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Abstract

We provide a novel characterization of the solutions of a quadratic BSDE,
which is analogous to the characterization of local martingales by convex func-
tions. We then use our main result to show that BSDE solutions are closed
under ucp convergence. Finally, we use our closure result obtain a sufficient
condition for existence, and discuss specific cases in which this sufficient con-
dition can be verified.

1 Introduction

Backward Stochastic Differential Equations (BSDEs) were first introduced by Bis-
mut [Bis73] in 1973 in the linear case, and later generalized by Pardoux and Peng
[PP90], who studied them under general Lipschitz conditions. In this paper we are
concerned with quadratic BSDEs, i.e., BSDEs of the form

dY = f(t,Y, Z)dt + Z dB, (1.1)
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with Y taking values in some R (systems of BSDEs), Z in R"*¢, whose driver f has
quadratic growth in z. In 2000, Kobylanski [Kob00] established the well-posedness
of such one-dimensional quadratic BSDEs with a bounded terminal condition. For
a survey of the most important results in this active field up to 2017, we refer the
reader to the textbook [Zhal7] of Zhang.

Well-posedness for multi-dimensional quadratic BSDEs has proved more chal-
lenging and is still a central open problem. The most general results in this direc-
tion come from Tevzadze [Tev08] under a smallness assumption, and from Xing and
Zitkovi¢ [X7Z18] in the Markovian setting. We refer the reader to [HT16, JKL17,
CN17, Nam19, HR19] and the references therein for some other important contri-
butions.

The importance of BSDEs in optimal stochastic control and stochastic game
theory is well documented (see, e.g., the monographs [Pha09] or [Carl6] and the
references therein). It is not as well known that quadratic BSDEs also appear in
stochastic differential geometry, as pioneered by Darling in [Dar95], based on the
earlier work of Kendall, Picard and others (see, e.g., [Ken90, Ken94, Ken91, Ken92,
Pic94] and the references therein). Let I' be an affine connection on a differentiable
manifold M which, for the sake of simplicity, we take to be diffeomorphic to R".
Martingales on M (also called I'-martingales) are manifold-valued processes that
generalize continuous local martingales and share many of their properties (see,
e.g., [Eme89, Chapter IV] for an overview). One such property is the following:
an M-valued process Y is a I-martingale if and only if ¢(Y') is a submartingale
whenever ¢ is a (locally defined) convex function (see [Eme89, Theorem 4.9, p. 43]
for a precise statement). As in the Euclidean case, this characterization gives an
analytic insight into various properties of martingales, and can be used to prove,
among others, the fundamental result that the set of [-martingales is closed under
the ucp (uniform on compacts in probability) convergence (see [Eme89, Theorem
4.43, p. 47)).

The relationship between I'-martingales and BSDEs stems from the simple ob-
servation that a process Y, adapted with respect to a Brownian filtration and taking
values in M, is a ['-martingale if and only if it solves the BSDE

n d
dY = f(Y, Z)dt + Z dB with f'(y,z) = 5 E E I 0 W) 27, (1.2)

i1,i2=1 j=1
where n is the dimension of the manifold, d is the dimension of the driving Brow-

nian motion, and I ;, are the Christoffel symbols of the affine connection on M.
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Using this observation, Darling constructed I'-martingales with prescribed terminal
conditions and studied their properties. In his analysis, he used the fact that the
family of I'-martingales is closed under ucp convergence as a key tool in addressing
the well-posedness of BSDEs of the special form (1.2) under geometric restrictions
on the Christoffel symbols I". We note that the equation (1.2) can be viewed as a
BSDE on a manifold, written in local coordinates. This perspective is developed in
[Bla05] and [Bla06], where more general BSDEs on manifolds are treated, and the
results of [Dar95] for the equation (1.2) are extended considerably.

1.1 Our results

Inspired by the connection between special BSDEs and ['-martingales considered by
Darling, we set out to investigate the following questions: In which ways do solutions
to general BSDEs behave like martingales? Just as Darling used a special class of
BSDEs to describe martingales on manifolds, can we tie a properly generalized
notion of a martingale to a general BSDE? Is there a geometric picture associated
with such a generalization?

Being the starting point in this program, the present paper answers a more spe-
cific question: Is there a “convex-function” characterization of solutions to BSDEs
in the spirit of Emery? Indeed, since martingales are characterized by the way they
transform under convex maps, can we do the same with solutions of BSDEs? Of
course, classical convex functions - which turn each martingale into a local sub-
martingale - will not work for a BSDE with a general driver f. We show that the
suitable notion is that of f-subharmonicity and, given an It6-process Y, we give the
following characterization: there exists a process Z such that (Y, Z) solves (1.1) if
and only if ¢(¢, B,Y) is a submartingale whenever ¢ is an f-subharmonic function.
In the case f = 0, f-subharmonic functions coincide with C'*?2-convex functions,
while in the “geometric” case of Darling, they coincide with geodesically convex
functions on the manifold. The general case is considerably more complicated than
either of the two special cases mentioned above and corresponds to the class of suf-
ficiently smooth subsolutions to a fully nonlinear parabolic PDE. We note that our
notion of f-subharmonicity resembles the notion of a Lyapunov function introduced
in [XZ18], but it is not strictly comparable to it and its use is quite different. We
note also that Proposition 2.4.1 of [Bla05] is similar in spirit to our Theorem 2.5,
although in a much more restrictive geometric setting, where Emery’s proof that
martingales on manifolds are characterized by convex functions is easier to adapt.



