the mouth. In [113] a VAE based framework

is proposed to synthesize full pose video with facial expres-
sions, gestures, and body posture movements from given
audio.

Detection techniques based on handcrafted features Initially,
ML-based methods are employed for the detection of lip-sync
visual deepfakes. Korshunov et al. [114] propose a technique
employing 40-D MFCC features containing the 13-D static,
13-D delta, and 13-D double-delta along with the energy, in
combination with mouth landmarks to train four classifiers,
i.e. SVM, LSTM, multilayer perceptron (MLP), and Gaussian
mixture model (GMM). Three publicly available datasets,
namedVidTIMIT [115], AMI corpus [116], and GRID corpus
[117] are used to evaluate the performance of this technique.
From the results, it is concluded in [114] that the LSTM
achieves better performance than other techniques. Lip-
syncing deepfake detection performance of the LSTMmethod
drops, however, for the VidTIMIT [115] and AMI [116]
datasets due to fewer training samples for each person in both
of these datasets over the GRID dataset. In [118] MFCC fea-
tures were substituted with DNN embeddings i.e., language-
specific phonetic features used for automatic speaker recogni-
tion. The evaluation show improved performance as com-
pared to [114], however, performance is not evaluated on
large-scale realistic datasets and GAN-based manipulation.

Techniques based on Deep Features: Other DL-based
techniques, such as [119], propose a detection approach by
exploiting the inconsistencies between phoneme-viseme
pairs. In [119], the authors observe that in a video the lip shape
associated with specific phenomes such as M, B, or P must be
completely closed to pronounce them, however deepfake
videos often lack this aspect. They analyze the performance
by creating deepfakes using Audio-to-Video (A2V) [37] and
Text-to-Video (T2V) [112] synthesis techniques. However,
this method fails to generalize well for unseen samples during
training. Haliassos et al. [120] propose a lip-sync deepfake
detection approach, namely LipForensics, using a spatio-
temporal network. Initially, a feature extractor 3D-CNN
ResNet18 and a multiscale temporal convolutional network
(MS-TCN) are trained on lip-reading datasets such as
Lipreading in the Wild (LRW). Then, the model is fine-
tuned on deepfake videos using the FaceForensics++ (FF++)
dataset. This method also performs well over different post-
processing operations such as blur, noise, compression etc.,
however, the performance substantially decreases when there
is a limited mouth movement in the video, such as pauses in
speech or less movement in the lips. Chugh et al. [121] pro-
pose a deepfake detection mechanism by finding a lack of
synchronization between the audio and visual channels.
They compute a modality dissimilarity score (MDS) between
the audio and visual modalities. A sub-network based on 3D-
ResNet architecture is used for feature computation and em-
ploys two loss functions, a cross-entropy loss at the output
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layer for robust feature learning, and a contrastive loss, com-
puted over the segment-level audiovisual features. The MDS
is calculated as the total audiovisual dissonance over all seg-
ments of the video and is used for the classification of the
video as real or fake. Mittal et al. [122] proposes a Siamese
network architecture for audio-visual deepfake detection. This
approach compares the correlation between emotion-based
differences in facial movements and speech in order to distin-
guish between real and fake. However, this approach requires
a real-fake video pair for the training of the network and fails
to classify correctly if only a few frames in the video have
been manipulated. Chintha et al. [123] propose a framework
based on the XceptionNet CNN for facial feature extraction
and then pass it to a bidirectional LSTM network for the de-
tection of temporal inconsistencies. The network is trained via
two loss functions, i.e., cross-entropy and KL-divergence, to
discriminate the feature distribution of real video from that of
manipulated video. Table 6 presents a comparison of
handcrafted and deep learning techniques employed for the
detection of lip sync-based deepfakes.

4.1.3 Puppet-master

Generation Puppet-master, also known as face reenactment, is
another common variety of deepfake that manipulates the fa-
cial expressions of a person, e.g., transferring the facial ges-
tures, eye, and headmovements, to an output video that reflect
those of the source actor [124] as shown in Fig. 9. Puppet-
mastery aims to deform the person’s mouth movement to
make fabricated content. Facial reenactment has various ap-
plications, like altering the facial expression and mouth move-
ment of a participant to a foreign language in an online

multilingual video conference, dubbing or editing an actor’s
head and their facial expressions in film industry post-
production systems, or creating photorealistic animation for
movies and games, etc.

Initially, 3D facial modeling-based approaches for facial
reenactment were proposed because of their ability to accu-
rately capture the geometry and movement, and for improved
photorealism in reenacted faces. Thies et al. [125, 126] pre-
sented the first real-time facial expression transfer method
from an actor to a target person. A commodity RGB-D sensor
was used to track and reconstruct the 3D model of the source
and target actors. For each frame, the tracked deformations of
the source face were applied to the target face model, and later
the altered face was blended onto the original target face while
preserving the facial appearance of the target face model.
Face2Face [38] is an advanced form of facial reenactment
technique, as presented in [125]. This method worked in
real-time and was capable of altering the facial movements
of generic RGB video streams, e.g., YouTube videos, using
a standard webcam. The 3D model reconstruction approach
was combined with image rendering techniques to generate
the output. This could create a convincing and instantaneous
re-rendering of a target actor with a relatively simple home
setup. This work was further extended to control the facial
expressions of a person in a target video based on intuitive
hand gestures using an inertial measurement unit [127].

Later, GANs were successfully applied for facial reenact-
ment due to their ability to generate photo-realistic images.
Pix2pixHD [60] produced high-resolution images with better
fidelity by combining a multi-scale conditional GANs
(cGAN) architecture [128] using a perceptual loss. Kim
et al. [47] proposed an approach that allowed the full

Table 6 An overview of Lip sync-based deepfake detection techniques

Author Technique Performance reported Dataset
used

Limitations

Handcrafted features

Korshunov
et al. [114]

SVM, LSTM, MLP, GMM EER=24.74 (LSTM), 53.45 (MLP),
56.18(SVM), 56.09(GMM)

VidTIMIT LSTM performs better than
others but its performance
degrades as the training
samples decrease.

EER=33.86 (LSTM), 41.21(MLP),
48.39(SVM), 47.84 (GMM)

AMI

EER=14.12 (LSTM), 28.58(MLP), 30.06
(SVM), 46.81(GMM)

GRID

Agarwal et al.
[119]

SVM Accuracy=99.6% Custom
dataset

Performance degrades for
unseen samples

Deep Learning-based features

Haliassos et al.
[120]

3D-ResNet18, multi-scale temporal
convolutional network

AUC=97.1% FF++ Performance degrades in
cases when there is limited
lip movement

Mittal et al.
[122]

siamese network architecture Accuracy =84.4% DFDC Requires a real–fake video
pair for training.AUC=96.3%(LQ), 94.9%(HQ) DF-TIMIT

Chintha et al.
[123]

XceptionNet CNN with bidirectional
LSTM network

Accuracy=97.83% Celeb-Df Performance degrades on
compressed samplesAccuracy=96.89% FF++
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reanimation of portrait videos by an actor, such as changing
head pose, eye gaze, and blinking, rather than just modifying
the facial expression of the target identity and thus produced
photorealistic dubbing results. At first, a face reconstruction
approach was used to obtain a parametric representation of the
face and illumination information from each video frame to
produce a synthetic rendering of the target identity. This rep-
resentation was then fed to a render-to-video translation net-
work based on the cGAN in order to predict the synthetic
rendering into photo-realistic video frames. This approach re-
quired training the videos for target identity. Wu et al. [129]
proposed ReenactGAN, which encodes input facial features
into a boundary latent space. A target-specific transformer was
used to adapt the source boundary space according to the
specified target, and later the latent space was decoded onto
the target face. GANimation [130] employed a dual cGAN
generator conditioned on emotion action units (AU) to transfer
facial expressions. The AU-based generator used an attention
map to interpolate between the reenacted and original images.
Instead of relying on AU estimations, GANnotation [131]
used facial landmarks, along with a self-attention mechanism,
for facial reenactment. This approach introduced a triple con-
sistency loss to minimize visual artifacts but required the im-
ages to be synthesized with a frontal facial view for further
processing. These models [130, 131] required a large amount
of training data for the target identity to perform well at
oblique angles or they lacked the ability to generate photo-
realistic reenactment for unknown identities.

Recently, few-shot or one-shot face reenactment ap-
proaches have been proposed to achieve reenactment using a
few, or even a single, source image. In [39], a self-supervised
learning model, X2face, using multiple modalities such as
driving frame, facial landmarks, or audio, to transfer the pose
and expression of the input source to the target expression,
was proposed. X2face uses two encoder-decoder networks: an
embedding network and a driving network. The embedding
network learns face representation from the source frame and

the driving network learns pose and expression information
from the driving fame to the vector map. The driving network
was crafted to interpolate face representation from the embed-
ded network in order to produce target expressions. Zakharov
et al. [132] present a meta-transfer learning approach where
the network was first trained on multiple identities and then
fine-tuned on the target identity. First, target identity encoding
is obtained by averaging the target’s expressions and associ-
ated landmarks from different frames. Then a pix2pixHD [60]
GAN was used to generate the target identity using source
landmarks as input, and identity encoding via adaptive in-
stance normalization (AdaIN) layers. This approach works
well at oblique angles and directly transfers the expression
without requiring intermediate boundary latent space or an
interpolation map, as in [39]. Zhang et al. [133] propose an
auto-encoder-based structure to learn the latent representation
of the target’s facial appearance and the source’s face shape.
These features are used as input to SPADE residual blocks for
the face reenactment task, which preserves the spatial infor-
mation and concatenates the feature map in a multi-scale man-
ner from the face reconstruction decoder. This approach can
better handle large pose changes and exaggerated facial ac-
tions. In FaR-GAN [134], learnable features from convolution
layers are used as input to the SPADEmodule instead of using
multi-scale landmark masks, as in [133]. Usually, few-shot
learning fails to completely preserve the source identity in
the generated results for cases where there is a large pose
difference between the reference and target image.
MarioNETte [48] is proposed to mitigate identity leakage by
employing attention block and target feature alignment. This
helps the model to accommodate the variations between face
structures better. Finally, the identity is retained by using a
novel landmark transformer, influenced by the 3DMM facial
model [135].

Real-time face reenactment approaches, such as FSGAN
[67], perform both facial replacement and reenactment with
occlusion handling. For reenactment, a pix2pixHD [60]

Fig. 9 A visual representation of
puppet-master based deepfake
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generator takes the target’s image and source’s 3D facial land-
mark as input and outputs a reenacted image and 3-channel
(hair, face, and background) encoded segmentation mask. The
recurrent generator is trained recursively where output is iter-
ated multiple times for incremental interpolation from source
to target landmarks. The results are further improved by ap-
plying Delaunay Triangulation and barycentric coordinate in-
terpolation to generate output similar to the target’s pose. This
method achieves real-time facial reenactment at 30fps and can
be applied to any face without requiring identity-specific train-
ing. Table 7 provides the summary of techniques adopted for
facial expression manipulation mentioned above.

In the next few years, photo-realistic full-body reenactment
[9, 136] videos will also be viable, where the target’s expres-
sion, along with mannerisms, will be manipulated to create

realistic deepfakes. The videos that will be generated using
the above-mentioned techniques will be further merged with
fake audio to create completely fabricated content [137].
These progressions enable the real-time manipulation of facial
expressions and motion in videos while making it challenging
to distinguish between what is real and what is fake.

Detection Techniques based on handcrafted Features:
Matern et al. [81] presented an approach for classifying forged
content by employing simple facial handcrafted features like
the color of eyes, missing artifact information in the eyes and
teeth, and missing reflections. These features were used to
train two models, i.e. logistic regression and MLP, to distin-
guish manipulated content from the original data. This tech-
nique has a low computational cost; however, it applied only

Table 7 An overview of face reenactment-based deepfake generation techniques

Reference Technique Features Dataset Output
Quality

Limitations

Face2Face
[38]

3DMM ▪ parametric model
▪ Facial landmark features

customized 1024×1024 ▪ Sensitive to facial occlusions

Kim et al.
[47]

cGAN parametric model of the
face (261
parameters/frame)

customized 1024×1024 ▪ 1–3 min. Video of target
▪ Sensitive to facial occlusions

ReenactGAN
[129]

GAN Facial landmark features ▪ CelebV dataset
▪ WFLW Dataset
▪ Helen, DISFA

256×256 ▪ 30 min. Video of target
▪ Lacks gaze adaptation

GANimation
[130]

GAN (2
Encoder- 2
Decoder)

AUs ▪ EmotioNet dataset
▪ RaFD dataset

128×128 ▪ Lack of pose and gaze adaptation

GANnotation
[131]

GAN Facial landmark features ▪ 300-VWChallenge dataset
▪ BP4D dataset
▪ Helen, LFPW, AFW, IBUG,

and a subset of multiple
datasets

128×128 ▪ Lack of gaze adaptation

X2face [39] 2Encoder-
2Decoder

▪ Facial landmark features
▪ 256-D audio features

▪ VGG Face dataset
▪ VoxCeleb dataset
▪ AFLW dataset

256×256 ▪ Wrinkle artifacts
▪ Lack of gaze adaptation

Zakharov
et al. [132]

GAN
(1Encoder-
2Decoder)

Facial landmark features VoxCeleb dataset 256×256 ▪ Sensitive to source identity leakage
▪ Lack of gaze adaptation

Zhang et al.
[133]

GAN
(1Encoder-
2Decoder)

Appearance and shape
feature Map

▪ VGG Face dataset
▪ WFLW
▪ EOTT dataset
▪ CelebA-HQ dataset
▪ LRW dataset.

