

Comparative Studies of CdZnTe, CdMnTe, and CdZnTeSe Materials for Room-Temperature Nuclear Detection Applications

Stephen U. Egarievwe, *Member, IEEE*, Stephan D. Soto, Simeon W. Sykes, Leslie J. Fuller, Quentin J. Alsbrooks, Mohammad A. Alim, Utpal N. Roy, Ezekiel O. Agbalagba, Mebougna L. Drabro, and Ralph B. James, *Fellow, IEEE*

Abstract—Cadmium telluride (CdTe) and its ternary and quaternary compounds have found applications in the development of X-ray and gamma-ray detectors used in nuclear detection and medical imaging applications. Example of these detectors include CdZnTe (CZT), CdMnTe (CMT), and CdZnTeSe (CZTS). These nuclear detectors can operate at room temperature without cryogenic cooling. This paper presents comparative studies of these semiconductor material. The properties studied include detector resistivity, Te inclusions, grain boundary networks, mobility/lifetime of the charge carriers, and energy resolution. The effects of passivation with chemicals such as KOH and NH₄F, are also presented. X-ray photoelectron spectroscopy (XPS) studies showed increase in the quantity of TeO₂ on surfaces of these materials after passivation in KOH and NH₄F. While CZT detector has wide commercial availability, it has more Te inclusions and grain boundary network compared to CZTS. CMT and CZTS have better crystal uniformity than CZT. The comparatively low presence of Te inclusions and grain boundary network in CZTS gives it a higher crystal growth yield for detector-grade material.

I. INTRODUCTION

CADMIUM Telluride (CdTe) and its ternary and quaternary compounds have applications in the development of X-ray and gamma-ray detectors used in medical imaging and nuclear detection applications at room temperature [1]–[7]. Typical CdTe ternary compound semiconductors include Cadmium

Manuscript received December 15, 2021. This work was supported in part by the National Science Foundation (NSF) Major Research Instrumentation (MRI) through award number 1726901; in part by U.S. Department of Energy (DOE), Office of Defense Nuclear Nonproliferation Research and Development, the DNN R&D (NA-22), and DOE NNSA MSIPP award number DE-NA0003980; in part by the U.S. Nuclear Regulatory Commission (NRC) through award 31310018M0035; in part by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office through award number 2012-DN-077-ARI065-05; and in part by the NSF HBCU-UP Program through award number 1818732.

S. U. Egarievwe, S. D. Soto, S. W. Sykes, L. J. Fuller, Q. J. Alsbrooks, M. A. Alim are with the Nuclear Engineering & Radiological Science Center, and Department of Electrical Engineering & Computer Science, Alabama A&M University, Normal, AL 35762 USA (e-mail: stephen.egarievwe@aamu.edu).

E. O. Agbalagba is with the Department of Physics, Federal University of Petroleum Resources, Effurun, Delta State, Nigeria (e-mail: agbalagba.ezekiel@fupre.edu.ng).

M. L. Drabro is with the Department of Mechanical Engineering, Alabama A&M University, Normal, AL 35762 USA (mebougna.drabro@aamu.edu).

U. N. Roy was with the Department of Nonproliferation and National Security, Brookhaven National Laboratory, Upton, NY 11973 USA. He is now with Science and Technology, Savannah River National Laboratory, Aiken, SC 29808 USA (e-mail: utpal.roy@srnl.doe.gov).

R. B. James is with Science and Technology, Savannah River National Laboratory, Aiken, SC 29808 USA (e-mail: ralph.james@srnl.doe.gov).