The supermartingale property under an exponential transformation in dimension
n = 1 has been used by [BE13a] to characterize certain classes of semimartingales
and prove powerful closure results under monotone convergence. These results also
lead to an alternative proof of a part of Kobylanski’s theorem.

One of the most important features of f-subharmonic functions is that they
naturally come defined only locally, and that local f-subharmonic functions cannot
always be extended to a larger (full) domain. This property is well known in the
case of geodesically-convex functions on certain Riemannian manifolds, even those
diffeomorphic to a Euclidean space. Interestingly enough, this feature kicks in only
in dimensions higher than 1, and only with drivers exhibiting a truly quadratic
growth in z. It also explains why our characterization needs to be local in nature
- sometimes, quite simply, there are no non-trivial globally defined f-subharmonic
functions.

Dimensionality also plays a role when it comes to the most basic features of
processes that become submartingales under f-subharmonic transformations. In di-
mension 1, such processes are automatically Ito-processes, but in higher dimensions
additional structure is needed to rule out the presence of singular drift components
(see Corollary 2.12).

After proving Theorem 2.5, we use our characterization to prove that, under
appropriate conditions, the set of processes Y which solve (1.1) (for some terminal
condition) is closed under ucp limits. We note that this closure result holds in a
high degree of generality when n = 1, but some additional structure is needed when
n > 1, see Remark 2.10. This result, namely Theorem 3.1, is directly analogous to
the parallel result about I'-martingales on manifolds mentioned above.

Finally, we present in sub-section 3.2 a “template for existence”, i.e. a sufficient
condition for the existence of solutions to quadratic BSDE systems. This result,
namely Proposition 3.5, shows how the geometric arguments in [Dar95] might even-
tually be applied to general quadratic systems, and its proof is based on the ucp
closure result Theorem 3.1. We note that it is possible to verify the hypotheses of
Proposition 3.5 in certain special cases, see Remark 3.7.

1.2 Organization of the Paper.

In Section 2, we describe notation and assumptions, introduce the notion of f-
subharmonic functions and f-local martingales, and then state and prove the main
result of the paper. In Section 3 we show ucp-stability solutions of BSDEs, and then



present a template for existence.

1.3 Notation and conventions.

Throughout the paper, we work on a a fixed probability space (2, F,P) which hosts
a d-dimensional Brownian motion B with a deterministic time horizon T < oo.
The filtration F = (F3)scp0,77 is the augmented filtration of B, while the augmented
filtration generated by a process X is denoted by F¥X.

Components of vectors in R™ get indices based on i (such as i or i), written
as superscripts. For Ré-valued vectors, indices are based on j and are written as
subscripts. Vectors in R"*? are interpreted as n x d-matrices, and we use indexing

of the form z = (z¢), with the understanding that 2" denotes the i-th row and z;

J-th column. Indicjes based on ¢ always range from 1 to n, and those based on j
from 1 to d. This way, for example, )7, = > 71", and }_, . = 22212?:1. Finally,
we do not use the Einstein summation convention.

The standard inner product (-, -) is used on R” and R%. In the matrix (i.e., R"*¢)
case, we use the Frobenius inner product given by (z,2) = 3=, - 212} = Tr 2T In
all three cases, we use the induced norm, denoted by | - |.

P denotes the set of all F-progressively measurable R"*?-valued processes, while
PP is the set of all Z € P such that fOT |ZyPdt < oo, a.s. For Z € P, [Z-dB
is R"-valued process defined by ([ Z-dB)" =", [ Z;dB; . S” denotes the set of
all continuous adapted R™-valued processes Y with ||Y||g, = ||Y}[|, < co. bmo
denotes the set of all processes Z € P? such that [ Z - dB is a BMO martingale,

and || Z||,0 = 1 [ Z - Bl|gpo- Where || - ||gyo denotes the standard BMO norm.

2 A characterization of solutions

This section gives a novel characterization the class of processes Y which solve a
given BSDE. A central role in this characterization will be played by the class of
f-subharmonic functions, introduced below.