256×256 ▪ Low visual quality output (256×256)

FaR-GAN
[134]

GAN Facial landmark and
Boundary features

▪ VGG Face dataset
▪ VoxCeleb1 dataset

256×256 ▪ Sensitive to source identity leakage
▪ Lack of gaze adaptation

MarioNETte
[48]

GAN
(2Encoder-
1Decoder)

Facial landmark features ▪ VoxCeleb1 256×256 ▪ Fails to preserve source facial
characteristics completely

FSGAN [67] GAN+RNN ▪ Facial landmarks
▪ LFW parts label set

▪ IJB-C dataset (5500 face
videos)

▪ VGGFace2
▪ CelebA
▪ Figaro dataset

256×256 ▪ The identity and texture quality
degrade in case of large angular
differences

▪ Fail to fully capture facial expressions
▪ blurriness in image texture
▪ limited to the resolution of training

data
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to the visual content with open eyes or visible teeth. Amerini
et al. [138] proposed an approach based on optical flow fields
to detect synthesized faces in digital videos. The optical flow
fields [139] of each video frame were computed using PWC-
Net [140]. The estimated optical flow fields of frames were
used to train the VGG16 and ResNet50 to classify real and
fake content. This method [138] exhibited better deepfake
detection performance, however, only initial results have been
reported. Agarwal et al. [83] presented a user-specific tech-
nique for deepfake detection. First, a GAN was used to gen-
erate all three types of deepfakes for US ex-president Barack
Obama. Then the OpenFace2 [141] toolkit was used to esti-
mate facial and head movements. The estimated difference
between the 2D and 3D facial and head landmarks was used
to train a binary SVM to classify between the original face and
synthesized face of Barack Obama. This technique provided
good detection accuracy, however, it was vulnerable in those
scenarios where a person is looking off-camera.

Techniques based on Deep Features: Several research
works have focused on employing DL-based methods for
puppet-mastery deepfake detection. Sabir et al. [91] observed
that while generating the manipulated content, forgers often
do not impose temporal coherence in the synthesis process.
So, in [91], a recurrent convolutional model was used to in-
vestigate the temporal artifacts in order to identify synthesized
faces in the images. This technique [91] achieved better de-
tection performance, however, it worked best on static frames.
Rossler et al. [95] employed both handcrafted (co-occurrence
matrix) and learned features for detecting manipulated con-
tent. It was concluded in [95] that the detection performance
of both networks, either employing hand-crafted or deep fea-
tures, degraded when evaluating them on compressed videos.
To analyze the mesoscopic properties of manipulated content,
Afchar et al. [92] proposed an approach where they employed
two variants of the CNNmodel with a small number of layers,
named Meso-4 and MesoInception-4. This method managed
to reduce the computational cost by downsampling the frames
but at the expense of a decrease in accuracy in deepfake de-
tection. Nguyen et al. [93] proposed a multi-task, learning-
based CNN network to simultaneously detect and localize
manipulated content from videos. An autoencoder was used
for the classification of forged content, while a y-shaped de-
coder was applied to share the extracted information for the
segmentation and reconstruction steps. This model was robust
to deepfake detection; however, the evaluation accuracy de-
graded when presented with unseen scenarios. To overcome
the issue of performance degradation, as in [93], Stehouwer
et al. [94] proposed a Forensic transfer (FT) based CNN ap-
proach for deepfake detection. This work [94], however, suf-
fered from high computational cost due to a large feature
space. The comparison of these handcrafted and deep
features-based face reenactment deepfake detection tech-
niques is presented in Table 8.

4.1.4 Face synthesis

Generation Facial editing in digital images has been heavily
explored for decades. It has been widely adopted in the art,
animation, and entertainment industry, however lately it has
been exploited to create deepfakes for identity impersonation.
Face generation involves the synthesis of photorealistic im-
ages of a human face that may or may not exist in real life. The
tremendous evolution in deep generative models has made
them widely adopted tools for face image synthesis and
editing. Generative deep learning models, i.e. GAN [1] and
VAE [142], have been successfully used to generate photo-
realistic fake human face images. In facial synthesis, the ob-
jective is to generate non-existent but realistic-looking faces.
Face synthesis has enabled a wide range of beneficial appli-
cations, like automatic character creation for video games and
3D face modeling industries. AI-based face synthesis could
also be used for malicious purposes such as the synthesis of
photorealistic fake profile picture for a fake social network
account in order to spread disinformation. Several approaches
have been proposed to generate realistic-looking facial images
that humans are unable to recognize as synthesized. Figure 10
shows the improvement in the quality of synthetic facial im-
ages between 2014 and 2019. Table 9 provides a summary of
works presented for the generation of entirely synthetic faces.

Since the emergence of GANs [1] in 2014, significant ef-
forts have been made to improve the quality of synthesized
images. The images generated using the first GAN model [1]
were low-resolution and not very convincing. DCGAN [143]
was the first approach that introduced a deconvolution layer in
the generator to replace the fully connected layer, which
achieved better performance in synthetic image generation.
Liu et al. [144] proposed CoGAN, based on VAE, for learning
joint distributions of two-domain images. This model trained a
couple of GANs rather than a single one, and each was re-
sponsible for synthesizing images in one domain. The size of
generated images still remained relatively small, e.g. 64 × 64
or 128 × 128 pixels.

The generation of high-resolution images was limited ear-
lier due to memory constraints. Karras et al. [145] presented
ProGAN, a trainingmethodology for GANs, that employed an
adaptive mini-batch size that progressively increased the res-
olution, depending on the current output resolution, by adding
layers to the networks during the training process. StyleGAN
[146] was an improved version of ProGAN [145]. Instead of
mapping latent code z to a resolution, aMapping Network was
employed that learned to map input latent vector (Z) to an
intermediate latent vector (W) which controlled different vi-
sual features. The improvement was that the intermediate la-
tent vector was free from any distribution restriction, and this
reduced the correlation between features (disentanglement).
The layers of the generator network were controlled via an
AdaIN operation which helped decide the features in the
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output layer. Compared to [1, 143, 144], StyleGAN [146]
achieved state-of-the-art high resolution in the generated im-
ages i.e., 1024 × 1024, with fine detail. StyleGAN2 [147]
further improved the perceived image quality by removing
unwanted artifacts, such as a change in gaze direction and
teeth alignment with the facial pose. Huang et al. [148] pre-
sented a Two-Pathway Generative Adversarial Network (TP-
GAN) that could simultaneously perceive global structures
and local details, like humans, and synthesized a high-
resolution frontal view facial image from a single ill-posed
face image. Image synthesis using this approach preserved
the identity under large pose variations and illumination.
Zhang et al. [149] introduced a self-attention module in
convolutional GANs (SAGAN) to handle global dependen-
cies, and thus ensured that the discriminator can accurately

determine the related features in distant regions of the image.
This work further improved the semantic quality of the gen-
erated image. In [150], the authors proposed BigGAN archi-
tecture, which used residual networks to improve image fidel-
ity and the variety of generated samples by increasing the
batch size and varying latent distribution. In BigGAN, the
latent distribution was embedded in multiple layers of the
generator to influence features at different resolutions and
levels of the hierarchy rather than just adding to the initial
layer. Thus, the generated images were photo-realistic and
very close to real-world images from the ImageNet dataset.
Zhang et al. [151] proposed a stacked GAN (StackGAN)
model to generate high-resolution images (e.g., 256 × 256)
with details based on a given textual description. In [152],
spatial and channel attention layers were added to the

Table 8 An overview of face reenactment based deepfake detection techniques

Author Technique Features Best Evaluation
performance

Dataset Limitations

Handcrafted

Matern
et al. [81]

MLP, Logreg 16-D texture energy based
features of eyes and teeth
[82]

▪ AUC=.823 (MLP)
▪ AUC=.866

(LogReg)

FF++ ▪ Only applicable to face images with
open eyes and clear teeth.

Agarwal
et al. [83]

SVM Classifier 16 AU’s using OpenFace2
toolkit

▪ AUC=98% Own dataset. ▪Degraded performance in cases where
a person is looking off-camera.

Amerini
et al.
[138]

VGG16, ResNet Optical flow fields Accuracy=81.61%
(VGG16),
75.46%

(ResNet)

FF++ ▪ Very few results are reported

Deep Learning

Sabir et al.
[91]

CNN/RNN CNN features Accuracy=94.35% FF++ ▪ Results are reported for static images
only.

Afchar
et al. [92]

MesoInception-4 Deep features (DF) TPR=81.3% FF++ ▪ Performance degrades on low quality
videos.

Nguyen
et al. [93]

CNN Deep features Accuracy=92.50% FF++ ▪ Degraded detection performance for
unseen cases.

Stehouwer
et al. [94]

CNN Deep features Accuracy=99.4% Diverse Fake Face
Dataset (DFFD)

▪ Computationally complex due to
large feature vector space.

Rossle
et al. [95]

SVM+CNN Co-Occurance matrix + DF Accuracy=86.86% FF++ ▪ Low performance on compressed
videos.

Fig. 10 Improvement in the quality of synthetic faces generated by variations on GANs. In order, the images are from papers byGoodfellow et al. (2014)
[1], Radford et al. (2015) [143], Liu et al. (2016) [144], Karras et al. (2017) [145], and Style-based (2018 [146], 2019 [147])
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generator network to improve texture learning details for
super-resolution image generation.

Detection Techniques based on handcrafted Features: A
lot of literature is available on image forgery detection
[153–158]. As AI-manipulated data is a new phenomenon,
there are few forensic techniques that work well for deepfake
detection. Recently, some researchers [73, 159] have adopted
the idea of employing the traditional methods of image forg-
ery identification to detect synthesized faces, however, these
approaches are unable to identify fake facial images. Current
research has focused on new ML-based techniques.
McCloskey et al. [160] present an approach to identify fake
images by employing the fact that the color information is
dissimilar between the real camera and synthesized samples.
The color key-points from input samples are used to train the
SVM for classification. This approach [160] exhibits better
fake sample detection accuracy, however, it may not perform
well for blurred images. Guarnera et al. [161] proposes a
method to identify fake images. Initially, the EM algorithm
is used to calculate the image features. The computed key-
points are used to train three types of classifiers, KNN,
SVM, and LDA. The approach in [161] performs well for
synthesized image identification, but may not perform well
for compressed images.

Techniques based on Deep Features: DL-based work
such as in [162], the authors proposed a method to detect
forged images by calculating the pixel co-occurrence matrices
at three color channels of the image. Then a CNN model was
trained to learn important features from the co-occurrence ma-
trices to differentiate manipulated and non-manipulated con-
tent. Yu et al. [163] presented an attribution network architec-
ture to map an input sample to its related fingerprint image.
The correlation index among each sample fingerprint and
model fingerprint acts as a softmax logit for classification.
This approach [163] exhibited better detection accuracy, how-
ever, it may not have performed well with post-processing

operations i.e. noise, compression, and blurring, etc. Marra
et al. [164] proposed a study to identify GAN-generated fake
images. Particularly, [164] introduced a multi-task incremen-
tal learning detection approach to locate and classify new
types of GAN-generated samples without affecting the detec-
tion accuracy of the previous ones. Two solutions related to
the position of the classifier were introduced by employing the
iCaRL algorithm for incremental learning [165], named as
Multi-Task MultiClassifier, and Multi-Task Single
Classifier. This approach [164] was robust to unseen GAN-
generated samples but was unable to perform well if the in-
formation on the fake content generation method is not avail-
able. Table 10 presents a comparison of the face synthesis
deepfake detection techniques mentioned above.

4.1.5 Facial attribute manipulation

Generation Face attribute editing involves altering the facial
appearance of an existing sample by modifying an attribute-
specific region while keeping the irrelevant regions un-
changed. Face attribute editing includes removing/wearing
eyeglasses, changing viewpoint, skin retouching (e.g.,
smoothing skin, removing scars, and minimizing wrinkles),
and even some higher-level modifications, such as age and
gender, etc. Increasingly, people are using commercially
available AI-based face editing and mobile applications such
as FaceApp [5] to automatically alter the appearance of an
input image.

Recently, several GAN-based approaches have been pro-
posed to edit facial attributes, such as the color of the skin,
hairstyle, age, and gender by adding/removing glasses and
facial expressions in a given face. In this manipulation, the
GAN takes the original face image as input and generates the
edited face image with the given attribute, as shown in Fig. 11.
A summary of face attribute manipulation approaches is pre-
sented in Table 11. Perarnau et al. [166] introduce the
Invertible Conditional GAN (IcGAN), which uses an encoder

Table 9 An overview of face synthesis deepfake generation techniques

Reference Technique Features Dataset Output Quality Limitations

Liu et al. [144] CoGAN Deep Features CelebA 64×64 or 128×128 ▪ Generates low-quality samples

Karras et al. [145] ProGAN Deep Features CelebA 1024×1024 ▪ Limited control on the generated output

Karras et al. [147] StyleGAN Deep Features ▪ ImageNet 1024×1024 ▪ Blob-like artifacts
Huang et al. [148] TP-GAN Deep Features ▪ LFW 256×256 ▪ Lack fine details

▪ Lack semantic consistency

Zhang et al. [149] SAGAN Deep Features ▪ ImageNet2012 128×128 ▪ Unwanted visible artifacts
Brock et al. [150] BigGAN Deep Features ▪ ImageNet 512×512 ▪ Class-conditional image synthesis

▪ Class leakage
Zhang et al. [151] StackGAN Deep Features ▪ CUB

▪ Oxford
▪ MS-COCO

256×256 ▪ Lack semantic consistency
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in combination with cGANs for face attribute editing. The
encoder maps the input face image into a latent representation
and an attributes manipulation vector, and a cGAN recon-
structs a face image with new attributes, given the altered
attributes vector as the condition. This suffers from informa-
tion loss and alters the original face identity in the synthesized
image. In [167], a Fader Network is presented, where an
encoder-decoder architecture is trained in an end-to-end man-
ner which generates an image by disentangling the salient
information of the image and the attribute values directly in
latent space. This approach, however, adds unexpected distor-
tion and blurriness, and thus fails to preserve the fine details of
the original in the generated image.

