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ABSTRACT
Long-tailed distribution is a common and critical issue in the field
of machine learning. While prior work addressed data imbalance
in several tasks in electronic design automation (EDA), insuffi-
cient attention has been paid to the long-tailed distribution in
real-world EDA problems. In this paper, we argue that conven-
tional performance metrics can be misleading, especially in EDA
contexts. Through two public EDA problems using convolutional
neural networks and graph neural networks, we demonstrate that
simple yet effective model-agnostic methods can alleviate the is-
sue induced by long-tailed distribution when applying machine
learning algorithms in EDA.

CCS CONCEPTS
• Hardware → Best practices for EDA; Placement.

KEYWORDS
long-tailed distribution; machine learning; wafer defect classifica-
tion; net delay prediction

1 INTRODUCTION
Long-tailed distribution is a ubiquitous phenomenon in real-world
problems. The instance frequency is dominated by the head that
accounts for a small portion of possible values, while a long tail
is formed by the majority of possible values where the instance
frequency is small. Eigenvalues of realistic massive graphs, rang-
ing from internet graphs to social networks, follow the power-law
∗Both authors contributed equally to this research.
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degree distribution [7]. In quantitative linguistics, researchers have
observed that the corpus of natural language utterances follows
Zipf’s law [16], where the frequency of words is inversely propor-
tional to their rank. It is extremely challenging to use machine
learning algorithms to handle these long-tailed distributions, since
trained models can be easily biased towards the head, leading to
poor performance on the tail with limited occurrence.

It is perhaps unsurprising that random variables follow long-
tailed distributions in the area of electronic design automation
(EDA). Anomaly detection tasks in EDA contexts are formulated as
binary classification, and "regular" classes usually dominate abnor-
malities in terms of quantity, which exhibits severe imbalance. For
instance, in the hotspot detection problem, the number of hotspots
is much smaller than that of non-hotspots, resulting in biased classi-
fication towards non-hotspots [9]. Similarly, routing congestion pre-
dictions are less accurate when testing on small-sized designs [21].
The placement and routing algorithms can find near-optimal so-
lutions for small circuits, thus generating fewer congestion data
samples. On the contrary, we obtain more congestion data points for
large circuits. The long-tailed distribution impedes the performance
of the tail, which is the prediction on small designs.

While the data imbalance issue could be addressed for binary
classification tasks, this issue is easily overlooked in multi-class
classification and especially regression tasks in EDA problems. In
post-layout parasitic estimation, the authors of [17] observed poor
prediction results in high-value net capacitance, since models are
biased towards low-value capacitance whose frequency is much
higher in the training dataset. We target at reducing model "pes-
simism" with decreased mean squared error (MSE) and increased
correlation between prediction and ground truth, when predicting
net delay [5] and routed wirelength [20] from circuit pre-routing
information in prior work. Although conventional metrics, such
as accuracy and MSE, are strong indicators of model performance,
these metrics can become significantly misleading for multi-class
classification and regression tasks when tackling problems with
long-tailed distributions. Especially in the scope of EDA, we tend
to put more weight on the abnormal and extreme cases, such as the
worst negative slack timing of circuit designs.
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In the machine learning community, considerable progress has
recently been made to address the challenges of long-tailed distri-
bution [6, 12, 14, 22], from the perspectives of theories, algorithms,
and applications. Now that more and more machine learning al-
gorithms are applied to EDA, it is a great opportunity to leverage
these advances in machine learning.

In this paper, we address and draw attention to the common,
critical, yet overlooked issue of long-tailed distribution in EDA
problems. We introduce the long-tailed distributions and related
machine learning methods, which can be leveraged and imported
into the field of EDA. Then, through two cases, wafer map defect
pattern classification and net delay prediction, we demonstrate how
we address the long-tailed distribution in real problems.We leverage
model-agnostic methods, specifically reweighting and resampling,
and demonstrate their effectiveness on these two problems with
convolutional neural networks (CNNs) and graph neural networks
(GNNs), respectively.