2.1 Basic assumptions.

Given a continuous driver f : [0,7T] x R" x R"™? — R a pair of processes (Y, Z)
is said to be a solution to

T T
Vi=vi- [ Fevazydss [ zidoi<ica (@)
t t

if Y7 is a continuous n-dimensional F-semimartingale, Z € P? and (2.1) holds for
all 1 <i <mn, and all t € [0,T], a.s. Note that our solution concept does not come
with an a-priori terminal condition or any regularity imposed on Y or Z beyond the
bare minimum. In particular, [ Z - dB is not necessarily a (true) martingale.

In this paper we will abuse terminology and say that Y (alone) is a solution
to (2.1) if there exists Z € P? such that (Y, Z) is a solution in the sense described
above.

The following assumption can be viewed as a quantitative version of the require-
ment that z — f(¢,y, z) has quadratic growth for each ¢ and y.

Assumption 2.1. The driver f : [0,T] x R™ x R™4 — R" is jointly continuous
and there exists a continuous increasing function k : [0,00) — [0,00) such that for
all (t,y) € [0,T] x R" and z, 2’ € R™¢ we have

[f(ty, ) =ty 2)| < sllyD) (1 + 12l + [2]) ]2 = 2]

2.2 The notion of f-subharmonicity.

When Y is a solution to (2.1) and ¢ : [0, 7] x R x R® — R is a C1?2-function, [td’s
formula implies that

do(t, B, Y;) = LI ¢(t, By, Yy; Z,) dt + dLy (2.2)
where L is a local martingale and £7¢ : [0, 7] x R? x R™ x R"™? — R is defined by
Lot a,y:2) = =) dyilt,a,)f (ty, 2)
FO2,2) 433 byt (1 ,) (2 ) 23)
+ Zi’j¢mjyi (t,x,y)z + %Zjd)xjxj (t,z,y).

Therefore, if ¢ is a C1?2-function with the property that £/¢ > 0 everywhere, the
composition ¢(t, By, Y;) is necessarily a local submartingale. A local version of this
property motivates the the following definition:
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Definition 2.2 (f-subharmonic functions). A real valued C**2-function ¢ defined
on an open set dom ¢ of [0,T] x R? x R™ is said to be f-subharmonic if

inf L7é(t,x,y;2) >0 for all (t,z,y) € dom ¢.

ZeRnxd

The set of all f-subharmonic functions is denoted by S/.

Remark 2.3. Probabilistically, one can interpret f-subharmonicity as a sufficient
condition for a function to transform any solution Y of (2.1) to a submartingale
“while (t, B;,Y;) € dom¢”. To understand f-subharmonicity better from the an-
alytic point of view, we consider only the case where ¢ does not depend on ¢ and
start in the simplest setting with f =0 and n = d = 1 in which

LO0(t,z,y; 2) = %(C, D?¢(t,x,y)¢) where ¢ = (1, 2) and

D%¢(t, x,y) is the Hessian matrix of ¢ in variables z and y. It follows immediately
that ¢ is f-subharmonic if and only if D?¢ is non-negative definite on dom ¢, which
is, in turn, equivalent to joint convexity of ¢ in x and y on dom ¢.

When n = 1 but d > 1, f-subharmonicity, even for f = 0, no longer implies
convexity. Indeed, in that case we have

1
£0¢(t7 z,Y; Z) = 5(67 H€>a

where £ = (|2, 21/|z|, - ., 2a/|2|) (with z;/|z| = 0 when |z| = 0) and the matrix H
is given by

¢yy ¢yz1 (byxz s ¢yxd

bory Do 0 ... 0
He|twm 0 A ... 0
boyy O 0 .. Ago

As above, f-subharmonicity is equivalent to non-negative definiteness of the matrix
H, but H is no longer the Hessian of ¢. It is, however, obtained from the Hessian
D?@ by replacing the submatrix of (x;, z;/)-derivatives by a A, ¢-multiple of the nxn
identity matrix. When ¢ does not depend on y, 0-subharmonicity is equivalent to
classical subharmonicity of ¢, a property strictly weaker than convexity. In general,
the notion of O-subharmonicity can be interpreted as a “convex combination” of
convexity and subharmonicity.



The general case, when f does not necessarily vanish, is much harder to inter-
pret, primarily because the fact that the variable z, which we used to test positive
definiteness above no longer separates from the rest. One special case where such a
separation does occur is when f(¢,x,y,-) is a quadratic form in z, i.e.,

f(tv T, Y, Z) = Z E,i’ (t, €, y)zizi/,

i

a particular case of which we have seen in (1.2) in the Introduction. We hope it
may shed some light on a possible deeper geometric meaning of f-subharmonicity;
it also leads to non-negative definiteness, but of a matrix H’ which is obtained from
H above by adding certain first-order terms to it, just as in the the coordinate
representation of the covariant Hessian on a differentiable manifold with an affine
connection.