Prior studies [166, 167] have been focused on handling
image-to-image translations between two domains. These
methods required different generators to be trained

independently to handle translations between each pair of im-
age domains and thus limited their practical usage. StarGAN
[36], an enhanced approach, was capable of translating images
among multiple domains using a single generator. A condi-
tional facial attribute transfer network was trained via attribute
classification loss and cycle consistency loss. StarGAN
achieved promising visual results in terms of attribute manip-
ulation and expression synthesis. This approach, however,
added some undesired visible artifacts in facial skin, such as
an uneven color tone, in the output image. The recently pro-
posed StarGAN-v2 [168] achieved state-of-the-art visual
quality of generated images as compared to [36] by adding a
random Gaussian noise vector into the generator. In AttGAN
[169], an encoder-decoder architecture was proposed that con-
sidered the relationship between attributes and the latent rep-
resentation. Instead of imposing an attribute independent

Table 10 An overview of face synthesis deepfake detection techniques

Author Technique Features Best Evaluation
performance

Dataset Limitations

Handcrafted

Guarnera et al.
[161]

EM + (KNN, SVM,
LDA)

Deep features ▪ Accuracy=99.22
(KNN)

▪ Accuracy=
99.81(SVM)

▪ Accuracy=99.61
(LDA)

CelebA Not robust to compressed images.

McCloskey
et al. [160]

SVM Color channels ▪ AUC=70% MFC2018 Performance degrades with blurry
samples.

Deep Learning

Nataraj et al.
[162]

CNN Deep features +
co-occurrence matrices

Accuracy=99.49% ▪ cycleGAN ▪ Works with static images only.
▪ Low performance for jpeg

compressed images.
Accuracy=93.42% ▪ StarGAN

Yu et al. [163] CNN Deep features Accuracy=99.43% CelebA ▪ Poor performance on
post-processing operations.

Marra et al.
[164]

CNN+Incremental
Learning

Deep features Accuracy=99.3% Customized ▪ Needs source manipulation
technique information

Fig. 11 Examples of different face manipulations: original sample (Input) and manipulated samples
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constraint on the latent representation, like in [166, 167], an
attribute classification constraint was applied to the generated
image in order to guarantee the correct change of the desired
attributes. AttGAN provided improved facial attribute editing
results, with other facial details well preserved. However, the
bottleneck layer, i.e., down-sampling in the encoder-decoder
architecture, added unwanted changes and blurriness and gen-
erated low-quality edited results. Liu et al. [170] proposed the
STGAN model that incorporated an attribute difference indi-
cator and a selective transfer unit with an encoder-decoder to
adaptively select and modify the encoded features. STGAN
only focused on the attribute-specific region and did not guar-
antee good preservation of the details in attribute-irrelevant
regions.

Other works introduce the attention mechanism for attri-
bute manipulation. SAGAN [171] introduces a GAN-based
attribute manipulation network to perform alteration and a
global spatial attention mechanism to localize and explicitly
constrain editing within a specified region. This approach pre-
serves the irrelevant details well but at the cost of attribute
correctness in the case of multiple attribute manipulation.
PA-GAN [172] employs a progressive attention mechanism
in a GAN to progressively blend the attribute features into the
encoder features, constrained inside a proper attribute area, by
employing an attention mask from high to low feature level.
As the feature level gets lower (higher resolution), the atten-
tion mask gets more precise and the attribute editing becomes
fine. This approach successfully performs multiple attribute
manipulation, and preserves irrelevance within a single model
well. However, some undesired artifacts appear in cases where
significant modifications are required, such as baldness and an
open mouth.

Detection Techniques based on handcrafted Features:
Researchers have employed the traditional ML-based

approaches for the detection of facial attributes manipulation.
In [173], the author used the pixel co-occurrence matrices to
compute features from the suspect samples. The extracted
keypoints were used to train a CNN classifier to differentiate
original and manipulated faces. The method in [173] showed
better facial attribute manipulation detection accuracy, how-
ever, it may not have performed well given noisy samples. An
identification approach using keypoints computed from the
frequency domain, instead of employing raw sample pixels,
was introduced in [174]. For each input sample, a 2D discrete
fourier transformation (DFT) was applied to transform the
image to the frequency domain in order to acquire one fre-
quency sample per RGB channel. The work, [174], used an
AutoGAN classifier for predicting real and fake samples. The
generalization ability of the work in [174] was evaluated over
unseen GAN frameworks. More specifically, they considered
two GAN frameworks, namely StarGAN [36] and GauGAN
[175]. The work showed better prediction accuracy for the
StarGAN model, however, in the case of GauGAN, the tech-
nique faced a serious performance drop.

Techniques based on Deep Features: The research com-
munity has presented several methods to detect facial manip-
ulations by evaluating the internal GAN pipeline. Similar
work was presented in [176], where the author introduced
the concept that analyzing internal neuron behavior could as-
sist in identifying manipulated faces, as layer-by-layer neuron
activation arrangements could extract a more representa-
tive set of significant image features for recognizing the
original and fake faces. The proposed solution in [176],
namely FakeSpotter, computed deep features by
employing several DL-based face recognition frame-
works, i.e., VGG-Face [177], OpenFace [178], and
FaceNet [179]. The extracted features were used to train
an SVM classifier to categorize fake and real faces. The
solution [176] performed well for facial attributes

Table 11 An overview of facial attribute manipulation-based deepfake generation techniques

Author Technique Features Best Evaluation
performance

Dataset Limitations

Perarnau et al.
[166]

IcGAN ▪ Deep Features ▪ CelebA
▪ MNIST

64×64 ▪ Fails to preserve original face identity

Fader Network
[167]

Encoder-decoder ▪ Deep Features ▪ CelebA 256×256 ▪ Unwanted distortion and blurriness
▪ Fails to preserve fine details

Choi et al. [168] StarGAN ▪ Deep Features ▪ CelebA
▪ RaFD

512×512 ▪ Undesired visible artifacts in the facial skin e.g., the
uneven color tone

He et al. [169] AttGAN ▪ Deep Features ▪ CelebA
▪ LFW

384×384 ▪ Generates low-quality results and adds unwanted
changes, blurriness

Liu et al. [170] STGAN ▪ Deep Features ▪ CelebA 384×384 ▪ Poor performance for multiple attribute manipulation

Zhang et al.
[171]

SAGAN ▪ Deep Features ▪ CelebA 256×256 ▪ Lack of details in the attribute-irrelevant region

He et al. [172] PA-GAN ▪ Deep Features ▪ CelebA 256×256 ▪ undesired artifacts in case of baldness and open
mouth etc.
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manipulation detection, however, it may not have per-
formed well for samples with intense light variation.

Existing works on facial attribute manipulation have either
employed entire faces or passed face patches in order to spot
real and manipulated content. A face patch-based technique
was presented in [180], where a Restricted Boltzmann
Machine (RBM) was used to compute deep features. Then,
the extracted features were used to train a two-class SVM
classifier to classify real and forged faces. The method in
[180] was robust to manipulated face detection, however, it
was at the expense of increased computational cost. Another
similar approach was proposed in [181], where a CNN-based
keypoint extractor was presented. The CNN approach com-
prised six convolutional layers, along with two fully connect-
ed layers. Additionally, residual connections were introduced
which allowed the ResNet frameworks to compute the deep
features from the input samples. Finally, the calculated fea-
tures were used to train an SVM classifier to predict real and
manipulated faces. The approach in [181] showed better ma-
nipulation identification performance, however, it did not per-
form well in terms of various post-processing attacks, i.e.,
noise, blurring, intensity variations, and color changes.
Some researchers have employed the use of entire faces rather
than face patches in order to detect facial attribute manipula-
tion in visual content. One such work was presented by Tariq
et al. [182], where several DL-based frameworks, i.e., VGG-
16, VGG-19, ResNet, and XceptionNet, were trained on sus-
pect samples in order to locate facial attribute forgeries. The
work in [182] showed better face attribute manipulation de-
tection, however its performance declined in real-world sce-
narios. Some authors used attention mechanisms to further
enhance training in the attribute manipulation detection sys-
tems. Dang et al. [183] introduced a framework to identify
several types of facial manipulation. This framework em-
ployed attention mechanisms in order to enhance feature
map calculation in CNN frameworks. Two different methods
of attribute manipulation generation were taken into account:
i) fake samples generated using the publicly available
FaceApp software, with various available filters, and ii) fake
samples generated with the StarGAN network. The work
[183] is robust to face forgery detection, however, at the ex-
pense of high computational cost.

Wang et al. [170] proposed a framework to detect manip-
ulated faces which encompassed two classification steps: local
and global predictors. A Dilated Residual Network (DRN)
model was used as a global predictor to identify real and fake
samples, while optical flow fields were utilized for local pre-
dictions. The approach in [170] worked well for face attribute
manipulation identification but required extensive training da-
ta. Similarly, [164] proposed a DL-based framework,
XceptionNet, for the detection of face attribute forgeries.
However, the method in [164] suffered from high computa-
tional cost. Rathgeb et al. [184] introduced Photo Response

Non-Uniformity (PRNU). In this method, scores gathered af-
ter performing an analysis of spatial and spectral features,
computed from the PRNUpatterns from entire image samples,
were fused. The approach [184] was able to robustly differen-
tiate between bonafide and retouched facial samples, however
accuracy was lacking.

Many of these DL-based methods achieve near-perfect ac-
curacy, as shown in Table 12, however this accuracy appears
to be largely due to the presence of GAN fingerprints in the
manipulated samples. Newer research focuses on detec-
tion in samples where the GAN signatures have been re-
moved, and this has proven to be challenging for previ-
ously high-performing frameworks. Hence, the research
community needs to develop strategies that are resistant
to such attacks.

4.1.6 Discussion of visual manipulation methods

GenerationDeepfake generation has advanced significantly in
recent years. The high quality of generated images across
different visual manipulation categories (face-swap, face-re-
enactment, lip-sync, entire face synthesis, and attribute manip-
ulation) has made it increasingly difficult for human eyes to
differentiate between fake and genuine content. Among the
significant advances are: (i) unpaired self-supervised training
strategies avoid the requirement for extensive labeled training
data, (ii) the addition of AdaIN layers, pix2pixHD network,
self-attention modules, and feature disentanglement for im-
proved synthesized faces, (iii) one/few-shot learning strategies
enable identity theft with limited target training data, (iv) the
use of temporal discriminators and optical flow estimation to
improve coherence in the synthesized videos, (v) introduction
of a secondary network for seamless blending of composites
in order to reduce boundary artifacts, (vi) the use of multiple
loss functions to handle different tasks, such as conversion,
blending, occlusion, pose, illumination, etc., for improved fi-
nal output, and (vii) the adoption of perceptual loss with pre-
trained VGG-Face network dramatically enhanced synthesize
facial quality. Current deepfake systems have a few limita-
tions, e.g., in facial reenactment generation techniques frontal
poses are always used to drive and create the content. As a
result, reenactment is restricted to a somewhat static perfor-
mance. Currently, Face-swapping onto the body of a lookalike
is performed to achieve facial reenactment, however, this ap-
proach has limited flexibility because having a good match is
not always achievable with the current technology. Moreover,
face reenactment depends on the driver’s performance to por-
tray the target identity personality. Recently, there has been a
trend towards identity-independent deepfake generation
models. Another development is real-time deepfakes that al-
low face swapping in video chats. Real-time deepfakes at
30fps have been achieved in works such as [67, 106]. The
next generation of deepfakes are expected to utilize video
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stylization techniques to generate target manipulated content
with projected expression and mannerism. Although, existing
deepfakes are not perfect, the rapid development of high-
quality real/fake image datasets promote deepfake generation
research.

Detection In this subsection, we presented a summary of the
work performed for visual deepfakes detection. Based on the
in-depth analysis of various detection approaches, we con-
cluded that most of the existing detection work is based on
employing a DL-based approach and shows a robust perfor-
mance approaching 100%. The main reason for the accuracy
of models is the presence of fingerprint information, visible
artifacts in the audiovisual manipulated samples. However,
more recently researchers have presented approaches which
removed the information from the forged samples, which is
proving to be a challenge even for high-performing attribute
manipulation detection frameworks. It has been observed that
most of the existing detection techniques perform well on face
swap detection, and are relatively easily able to identify when
the entire face is swapped with the target identity, which usu-
ally leaves artifacts. However, expression swap and lip-sync
are more challenging to detect as these manipulations tamper

with soft biometrics of the same person’s identity. For visual
deepfakes detection, it has been observed that it’s relatively
easy for the research community to detect image-based ma-
nipulations in comparison to video-based deepfakes. Both for
audio or visual deepfakes, most of the research work has used
publically available datasets instead of using their own syn-
thesized datasets. The existing works have reported robust
performance for visual deepfake detection but has faced a
serious performance drop for unseen cases, indicating a lack
of generalization ability, is likely related. Moreover, these
approaches are unable to definitively prove the difference be-
tween real and manipulated content, so these approaches lack
explainability. Several deepfake detection methods presented
in previous years have proven to be nearly unusable due to
implementation complexities such as variation in datasets,
configuration environment, and complicated architecture.
More recently, software and online platforms such as
DeepFake-o-meter [185], FakeBuster [186], and Video
Authenticator (not publicly available) [187] have been intro-
duced which are able to easily detect audio-visual manipula-
tion and give access to the general audience. However, these
platforms are in their infancy and need further development to
handle emerging deepfakes.

Table 12 An overview of facial attribute manipulation based deepfake detection techniques

Author Technique Features Best Evaluation
performance

Dataset Limitations

Hand-crafted

[173] co-occurrence
matrices along
with CNN

Co-Occurrence
matrix

Accuracy=99.4% Private dataset. ▪ Its evaluation performance reduces over noisy
images.

[174] GAN
Discriminator

Frequency
domain
features

Accuracy =100% Private dataset. ▪ The technique faces serious performance
degradation for GauGAN framework-based face
attribute manipulations.

Deep Learning

[176] FakeSpoter Deep features Accuracy=84.7% Private dataset ▪ Detection performance decreases when the
samples have significant light variation.

[180] RBM along with
the SVM
classifier

Deep features Accuracy=96.2% Private dataset ▪ This method suffers from the high computational
cost.Accuracy=87.1% Private dataset (Celebrity

Retouching, ND-IIITD
Retouching)

[181] CNN+SVM Deep features Accuracy =99.7% Private dataset ▪ Results are reported for post-processing attacks.

[182] CNNs Deep features AUC=74.9% Private dataset ▪ Performance degrades in real-world scenarios.

[183] Attention
Mechanism
along with
CNN

Deep features AUC=99.9% DFFD ▪ This work is computationally complex.