2 LONG-TAILED DISTRIBUTION
In this section, we give a short introduction to the long-tailed dis-
tribution and related machine learning algorithms. We also discuss
the performance metrics when we handle problems with long-tailed
distribution.

2.1 Long-Tailed Categorical Distribution
A discrete random variable 𝑌 follows a long-tailed categorical dis-
tribution if it has a high probability of occurrence on the head
classes and a low probability of occurrence on the tail classes, i.e.,
𝑝 (𝑌 = 𝑡) ≪ 𝑝 (𝑌 = ℎ) where 𝑡 and ℎ are labels of a tail class and a
head class, respectively. In a classification problem on long-tailed
categorical distribution, we predict the class label 𝑦 given an input
feature vector 𝑥 . Namely, our target is to build a conditional proba-
bility model 𝑝 (𝑦 |𝑥) where the label distribution 𝑝 (𝑦) is long-tailed.

Long-tailed distributions also exist in continuous and discrete
(but not categorical) random variables. However, in literature, most
of the algorithms are for classification problems. Moreover, these
continuous and discrete (but not categorical) random variables can
be converted into categorical variables. Above all, we focus on the
long-tailed categorical distributions in this paper.

2.2 Performance metrics
Measurement of imbalance. Let 𝐷 be a dataset with long-tailed
categorical distribution with 𝐶 classes. Let 𝑛𝑖 be the number of
samples in the 𝑖-th class sorted by 𝑛𝑖 in non-decreasing order. We
demonstrate three widely used metrics to measure the imbalance in
a long-tailed categorical distribution, whose definitions are listed
below,

Imbalance Ratio:
𝑛𝐶

𝑛1
(1)

Imbalance Divergence:
∑
𝑖

𝑝𝑖 log
𝑝𝑖

𝑞𝑖
(2)

Gini Coefficient:

∑
𝑖 𝑛𝑖 (2𝑖 −𝐶 − 1)

𝐶
∑
𝑖 𝑛𝑖

(3)

where 𝑝𝑖 = 𝑛𝑖∑
𝑖 𝑛𝑖

is the frequency of the 𝑖-th class, and 𝑞𝑖 = 1/𝐶
is the probability in a uniform distribution. The imbalance ratio

True \ Pred 1 2 3

1 M11 M12 M13

2 M21 M22 M23

3 M31 M32 M33

Figure 1: The confusionmatrixwith 3 classes. Its entry𝑀𝑖 𝑗 is
the number of data points whose true label is 𝑖 and predicted
label is 𝑗 . We assume that 𝑝 (𝑦 = 3) ≤ 𝑝 (𝑦 = 2) ≪ 𝑝 (𝑦 = 1),
meaning that Class 1 forms the head while the other two are
tail classes. If our prediction is always 1, the label of the head
class, meaning that we decrease the numbers in the red box
and increase the numbers in the blue box, we can achieve
high accuracy at the cost of low precision on the head class
and small recall on tail classes.

measures the gap between two ends, while the other metrics evalu-
ate the divergence between the given long-tailed distribution and
uniform distribution. These metrics are 1, 0, and 0 for uniform
distributions and become larger for more imbalanced distributions.

Metrics on classification performance. We then introduce
the metrics for a classification problem with 𝐶 classes. A confusion
matrix 𝑀 is a 𝐶 × 𝐶 square matrix that allows analysis and visu-
alization of the final results, as shown in Figure 1. Specifically, its
entry 𝑀𝑖 𝑗 is the number of data points whose true label is 𝑖 and
predicted label is 𝑗 . Therefore, all correct predictions are located
in the diagonal of this matrix. The classification accuracy can be
calculated as

∑
𝑖=𝑗 𝑀𝑖 𝑗∑
𝑀𝑖 𝑗

. There are two widely used performance met-
rics based on the confusion matrix. For the 𝑖-th class, its precision
𝑝𝑖 , recall 𝑟𝑖 are defined as follows.