2.3 The main result

With the family S/ of all f-subharmonic functions introduced in Definition 2.2
above, we give two more definitions whose primary purpose is to improve presenta-
tion of our main theorem and its proof. Given a stochastic process ® and a stopping
time 7, we denote by ®7 the process ® stopped at time 7, i.e. ®] = @, ;. For two
stopping times 7 < 7 and a stochastic process ®, we define

t
e = (DtT\Q/n - CDE = ((I)t - (I)n)l[nﬂ'z)(t) + ((I)Tz - q)ﬁ)l[Tz,T} (t) = / 1(7'1,7'2}(u) d®,.
0

We say that Y is a local submartingale on |71, 75) if ?Y ™ is a local submartingale.
Definition 2.4 (Local f-martingales).

1. Given a function ¢ defined on an open subset U of [0,T] x R™, and an R™-
valued continuous adapted process X, we say that Y; = ¢(t, X;) is a local sub-
martingale while (t, X) € U if it is a local submartingale on each stochastic
interval [Ty, Ty) such that (t, X;) € U for allt € [11,72), a.s.

2. A continuous adapted process Y is called a local f-martingale if ¢(t, By, Y})
is a local submartingale while (t, B,Y) € dom ¢ for each ¢ € SY.

The main result of the paper is the following characterization:



Theorem 2.5 (Main). Under Assumption 2.1, an Ité process Y is a local f-
martingale if and only if it solves the BSDE (2.1).

With the proof left for the following section, here are some comments on the
form, scope and conditions of Theorem 2.5.

Remark 2.6.

1. As we show in Corollary 2.12 below, the a-priori assumption that Y is an Ito6
process is not necessary if either n = 1 or f satisfies an additional structural
condition; a local f-martingale is automatically a semimartingale and an I[to-
process in that case. An inspection of our proof of Theorem 2.5 below reveals
that when n > 1, local f-martingales correspond to possibly generalized so-
lutions of (2.1) where a singular finite-variation process A is added to each
equation and treated as component of the solution.

2. Theorem 2.5 would remain valid if we replaced the Brownian motion B in the
definition of f-subharmonic function by a Markov process in an appropriate
class. Of course, the definition of an f-subharmonic function would have to be
suitably modified. We leave the problem of identifying the range of possible
replacements for B for further research.

Clearly, full w-dependence cannot be expected even under strong adaptivity
assumptions without changing the nature of our result in a fundamental way.
Indeed, it would require replacing the notion of an f-subharmonic function
by a random field, and, as such, could not be used to separate analytic and
probabilistic aspects of BSDEs.

3. The notion of a solution of a BSDE at our level of generality can be thought
of as a particular form of dependence between a process Y and the given
Brownian motion. Therefore, the variable B, or some surrogate, cannot be
left out completely out of the definition of an f-subharmonic function. Indeed,
consider the case n = 1, f(t,y,2) = z, and the class S C S/ consisting of all
¢ in S7 that do not depend on z. Whether or not a process ¢(t,Y;) is a local
submartingale for each ¢ € S depends only on the distribution of Y, so it will
be enough to exhibit two processes equal in distribution, such that one solves
(2.1), but the other does not. For example, we may simply take

t
Y,=t+ B, andY;’:t+/ hs dBs,
0
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where h is any {—1, 1}-valued progressive process not equal to 1, (A ® P)-a.e.
It is clear that both of these are Brownian motions with a unit drift, and that
the first one solves (2.1) with Z = 1. The other one is not a solution since
the only candidate for the second component of the solution, namely Z; = hy,
does not satisfy (2.1).

2.4 Proof of Theorem 2.5.

In this subsection, we provide a proof of Theorem 2.5. We then show how the
hypotheses Theorem 2.5 can be weakened when n = 1 or f satisfies an additional
structural condition. We fix a driver f which satisfies Assumption 2.1, and start
with some auxiliary results.

Given z € R™? we will call a function of the form g(z2) = ag+bo|z —z|+cp|2 — 2|2
with ¢y > 0 cone-quadratic about z, and a function of the form h(z) = dy+ep|z—
z|? with ey > 0 purely quadratic about z. We identify such functions with points
in R? x [0, 00) and R x [0, 00), respectively, defined by their coefficients. This way we
can speak about neighborhoods around cone-quadratic or purely quadratic functions
in the following, simple, lemma whose proof we leave to the reader:

Lemma 2.7. For any ¢ > 0, z € R™ and a cone-quadratic function | about z there
exists a purely quadratic function q about z and neighborhoods () around q and L
around | such that

1. 1(2) < q(z) forall ze R, 1 € L and § € Q,
2. q(z) <1(z)+e

Furthermore, q can be chosen non-constant. That is, we can take q(z) = dy + eg|z —
20|% with eq > 0.

The next lemma shows that ¢-subharmonic functions exist locally, even when
their behavior at a given point is additionally restricted.

Lemma 2.8. For any (t,%,7,2) € [0,T] x RT x R* x R™4 1 <4y <n and e > 0,
there exists an f-subharmonic function ¢ such that

1. (t,z,7) € dom ¢,

2. LIo(t,z,y;2) < e and
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3. ¢yio(t,7,y) =1 (or —1 if desired), and
4. 0yi(t,2,y) =0 fori # ip.

