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Abstract— Recently, boundary information has gained great
attraction for semantic segmentation. This paper presents a novel
encoder-decoder network, called BANet, for accurate semantic
segmentation, where boundary information is employed as an
additional assistance for producing more consistent segmentation
outputs. BANef is composed of three components: the pre-trained
backbone using dilated-ResNet101, semantic flow branch (SFB)
and boundary flow branch (BFB) for semantic segmentation and
boundary detection, respectively. More specifically, to delineate
more accurate object shapes and boundaries, a global attention
block (GAB) is designed in SFB as global guidance for high-
level feature. On the other hand, BFB directly extracts features
on boundaries, avoiding the unexpected interference from the
non-boundary parts. Finally, we adopt a joint loss function to
further optimize the segmentation results and boundary outputs
synchronously. Moreover, compared with previous state-of-the-
art methods, e.g., non-local block and ASPP module, our BFB
leverages detection accuracy and computational efficiency in
a lightweight fashion. To evaluate BANef, we have conducted
extensive experiments on several semantic segmentation datasets:
Cityscapes, PASCAL Context, and ADE20K. The experimental
results show that, with the aid of boundary information, BANet
is able to produce more consistent segmentation predictions with
accurately delineated object shapes and boundaries, leading to
the state-of-the-art performance on Cityscapes, and competitive
results on PASCAL Context and ADE20K with respect to recent
semantic segmentation networks.

Index Terms— Semantic segmentation, boundary detection,
global attention, dilated-ResNet101.

I. INTRODUCTION

MAGE semantic segmentation is a fundamental and chal-
lenging task in the field of computer vision, which plays an
important role in many real-world applications, such as intel-
ligent self-driving systems [1]-[4], robotics [5], and medical
segmentation [6], [7]. The goal of semantic segmentation aims
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to assign a unique categorical label to each image pixel. The
recent years have witnessed remarkable progress for semantic
segmentation using convolutional neural networks (CNNs).
A mainstream approach is to convert the fully connected
layer into a fully convolution layer, resulting in fully con-
volutional network (FCN) architectures that can be adapted
to the task of semantic segmentation [8]-[11]. However, due
to the continuous down-sampling operations (e.g., pooling,
strided convolution), FCNs inevitably share following disad-
vantage for dense estimation problem, especially in semantic
segmentation: The spatial resolution of the output feature map
is greatly reduced [8], [10]). This limitation motivates the
development of encoder-decoder architectures (EDAs), which
are designed to sequentially recover the spatial resolution [12],
[13]. Yet the decoder of EDAs only adopts bilinear inferpo-
lation [12] or transposed convolufion [14] to recover feature
resolutions step-by-step, still resulting in rough segmentation
of object shapes and boundaries, which ultimately influences
the performance of semantic segmentation.

In order to relieve above problems, some approaches
[15]-[19] have been proposed to assist semantic segmenta-
tion using the results of boundary detection. For example,
RPCNet [19] presents an iterative pyramid context module,
which combines semantic boundary detection and seman-
tic segmentation into a joint multi-task learning framework.
GSCNN [16] introduces a shape stream to explicitly extract
boundary information, which is embedded into the features of
regular stream. DFN [17] designs a border network with deep
supervision to refine the prediction of semantic boundaries.
However, these methods inherently suffer from following
limitations:

« When boundary features are used to assist semantic
segmentation, they are often extracted from non-boundary
image parts (e.g., background or object inside
regions [16], [18], [20]), which may be not beneficial
for accurately identifying object boundaries. On the
other hand, some methods [17], [21] may lose part of
the boundary due to the limitation of receptive field,
where the features from incomplete boundaries are
unable to provide enough discrimination for semantic
segmentation. As shown in Fig. 1, the incompleteness of
the object boundary and the interference of non-boundary
parts greatly affect the segmentation results (denoted as
yellow circles).