𝑝𝑖 =
𝑀𝑖𝑖∑
𝑗 𝑀𝑗𝑖

, 𝑟𝑖 =
𝑀𝑖𝑖∑
𝑗 𝑀𝑖 𝑗

(4)

Namely, given a data sample whose true label is 𝑖 , the 𝑟𝑖 is the
frequency (probability) that we can correctly predict its label. The
harmonic mean of precision and recall is the F1 score 2

𝑝−1
𝑖
+𝑟−1

𝑖

. Given
a label distribution 𝑝 (𝑦), the classification accuracy is the weighted
average recall, as shown below.

𝐶∑
𝑖=1

𝑝 (𝑦 = 𝑖)𝑟𝑖 (5)

With a uniform label distribution, i.e., 𝑝 (𝑦 = 𝑖) = 1/𝐶,∀𝑖 ∈ [1,𝐶],
the weighted average recall is also called macro average recall
1
𝐶

∑𝐶
𝑖=1 𝑟𝑖 .

For a classification problem on long-tailed categorical distribu-
tions, the weighted average recall (i.e., accuracy) can only demon-
strate one perspective of the performance. We may list the confu-
sion matrix and calculate the precision and recall of each class for
detailed comparisons.

We can also interpret the classification on long-tailed distribution
as a multi-objective optimization problem. The vector of recall r =
[𝑟1, 𝑟2, ..., 𝑟𝐶 ] can be an alternative performance metric. If r𝑎 < r𝑏
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(∀𝑖 ∈ [1,𝐶], r𝑎 [𝑖] < r𝑏 [𝑖]), then the r𝑏 dominates r𝑎 , meaning that
the prediction 𝑏 always achieves a better accuracy than 𝑎 for any
label distributions 𝑝 (𝑦).

2.3 Long-Tailed distribution in Machine
Learning

Classification problems on long-tailed distribution have been ob-
tained much attention in the machine learning community [6, 12,
14].We can only provide a short description of several methods used
in the following case studies. We refer readers to [22] and related
papers for details regarding these methods and other methods.

Reweighting. We typically use softmax cross entropy loss to
train a classifier in machine learning algorithms. It is natural and
intuitive to assign different weights to data samples in different
classes.

Given an predicted logit 𝑧, we can obtain the predicted probabil-
ity vector 𝑝 . With the true label of 𝑐 , we list several loss functions
to conduct reweighting,

Cross entropy − log𝑝𝑐 (6)

Weighted loss − 1
𝑛
𝛾
𝑐

log 𝑝𝑐 (7)

Focal loss − (1 − 𝑝𝑐 )𝛾 log𝑝𝑐 (8)

Class-balanced loss − 1 − 𝛾

1 − 𝛾𝑛𝑐
log𝑝𝑐 (9)

Balanced softmax − log( 𝑛𝑐𝑒
𝑧𝑐∑

𝑖 𝑛𝑖𝑒
𝑧𝑖
) (10)

where 𝛾 is a hyperparameter and 𝑛𝑖 is the number of samples in
the 𝑖-th class. Compared with the baseline of cross entropy loss,
the weighted loss [11] and the class-balanced loss [8] assign a
larger weight to the data samples belonging to tail classes. Based
on the observation that machine learning models often exhibit high
confidence in the head classes but low confidence in the tail classes,
the focal loss [15] assigns larger weights to the less confident data
points to improve the learning on tail classes. By leveraging the
prior knowledge that we focus on the macro average recall on the
test distribution, balanced softmax loss [18] is proposed to use the
label frequencies to adjust predicted logits to mitigate the bias of
class imbalance.

Resampling. In [13], the authors evaluate the following sam-
pling strategies for representation learning on long-tailed categori-
cal distributions.

• Instance-balanced sampling. All data points share the same
sampling probability, which is the baseline method.

• Class-balanced sampling. All classes share the same sampling
probability 1/𝐶 . All data points in the same class share the
same sampling probability.

• Square root sampling. The sampling probability of the 𝑖-th
class is proportional to √

𝑛𝑖 to mitigate the imbalance issue.
• Progressively-balanced sampling. We start from the instance-
balanced sampling, and gradually move forward to the class-
balanced sampling.

Two-stage learning.We can first pre-train a model on the orig-
inal long-tailed dataset using the conventional cross entropy loss,
which helps the representation learning. Afterwards, we can use

the methods mentioned above to further fine-tune the model, em-
powering the machine learning models to handle long-tailed label
distributions.