Proof. We make the following Ansatz

o(t,z,y) = Zy +25E’xy ) + 0|z (2.4)
1#£ig

where

Ei(z,y) = 7' -0)+0" )

and the constants # € R, 8 € R"® and v € R4, as well as the domain dom ¢ will
be determined later. It follows by direct computation that

Gyt 2,y) = Ei(x y) +6" — Gyiyi (8, 2,y) = BE (2, y),
Baya, (t, T, Y) Z E'(2,y) + 26, Gy, (t,2,y) = VB (2,y),
where " = 1._. is the Kronecker delta function, so that
LIo(t a,y;2) = =) (B'(w,y) + 8" — 1) f(t,y,2) + %ZiﬁiEi(x,y)!Zilz
+ Ziﬁjy;iEi(x, y)zh+ %Zi7j(7§)2%Ei(x, y) + 6d.
Next, we define the function [ : [0, 7] x R x R" x R4 — R by

t T, Y,z Z |EZ ZL‘ y 5ii0 - 1|(|fz(tay72) - fz(%a:g72)|

Cla(lyl) + 1) (]2 = 2 + |2 — ) + Zi(E"(x,y) + 67 — 1) fi(2,7,7),
(2.5)

where C' > 0 is a constant such that

for all ¢,y,z and 7. Such a choice of C' - which exists thanks to Assumption
2.1 and repeated application of the triangle inequality - leads to the following tight
inequality:
Ut 2,y 2) = 30, (E (z,y) + 6™ — 1) f(
1(t,2,9,2) = 3,(E'(2,5) + 6™ — 1) f(

11

z),for all ¢, z,y, z, and

; (2.7)

Ly, 2
t, 7,

t\z |



The (¢,Z,%)-section of the function [ is a cone-quadratic function of z about Zz;

Lemma 2.7 applied to it yields a purely quadratic function ¢(z) = dy + eglz — z|?

with eg # 0, a neighborhood @ around it and a neighborhood L around (¢, Z, 7, ).
We now choose 3%, 7%, and 6 so that

1 . )
552260, v = —Zeozj, and Z +9d do + eo|z]*.

With this choice of constants, we have

1 i | i i, L Lo

52 S E @RI+ B @R+ 5 () G (@5) +0d = q(2).
The coefficients of [ are continuous as functions of (¢, z, y), so there exists a neighbor-
hood U of (t,7,y) such that I(t,z,y,-) € L, for all (t,z,y) € U. Since E*(Z,y) = 1
for each 2, we can shrink this neighborhood further, if needed, to guarantee that the
map

1 i i 2 i i ;1 1,
2o 5 BE@ylP+) B @5 +5) (0 )BZE(;C ,y) + 0d.

lies in @ as soon as (t,z,y) € U.

If we declare dom ¢ = U the first conclusion of Lemma 2.7 implies that ¢ is
f-subharmonic with (¢,Z,7) € dom¢. For 2., it suffices to use the equality in
(2.7) and the second conclusion of Lemma 2.7. Conditions 3. and 4. follow from
the computation ¢,:(Z,7,7y) = E(z,y) + 6 — 1 = 6. To handle the constraint
byio (t,7,T) = —1 we use E(x,y)" instead of £(z,y) in the definition of ¢ and
repeat the argument. O

Proof of Theorem 2.5. By design, each solution Y to (2.1) is a local f-martingale,
so we focus on the opposite implication and proceed by contradiction: we assume
that Y is a local f-martingale which is not a solution to (2.1).

By assumption, Y is an Ito-process, i.e., admits a decomposition of the form

t t
Y;:YE)—/gst—l—/Zs'st,
0 0

for some locally integrable g and Z € P?. Since Y does not solve (2.1), the processes
Jogiods and [ f(s,Y;, Z,)ds are not indistinguishable for some iy € {1,2,...,n},
which means that

A&P)|g° # F2(.Y, 2)| == M@ P)|(Lw) : g(w) # [*(t,Yilw), Zw))| >0,
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where A denotes the Lebesgue measure on [0,7]. Let us assume first that
(A@P)[g° > f°(.Y.2)] >0,
and thus
A@P)[g"° > f°(-,Y,Z) + 8] > 0 for some & > 0.

By considering a countable partition, we can find a cube C; C [0, T] x R? x R" x R"*4
with side length 7" and a constant K > 0 such that

(@ P) [(-,B,Y,Z) € Ch, g > fo(,Y, Z)+ 6, |g| < K,|f(-,B,Y, Z)| < K] > 0.