« Some methods [16], [18], [21] prefer to use the deepest
features to formulate semantic segmentation head and
boundary detection head synchronously, yet ignoring the
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Fig. 1.  Some visual examples of segmentation outputs and boundary
detection results on Cityscapes dataset [22]. The third column shows the
outputs of [16]. In the first example, it is discovered that the boundaries
of “fence™ are not complete. In the second example,we can observe that some
parts of the “fence” is recognized as the “tree”. (Best viewed in color.)
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Fig. 2. Overall architecture of BANet. BANet includes three components:

backbone network, SFB and BFB. The backbone utilizes dilated version
of ResNet-101 [23], pre-trained on ImageNet-1K dataset [24]. The SFB is
constructed by a series of GABs, and BFB is composed of a set of SABs.
At the top of two branches, two 1 x 1 convolutions are used to project
feature maps to the number of predefined categories. In addition, the gradient
map, produced from the segmentation predictions, is introduced as auxiliary
information to highlight entire object boundaries, and synchronously suppress
non-boundary parts. Note that the blue arrows represent resize operators and
the red arrows stand for bilinear interpolation. (Best viewed in color.)

characteristics of hierarchical convolution features within
different stages of backbone. As high-level features
help to identify object categories while low-level fea-
tures remain finer image structure, making full use of
hierarchical features from different stages is both essen-
tial for semantic segmentation and boundary detection,
respectively.

To deal with these shortcomings, this paper presents a
novel ecoder-decoder network, called BANet, through refining
object boundary to develop semantic segmentation. As shown
in Fig. 2, BANet follows the mainstream encoder-decoder
architecture. The encoder employs Dilated-ResNet101 [23],
pre-trained on ImageNet-1K [24], as backbone, while the
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decoder introduces two branches: SFB and BFB used for
semantic segmentation and boundary detection, respectively.
Due to the pyramid structure of backbone, a set of global
attention blocks (GABs) are designed in SFB to integrate
features with different scales step-by-step, where the neigh-
borhood features can be incorporated more precisely. In GAB,
low-level features are employed as global guidance for high-
level features. As low-level features often remain abundant
image details due to their large resolution, the spatial attention
is first calculated from low-level features to assign weights
for each pixel location of high-level features. Additionally,
the operation of global average pooling is used to capture
long-distance correlation between pixels. Thereafter, chan-
nel attention is employed to select most important feature
channels. On the other side, BFB adopts a series of spatial
attention block (SAB) to encode object boundary. In contrast
to GAB, SAB employs the gradient of segmentation output
from SFB as spatial attention guidance to highlight boundary
pixels, and suppresses the response of non-boundary pixels
at the same time. Finally, a joint loss is used at the top
of BANet to supervise semantic segmentation and boundary
detection synchronously. Although there is no information
flows from BFB to SFB, as shown in Fig. 2, the boundary
cues implicitly assist segmentation outputs through network
optimization. Specifically, as an unified loss function is utilized
to jointly supervise BANet, the parameters of BFB to SFB
have to be updated synchronously in each iterative training
step, resulting in mutual influence among boundary and seg-
mentation predictions. In summary, the main contributions of
this paper are three-fold:

« Unlike [17], [18], [21] that prefer to design boundary
detection head using convolution features of deepest
stage, our BANef employs a dual branch encoder-decoder
architecture, making full use of hierarchical features from
different stages to jointly formulate object detection and
semantic segmentation. Furthermore, high-level features
provide object semantics while low-level features remain
finer image details, where these two kinds of features
complement each other to boost performance.

« In order to inhibit the unexpected interference from non-
boundary pixels, a series of SABs are used to highlight
boundary features, where the gradient of segmentation
estimation is introduced as an additional assistant. Fur-
thermore, we discover that only small number of feature
channels dominants the performance of boundary detec-
tion, resulting in lightweight architecture of SAB in terms
of model size and GFLOPs.

« We test BANet on three segmentation datasets: Cityscapes
[22], PASCAL-Context [25], and ADE20K [26]. BANet
achieves 83.8%, 55.3%, and 49.4% segmentation mloU,
respectively, resulting in the state-of-the-art performance
on Cityscapes, and competitive results on PASCAL Con-
text and ADE20K. Besides, thanks to the lightweight
design of SAB, BANet requires lower GFLOPs and
smaller model size with respect to recent state-of-the-arts.

The remainder of this paper is organized as follows. After

a brief discussion of related work in Section II, the detailed
architecture of BANet is introduced in Section III. Section IV
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reports the experimental results on PASCAL Context [25],
Cityscapes [22], and ADE20K [26], respectively. Finally, the
concluding remarks and future work are given in Section V.