Issues in the existing algorithms.Most algorithms and bench-
marks in the machine learning community pay much attention to
the macro average recall, which is the accuracy under a uniform
label distribution. Also, most of the algorithms leverage the prior
knowledge that the testing datasets have uniform label distribu-
tions, As a result, these methods usually make the trade-off between
the recall of head and tail classes. They usually achieve a higher
recall on tail classes at the expense of slight degradation on the
recall of head classes. From the perspective of the confusion matrix
shown in Figure 1, we increase the numbers in the red box and
decrease the numbers in the blue box to achieve a higher macro
average recall.

3 CASE STUDIES WITH OPEN-SOURCE EDA
DATASETS

In this section, we cite two problems with long-tailed categorical
distribution in electronic design automation. The problems are
identifying the failure pattern in the wafer maps and net delay
prediction.

3.1 Wafer Map Defect Classification
In the semiconductor industry, we need to check if there is any
problem in every single fabricated wafer. If yes, we would like to
know the exact type of failure pattern such that we can further
investigate the reason for failure and fix the related issues. In the
traditional routine, the wafer manufacturing process is monitored
by experienced engineers, who can classify the failure patterns
and are aware of the failure cause. However, it is impossible and
tedious for experts to monitor every single wafer. Our objective is to
identify different types of wafer map failure patterns automatically
instead of manual work. Specifically, we are required to predict a
categorical label based on an input wafer map, which is represented
by a matrix.

It is typical that the label distribution is long-tailed. Most of
the wafers do not have a failure pattern, while the wafers with
failure only account for a small portion of the whole distribution.
For example, we list the number of data samples in each class in the
industrial WM-811K wafer map training dataset [19] in Table 1. The
imbalance ratio, the imbalance divergence, and the Gini coefficient
are 680, 1.086, and 0.7313, respectively. 67.57% of the wafer maps
do not have any failures, which dominate the distribution. Figure 2
illustrates examples of each failure pattern.

Researchers have proposed various approaches to tackle this
classification problem. Machine learning methods, especially deep
learning methods, have been applied to this challenge. Specifically,
this challenge is treated as an image classification problem, which
is well studied in the machine learning community.

3.2 Net Delay Prediction
Fast and accurate pre-routing timing prediction is essential for
timing-driven placement since repetitive routing and static timing
analysis (STA) iterations are expensive and unacceptable. We fol-
low the prior work [5] regarding the net delay prediction problem
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index failure # samples percentage (%)
0 none 36730 67.57
1 edge-ring 8554 15.74
2 center 3462 6.369
3 edge-loc 2417 4.447
4 loc 1620 2.980
5 random 609 1.120
6 scratch 500 0.920
7 donut 409 0.752
8 near-full 54 0.099

Total 54355 100
Table 1: The original training split of WM-811K dataset.

center donut edge-loc edge-ring loc

random scratch near-full none

Figure 2: Eight failure types in WM-811K dataset. ‘None’
stands for wafer without any failures.

(a) Density of net delay. (b) Histogram of net delay.

Figure 3: The density and histogram with 100 bins of the
long-tailed net delay dataset. The vertical axis in Figure (b) is
in logarithmic scale. We care more about the nets with large
delay, which have small density and thus belong to the tail.

formulation. The objective is to estimate post-routing timing behav-
ior, given the circuit placement result. In this work, we collect net
delay timing reports from open-source EDA tool OpenROAD [3] on
SkyWater 130nm [2] process on 21 real-world open-source designs
from [1].

We slightly modify the problem setting and convert the original
regression problem into a classification problem. The nets are clas-
sified into 100 equally spaced bins based on their delay logarithm

value. Specifically, the class ID is as follows,

𝐼𝐷𝑖 =

⌊
𝑑𝑖 − 𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛
× 100

⌋
, (11)

where 𝑑𝑖 is the logarithm of the delay for net 𝑖 . The net delay
distribution density is shown in Figure 3a, which exhibits a long-
tailed distribution. While prior work [5] focuses on reducing the
model pessimism with the increased correlation between prediction
and labeled delay, we argue that in circuit design, we tend to care
more about the worst delay cases or the tail of the distribution
where the net delay is large. The training dataset distribution after
processing is shown in Figure 3b. The imbalance ratio, the imbalance
divergence, and the Gini coefficient are 33241.7, 0.7458, and 0.8397,
respectively. 78.12% of the net delays are in the first 10 bins, while
the last 50 bins only account for 2.57%.