Partitioning C yields a cube Cy of side length % with the same property, and,
iteratively, we can construct a nested sequence of cubes C,, whose diameters go to
zero and such that

A@P)[(B.Y,2) € Cyy g > (.Y, 2) +06, |9l < K.|f( B,Y, Z)| < K] > 0

We choose a point (¢,7, Z, z) € N,C,,, and note that any neighborhood V of (¢, 7, 7, 2)
contains some C,,, and hence satisfies

AGP)|(,B.Y,2) €V, ¢" > [*(,Y.2) +0, lgl < K,|f( B,Y. Z)| < K] > 0.
(2.8)

Given the constant § and the point (¢,Z, %, z) constructed above, Lemma 2.8 guar-
antees the existence of an f-subharmonic function ¢ with (¢,Z,7) € dom ¢ such
that

Gyio (£, 2,7) = 1,0, (£, 2,7) = 0 for i # ig, and L/ @(t,z,7;2) < §/16.

By shrinking dom ¢ to a smaller neighborhood of (¢, Z, 3), if necessary, we can assume
further that ¢, > % on dom ¢, ¢, < ﬁ on dom ¢ for ¢ # k, and we can find a
constant 7 > 0 such that £/¢ < §/8 on dom ¢ x B,.(z), where B,(Z) is the open ball
in R"*? of radius r around Zz.

Next, we select a neighborhood V' of (¢,z,y) with C1V C dom ¢ so that the set

W =10,T] x R* x R*\ ClV satisfies
W Udom¢ = [0,T] x R x R" and W NV = ().

Here we denote by Cl1V the closure of V. The process (¢, By, Y;) is continuous and
{dom ¢, W} is an open cover of [0,T] x R? x R" so there exists a nondecreasing
sequence {7} }ren of [0, T]-valued stopping times with the following properties (see,
e.g., [Eme89, Lemma 3.5, p. 22]) :
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1. P[T, <T] -0, as k — o0

2. the path (t, By, Y;) lies entirely in dom ¢ or entirely in W on each stochastic
interval [T, Tii1)-

Since [0,T] = Ug[Tk, Tk+1) a.s., equation (2.8) above guarantees the existence of an
index kg € N such that

(A P) [{(t,w) t € [Thy (@), Thoa (@)} N { B.Y,Z) €V x B,(%),
g0 > f9( Y, Z) + 6, |g| < K,|f(-,B,Y, Z)| < KH >0 (2.9)
Moreover, because W NV = (), the stopping times
71 = Ty, and 7o = Ty 11 Ainf{t > 7 : (¢, B;,Y;) ¢ dom ¢}
have the property that (¢, B;,Y;) € dom ¢ on [11,75) as well as
(/\®IP)[{(t,w) te [ﬁ(m,@(w))}mq >0 (2.10)
where
K={(BY,2) €V x Bu(2),: g° > (., 2) + 6, |g| < K,
|f(-,B,Y,Z)|<K}. (2.11)

The drift of the process ¢(t, By, Y;) can be written as
= LI0(t, B, Yii Z) + by (b By Vo) (£t B Vi) — g1 )+
+ > 0t B ) (1 B Yo) - )

i#i0
and using the bounds on its terms enforced by the construction of the domain dom ¢
above, we find that

e < 0/8—6/2+9/8=—6/4, (A®@P)-a.e. on K. (2.12)
On the other hand, Y is a local f-martingale so
we >0, (A @ P)-a.e. on [, T2), (2.13)

which, thanks to (2.10), contradicts (2.12).
To deal with the case (A @ P)[g < f(-,Y,Z)] > 0, we use essentially the same
argument, but with ¢, (¢, 2,9) = —1. O
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In anticipation of the closure result Theorem 3.1 below, we wish to identify
conditions under which the assumption Y is an I[to process can be removed in the
statement of Theorem 2.5. In general, it seems to difficult to rule out the possibility
that a local f-martingale has singular drift when n > 1. But, when the driver f
has some additional structure, we can indeed guarantee that local f-martingales are
[t6 processes. One structure which works is (a local version of) the condition (AB),
introduced in [XZlS]. We recall the definition here, adapted slightly to meet our
needs.

Definition 2.9. A driver f is said to satisfy the condition (AB) there exists a
finite collection {an} = (a1,...,ay) of vectors in R™ such that

1. ay,...,apn positively span R"
2. al f(t,y,z) < k+ 3|alz|? for each m, for allt,y,z € [0,T] x R" x R4

We say that f satisfies the condition (AB) locally if for each k € N, the driver
it y, 2) == f(t,m(y), 2) satisfies the condition (AB), where m, is the orthogonal
projection onto the ball of radius k in R™.

Remark 2.10. When n = 1, Assumption 2.1 already implies that f satisfies the
condition (AB) locally. Thus when n = 1, the hypothesis that f satisfies the con-
dition (AB) locally can be omitted in the statements of the following Lemma and
Corollary:;.

Lemma 2.11. Suppose that f satisfies the condition (AB) locally . Then each local
f-martingale s automatically an Ito process.