II. RELATED WORK
A. Semantic Segmentation

Semantic segmentation is a basic and challenging task
in computer vision. Thanks to the great success of CNNs
designed for image classification, many CNN-based segmen-
tation networks [1]-[4], [8], [10], [11], have achieved great
progress in semantic segmentation. For example, Long et al.
first propose (FCN) [10], which replaces the fully connected
layer to fully convolution layer for semantic segmentation.
DeconvNet [13] employs the deconvolution layer to gradually
refine rough features into high-resolution ones. PSPNet [11]
adopts pyramid pooling module (PPM) to aggregate contextual
information based on different regions. RefineNet [27] employs
a multi-path subnetwork to encode mulit-scale context, where
the coarse semantic features are refined by fine-grained low-
level features. Yu ef al. [17] learn discriminatively contex-
tual features and the additional edge clues in decoder stage.
STLNet [28] captures the global statistical knowledge to
segment objects. CPNet [29] investigates intra-class and inter-
class context prior with the supervision of a novel affinity
loss. Thereafter, a series of networks [9], [12], [18], [29]-[31]
have been proposed, where EDAs is adopted to merge the
features from low-level to high-level stages, leading to the
improvement of semantic segmentation.

In addition, due to the great progress in image classifica-
tion [32], [33] and natural language processing [34], [35],
visual attention [36]-[39] has been embedded into CNNs
to develop semantic segmentation. These networks can be
roughly divided into two categories: soft-attention mecha-
nism [37], [40] and self-attention mechanism [41], [42]. The
first category prefers to enhance important feature channels
and specific objects areas through network learning. For
instance, DFN [17] uses squeezed attention to learn important
channels of different convolution stages. CocurNet [40] adopts
extra global average pooling operation to learn the global
information. SPNet [37] presents novel attention blocks to cap-
ture rich contextual cues using intersecting strips. SANer [38]
designs a squeezing attention module that accounts for the
multi-scale dense prediction of individual pixels. The second
category, on the other hand, produces a powerful global
context representation by calculating the correlation matrix
between each image element. For example, OCNet [41] and
DANet [36] use non-local blocks to extract rich contextual
information. DRANet [43], as the extention of [36], designs
decoder using spatial-wise and channel-wise self-attention.
CCNet [42] adopts a criss-cross attention module to model
long range dependencies, and speed up inference process.
Most recently, transformer models, as a novel variant of
self-attention, have also shown their potential for semantic
segmentation [34], [35], [44].

In contrast to above networks, BANet designs SAB to
encode object boundaries to enhance segmentation perfor-
mance, where the contours and shapes of objects and stuff

are adaptively learned according to edge information extracted
from different stages. Moreover, the SAB has lightweight
architecture, requiring smaller GPU memory usage (Parame-
ters) and lower computational complexity (GFLOPs) with
respect to recent networks [9], [11], [32], [36], [39].

B. Boundary Detection in Intelligent
Transportation Applications

There is a tight connection between precisely segmenting
object boundaries and intelligent transportation applications,
such as object tracking [45], crack detection [46], and traffic
sign detection [47]. Since our method produces boundary
cues for semantic segmentation that is helpful for self-driving
[1]1-[4], we review related works in this direction.

The recent advanced CNNs have witnessed the remarkable
progress for semantic segmentation using boundary clues [16],
[18], [21], [48]-[51]. For instance, DFN [17] proposes a
Border-Network with binary cross entropy loss function to
aid segmentation. In BFP [21], boundary is learned as an
additional class so that the network captures more accu-
rate object boundaries. RPCNet [19] uses iterative pyramid
context module to propagate contextual information between
segmentation task and boundary detection task. Similar to
DFN [17], GSCNN [16] also adopts a dual information stream
network, using gate convolution in shape stream to extract
object boundaries, which are fed into regular stream to assist
semantic segmentation.

Instead of extracting boundary clues from convolutional
features [16]-[18], we adopt spatial attention in each SAB to
adaptively learn object edge features from each stage. Further-
more, in order to obtain more clear and complete boundaries,
the gradients, calculated from segmentation estimations of
SFB, are employed as auxiliaries to further optimize the
boundaries of objects.