3.3 Experimental Settings
We investigate the performance of the methods introduced in Sec-
tion 2 to show how these methods handle long-tailed distribution.
We work on the WM-811K and net delay prediction dataset men-
tioned above to verify the effectiveness of these methods. Our target
is to see if and how these methods will impact long-tailed distribu-
tion classification, instead of achieving better overall classification
accuracy on these benchmarks. Our generated dataset and code
implementations are available at this link.

3.3.1 Wafer Defect Classification with CNNs. Following the anal-
ysis and settings in [4], we use the original training dataset only
by splitting it into 0.8 : 0.2 for training and testing. In particular,
there are 43,484 and 10,871 samples in the training and testing
datasets. Hence, the training and testing datasets share identical
long-tailed label distributions, which is different from the well-
studied long-tailed classification benchmarks. The original wafer
map is represented as a matrix. We treat it as an image and resize
it to 32 × 32 pixels.

We use a mini-batch size of 64 and train the ResNet20 [10] model
via 5× 104 iterations for all the methods. We use the SGD optimizer
with a momentum of 0.9 and weight decay of 10−4. The initial learn-
ing rate is 0.1 and decays following the cosine annealing learning
rate scheduler. For the hyperparameters in the loss functions, we
use 𝛾 = 1 and 𝛾 = 0.5 for weighted cross entropy loss in Equa-
tion (7). 𝛾 is 2 for the focal loss in Equation (8), while the 𝛾 is 0.999
for the class-balanced loss in Equation (9). For two-stage training,
we first use the standard cross entropy to train for 4× 104 iterations
and then apply the corresponding methods to train the remaining
104 iterations.

3.3.2 Net Delay Prediction with GNNs. Analogous to the two types
of timing arcs in timing engines, we represent the circuit as a het-
erogeneous graph consisting of two types of edges: net edges and
cell edges. The nodes in the graph denote pins in the circuit. The
node and edge features are listed in Table 2. The pin capacitance
at the node features corresponds to the four timing corner combi-
nations of the early/late and rise/fall. The delay prediction task is
node classification, and the nodes are randomly split into 0.8 : 0.2
for training and testing.

Our GNN model computes on the bi-direction graph consisting
of net edges and reversed net edges. There are three net convolution
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Type Name Dimension

Node Features

is primary I/O pin 1
is fanin or fanout 1
distance to boundaries 4
pin capacitance 4

Edge Features net distances (hori. and vert.) 2
Table 2: Node and edge features of net delay prediction.

layers in our model. Each layer transforms the node features by
graph broadcast and graph reduction. In graph broadcast, informa-
tion flows from the net driver to the net sinks through the net edges.
We concatenate the features of the net driver, the net sinks, and the
net edges passed through a fully connected neural network layer to
obtain the next layer’s net features. In graph reduction, information
flows backward from the net sinks to the net driver through the
reversed net edges similarly. The model learns statistics from all
net sinks through two concatenated reduction channels: sum and
max operations. We use the node embedding output of the final
layer to predict net delay from inputs to outputs.

4 EXPERIMENTAL RESULTS AND
DISCUSSIONS

We show and discuss our experimental results in this section.
Tables 3 and 4 are the confusion matrix and the classification re-

port for the baseline method and one-stage class-balanced sampling
method on the wafer defect classification problems. Compared with
the baseline, the resampling method achieves a higher precision
on the head classes and recall on the tail classes 3 ∼ 7. Namely,
the classifier will achieve a high prediction accuracy when given a
data sample whose true label belongs to tail classes. As a result, we
obtain a higher macro average recall and a smaller macro standard
deviation on the recall with the class-balanced sampling method.