[170] DRN Deep features Average precision=
99.8%

Private dataset ▪ The approach should be evaluated over a standard
dataset.

[164] Incremental
Learning along
with the CNN

Deep features Accuracy =99.3% Private dataset ▪ This work is inefficient.

[184] Score-Level
Fusion

PRNU Features EER=13.7% Private dataset ▪ The work needs to improve the classification
accuracy.
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Figure 12 groups the existing work performed for visual
deepfake detection. Table 13 presents a detailed description of
each category. Existing approaches have either targeted spa-
tial and temporal artifacts left during the generation or data-
driven classification. The spatial artifacts include inconsis-
tencies [78, 81, 114, 188, 193, 201–203], abnormalities in
background [160, 194, 198], and GAN fingerprints [74, 163,
204, 205]. The temporal artifacts involve detecting variation
in a person’s behavior [83, 88, 200], physiological signals [77,
78, 85, 89], coherence [190, 199, 206], or video frame syn-
chronization [33, 75, 91, 138, 207, 208]. Instead of focusing
on a specific artifact, some approaches are data-driven, which
detect manipulations by classification [58, 73, 84, 86, 87,
92–95, 119, 123, 161, 162, 164, 189, 191, 192, 209–213] or
anomaly identification [121, 122, 195, 196, 214–216].
Moreover, in Fig. 12, the * references show the DL-based
approaches employed for deepfake detection, while others
show the hand-coded feature extraction methods.

4.2 Audio manipulations

AI-synthesized audio manipulation is a type of deepfake that
can clone a person’s voice and depict that voice saying some-
thing that the person never said. Recent advancements in AI-
synthesized algorithms for speech synthesis and voice cloning
have shown the potential to produce realistic fake voices that
are nearly indistinguishable from genuine speech. These

algorithms can generate synthetic speech that sounds like the
target speaker, based on text or samples of the target speaker,
with highly convincing results [59, 217]. Synthetic voice is
widely adapted for the development of different applications,
such as automated dubbing for TV and film, chatbots, AI
assistants, text readers, and personalized synthetic voices for
vocally handicapped people. Aside from this, synthetic/fake
voices have become an increased threat to voice biometric
systems [218] and used for malicious purposes, such as polit-
ical gains, fake news, or fraud as well [14, 58]. More complex
audio synthesis could combine the power of AI with manual
editing. For example, neural network-powered voice synthesis
models, such as Google’s Tacotron [56], Wavenet [55], or
AdobeVoco [219], can generate realistic and convincing fake
voices that resemble the victim’s voice. Later on, audio editing
software, e.g. Audacity [6], can be used to integrate the orig-
inal and synthesized audio to make more convincing fakes.

AI-based impersonation is not limited to visual content;
recent advancements in AI-synthesized fake voices are
assisting the creation of highly realistic deepfakes video
[37]. These developments in speech synthesis have shown a
potential to produce realistic and highly natural sounding au-
dio deepfakes, exhibiting a real threat to society [14].
Combining synthetic audio content with visual manipulation
can make deepfake videos significantly more convincing and
increase their impact [37]. Despitemuch progress, synthesized
speech still lacks some aspects of voice quality, like

Fig. 12 Categorization of visual deepfake detection techniques (The red
color shows Face-Swap detection approaches, purple for Face-
Reenactment, Orange for lip-syncing, Blue for facial image synthesis,

and pink for facial attribute manipulation detection techniques, where *
shows deep-learning based approaches)
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expressiveness, roughness, breathiness, stress, and emotion,
specific to a target identity [220]. The AI research community
is making a concerted effort to overcome these challenges and
produce human-like voice quality with high speaker
similarity.

Two distinct modalities for audio deepfakes are text-to-
speech (TTS) synthesis and voice conversion (VC). TTS syn-
thesis is a technology that can synthesize a natural-sounding
sample of any speaker based on the given input text [221]. VC
is a technique that modifies the audio waveform of a source
speaker to a sound similar to the target speaker’s voice [222].
A VC system takes the recording of an individual as a source
and creates a deepfake audio in the target’s voice. It preserves
the linguistic and phonetic characteristics of the source sample
and changes them to that of the target speaker. TTS synthesis
and VC represent a genuine threat when used maliciously as
both generate completely synthetic computer-generated
voices that are nearly indistinguishable from genuine speech.
Moreover, cloned replay attacks [13] impose a potential risk
for voice biometric devices because the latest speech synthesis
techniques can produce a vocal sample with high speaker
similarity [223]. This section lists the latest progress in speech
synthesis including TTS and VC techniques as well as detec-
tion strategies.

4.2.1 TTS voice synthesis

TTS is a decades-old technology which can synthesize a
natural-sounding voice from a given input text, and thus en-
ables a voice to be used for better human-computer

interaction. The initial research on TTS synthesis technology
was done using the methods of speech concatenation or
parameter estimation. The concatenative TTS systems are
based on separating high-quality recorded speech into
small fragments followed by concatenation into a new
speech. In recent years, this method has become outdated
and unpopular as it is not scalable or consistent. In con-
trast, parametric models map text to the salient speech
parameters and convert them into an audio signal using
vocoders. Later on, the deployment of deep neural net-
works has gradually become a dominant method for
speech synthesis that achieves much better voice quality.
These methods include the Neural vocoders [55, 221,
2 24 ] , GANs [ 225–227 ] , a u t o e n code r s [ 228 ] ,
autoregressive models [229–231], and other emerging
techniques [228, 232–236] which have promoted the rapid
development of the speech synthesis industry. Figure 13
shows the principle design of modern TTS methods.

The significant developments in voice/speech synthesis are
WaveNet [55], Tacotron [56], and DeepVoice3 [224], which
can generate realistic sounding synthetic speech from an input
text to provide an enhanced interaction experience between
humans and machines. Table 14 presents an overview of the
state-of-the-art speech synthesis methods. WaveNet [55], de-
veloped by DeepMind in 2016 utilizes raw audio waveforms
by processing acoustic features, i.e., spectrograms, through a
generative framework that is trained on actual recorded
speech. Parallel WaveNet has been introduced to enhance
sampling efficacy and produce high-fidelity audio signals
[231]. Another DL based using a variant of WaveNet, Deep

Table 13 Description of
classification categories for
existing deepfake detection
methods

Inconsistencies Visible artifacts within the frame such as inconsistent head poses and landmarks etc.

Environment Abnormalities in the background such as lighting and other details.

Forensics GAN fingerprints left during the generation process.

Behavioral Monitoring abnormal gestures and facial expressions.

Synchronization Temporal consistency such as inconsistencies between adjacent frames/modality.

Physiology Lack of biological signals such as eye blinking patterns and heart rate

Coherence Missing optical flow field and artifacts such as flickering and jitter between frames

Classification End-to-end CNN based data-driven models

Anomaly
Detection

Outliers identification such as reconstructing real images and comparing to the encoded
image. They are used to see unknown creation methods.

Fig. 13 Workflow diagram of the latest TTS systems
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Voice 1 [57], puts each module containing an audio signal,
voice generator, or a text analysis front-end through a related
NN model. Due to the independent training of each module,
however, it is not a real end-to-end speech synthesis system.

In 2017, Google introduced tacotron [56] an end-to-end
speech synthesis model. Tacotron could synthesize speech
from given <text, audio> pairs and thus generalized well to
other datasets. Similar to WaveNet, the Tacotron framework
was a generative framework comprised of a seq2seq model
that contained an encoder, an attention-based decoder, and a
post-processing network. Even though the Tacotron model
attained better performance it had one potential limitation
i.e., it must employ multiple recurrent components. The inclu-
sion of these units made it computationally inefficient so it
required high-performance systems for model training. Deep
Voice 2 [237] combined the capabilities of both the Tacotron
and WaveNet models for voice synthesis. Initially, Tacotron
was employed for converting the input text to a linear scale

spectrogram, later converted to voice through the WaveNet
model.

In [238], Tacotron2 is introduced for vocal synthesis and it
exhibits an impressively high mean opinion score, very simi-
lar to human speech. Tacotron2 consists of a recurrent
sequence-to-sequence keypoint estimation framework that
maps character embedding to mel-scale spectrograms. To deal
with the time complexities of recurrent unit-based speech syn-
thesis models, a new, fully-convolutional character-to-
spectrogram model named DeepVoice3 is presented in
[224]. The Deep Voice 3 model is faster than its peers due
to performing fully parallel computations. Deep Voice 3 is
comprised of three main modules: i) an encoder that accepts
text as input and transforms it into an internal learned form, ii)
a decoder that converts the learned representations in an
autoregressive manner, and iii) a post-processing, fully
convolutional network that predicts the final vocoder
parameters.

Table 14 An overview of the state-of-the-art text-based speech synthesis techniques

Methods Technique Features Dataset Limitations

WaveNet [55] Deep neural network ▪ linguistic
features

▪ fundamental
frequency (log
F0)

▪ VCTK (44 hrs.) ▪ Computationally complex

Tacotron [56] Encoder-Decoder with RNN ▪ Deep features Private (24.6 hrs.) ▪ Costly to train the model

Deep Voice
1[57]

Deep neural networks ▪ linguistic
features

Private (20 hrs.) ▪ Independent training of each module leads
to a cumulative error in synthesized
speech

Deep Voice 2
[237]

RNN ▪ Deep features VCTK (44 hrs.) ▪ Costly to train the model

DeepVoice3
[224]

Encoder-decoder ▪ Deep features ▪ Private (20 hrs.)
▪ VCTK (44 hrs.)
▪ LibriSpeech ASR (820 hrs.)

▪ Does not generalize well for unseen
samples.

Parallel
WaveNet
[231]

Feed-forward neural network
with dilated causal
convolutions

▪ linguistic
features

Private ▪ Requires a large amount of the target’s
speech training data.

VoiceLoop
[230]

Fully-connected neural network ▪ 63-dimensional
audio features

▪ VCTK (44 hrs.)
▪ Private

▪ Low ecological validity

Tacotron2[238] ▪ Encoder-decoder ▪ linguistic
features

▪ Japanese speech corpus from
the ATR Ximera dataset
(46.9 hrs.)

▪ Lack of real-time speech synthesis

Arik et al. [59] Encoder- decoder ▪ Mel
spectrograms

▪ LibriSpeech (820 hrs.)
▪ VCTK (44 hrs.)

▪ Low performance for multi-speaker speech
generation in the case of low-quality
audio

Jia et al. [233] Encoder-decoder ▪ Mel
spectrograms

▪ LibriSpeech (436 hrs.)
▪ VCTK (44 hrs.)

▪ Fails to attain human-level naturalness
▪ Lacks in transferring the target accent,

prosody to synthesized speech

Luong et al.
[228]

Encoder-decoder ▪ Mel
spectrograms

▪ LibriSpeech (245 hrs.)
▪ VCTK (44 hrs.)

▪ Low performance in the case of noisy
audio samples

Chen et al.
[235]

Encoder + deep neural network ▪ Mel
spectrograms

▪ LibriSpeech (820 hrs.)
▪ private

▪ Low performance in the case of a
low-quality audio sample

Cong et al.
[236]

Encoder-decoder ▪ Mel
spectrograms

▪ MULTI-SPK
▪ CHiME-4

▪ Lacks in synthesizing utterances of a target
speaker
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Another model for voice synthesis is VoiceLoop [230],
which uses a memory framework to generate speech from
voices unseen during training. VoiceLoop builds a phonolo-
gical store by executing a shifting buffer as a matrix. Text
strings are characterized as a list of phonemes that are later
decoded in short vectors. The new context vector is produced
by assessing the encoding of the resulting phonemes and sum-
ming them together. The above-mentioned powerful end-to-
end speech synthesizer models [224, 238] have enabled the
production of large-scale commercial products, such as
Google Cloud TTS, Amazon AWS Polly, and Baidu TTS.
All these projects aim to attain a high similarity between syn-
thesized and human voices.

The latest TTS systems can convert given text to human
speech with a particular voice identity. Using generative
models, researchers have built voice imitating TTS models
that can clone the voice of a particular speaker in real-time
using a few samples of reference speech [233, 234]. The key
distinction between voice cloning and speech synthesis sys-
tems is that the former focuses on preserving the characteris-
tics of the specific identity speech attributes while the latter
lacks this feature to maintain the quality of the generated
speech [228]. Various AI-enabled voice cloning online plat-
forms are available, such as Overdub,1 VoiceApp2, and
iSpeech,3 which can produce synthesized voices that closely
resemble the target’s speech, and give the public access to this
technology. Jia et al. [233] proposes a Tacotron 2 based TTS
system capable of producing multi-speaker speech, including
those unseen during training. The framework consists of three
independently trained neural networks. The findings show
that although the synthetic speech resembles a target speaker’s
voice it does not fully isolate the voice of the speaker from the
prosody of the audio reference. Arik et al. [59] propose a Deep
Voice 3-based technique comprised of two modules: speaker
adaptation and speaker encoding. For speaker adaptation, a
multi-speaker generative framework is fine-tuned. For speaker
encoding, an independent model is trained to directly infer a
new speaker embedding, which is applied to the multi-speaker
generative model.

Loung et al. [228] propose a speech generation framework
that can synthesize a target-specific voice, either from input
text or a reference raw audio waveform from a source speaker.
The framework consists of a separate encoder and decoder for
text and speech, and a neural vocoder. The model is jointly
trained with linguistic latent features, and the speech genera-
tion model learns a speaker-disentangled representation. The
obtained results achieve quality and speaker similarity to the
target speaker; however, it takes almost 5 minutes to produce

the cloned speech. Chen et al. [235] propose a meta-learning
approach using the waveNet model for voice adaption with
limited data. Initially, speaker adaptation is computed by fine-
tuning the speaker embedding. Then, a text-independent para-
metric approach is applied whereby an auxiliary encoder net-
work is trained to predict the embedding vector of new speak-
er. This approach performs well on clean and high-quality
training data however the presence of noise deviates the
speaker encoding and directly affects the performance of the
synthesized speech. In [236], the authors propose a seq2seq
multi-speaker framework with domain adversarial training to
produce a target speaker voice from only a few available noisy
samples. The results show improved naturalness in the syn-
thetic speech. However, similarity still remains challenging to
achieve due to an inability to transfer target accents and pros-
ody to synthesized speech with a limited amount of low-
quality speech data.