Zinc Telluride (CdZnTe or CZT) and Cadmium Manganese Telluride (CdMnTe or CMT). The most recent quaternary compound of CdTe that has shown great promise in radiation detection is Cadmium Zinc Telluride Selenide (CdMnTeSe or CZTS). The major advantage of these detectors is the ability to operate at room temperature without cryogenic cooling. This enables them to be fabricated into portable nuclear detection devices that can be used at seaports and border security, and at nuclear facilities to monitor radiation levels. Among these detectors, CZT has received a lot of efforts and funding in research and development (R&D) compared to CMT and CZTS. CZT has been developed into commercial radiation detection devices by several companies. Some of these companies include Kromek Group PLC [8], Redlen Technologies [9], FLIR Systems [10], Eurorad [11], and H3D [12]. There are ongoing R&D efforts aimed at improving the performances of these detectors. In this paper, we focus on comparative studies of CZT, CMT, and CZTS semiconductor materials that we have separately worked in the past several years. The comparisons are on individual detector experiments. The properties studied include detector resistivity, Te inclusions, grain boundary networks, mobility/lifetime of the charge carriers, and energy resolution.

II. DETECTOR FABRICATION AND EXPERIMENTS

Planar detectors are often used in characterizing the properties of CdTe-based materials. The fabrication involves four major steps: wafer cutting, mechanical polishing, chemical etching and air-drying, and deposition of electrical contacts. The wafer is cut to desired dimension using a special cutting machine equipped with a fine diamond wire and water pump that provides cooling and lubrication. This is followed by mechanical polishing. The polishing is aimed at removing surface defects and residues. Silicon-carbide abrasive papers of several grades ranging from 600-grit to 1200-grit papers are successively used in the first step of the mechanical polishing process. The second step involved polishing the wafers further on multi-tex pads to produce mirror-shine surfaces using alumina (Al₂O₃) powder in decreasing steps from 3.0 μm to 0.1 μm sizes. The surfaces of the wafers could be further smoothed using chemical etching to remove fine residual damages caused by the mechanical polishing process [13]. This process involves dipping the wafer in a 1% to 2% solution of bromine methanol. The sample is then dried using compressed air. Some studies do not involve chemical etching.

To perform detector testing, electrical contacts are deposited on opposite sides of the wafer and the contact-wafer interface is allowed to stabilize for a desired period which could range from hours to days. The electroless contact deposition technique is widely used due to its simplicity, and it is known to produce a strong chemical bonding between the metal contact and the semiconductor wafer [12]. Other contact deposition techniques include thermal evaporation and sputtering. Examples of contact materials are gold, carbon, and aluminum.

Current-voltage (I-V) characterization experiment is made to determine the detector resistivity and the contact type. After establishing that the sample has high resistivity, in the order of $10^8 \Omega\text{-cm}$ and above, the detector is tested using a sealed nuclear radiation source. An example I-V measurement setup is shown in Fig. 1. A schematic diagram of the setup for detector testing is shown in Fig. 2.

Fig. 1. An example I-V measurement setup consisting of voltage source, pico-ammeter, and sample box.

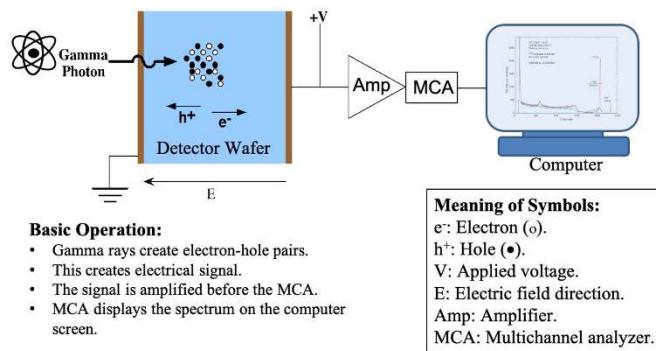


Fig. 2. Basic operation of CdTe-based detectors and setup for measuring performance. A pre-amplifier is often used to amplify the signal from the detector before the amplifier.

III. RESULTS AND CONCLUSION

X-ray photoelectron spectroscopy (XPS) studies showed increase in the quantity of TeO_2 on surfaces of these materials after passivation in KOH and NH_4F solutions [13],[14]. The

energy resolution of CZTS planar detector was found to improve significantly after passivation in NH_4F solution [5]. CZT detector has wide commercial availability, however, it has more Te inclusions and grain boundary networks compared to CZTS. CMT and CZTS has better crystal uniformity than CZT. The comparatively low presence of Te inclusions and grain boundary network in CZTS gives it a higher crystal growth yield for detector-grade material.