We notice that the precision and recall of Class 8 are both 1,
meaning that the data points in this tail class can be predicted
perfectly. We explain that Class 8 (near-full failure pattern) is signif-
icantly different from other classes, and thus it is easy to recognize
with only few training samples. We conclude that the performance
of one class depends on not only the number of data points in it,
but also the distance from other classes.

We also observe that except Class 0, the per-class precision de-
creases as we misclassify the data points whose true label is 0. For
instance, we improve the recall of Class 6 from 0.5714 to 0.8878,
while the precision of this class drops from 0.8358 to 0.1302. Namely,
in our predictions of tail classes, there will be more misclassified
data points. Further, we cannot improve the weighted average re-
call, i.e., accuracy, with the resampling method if the training and
testing datasets follow the same label distribution 𝑝 (𝑦).

Tables 5 and 6 list the results of all the discussed methods on
two problems, respectively. Similar to the analysis above, we find
that almost all methods tackling long-tailed categorical distribution
can improve the macro average recall significantly. For example,
the class-balanced sampling can achieve 0.9464 and 0.9444 macro
average recall with one-stage and two-stage training, while the

corresponding result in the baseline method is 0.9099 in the wafer
map classification problem. The class-balanced sampling improves
the macro average recall from 0.3723 to 0.5063. In the net delay
problem, the macro average precision and F1 score also increase
with these methods. These methods obtain degradation on the
weighted average performance metrics under the condition that
the training and testing datasets follow the same label distribution.
Further, we do not find a consistent improvement when using two-
stage training.

Above all, most existing long-tailed methods improve recall of
the tail classes at the cost of recall of head classes. Namely, given
a data point whose true label belongs to the tail classes, we can
predict its label more accurately, which is critically important when
handling the wafer failure pattern and net delay. We obtain perfor-
mance degradation in other metrics, especially the precision. This
means there will be more misclassified data samples in our predic-
tion, since more data samples in the head classes will be predicted
as the tail classes.

5 CONCLUSION
Long-tailed distribution is a common, critical, yet overlooked is-
sue in EDA. Now that this issue is obtaining more attention in
the machine learning community, we can leverage these advances
with our insights on real-world EDA problems. Specifically, we
can take advantage of the reasons and results of the long-tailed
distribution to tackle related problems. In other words, we may
integrate our prior knowledge regarding the specific problems. We
usually tend to assign more weight to the abnormal and extreme
data samples in EDA. In the two cases mentioned in this paper,
the importance of data samples should not be proportional to their
occurring frequency, since we are aware of the importance of the
tail. We leverage model-agnostic methods, specifically reweighting
and resampling, and demonstrate their effectiveness on these two
examples with convolutional neural networks and graph neural
networks, respectively.

Above all, we would like to draw attention to the issue of long-
tailed distribution in EDA, especially when we try to solve problems
using machine learning algorithms.
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True\Pred 0 1 2 3 4 5 6 7 8
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4 33, 4 0, 0 1, 3 14, 10 285, 298 0, 2 4, 19 3, 4 0, 0
5 2, 0 1, 1 0, 0 1, 1 1, 1 100, 102 0, 0 0, 0 0, 0
6 38, 9 0, 1 1, 2 1, 1 2, 1 0, 0 56, 84 0, 0 0, 0
7 0, 0 0, 0 0, 0 2, 1 2, 0 1, 1 0, 0 88, 91 0, 0
8 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 6, 6

Table 3: The confusion matrix of testing results for the wafer defect classification problem. For each entry, the two items are
for the baseline method and the class balanced resampling method.

class 0 class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 macro avg macro std weighted avg

precision baseline 0.9856 0.9850 0.9813 0.9243 0.9344 0.9615 0.8358 0.9670 1.0000 0.9528 0.0503 0.9793
cls-bal samp. 0.9961 0.9721 0.9343 0.8147 0.8663 0.9027 0.1500 0.9479 1.0000 0.8427 0.2668 0.9678

recall baseline 0.9942 0.9901 0.9827 0.9141 0.8382 0.9524 0.5714 0.9462 1.0000 0.9099 0.1368 0.9799
cls-bal samp. 0.9122 0.9901 0.9827 0.9493 0.8765 0.9714 0.8571 0.9785 1.0000 0.9464 0.0522 0.9302