Different GAN-based architectures have been applied to
process and generate high-quality speech in audio synthesis.
Notable works include WaveGAN [239], GAN-TTS [225],
MelGAN [226], and Hifi-GAN [227]. Some works introduce
GAN-based vocoders that focus on producing high-quality
speech while maintaining controllability. In [225], the authors
introduce GAN-TTS, a linguistic to waveform generation
model using a GAN. It is based on a conditional feed-
forward generator network that generates a raw speech wave-
form, and an ensemble of discriminator networks that use
multi-frequency random windows to assess synthesized
speech. In [226], the authors introduce Mel-GAN, a dilated
convolutional structure to enlarge the receptive field in order
to better simulate long-range correlation in the waveform se-
quences. A multi-scale discriminator network is used with a
feature matching loss over the feature map of real and synthet-
ic audio. In [227], a generator is based on a multi-receptive
field fusion module that processes many patterns of varying
durations simultaneously. Multiple sub-discriminators are
used to individually evaluate different periodic portions of
the input waveform. The loss function, similar to [226], is
used to compute the distance between the produced wave-
form’s mel-spectrogram and ground truth. The HiFi-GAN
can efficiently synthesize speech that closely resembles natu-
ral speech, however, for high-quality speech synthesis, it re-
quires model fine-tuning and respective ground-truth data.

Aside from naturalness, expressiveness is an important fac-
tor that differentiates synthesized speech from human speech.
Numerous factors influence the expressiveness of a synthetic
voice, including content, timbre, phonation, style, emotion,
and others. An expressive TTS requires a one-to-many map-
ping that matches voice variants to a text selection in terms of
pitch, loudness, time, and speaker accent. In [240], a feed-
forward transformer network that generates mel-
spectrograms from text and then synthesizes speech is pro-
posed. Because a mel-spectrogram sequence is substantially

1 https://www.descript.com/overdub
2 https://apps.apple.com/us/app/voiceapp/id1122985291
3 https://www.ispeech.org/apps
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lengthier than its corresponding phoneme sequence, a mono-
tonic alignment search is employed to extract a duration that
aligns both text and speech and provides better control over
the vocal speed and prosody. Similarly, work in [229] em-
ploys a fully convolutional network to generate mel-
spectrograms for speech synthesis, along with a positional
attention mechanism that aligns speech and text sequences.
Kim et al. [232] introduce Glow-TTS, a Flow-based model
for the generation of mel-spectrograms. This model uses a
self-attention mechanism to internally learn mappings be-
tween the text and the latent representation of speech by using
properties of flow and dynamic programming. The Glow-TTS
model synthesizes natural-sounding speech and provides bet-
ter control over the synthesized speech, such as speaking rate
or pitch but it involves a huge number of training parameters.
In addition, computing average mel-spectrograms from input
leads to low-quality and less expressive synthesized speech
because it lacks the ability to capture the expression details of
every single utterance. Therefore, more efficient approaches
that can better model different variations of speech are re-
quired to improve the expressiveness of the synthesized
speech.

4.2.2 Voice conversion

Voice Conversion (VC) is a speech-to-speech synthesis tech-
nology that manipulates an input voice to sound like the target
voice identity while maintaining the linguistic content of the
source speech. VC has numerous applications in real life,
including expressive voice synthesis, personalized speech
speaking assistants, adaptive equipment for vocally impaired
people, voice dubbing for the entertainment industry, and
many others [222]. The recent development of anti-spoofing
for automated speaker verification [218] included VC systems
for the generation of spoofing data [241, 242].

In general, to performVC high-level features of the speech,
e.g., voice timbre and prosody characteristics are used. Voice
timber is concerned with spectral properties of the vocal tract
during phonation, whereas prosody relates to suprasegmental
characteristics, i.e., pitch, amplitude, stress, and duration.
Multiple Voice Conversion Challenges (VCC) have been held
to encourage the development of VC generation techniques
and improve the quality of converted speech [137, 241, 242].
Earlier VCC aimed to convert source speech to target speech
by using non-parallel and parallel data [137, 241] but more
recent [242] focused on the development of cross-lingual VC
techniques, where the source speech is converted to sound like
target speech using nonparallel training data across different
languages.

In earlier studies VC techniques were based on spectrum
mapping using paired training data, where speech samples
from both the source and target speaker speaking the same
linguistic content are required for conversion. Methods using

GMMs [243, 244], partial least square regression [245],
exemplar-based [246] techniques and others [247–249] were
proposed for parallel spectral modeling. These [243–246]
were “shallow” VC methods that transformed source speech
spectral features directly in the original feature space.
Nakashika et al. [247] proposed a speaker-dependent se-
quence modeling method based on and RNN to capture tem-
poral correlations in an acoustic sequence. In [248, 249], a
deep bidirectional LSTM (DBLSTM) was employed to cap-
ture long-range contextual information and generate high-
quality converted speech. DNN based methods [247–249] ef-
ficiently learned feature representation for feature mapping in
parallel VC, however they require large-scale paired source
and target speaker utterance data for parallel training that is
not feasible for practical applications in the real world.

VC methods for non-parallel (unpaired) training data are
proposed to achieve VC for multiple speakers with different
languages. Powerful VC techniques based on neural networks
[250], vocoders [251, 252], GANs [253–259], and VAE
[260–262] are introduced for non-parallel spectral modeling.
Auto-encoder-based approaches attempt to learn disentangled
speaker information from linguistic content and independently
convert the speaker’s identity. The work in [262] investigates
the quality of a learned representation by comparing different
auto-encoding methods. It shows that a combination of a
Vector Quantized VAE and a WaveNet [55] decoder better
preserves speaker invariant linguistic content and retrieves
information discarded by the encoder. However, VAE/
GAN-based methods tend to over smooth the transformed
features because of dimensionality reduction bottleneck.
Thus, the low-level information such as pitch contour, noise,
and channel data is lost, that results in buzzy-sounding con-
verted voices.

Recent GAN-based approaches, such as CycleGAN
[253–256], VAW-GAN [257], and StarGAN [258], attempt
to achieve high-quality transformed speech using non-parallel
training data. Studies [254, 258] demonstrate state-of-the-art
performance for multilingual VC in terms of both naturalness
and similarity, however, performance is speaker-dependent
and degrades for unseen speakers. Neural vocoders have rap-
idly become the most popular vocoding approach for speech
synthesis due to their ability to generate human-like speech
[224]. A vocoder learns to generate audio waveform from
acoustic features. The study [252] analyzes the performance
of different vocoders and shows that parallel-WaveGANs
[239] can effectively simulate the data distribution of human
speech, with acoustic characteristics, for VC. The perfor-
mance, however, is still restricted for unseen speaker identity
and noisy samples [217]. Recent VC methods based on TTS,
like AttS2S-VC [263], Cotatron [264], and VTN [265] use
text labels to synthesize speech directly by extracting aligned
linguistic characteristics from the input voice. This ensures
that the converted speaker and the target speaker’s identity
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are the same. However, these methods necessitate the use of
text labels, which are not always readily accessible.

Recently, one-shot VC techniques [266, 267] are present-
ed. In contrast to earlier techniques, the data samples of source
and target speakers are not required to be seen during training.
Furthermore, just one utterance from the source and target
speakers is required for conversion. The speaker embedding
is extracted from the target speech, which can control the
speaker identity of the converted speech independently.
Despite these advancements, the performance of few-shot
VC techniques for unseen speakers is not stable [268]. This
is primarily due to the inadequacy of speaker embedding ex-
tracted from a single speech sample from an unseen speaker
[269] which significantly impacts the reliability of one-shot
conversions. Other work [270–272] adopts zero-shot VC,
where the source and target speakers are unseen during train-
ing, and also without re-training the model by employing an
encoder-decoder architecture. The encoder extracts style and
content information into style embedding and content embed-
ding, then the decoder constructs a speech sample by combin-
ing style and content embedding. The zero-shot VC scenario
is attractive because no adaptative data or parameters are re-
quired, however the adaptability quality is insufficient, espe-
cially when the target and source speakers are unseen, diverse,
or noisy [268]. The summary of voice conversion techniques
discussed above are presented in Table 15.

4.2.3 Audio deepfake detection

Due to recent advances in TTS [55, 224] and VC [268] tech-
niques, audio deepfakes have become an greater threat to
voice biometric interfaces and society [58]. In the field of
audio forensics, there are several approaches for identifying
spoofed audio. Existing works, however, fail to fully tackle
the detection of synthetic speech [276]. In this section, we
review the approaches proposed for the detection of audio
deepfakes. Table 16 presents the comparison of audio
deepfake detection techniques using both handcrafted and
deep features.

Techniques based on handcrafted Features: Yi et al.
[278] presented an approach to identify TTS-based manipu-
lated audio content. In [278] hand-crafted features Constant Q
cepstral coefficients (CQCC) were used to train GMM and
LCNN classifiers to detect TTS synthesized speech. This ap-
proach exhibits better detection performance for fully synthe-
sized audio, however performance degrades rapidly for par-
tially synthesized audio clips. Li et al. [277] propose a modi-
fied ResNet model Res2Net. They evaluate the model using
different acoustic features and obtain the best performance
using CQT features. This model exhibits better audio manip-
ulation detection performance, however its generalization
ability needs further improvement. In [283], mel-
spectrogram features with ResNet-34 are employed to detect

spoofed speech. This approach works well, but its perfor-
mance needs improvement. Monteiro et al. [284] propose an
ensemble-based model for the detection of synthetic speech.
Deep learning models, LCNNs and ResNets are used to com-
pute deep features, which are later fused to differentiate be-
tween real and spoofed speech. This model is robust to fake
speech detection, however, it needs to be evaluated on some
standard datasets. Gao et al. [282] propose a synthetic speech
detection approach based on inconsistencies. They employ a
global 2D-DCT feature to train a residual network to detect
manipulated speech. This model has better generalization abil-
ity, however, the performance degrades on noisy samples.
Zhang et al. [287] propose a model to detect fake speech by
using a ResNet model with a transformer encoder
(TEResNet). Initially, a transformer encoder is employed to
compute a contextual representation of the acoustic keypoints
by considering the correlation between audio signal frames.
The computed keypoints are then used to train a residual net-
work to differentiate between real and manipulated speech.
This work shows better fake audio detection performance,
however, it requires extensive training data. Das et al. [279]
propose a method to detect manipulated speech. Initially, a
signal companding technique for data augmentation is used
to increase the diversity of the training data. Then, CQT fea-
tures are computed from the obtained data, which are later
used to train the LCNN classifier. The method improves the
fake audio detection accuracy but requires extensive training
data.

Aljasem et al. [13] propose a hand-crafted, feature-based
approach to detect cloned speech. Initially, sign-modified
acoustic local ternary pattern features are extracted from input
samples. Then, the computed keypoints are used to train an
asymmetric, bagging-based classifier to categorize the sam-
ples into bona fide and fake. This work is robust to noisy
cloned voice replay attacks, however, its performance needs
further improvement. Ma et al. [280] present a a continual
learning-based technique to enhance the generalization ability
of a manipulated speech detection system. A knowledge dis-
tillation loss function is introduced in the framework to en-
hance the learning ability of the model. This approach is com-
putationally efficient and can detect unseen spoofing manipu-
lations, however, the performance has not been evaluated on
noisy samples. Borrelli et al. [293] employ bicoherence fea-
tures together with long-term short-term features. The extract-
ed features are used to train three different types of classifiers:
a random forest, a linear SVM, and a radial basis function
(RBF) SVM. This method obtains the best accuracy with the
SVM classifier. Due to handcrafted features, however, this
work is not generalized to unseen manipulations. In [202]
bispectral analysis is performed in order to identify specific
and unusual spectral correlations present in GAN generated
speech samples. Similarly, in [281] bispectral and Mel-
cepstral analysis are performed in order to detect missing
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durable power components in synthesized speech. The com-
puted features are then used to train several ML-based classi-
fiers and attained the best performance using a Quadratic
SVM. These approaches [202, 281] are robust to TTS synthe-
sized audio, however, they may not be able to detect high-
quality synthesized speech. Chen et al. [285] propose a DL-
based framework for audio deepfake detection. The 60-
dimensional linear filter banks (LFB) are extracted from
speech samples and are later used to train a modified ResNet
model. This work improves fake audio detection performance
but suffers from high computational cost. Huang et al. [286]
present an approach for audio spoofing detection where

initially, short-term zero-crossing rate and energy are utilized
to identify the periods of silence in each speech signal. In the
next step, the linear filter bank (LFBank) key-points are com-
puted from the nominated segments in the relatively high-
frequency domain. Lastly, an attention-enhanced DenseNet-
BiLSTM framework is built to locate places wher the audio is
manipulated. This method [286] avoids over-fitting at the ex-
pense of high computational cost. Wu et al. [210] introduce a
novel, key-point genuinization based light convolutional neu-
ral network (LCNN) framework for the identification of
manipulared speech. The attributes of the original speech are
utilized to train a model using a CNN. The output is then

Table 15 An overview of the state-of-the-art voice conversion techniques

Methods Technique Features Dataset Limitations

Ming et al.
[248]

DBLSTM F0 and energy contour ▪ CMU-ARCTIC [273] ▪ Requires parallel training data

Nakashika
et al. [247]

Recurrent temporal restricted
Boltzmann machines (RTRBMs)

MCC, F0, and aperiodicity ▪ ATR Japanese speech
database [274]

▪ Lacks temporal dependencies of
speech sequences

Sun et al.
[249]

DBLSTM-RNN MCC, F0 and Aperiodicity ▪ CMU-ARCTIC [273] ▪ Requires parallel training data

Wu et al.
[250]

DBLSTM- i-vectors 19D-MCCs, Delta and
Delta-Delta, F0, 400-D
i-vector

▪ VCTK corpus ▪ Computationally complex

Liu et al.
[251]

WaveNet vocoder MCC and F0 ▪ VCC 2018 ▪ Performance degrades on
inter-gender conversions

Kaneko et al.
[255]