Proof. By a localization argument, we may assume that f satisfies the condition
(AB). Let k, {a,,} be as given in the definition of the condition (AB). For each m,
define ¢ : [0, 7] x R™ — R by

Om(t, 2, y) = Ot y) = exp(2aL,y + 2kt).

A computation shows that £7¢,,(t,z,y, 2) = exp(2al,y +2kt) (—2al, f(t,y, z) + 2k +
2|l z?). Since al f(t,y,z) < k + |al z|*, we see that

207, (t,y, %) + 2k + 2|al,2[> > 0,

and so ¢,, is an f-subharmonic function for each m. Since Y is a local f-martingale
by hypothesis, it follows that ¢,,(t,Y) = exp(2al Y + 2kt) is a local submartingale
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for each m, hence a semimartingale. The map (¢,y) — (¢, exp(2y+2kt)) is invertible
with C? inverse, so we conclude that alY is a semimartingale for each m. Since
{a;n} spans R", this shows that Y is a semimartingale. Now that we know Y is

a semimartingale, we represent as Y = Yy — A; + fot Z - dBy, for a constant Y,
continuous finite-variation process A, and Z € P2. The finite-variation part of the
process ¢,,(t,Y) is given by D — E,| where

D = 2/ exp(2a)Y + kt)(|al, Z|* + k)dt, E = —2/ exp(2aLY + kt)d(al A).
0 0

Since ¢, (t,Y) is a submartingale, we see that £ < D a.s. Thus we can find for
each m an absolutely continuous process H™ such that aZ A < H™. Since {a,,}
positively spans R", for each basis vector e; of R", we may find non-negative scalars
A1, ..., Ay such that e; =) A\ a.,, and so

A= Npah AT N H™

But the same argument works for —e;, i.e. we may find positive constants A/ such
that —e; = > A/, which leads to

—AT =) An(al,)TAT =Y N H™
We conclude that
> XN HT AT N HT

a.s., and so for each i, A* has absolutely continuous paths, a.s. The argument is
completed by applying standard theory to produce a progressive density for A (see,
e.g., [JS03, Proposition 3.13, p. 30]). ]

Thanks to Theorem 2.5, we get the following Corollary.

Corollary 2.12. If f satisfies the condition (AB) locally and Assumption 2.1 holds,
then a process Y s a local f-martingale if and only if it solves (2.1).

Remark 2.13. We note that other structural conditions can be used to guarantee that
local f-martingales are automatically Ito0 processes. For example, if f is triangular
in the sense of Definition 2.10 of [XZ18], then an argument very similar to the one
appearing in the proof of Lemma 2.11 shows that any local f-martingale is an Ito
process.
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3 Applications

3.1 Stability of Solutions to BSDE

The set of solutions to (2.1) shares several properties with the set of continuous local
martingales. We focus here on one which concerns stability under ucp convergence
and show how it follows from Lemma 2.12. We remind the reader that a sequence
{Y*},.en of continuous processes converges uniformly on compacts in probability (in

ucp), denoted by Y* 2V if

sup |Y;¥ —Y;| — 0 in probability.
te[0,7)

Theorem 3.1. Suppose that Assumption 3.2 holds, and that f satisfies the condition
(AB) locally. Then the set of solutions to (2.1) is closed under ucp convergence.

Proof. Let {Y;}ren be a sequence of solutions of (2.1) such that Y* “¥ V. Clearly
the limit process Y is continuous and adapted. To show that it solves (2.1) via
Corollary 2.12, we pick ¢ € S/ and a pair of stopping times 71,7, such that
(t,Y;, B;) € dom ¢ for t € [, 72), a.s. In fact, it is clear from the proofs of Theorem
2.5 and Lemma 2.11 we need only consider ¢ such that there exists é € S7 with
Cldom ¢ C dom (}5, ¢ = &5 on dom ¢, and ¢ is Lipschitz on dom ¢.

For k € N, let the stopping time Si be defined by

S = 1o Ainf{t > 1 : (t, B,,Y/") ¢ dom 9?)};

so that (t, B,Y}) € dom ¢ for t € [r, %), and, consequently ¢(t, By, Y}*) is a local
submartingale on [r, S%).

Since Cldom ¢ C dom ¢ and (¢, By, Y} 22 (t, B,,Y;), we necessarily have P[S), #
5] — 0. Together with the fact that (t, B;, Y}*) =% (¢, B;,Y};), this implies that

k uc T
o <t7 Bta Y;k>s *E o (ta Bt7 }/t) 2-
Now since ¢ is Lipschitz, it follows that
k uc T
"ot B, YT ot B, V)

It remains to use the fact that the class of local submartingales is closed under the
ucp convergence. O
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3.2 A template for existence

We turn to another application of our main result Theorem 2.5, namely to the
existence of solutions to (2.1) in dimension 1. In order to highlight where the
one-dimensional structure is used (and hence what difficulties must be overcome to
extend to systems), we start by proving a sufficient condition for existence which
holds in any dimension. In the remainder of the paper, we will work with the
following standard assumption.