F1 baseline 0.9898 0.9876 0.9820 0.9192 0.8837 0.9569 0.6788 0.9565 1.0000 0.9283 0.1008 0.9793
cls-bal samp. 0.9523 0.9810 0.9579 0.8769 0.8713 0.9358 0.2553 0.9630 1.0000 0.8660 0.2330 0.9452

Table 4: The classification report for testing results with the baseline method and the class-balanced sampling method for the
wafer defect classification problem.

macro average weighted average
precision recall F1 precision recall F1

single double single double single double single double single double single double
baseline 0.9528 - 0.9099 - 0.9283 - 0.9793 - 0.9799 - 0.9793 -

weighted, 𝛾 = 1 0.8058 0.7869 0.9386 0.9317 0.8388 0.8240 0.9653 0.9631 0.9181 0.9122 0.9371 0.9326
weighted, 𝛾 = 0.5 0.8963 0.8827 0.9324 0.9340 0.9111 0.9044 0.9746 0.9749 0.9720 0.9721 0.9729 0.9731

focal 0.9533 0.7962 0.9027 0.9396 0.9236 0.8335 0.9786 0.9709 0.9792 0.9349 0.9785 0.9494
class balanced 0.9150 0.9540 0.9118 0.9038 0.9121 0.9255 0.9769 0.9788 0.9775 0.9795 0.9771 0.9788

balanced softmax 0.8059 0.8414 0.9410 0.9443 0.8391 0.8587 0.9698 0.9713 0.9232 0.9188 0.9423 0.9403
class balanced samp. 0.8427 0.8150 0.9464 0.9444 0.8660 0.8459 0.9678 0.9718 0.9302 0.9302 0.9452 0.9471
square root samp. 0.8839 0.8945 0.9327 0.935 0.9045 0.9083 0.9766 0.9764 0.9742 0.9719 0.9750 0.9735
progressively samp. 0.8373 0.8280 0.9435 0.9437 0.8619 0.8539 0.9735 0.9715 0.9398 0.9298 0.9536 0.9469

Table 5: Macro average and weighted average results on the wafer defect classification problem. ‘samp.’ is short for sampling.
Single and double means one-stage and two-stage training. The largest values of each metric are highlighted.

macro average weighted average
precision recall F1 precision recall F1

single double single double single double single double single double single double
baseline 0.3820 - 0.3723 - 0.3730 - 0.6654 - 0.6703 - 0.6673 -

weighted, 𝛾 = 1 0.3443 0.3455 0.3780 0.3833 0.3573 0.3600 0.5560 0.5600 0.5599 0.5635 0.5566 0.5606
weighted, 𝛾 = 0.5 0.4062 0.3991 0.4200 0.4137 0.4102 0.4041 0.5922 0.5923 0.5971 0.5963 0.5939 0.5937

focal 0.3543 0.3019 0.3373 0.3182 0.3405 0.3032 0.6064 0.5968 0.6618 0.5992 0.6084 0.5974
class balanced 0.3617 0.3689 0.3865 0.3923 0.3707 0.3755 0.5997 0.6002 0.6072 0.6069 0.6028 0.6029

balanced softmax 0.3415 0.3382 0.3810 0.3599 0.3516 0.3435 0.6065 0.6052 0.6074 0.6065 0.6063 0.6050
class balanced samp. 0.4922 0.3673 0.5063 0.3955 0.4979 0.3779 0.5758 0.6031 0.5802 0.6041 0.5767 0.6027
square root samp. 0.4835 0.3771 0.4912 0.3948 0.4863 0.3819 0.5994 0.6107 0.6039 0.6143 0.6011 0.6121
progressively samp. 0.4716 0.3731 0.4859 0.4001 0.4772 0.3837 0.6334 0.6064 0.6333 0.6082 0.6328 0.6066

Table 6: Results on the net prediction problem. The notations are the same as Table 5.
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