Encoder-decoder with GAN 34D-MCC, F0, and aperiodicity ▪ VCC 2018 ▪ Computationally complex
▪ Domain-specific voice

Kameoka
et al. [258]

Encoder-decoder with GAN 36D-MCC, F0, and aperiodicity ▪ VCC 2018 ▪ Performance degrades on
cross-gender conversion

▪ Low performance for unseen
speakers

Zhang et al.
[259]

VAW-GAN STRAIGHT spectra [275], F0
and aperiodicity

▪ VCC2016 ▪ Lacks target speaker similarity

Huang et al.
[260]

Encoder-decoder STRAIGHT spectra [275]MCCs ▪ VCC 2018 ▪ Lacks multi-target VC
▪ Introduces abnormal fluctuations

in generated speech

Chorowski
et al. [262]

VQ-VAE, WaveNet decoder 13D-MFCC ▪ LibriSpeech
▪ ZeroSpeech 2017

▪ Over smooth and low naturalness
in generated speech

▪ Increased training complexity

Tanaka et al.
[263]

BiLSTM encoder-LSTM decoder Acoustic features ▪ CMU Arctic database ▪ Requires extensive training data

Park et al.
et al. [264]

Encoder-decoder Mel-spectrogram ▪ LibriTTS
▪ VCTK dataset

▪ Requires transcribed data
▪ Lacks target speaker similarity

Huang et al.
[265]

VAE-vocoder MCCs, log F0, and aperiodicity ▪ CMU ARCTIC
▪ VCTK corpus

▪ Requires parallel training data

Lu et al.
[266]

Attention mechanism in
encoder-decoder

13D-MFCCs, PPGs and log F0 ▪ VCTK corpus ▪ Low target similarity and
naturalness in generated speech

Liu et al.
[267]

Encoder and DBLSTM 19 MFCCs, log F0 and PPG ▪ VCTK corpus ▪ Low target similarity and
naturalness in generated speech

Chou et al.
[270]

Attention mechanism in
encoder-decoder

19 MFCCs, log F0 and PPG ▪ VCTK Corpus ▪ Low quality of converted voices
in case of noisy samples

Qian et al.
[271]

Encoder-decoder speech spectrogram ▪ VCTK corpus ▪ Prosody flipping between the
source and the target.

▪ Not well-generalized to unseen
data

M. Masood et al.



converted to an original key-point distribution closer to that of
genuine speech. The transformed key-points are used with an
LCNN to identify genuine and altered speech. This approach
[210] is robust to synthetic speech manipulation detection. It
is, however, unable to deal with cloned-replay attack
detection.

Techniques based on Deep Features: Zhang et al. [289]
propose a DL-based approach using ResNet-18 and a one-
class (OC) softmax. They train the model to learn a feature

space in which real speech can be discriminated from manip-
ulated samples by a certain margin. This method improves the
performance generalization ability against unseen attacks,
however, performance degrades on VC attacks generated
using waveform filtering. In [290], the authors propose a
Light Convolutional Gated RNN (LCGRNN) model to com-
pute the deep features and classify the real and fake speech.
This model is computationally efficient; however, it is not
generalized well to real-world examples. Hua et al. [291]

Table 16 An overview of audio deepfake detection techniques

Author Technique Features Best Evaluation
performance

Dataset Limitations

Hand-crafted features

Li et al. [277] Res2Net CQT EER=2.502 ASVspoof2019 ▪ Needs generalization
improvement

Yi et al. [278] GMM/LCNN CQCC EER=19.22
(GMM)

EER=6.99
(LCNN)

Propriety ▪ Performance degrades for partial
synthesized audio clip

Das et al. [279] LCNN CQT EER=3.13 ASVspoof2019 ▪ Requires extensive training data

Aljasem et al.
[13]

Asymmetric
bagging

Combination of MFCC, GTCC,
ALTP, and spectral features

EER=5.22 ASVspoof2019 ▪ Performance needs further
improvement

Ma et al. [280] CNN 60-D LFCC EER=9.25 ASVspoof2019 ▪ Performance degrades on noisy
samples

AlBadawy
et al. [202]

logistic regression
classifier

Bispectral features AUC=0.99 Propriety ▪ Performance may degrade on
high-quality speech samples

Singh et al.
[281]

Quadratic SVM Bispectral and mel-cepstral features Acc=96.1% Propriety ▪ Needs evaluation on a large scale
dataset

Gao et al.
[282]

ResNet 2D-DCT features EER=4.03 ASVspoof2019 ▪ Performance degrades on noisy
samples

Aravind et al.
[283]

ResNet34 Mel-spectrogram features EER=5.87 ASVspoof2019 ▪ Performance needs improvement

Monteiro et al.
[284]

LCNN/ResNet Spectral features EER=6.38 Propriety ▪ Results should be evaluated on a
standard dataset

Chen et al.
[285]

ResNet 60-dimensional LFB EER=1.81 ASVspoof2019 ▪ Computationally complex
approach

Huang et al.
[286]

DenseNet-BiLSTM LFBank EER=0.53 ASVspoof
2019

▪ Computationally complex
approach.

Wu et al. [210] LCNN Genuine speech features EER=4.07 ASVspoof
2019

▪ Can’t deal with cloned replay
attack detection.

Zhang et al.
[287]

TEResNet Spectrum features EER=5.89 ASVspoof2019 ▪ Requires extensive training data
EER=3.99 Fake-or-Real

dataset [288]

Deep Learning features

Zhang et al.
[289]

ResNet-18+
OC-softmax

Deep features EER=2.19 ASVspoof2019 ▪ Performance degrades on VC.

Gomez-Alanis
et al. [290]

LCG- RNN Deep features EER=6.28 ASVspoof
2019

▪ Fails to generalize for unseen
attacks

Hua et al.
[291]

Res-TSSDNet Deep features EER=1.64 ASVspoof2019 ▪ Computationally complex

Jiang et al.
[292]

CNN Deep features EER=5.31 ASVspoof2019 ▪ Performance needs further
improvement

Wang et al.
[58]

DNN Deep features EER=0.021 Fake-or-Real
dataset [288]

▪ Requires evaluation on
challenging dataset
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propose an end-to-end synthetic speech detection model, Res-
TSSDNet, for the computation of deep features and classifi-
cation. This model is generalized well to unseen samples;
however, this is at the expense of increased computational
cost. Wang et al. [58] propose a DNN based approach with
a layer-wise neuron activation mechanism to differentiate be-
tween real and synthetic speech. This approach performs well
for fake audio detection, however the framework requires
evaluation on challenging datasets. Jiang et al. [292] propose
a self-supervised learning-based approach comprising eight
convolutional layers to compute deep features and classify
original and fake speech. This work is computationally effi-
cient but detection accuracy needs enhancement. Malik et al.
[294] propose a CNN for cloned speech detection. Initially,
audio samples are converted to spectrograms on which a CNN
framework is used to compute deep features and classify real
and fake speech samples. This approach shows better fake
audio detection accuracy but performance degrades on noisy
samples. Similarly, in [295], a spatial-temporal CNNmodel is
proposed to process mel-spectrogram sequences in order to
identify given audio sample as real or fake.

Most of the above-mentioned fake speech detection have
been evaluated on the ASVspoof2019 [218] dataset, however,
the recently launched ASVspoof2021 [296] has opened new
challenges for the research community. This dataset intro-
duces a separate speech deepfake category that includes high-
ly compressed TTS and VC samples without speaker
verification.

4.2.4 Discussion on audio manipulation methods

Generation Extensive work has been presented on the gener-
ation of correct and natural speech for real-world applications,
however, several areas require further improvement. A good
speech synthesis model should produce a both realistic and
clear voice. For this reason, existing works have tried to im-
prove the articulation and genuineness of speech synthesis
[55–57]. In recent years, the quality of synthetic voice has
improved significantly via the use of deep learning tech-
niques. The significant improvements include voice adapta-
tion [59, 235], one/few-shot learning [266, 267], self-attention
network [270], and cross-lingual voice transfer [254, 258].
However, the ability to produce a more human-like natural-
sounding speech in the presence of noise remains challenging.
Another main aim of speech synthesis techniques is to deploy
a lightweight model that requires less training data [231].
Some of the work on this subject is presented in [270–272],
however, these approaches lack the ability to maintain natu-
ralism in synthesized speech. Therefore, there is a need to
develop an efficient and effective speech synthesis model that
requires less training data and resources which is also able to
maintain realism. Furthermore, an audio signal is generated
with a sampling frequency less than 16 kHz, it causes a

considerable drop in the perceived speech quality [297]. The
quality of synthesized speech can be improved by increasing
the sampling rate. Some of the existing works suffer from
word repetition, skipping, long pause or babbling problems,
which cause a loss in the intelligibility of the generated speech
[229–231]. To address this problem, existing models have
introduced style/prosody transfer to generate more expressive
voices [229, 232, 240]. Moreover, speech synthesis tech-
niques to maintain the audio of the specific target are further
required to be explored [235, 236]. Therefore, there is a need
to develop such systems that can efficiently adapt to a specific
target with limited data and high efficiency.

Detection We have presented a detailed literature review of
the techniques employed for the detection of synthesized
speech in Section 4.2.3. Most of the existing detection ap-
proaches are based on the employment the hand-coded fea-
tures for the detection of altered speech [277–285, 287, 293].
Some additional works have utilized end-to-end training
models to detect audio manipulation [58, 292], while others
have employed both hand-coded and deep features in a train-
ing module for speech synthesis detection [286]. Only a few
techniques are focused on the detection of more than one type
of audio deepfake, e.g., TTS and VC [58, 281]. In the realm of
audio manipulation, VC detection has proven more challeng-
ing compared to TTS [218]. Several works have used CNN-
based methods [292, 295], ensemble methods based on differ-
ent feature representations [284], or methods that detect un-
usual aspects in human speech [202, 281]. Several variants of
the ResNet model have used deep features to detect audio
spoofing [289, 291]. However, one of the limitations of the
existing works is the lack of generalization of the detection
models. The performance significantly degrades when evalu-
ated on unseen or samples generated with different manipula-
tion methods [202, 290]. Lastly, an additional limitation of the
existing techniques is detection performance with limited
training data and computational resources [289–291].

5 Deepfake datasets

To analyze the detection accuracy of proposedmethods it is of
utmost importance to have a good and representative dataset
for performance evaluation. Moreover, the techniques should
be validated across datasets to show their ability to generalize.
Therefore, researchers have put in significant effort over the
years preparing standardized datasets for manipulated video
and audio content. In this section, we present a detailed review
of the standard datasets that are currently used to evaluate the
performance of audio and video deepfake detection tech-
niques. Tables 17 and 18 show a comparison of available
video and audio deepfake datasets respectively.
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5.1 Video datasets

UADFV The first dataset released for deepfake detection was
UADFV [74]. It consists of a total of 98 videos, where 49 are
real videos collected from YouTube and then copies are ma-
nipulated by using the FakeApp application [42] to generate
49 fake videos. The average length of videos is 11.14 sec with
an average resolution of 294 × 500 pixels. However, the vi-
sual quality of the videos is very low, and the resultant alter-
ation is obvious and thus easy to detect.

DeepfakeTIMIT DeepfakeTIMIT [191] was introduced in
2018, and consists of a total of 620 videos of 32 subjects.
For each subject, there are deepfake videos of two quality
levels: DeepFake-TIMIT-LQ and DeepFake-TIMIT-HQ. In
DeepFake-TIMIT-LQ, the resolution of the output image is
64 × 64, whereas in DeepFake-TIMIT-HQ, the resolution of
output size is 128 × 128. The fake content is generated by
employing a face swap-GAN [65]. The generated videos are
only 4 seconds long, and the dataset contains no audio channel
manipulation. Moreover, the resultant videos are often blurry
and people in actual videos are mostly presented in full frontal
face view with a monochrome color background.

FaceForensics++ One of the most famous datasets for
deepfake detection is FF++ [95]. This dataset was presented
in 2019 as an extended form of the FaceForensics dataset
[306], which contains videos with facial expression manipu-
lation only, and was released in 2018. The FF++ dataset has
four subsets, named FaceSwap [307], DeepFake [43],
Face2Face [38], and NeuralTextures [308]. The dataset con-
tains 1000 original videos collected from the YouTube-8 M
dataset [309] and 3000 manipulated videos generated using
the computer graphics and deepfake approaches specified in
[306]. This dataset is also available in two quality levels, un-
compressed and H264 compressed format, which can be used
to evaluate the performance of deepfake detection approaches
on both compressed and uncompressed videos. The FF++
dataset fails to generalize lip-sync deepfakes however, and
some videos exhibit color inconsistencies around the manip-
ulated faces.

Celeb-DF Another popular dataset used for evaluating
deepfake detection techniques is Celeb-DF [194]. This dataset
presents videos of higher quality and tries to overcome the
problem of visible source artifacts found in previous data-
bases. The CelebDF dataset contains 408 original videos and
795 fake videos. The original content was collected from
Youtube, and is divided into two parts named Real1 and
Real2 respectively. In Real1, there are a total of 158 videos
of 13 subjects with different gender and skin color. Real2
comprises 250 videos, each having a different subject, and
the synthesized videos are generated from these original

videos through the refinement of existing deepfake algorithms
[310, 311].

Deepfake Detection Challenge (DFDC) Recently, the
Facebook community launched a challenge, aptly named the
Deepfake Detection Challenge (DFDC)-preview [312], and
released a new dataset that contains 1131 original videos
and 4119manipulated videos. The altered content is generated
using two unknown techniques. The final version of the
DFDC database is publicly available on [298]. It contains
100,000 fake videos along with 19,000 original samples.
The dataset is created using various face-swap-based methods
with different augmentations, i.e., geometric and color trans-
formations, varying frame rate, etc., and distractors, i.e., over-
laying different types of objects, in a video.

DeeperForensics (DF) Another Large-Scale dataset for
deepfake detection, containing 50,000 original and 10,000
manipulated videos, is found in [299]. A novel conditional
autoencoder, namely DF-VAE, is used to create manipulated
videos. The dataset comprises highly diverse samples in terms
of actor appearance. Further, a mixture of distortions and per-
turbations, such as compression, blur, and noise, are added to
better represent real-world scenarios. As compared to previ-
ous datasets [74, 191, 194], the quality of generated samples is
significantly improved.