Assumption 3.2 (Growth and regularity of the driver). The driver f : [0,T] x
R” x R™4 — R™ 4s jointly continuous and there exists a constant M such that

1. (Regularity) for all t € [0,T] as well as (y, z), (¢, 2') € R® x R™4, we have
[f(ty,2) = f(ty, 2)| < My =yl + M0+ [yl + [y + |2 + [2])]z = #/|
2. (Growth) for all t,y,z € [0,T] x R™ x R"™*?,

1f(t,y,2)] < +M1+ |y +|2).

The main idea behind our proof is inspired by the work of Darling [Dar95] in
stochastic differential geometry, which is, in turn, based on ideas of Picard [Pic94].
We start in a standard way and build a sequence of approximate equations with
Lipschitz coefficients: let 7 denote the orthogonal projection 7z : R? — R? onto
the closed ball of radius R centered at the origin. We set

fk = f(7 '77Tk('))7

and note that f* is uniformly Lipschitz in (y, z) and that it satisfies Assumption 3.2
with the same constant M as f. Standard theory (see, e.g. [Zhal7, Theorem 4.3.1,
p. 84]) guarantees existence of a unique solution (Y*, Z¥) to

dy* = —f5 (., Y* ZF)dt + 2% - dB, Y} =¢, (3.1)
with Z% € L%

Definition 3.3. We will say that the sequence (Y*,Z*) is a bounded approxi-
mation scheme if sup;, (||Y*||ge +1|2%|1 o) < 00. We call the sequence (Y*, ZF)
uniformly integrable in probability if P[fOT|Zk|2]_‘Zk|2>1/kdt > k] — 0 as
k — oo.
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Definition 3.4. We say that the driver f is ucp stable if the following holds: if
(Y*, Z*) is a sequence of solutions to (2.1) with supy || Z¥|],,.. < o0, and {Y} }ren
is Cauchy in P for all 1 < p < oo, then {Y*}ren is Cauchy with respect to ucp
convergence.

Proposition 3.5 (Template for existence). Suppose that f is ucp stable, satisfies
Assumption 3.2, and satisfies the condition (AB) locally. Suppose further that the
sequence (Y*, Z*) constructed above is bounded and uniformly integrable in proba-
bility. Then, there ezists a solution (Y, Z) € §*° x bmo to (2.1).

Before proving Proposition 3.5, we use the solutions (Y%, Z*) defined above to
introduce the following sequence of forward SDEs with random coefficients:

Xb=YF ax* = —f*(, X* Z") dt + 7. (Z%) - dB. (3.2)

Standard theory (see, e.g., [Zhal7, Theorem 3.3.1, p. 68] and [Zhal7, Theorem
3.4.3, p. 72]) guarantees that (3.2) has a unique strong solution X* which lies in
Np>1S8P. A key observation here is that, since m, is a projection, the pair (X*, m;,(Z%))
satisfies the same equation (3.1) as (Y*, Z%). Of course, the terminal value X% of
X* will, in general, differ from Y} = £. The following Lemma follows from standard
stability results for SDEs, together with the assumption that (Y*, Z*) is bounded
and uniformly integrable in probability.

Lemma 3.6. Under the hypotheses of Proposition 3.5, and with Y* and X* defined
in (3.1) and (3.2) above, we have

Y* — X* 0 in SP for each p € [1,00).
In particular X% — &, in ILP for each p € [1,00).
Now we report the proof of Proposition 3.5.

Proof of Proposition 3.5. Lemma 3.6, together with the assumption that f is ucp
stable, implies that {X*},cy is Cauchy with respect to ucp convergence. Thus we
identify a process Y such that X* ¥ V. Since X% — & in P, it necessarily follows
that Y7 = £. Applying Theorem 3.1 shows that Y is a solution to (2.1) with terminal
condition £. Standard estimates then give the desired regularity. O]

Remark 3.7. There are various conditions which guarantee that the sequence (Y*, Z%)
is bounded, even for systems. For example, if f satisfies the condition (AB), then
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(Y* Z*) is bounded - see the proof of Theorem 2.14 in [XZ18]. However, when
n > 1 we do not currently have simple conditions which guarantee f is ucp stable
or that the sequence (Y*, Z*) is uniformly integrable in probability - this is an issue
we hope to address in future research. However, we note that the hypotheses of
Proposition 3.5 can be verified when f is the geometric driver appearing in (1.2), at
least under certain geometric conditions on the corresponding connection - this is
exactly the program carried out in [Dar95]. It is also possible to verify the hypothe-
ses of Proposition 3.5 when n = 1, again under appropriate technical assumptions.
Indeed, when n = 1 ucp stability can be shown through a change of measure ar-
gument (see for example the proof of Proposition 2.3 in [BE13b]), while uniform
integrability in probability can be obtained by adapting the coupling argument in
[Dar95).
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