REFERENCES

- [1] P. Yu, Y. Xu, Y. Chen, J. Song, Y. Zhu, M. Zhang, B. Zhang, Y. Wang, W. Li, L. Luan, and Y. Du, "Investigation of effective annealing on CdMnTe: In crystals with different thickness for gamma-ray detectors," *Journal of Crystal Growth*, vol. 483, pp. 94-101, 2018.
- [2] J. Lai, J. Zhang, Y. Mao, L. Lin, J. Min, X. Liang, J. Huang, K. Tang, and L. Wang, "Distribution of Te Inclusions in CdMnTe Crystal Grown by Traveling Heater Method," *Journal of Electronic Materials*, pp. 1-7, 2018.
- [3] S. U. Egarievwe, W. Chan, K. H. Kim, U. N. Roy, V. Sams, A. Hossain, A. Kassu, and R. B. James, "Carbon Coating and Defects in CdZnTe and CdMnTe Nuclear Detectors," *IEEE Transactions on Nuclear Science*, vol. 63, no. 1, pp. 236-245, 2016.
- [4] R. B. James, T. E. Schlesinger, J. C. Lund, and M. Schieber, *Semiconductors for room temperature nuclear detector applications*, Academic Press, San Diego, vol. 43 (1995).
- [5] S. U. Egarievwe, U. N. Roy, C. A. Goree, B. A. Harrison, J. Jones, and R. B. James, "Ammonium Fluoride Passivation of CdZnTeSe Sensors for Applications in Nuclear Detection and Medical Imaging," *Sensors*, vol. 19 no. 15, article # 3271, 2019.
- [6] E. O. Agbalagba, M. L. Drabo, S. U. Egarievwe, U. N. Roy, A. H. Davis, M. B. Israel, P. L. Alexander, and R. B. James, "Characterization of CdZnTeSe Nuclear Detector Chemically Etched in Bromine Methanol," *Materials Sciences and Applications* vol 12, no. 8, pp. 363-373, 2021.
- [7] S. U. Egarievwe, U. N. Roy, E. O. Agbalagba, B. A. Harrison, C. A. Goree, E. K. Savage, and R. B. James, "Optimizing CdZnTeSe Frisch-Grid Nuclear Detector for Gamma-Ray Spectroscopy," *IEEE Access*, vol. 8, pp. 137530-137539, 2020.
- [8] Nuclear, Kromek Group PLC, 2021 [Online]. Available: <https://www.kromek.com/nuclear/>.
- [9] Power next-gen imaging with the world's most advanced CZT sensors, Redlen Technologies, 2021 [Online]. Available: <https://redlen.com/technology>.
- [10] High-Resolution Spectroscopic Personal Radiation Detector identiFINDER R300, FLIR Systems, Inc., 2021 [Online]. Available: <https://www.flir.com/products/identifinder-r300/>.
- [11] Products, Eurorad, 2021 [Online]. Available: www.eurorad.com/products.
- [12] Changing the paradigm of radiation detection with cutting-edge CZT (CdZnTe) technology, H3D Inc., 2021 [Online]. Available: <https://h3dgamma.com/>.
- [13] S. U. Egarievwe, A. Hossain, I. O. Okwechime, A. A. Egarievwe, D. E. Jones, U. N. Roy, and R. B. James, "Effects of Chemical Treatments on CdZnTe X-Ray and Gamma-Ray Detectors," *IEEE Transactions on Nuclear Science*, vol. 63, no. 2, pp. 1091-1098, 2016.
- [14] M. L. Drabo, S. U. Egarievwe, I. O. Okwechime, D. E. Jones, A. Hossain, and R. B. James, "Analysis of Te and TeO_2 on CdZnTe Nuclear Detectors Treated with Hydrogen Bromide and Ammonium-Based Solutions," *Journal of Materials Science and Chemical Engineering*, vol. 5, no. 4, pp. 9-18, 2017.