WildDeepfake WildDeepfake (WDF) [300] is considered to
be one of the most challenging deepfake detection datasets.
It contains both real and deepfake samples collected from
the internet. This dataset contains video samples of di-
verse subject matter, along with variation in terms of res-
olution, background, illumination conditions, and com-
pression rates.

ForgeryNetAnother advanced Visual deepfakes-based dataset
namely the ForgeryNet (FN) is presented in the ForgeryNet
Challenge 2021 [301]. ForgeryNet is an extensive online
available deep face forgery dataset comprising 2.9 million
static samples, along with 221,247 videos. This dataset is cre-
ated by applying different 7 image-level alteration techniques,
and 8 video-level forgery methods. Furthermore, about 36
various perturbations attacks are added to make the dataset
more challenging and close to real-world scenarios.

FakeAVCeleb FakeAVCeleb [302] dataset is recently released
and contains multimodal deepfake videos that involve manip-
ulation in both audio and video channels with accurate lip-
syncing. The dataset is generated using real videos collected
from YouTube and popular synthetic algorithms such as
FSGAN [67], FaceSwap [66], Tacotron [233, 238], and
Wave2Lip [111]. The dataset also includes fine-level video
labelling respective to audio-visual manipulation, resulting
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in four pair combinations: real audio-real video, real audio-
fake video, fake audio-real video, fake audio-real video, and
fake audio-fake video. Videos featuring celebrities from dif-
ferent ethnic backgrounds and ages, with equal representation
of each gender, are included to eliminate racial biasness and
improve the fairness of deepfake detectors.

A representative map for datasets based on release year and
size is shown in Fig. 14. Furthermore, we have added the
visual samples from the mentioned datasets to facilitate the
reader to visually experience the synthesis quality of the
DeepFake datasets in Fig. 15. All of the above-mentioned
datasets contain synthesized face portions only; these datasets
lack upper/full body deepfakes. Amore robust dataset is need-
ed which should be able to synthesize an entire body
deepfake.

5.2 Audio datasets

LJ speech and M-AILabs dataset LJSpeech [303] and M-
AILabs [304] datasets are famous for the real-speech database
employed in numerous TTS applications, i.e. DeepVoice 3
[224]. The LJSpeech database is comprised of 13,100 clips
totaling 24 hours in length. All samples are recorded by a
female speaker. The M-AILABS dataset consists of total of
999 hours and 32 minutes of audio. This dataset was created
with multiple speakers in 9 different languages.

Mozilla TTS Mozilla Firefox, a well-known publicly available
browser, released the biggest open-source database of
people speaking [305]. Initially, the database included
1400 hours of recorded voices, in 18 different languages,
in 2019. Later it was extended to 7226 hours of recorded
voices in 54 diverse languages. This dataset contains 5.5
million audio clips and was employed by Mozilla’s Deep
Speech toolkit.

ASV spoof 2019 Another well-known dataset for fake audio
detection is ASVspoof-2019 [218], which is comprised of two
parts for performing logical access (LA) and physical access
(PA) state analysis. Both LA and PA are created from the
VCTK base corpus, which comprises audio clips taken from
107 speakers (46 males, 61 females). LA consists of both
voice cloning and voice conversion samples, whereas PA con-
sists of replay samples along with bona fide ones. Both
datasets are further divided into three databases, named train-
ing, development, and evaluation, which contain clips from
20- (8 males, 12 females), 10- (4 males, 6 females), and 48-
(21 males, 27 females) speakers respectively. Further catego-
rization is diverse in terms of presenters, and the recording
situations are the same for all source samples. The training
and development sets contain spoofing occurrences created
with the same method/conditions (labeled as known attacks),
while the evaluation set contains samples with unknown
attacks.

Fake-or-Real (FOR) dataset The FOR database [288] is another
dataset that is widely employed for synthetic voice detection.
This database consists of over 195,000 samples both from
humans and AI-synthetic speech. This database groups sam-
ples from the new TTS method (i.e. Deep Voice 3 [224] and
Google-Wavenet [55]) together with diverse human speech
samples (i.e. Arctic Dataset, LJSpeech Dataset, VoxForge
Dataset). The FOR database has four versions, namely for-
original (FO), for-norm (FN), for-2 sec (F2S), and for-rerec
(FR). FO contains unbalanced voices without alteration, while
FN comprises balanced unaltered samples in terms of gender,
class, and volume, etc. F2S contains data from FN, however,
the samples are trimmed to 2 seconds, and the FR version is a
rerecorded version of the F2S database, to simulate a condi-
tion in which an attacker passes a sample via a voice channel
(i.e. a cellphone call or a voice message).

Fig. 14 Comparison of current
video deepfake datasets over time
based on the number of videos
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Baidu dataset The Baidu Silicon Valley AI Lab cloned audio
dataset is another database employed for cloned speech detec-
tion [59]. This database is comprised of 10 ground truth
speech recordings, 120 cloned samples, and 4 morphed
samples.

ASV spoof 2021 The ASVspoof-2021 [296] is another dataset
released as a part of ASVspoof challenge [276]. Along with
earlier LA and PA partitions, this database includes an extra
assessment partition for an audio deepfake detection track.
This database is an extension of ASV spoof 2019 and has no
specific training set. It includes only an evaluation set which

comprises speech created from 48 speakers including 27 fe-
males and 21 males. This dataset is more challenging than
previous versions and contains various audio coding and com-
pression attacks with different environments and transmission
scenarios.

WaveFake Recently, WaveFake (WF) [297] a large-scale
audio deepfake detection dataset, was released. It con-
tains 117,985 fake audio clips in 16-bit PCM wav format.
The database uses six different advanced TTS audio gen-
erative models across two languages. The synthetic
speech samples closely resemble real speech data,

Fig. 15 Sample frames from different DeepFake video datasets
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however it lacks diversity and includes samples by only
one speaker.

6 Open challenges

6.1 Open challenges in Deepfakes generation

Although extensive efforts have been shown to improve the
visual quality of generated deepfakes there are still several
challenges that need to be addressed. A few of them are dis-
cussed below.

Generalization The generative models are data-driven, and
therefore they reflect the learned features during training, in
the output. To generate high-quality deepfakes a large amount
of data is required for training. Moreover, the training process
itself requires hours to produce convincing deepfake audiovi-
sual content. Usually, it is easier to obtain a dataset of the
source/driving identity but the availability of sufficient data
for a specific victim is a challenging task. Also, retraining the
model for each specific target identity is computationally
complex. Because of this, a generalized model is required to
enable the execution of a trained model for multiple target
identities unseen during training or with few training samples
available.

Identity Leakage The preservation of target identity is a prob-
lem when there is a significant mismatch between the target
identity and the source identity, specifically in face reenact-
ment tasks where target expressions are driven by some source
identity. The facial data of the source identity is partially trans-
ferred to the generated face. This occurs when training is per-
formed on single or multiple identities, but data pairing is
accomplished for the same identity.

Paired Training A trained, supervised model can generate
high-quality output but at the expense of data pairing. Data
pairing is concerned with generating the desired output by
identifying similar input examples from the training data.
This process is laborious and inapplicable to those scenarios
where different facial behaviors and multiple identities are
involved in the training stage.

Pose Variations and Distance from the camera Existing
deepfake techniques generate good results of the target for
frontal facial view. However, the quality of manipulated con-
tent degrades significantly for scenarios where a person is
looking off-camera. This results in undesired visual artifacts
around the facial region. Furthermore, another big challenge
for convincing deepfake generation is the facial distance of the
target from the camera, as an increase in distance from cap-
turing devices results in low-quality face synthesis.

Illumination Conditions Current deepfake generation ap-
proaches produce fake information in a controlled environ-
ment with consistent lighting conditions. However, an abrupt
change in illumination conditions such as in indoor/outdoor
scenes results in color inconsistencies and strange artifacts in
the resultant videos.

OcclusionsOne of the main challenges in deepfake generation
is the occurrence of occlusion, which results when the face
region of the source and victim are obscured with a hand, hair,
glasses, or any other item. Moreover, occlusion can be the
result of the hidden face or eye portion which eventually
causes inconsistent facial features in the manipulated content.

Temporal Coherence Another drawback of generated
deepfakes is the presence of evident artifacts like flickering
and jittering among frames. These effects occur because the
deepfake generation frameworks work on each frame without
taking into account the temporal consistency. To overcome
this limitation, some works either provide this context to gen-
erator or discriminator, consider temporal coherence losses,
employ RNNs, or take a combination of all these approaches.

High-quality audio speech synthesis TTS and VC based on
neural networks attempt to push the boundaries and generate
realistic speech for real-world applications. Current generated
audio speech signal, however, lack different artficacts that
exist in human speech, such as pauses, varying emotions,
realism, expressiveness, accent, robustness, and controllabili-
ty. Several generative models, such as VAE [239, 262, 271],
GAN [239, 255, 257], vocoders [228, 252], and end-to-end
learning models [224, 238] are used to improve the quality of
the synthesized audio signal. However, there is a need for
improved modeling techniques that produce the speech which
is spontaneous, expressive, and varies in style, to enhance the
naturalness of generated audio samples.

Robust speech synthesis The synthesis of high-quality speech
for different languages requires extensive training and labeled
text data, and consumes huge computing resources. Such set-
tings introduce an extensive computational burden which usu-
ally results in a tradeoff between the quality and inference time
for generated audio content. The research community has tak-
en several initiatives to introduce lightweight audio signal
generation techniques, such as the ZeroSpeech Challenge
[313], where speech signal is generated from audio data only.
However, to copewith the real-world scenarios, there is a need
for a more robust approach that can generate a high-quality
signal from a small training dataset and low resource
consumption.

Speech Adaptability The existing speech synthesis techniques
are target-specific, i.e., they are capable of generating an audio
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signal for the specific person on which the model is trained.
Such approaches lack the ability to generate a high-quality
signal for unseen instances, which shows a deficit in
the ability to generalize in the existing speech synthesis
models. The main reason models lack adaptability is
over-fitting on training data, which makes them unable
to efficiently learn enough acoustic information to be
able to generate samples for a new target. Therefore, a
more accurate, generalizable, model is required to tackle
the current challenges of speech generation models [59,
235, 268].

Realism in synthetic audio speech Though the quality of syn-
thetic audio is certainly getting much better, there is still a
need for improvement. Some of the main challenges are lack
of natural emotions, control over duration, sound volume, and
the pace at which the target speaks. The existing speech gen-
eration models use one-to-many mappings [229, 240], which
produce a low-quality speech signal with a lack of expressive-
ness in the presence of insufficient sample data. Therefore,
there is a need for an efficient model that can better learn the
varying qualities of speech signals in order to produce high-
quality synthetic audio.

6.2 Challenges in deepfakes detection methods

Although remarkable advancements have been made in the
performance of deepfake detectors, there are numerous con-
cerns about current detection techniques that need attention.
Some of the challenges of deepfake detection approaches are
discussed in this section.

Quality of deepfake datasets The accessibility of large data-
bases of deepfakes is an important factor in the generation of
deepfake detection techniques. Analyzing the quality of
videos from these datasets, however, reveals several ambigu-
ities when compared to actual manipulated content found on
the internet. Different visual artifacts that can be visualized in
these databases are: i) temporal flickering in some cases dur-
ing the speech, ii) blurriness around the facial regions, iii) over
smoothness in facial texture/lack of facial texture details, iv)
lack of head pose movement or rotation, v) lack of face oc-
cluding objects such as glasses, and lightning effects, vi) sen-
sitivity to variations in input posture or gaze, skin color incon-
sistency, and identity leakage, and vii) limited availability of a
combined high-quality audio-visual deepfake dataset. The
aforementioned dataset ambiguities are due to imperfect steps
in the manipulation technique. Furthermore, manipulated con-
tent of low quality can hardly be convincing or create a real
impression. Therefore, even if detection approaches exhibit
better performance over such videos it is not guaranteed that
these methods will perform well when employed in the real-
world scenarios.

Performance evaluation Presently, deepfake detection
methods are formulated as a binary classification problem,
where each sample can be either real or fake. Such classifiers
are easier to build in a controlled environment, where we
generate and verify deepfake detection techniques by utilizing
audio-visual content that is either original or fabricated.
However, for real-world scenarios, videos can be altered in
ways other than deepfakes, so just because the content was not
detected as manipulated does not guarantee the video is an
original one. Furthermore, deepfake content can be the subject
of multiple types of alteration, i.e., audio and/or visual, and
therefore a single label may not be completely accurate.
Moreover, in visual content with multiple people’s faces,
more than one of them could be manipulated with deepfakes
over a segment of frames. Therefore, any binary classification
scheme should be enhanced to multiclass/multi-label and uti-
lize local classification/detection at the frame level to cope
with the challenges of real-world scenarios.

Model scalability Another main challenge in the existing
deepfake detection models is the lack of scalability for large-
scale platforms, such as social media [197, 314]. When used
in a real-world scenario, inference time becomes a critical
factor for detecting fake audio-visual content. Designing a
model with high accuracy but with a very long inference time
makes the approach unlikely to be widely used in actual ap-
plications. Therefore, there is a need for detection techniques
that have real-time performance capability with a high accu-
racy rate for massive deepfake content detection.

Explainability in detection methods Existing deepfake detec-
tion approaches are typically designed to perform batch anal-
ysis over a large dataset, however when these techniques are
employed in the field by journalists or law enforcement, there
may only be a small set of videos available for analysis. A
numerical score parallel to the probability of an audio or video
being real or fake is not as valuable to the practitioners if it
cannot be confirmed with an appropriate proof of the score. In
those situations, it is very common to demand an explanation
for the numerical score for the analysis to be believed before
publication or utilization in a court of law. Most deepfake
detection methods lack such an explanation, however, partic-
ularly those which are based on DL approaches due to their
black-box nature.

Fairness and trust It has been observed that existing audio and
visual deepfakes datasets are biased and contain imbalanced
data of different races and genders. Furthermore, the detection
techniques employed can be biased as well. Although re-
searchers have started doing work in this area to fill the gap
very little work is available [315]. Hence, there is an urgent
need to introduce approaches that improve the data and fair-
ness in detection algorithms.

M. Masood et al.



Temporal aggregation Existing deepfake detection methods
are based on binary classification at the frame level, i.e.
checking the probability that each video frame is real or ma-
nipulated. These approaches do not consider temporal consis-
tency between frames, however, and suffer from two potential
problems: (i) deepfake content shows temporal artifacts, and
(ii) real or fake frames could appear in sequential intervals.
Furthermore, these techniques require an extra step to com-
pute the integrity score at the video level, as these methods
need to combine the score from each frame to generate a final
value.

Social media laundering Social platforms like Twitter,
Facebook, or Instagram are among the main online networks
used to spread audio-visual content among the general public.
To save bandwidth on the network or to secure the user’s
privacy, such content is commonly stripped of meta-data,
down-sampled, and substantially compressed before
uploading. These manipulations, normally known as social
media laundering, remove clues with respect to underlying
forgeries and eventually increase false positive detection rates.
Most deepfake detection approaches employ signal level key-
points and are more affected by social media laundering. A
measure to increase the accuracy of deepfake identification
approaches over social media laundering is to keenly include
simulations of these effects in training data, and also increase
the evaluation databases to contain data on social media laun-
dered visual content.

Diversified audio DeepFake detection datasets Currently, ex-
tensive and diverse datasets for visual deepfake detection are
available, however, there is a lack of such datasets for audio
deepfake detection systems. Recently launched synthesized
audio datasets, i.e., ASVspoof-2021 [296] and WaveFake
[297] have been introduced, however the ASVspoof-2021
dataset does not contain specific training data for the audio
deepfake track, while others contain samples from a single
person only. Therefore, existing audio deepfakes detection
approaches still require a more challenging and diverse dataset
for the evaluation and detection of real-world deepfakes.

DeepFake detection evasion Most deepfake detection
methods are concerned with missing information and artifacts
left during the generation process. Detection techniques may
fail, however, when this data is unavailable as attackers at-
tempt to remove such traces during the manipulation genera-
tion process. Such fooling techniques are classified into three
types: adversarial perturbation attacks, elimination of manip-
ulation traces in the frequency domain, and the employment of
image filtering to mislead detectors. In the case of visual ad-
versarial attacks, different perturbations, such as random
cropping, noise, and JPEG compression, are added to the
training data, which ultimately results in high false alarms

for detection methods. Different works [316, 317] have eval-
uated the performance of the state-of-the-art visual deepfake
detectors in the presence of adversarial attacks and display an
intense reduction in accuracy. In the case of audio, studies
such as [318, 319] show that several adversarial pre/post-
processing operations can be used to evade spoof detection.
Similarly, the method in [320] is concerned with improving
the quality of GAN-generated samples by enhancing spectral
distributions. Suchmethods ultimately result in removing fake
traces in the frequency domain and complicate the detection
process [321, 322]. A third method, in [323–325], uses ad-
vanced image filtering techniques to improve generation qual-
ity such as the removal of model-based fingerprints left during
generation and the addition of noise to remove fake signs.
These methods pose a real challenge for deepfake detection
methods, thus the research community needs to propose tech-
niques that are robust and reliable to such attacks.

7 Future directions

Synthetic media is gaining a lot of attention because of its
potential positive and negative impact on our society. The
competition between deepfake generation and detection will
not end in the foreseeable future, although impressive work
has been presented for the generation and detection of
deepfakes. There is still, however, room for improvement. In
this section, we discuss the current state of deepfakes, their
limitations, and future trends.

7.1 Creation

Visual media has more influence compared to text-based dis-
information. Recently, the research community has focused
more on the generation of identity agnostic models and
high-quality deepfakes. A few distinguished improvements
are i) a reduction in the amount of training data due to the
introduction of un-paired self-supervised methods [326], ii)
quick learning, which allows identity stealing using a single
image [132, 134], iii) enhancements in visual details [60, 147],
iv) improved temporal coherence in generated videos by
employing optical flow estimation and GAN based temporal
discriminators [107], v) the alleviation of visible artifacts
around the face boundary by adding secondary networks for
seamless blending [69], and vi) improvements in synthesized
face quality by adding multiple losses with different respon-
sibilities, such as occlusion, creation, conversion, and blend-
ing [112]. Several approaches have been proposed to boost the
visual quality and realism of deepfake generation, however,
there are a few limitations.Most of the current synthetic media
generation focuses on a frontal face pose. In facial reenact-
ment, for good results, the face is swapped with a lookalike
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identity. However, it is not possible to always have the best
match, which ultimately results in identity leakage.

AI-based manipulation is not restricted to the creation of
visual content only, leading to a generation of highly genuine
audio deepfakes. The quality of audio deepfakes has signifi-
cantly improved and requires less training data to generate
more realistic synthetic audio of the target speaker. The em-
ployment of synthesized speech for impersonating targets can
produce highly convincing deepfakes with a marked negative
adverse impact on society. Currently, audio-visual content is
generated separately using multiple disconnected steps, which
ultimately results in the generation of asynchronous content.
Present deepfake generation focuses on the face region only,
however the next generation of deepfakes is expected to target
full body manipulations, such as a change in body pose, along
with convincing expressions. Target-specific joint audio-
visual synthesis with more naturalness and realism in speech
is a new cutting-edge application of the technology in the
context of persona appropriation [108, 327]. Another possible
trend is the creation of real-time deepfakes. Some researchers
have already reported attaining real-time deepfakes at 30fps
[67]. Such alterations will result in the generation of more
believable deepfakes.

7.2 Detection

To prevent deepfake misinformation and disinformation,
some authors presented approaches to identify forensic chang-
es made with visual content by employing the concept of
blockchain and smart contracts [328–330]. In [329] the au-
thors utilized Ethereum smart contracts to locate and track
the origin and history of manipulated information and its
source, even in the presence of multiple manipulation attacks.
This smart contract applied hashes of the interplanetary file
system to saved videos, together with their metadata. While
this method may perform well for deepfake identification, it is
applicable only if the video metadata exists. Thus, the devel-
opment and adoption of such techniques could be useful for
the newswires, however, the vast majority of content created
by normal citizens won’t be protected by such techniques.

Recent automated deepfake identification approaches typ-
ically deal with face swapping videos, and the majority of
uploaded fake videos belong in this category. Major improve-
ments in detection algorithms include i) identification of arti-
facts left during the generation process, such as inconsis-
tencies in head pose [74], lack of eye blinking [80], color
variations in facial texture [160] and teeth alignment, ii) de-
tection of unseenGAN generated samples, iii) spatio-temporal
features, and iv) physiological signals like heart rate [89], and
an individual’s behavior patterns [83]. Although extensive
work has been presented for automated detection, these auto-
mated detection methods are expected to be short-lived and

require improvements on multiple fronts. Following are many
of unresolved challenges in the domain of deepfake detection.

& The existing methods are not robust to post-processing
operations like compression, noisy effects, light varia-
tions, etc. Moreover, limited work has been presented that
can detect both audio and visual deepfakes.

& Recently, most of the techniques have focused on face-
swap detection by exploiting its limitations, like visible
artifacts. However, with immense developments in tech-
nology, the near future will produce more sophisticated
face-swaps, such as impersonating someone, with the tar-
get having a similar face shape, personality, and hairstyle.
Aside from this, other types of deepfake, like face-
reenactment and lip-synching are getting stronger day by
day.

& The introduction of Vision Transformer techniques that
use a self-attention mechanism to learn meaningful repre-
sentation from the input has shown remarkable perfor-
mance in a variety of machine vision tasks. The concept
of patch embedding with CNN features can perform well
for deepfake detection due to their accuracy and high re-
call rate. Even though some work has been presented by
researchers [331–333] there is a need for more exploration
of this concept as these approaches have the potential to
better tackle the challenges of deepfake recognition, such
as robustness against unseen manipulations and perturba-
tion attacks.

& Existing deepfake detectors have mainly relied on the sig-
natures of existing deepfakes by using ML techniques,
including unsupervised clustering and supervised classifi-
cation methods, and therefore are less likely to detect un-
known deepfakes. Both anomaly-based and signature-
based detection methods have their own pros and cons.
For example, anomaly detection-based approaches show a
high false alarm rate because they may misclassify a bona
fide multimedia sample whose patterns are rare in the
dataset. On the other hand, signature-based approaches
cannot discover unknown attacks [334]. Therefore, a hy-
brid approach using both anomaly and signature-based
detection needs to be studied in order to identify known
and unknown attacks. Furthermore, a collaboration with
the Reinforcement Learning (RL) method could be added
to the hybrid signature and anomaly approach. More spe-
cifically, RL can give a reward (or penalty) to the system
when it selects frames that contain (or do not contain)
anomalies, or any signs of manipulation. Additionally, in
the future, deep reinforcement active learning approaches
[335, 336] could play a pivotal role in the detection of
deepfakes.

& Anti-forensic, or adversarial, ML techniques can be em-
ployed to reduce the classification accuracy of automated
detection methods. Game-theoretic approaches could be
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employed to mitigate adversarial attacks on deepfake de-
tectors. Additionally, RL, and particularly deep reinforce-
ment learning (DRL), is extremely efficient in solving
intricate cyber-defense problems. Thus, DRL could offer
great potential for not only deepfake detection but also to
counter antiforensic attacks on the detectors. Since RL can
model an autonomous agent to take sequential actions
optimally with limited, or without prior, knowledge of
the environment, it could be used to meet a need for de-
veloping algorithms to capture traces of anti-forensic pro-
cessing and to design attack-aware deepfake detectors.
The defense of deepfake detectors against adversarial in-
put could be modeled as a two-player zero-sum gamewith
which player utilities sum to zero at each time step. The
defender here is represented by an actor-critic DRL algo-
rithm [337].

& The current deepfake detectors face challenges, particular-
ly due to incomplete, sparse, and noisy data in the training
phases. There is a need to explore innovative AI architec-
tures, algorithms, and approaches that “bake in” physics,
mathematics, and prior knowledge relevant to deepfakes.
Embedding physics and prior knowledge using
knowledge-infused learning into AI will help to overcome
the challenges of sparse data and will facilitate the devel-
opment of generative models that are causal and
explanative.

& Most of the existing approaches have focused on one spe-
cific type of feature, such as landmark features. However,
as the complexity of deepfakes is increasing, it is impor-
tant to fuse landmarks, photoplethysmography (PPG), and
audio-based features. Likewise, it is important to evaluate
the fusion of classifiers. Particularly, the fusion of anom-
aly and signature-based ensemble learning will assist in
the improvement of accuracy in deepfake detectors.

& Existing research on deepfakes has mainly focused on
detecting manipulation in the visual content of the video,
however, audio manipulation, an integral component of
deepfakes, has been mostly ignored by the research com-
munity. There exists a need to develop unified deepfake
detectors that are capable of effectively detecting both
audio (i.e., TTS synthesis, voice conversion, cloned-re-
play) and visual forgeries (face-swap, lip-sync, and pup-
pet-master) simultaneously.

& Existing deepfake datasets lack the potential attributes (i.e.
multiple visual and audio forgeries, etc.) required to eval-
uate the performance of more robust deepfake detection
methods. As stated above, the research community has
hardly explored the fact that deepfake videos contain not
only visual forgeries but audio manipulations as well.
Existing deepfake datasets do not consider audio forgery
and only focus on visual forgeries. In near future, the role
of voice cloning (TTS synthesis, VC) and replay spoofing,
may increase in deepfake video generation. Additionally,

shallow audio forgeries can easily be fused along with
deep audio forgeries in deepfake videos. We have already
developed a voice spoofing detection corpus [338] for
single- and multi-order replay attacks. Currently, we are
working on developing a robust voice cloning and audio-
visual deepfake dataset that can be effectively used to
evaluate the performance of futuristic audio-visual
deepfake detection methods.

& A unified method to address the variation of cloned at-
tacks, such as cloned replay. The majority of voice
spoofing detectors target detecting either replay or cloning
attacks [218, 277, 286]. These two-class oriented, genuine
vs. spoof countermeasures, are not ready to counter mul-
tiple spoofing attacks on automatic speaker verification
(ASV) systems. A study on presentation attack detection
indicated that the countermeasures trained on a specific
type of spoofing attack do not generalize well for other
types of spoofing attacks [339]. Moreover, a unified coun-
termeasure that can detect replay and cloning attacks in
multi-hop scenarios, where multiple microphones and
smart speakers are chained together, does not exist. We
addressed the problem of spoofing attack detection in
multi-hop scenarios in our prior work [11], but only for
voice replay attacks. Therefore, there exists an urgent need
to develop a unified countermeasure that can effectively
detect a variety of spoofing attacks (i.e. replay, cloning,
and cloned replay) in a multi-hop scenario.

& The exponential growth of smart speakers and other
voice-enabled devices has made Automated Speech
Verification (ASV) a fundamental component. However,
optimal utilization of ASV in critical domains, such as
financial services, health care, etc., is not possible unless
we counter the threats of multiple voice spoofing attacks
on the ASV. Thus, this vulnerability also presents a need
to develop a robust and unified spoofing countermeasure.

& There exists a crucial need to implement federated, learn-
ing-based, lightweight approaches to detect the manipula-
tion at the source, so an attack doesn’t traverse a network
of smart speakers (or other IoT devices) [10, 11].

8 Conclusion

This survey paper presents a comprehensive review of
existing deepfake generation and detection methods. Not all
digital manipulations are harmful. Due to immense technolog-
ical advancements, however, it is now very easy to produce
realistic fabricated content. Therefore, malicious users can use
it to spread disinformation, to attack individuals, and to cause
social, psychological, religious, mental, and political stress. In
the future, we imagine seeing the results of fabricated content
in many other modalities and industries. There is a cold war
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between deepfake generation and detection methods. As there
are improvements in one it causes challenges for the other.We
provided a detailed analysis of existing audio and video
deepfake generation and detection techniques, along with their
strengths and weaknesses. We have also discussed existing
challenges and the future directions of both deepfake creation
and identification methods.
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