III. Our METHOD

We propose a novel encoder-decoder network, called BANet,
that uses boundary cues to refine the outputs of semantic
segmentation. Fig. 2 shows the overall architecture of BANet,
which mainly consists of three parts: Dilated-ResNet101 [23]
as backbone, SFB and BFB. Immediately below, we elaborate
on the details of these components, respectively.

A. Network Architecture of BANet

In order to obtain high-quality semantic segmentation out-
puts, we adopt Dilated-ResNet101 [23], pre-trained on Ima-
geNet [24], as backbone. In Dilated-ResNet101, the final
fully connected layer and classification layer are replaced
by fully convolution layer to ensure 2D representation [36],
[52]. Furthermore, we adopt holding-resolution version of
ResNet101 using dilation convolutions [36], [42], [53], where
the spatial size of feature maps in the last three stages keeps
the same. It remains more image details without adding extra
network parameters. As a result, there are five stages in
backbone, where each one has the resolution of %, }r, %, % and
% with respect to input. Some previous works [37], [52], [54]
prefer to employ hierarchical version of ResNet101, where the
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Fig. 3. (a) Detail architecture of GAB. (b) and (c) are channel and spatial
attention used in (a), respectively. When low-level features F; come from
stagel, the high-level features Fy have half resolution of F;. Therefore,
Fj have to be upsampled 2 times with equal resolution with F; for exact
integration (denoted as red arrow). Otherwise, Fy, is directly fed into 1 x
1 convolution. (Best viewed in color.)

resolutions of different stages are sequentially reduced. These
approaches, however, discard a large amount of fine image
details that may be harmful to semantic segmentation.

After convolution features are gathered from stagel to
stage4, the decoder recovers feature resolutions for bound-
ary detection and semantic segmentation step-by-step. More
specifically, BFB sequentially refines object boundary using
a series of SABs. Along with the introduction of gradients
from semantic segmentation outputs, the object boundaries are
completely enhanced, while the features from non-boundary
parts are totally suppressed. On the other hand, SFB takes
the advantages of channel-wise semantic cues and spatial-wise
location features in each stage, as they help each other to boost
the performance of semantic segmentation. Finally, the outputs
of SFB and BFB, which have predicted channel-wise semantic
and boundary maps, later receive their supervisions from the
ground truths, respectively.

B. SFB

Recently, the attention mechanism has been widely used in
semantic segmentation [17], [33], [36], [37], [55], which is
either designed in decoder [36], [55], or inserted in individual
stage of backbone [33], [37]. For semantic segmentation that
aims to recognize each individual pixel, not only high-level
semantic information is needed to classify the object category,
but also the low-level spatial information is required to restore
the missing object details. To address this problem, this section
introduces SFB, which contains a series of GABs designed as
bridges to fuse high-level and low-level features. The detailed
structure of GAB is shown in Fig. 3.

As can be seen in Fig. 3 (a), our GAB mainly consists
of two parts: spatial attention module (SAM) and channel
attention module (CAM). Due to large resolution of low-level
features, SAM is employed on the low-level features to encode
and redistribute the weight of each pixel position. In addition,
we also introduce global average pooling operator to capture
the long-distance correlation between pixels from horizontal
or vertical directions, respectively, thereby guiding high-level
features to learn more important and complete objects areas.
On the other hand, in order to make better use of the channel
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information of each stage, CAM is adopted to strengthen the
important feature channels with the guidance of high-level and
low-level features together. Immediately below, we elaborate
on the details of producing CAM and SAM, and how to use
them to reweight feature maps.

1) CAM: As shown in Fig. 3 (b), given low-level features
F; € REXHXW a4 high-level features F;, < R2CxH W'
we first use two global average pooling (GAP) on F; and
Fj, to extract the global information respectively, then the
outputs of two GAPs are concatenated together to produce
C' ¢ R3CxIx1 Thereafter, C’ is fed into an 1 x 1 convolution
f» which is used to merge channel information from F; and
F},. Finally, a sigmoid function ¢ (-) is employed to generate
a channel attention map C € R€*1*1  where each channel is
assigned a different weight to indicate feature importance:

C=o(fxC"), (1)

where #* denotes convolution operation.

2) SAM: Considering that the low-level features contain rich
spatial information due to their large resolutions, it is beneficial
to provide more fine details to identify objects. As illustrated
in Fig. 3 (c), therefore, the low-level feature F; first undergoes
an 1 x 1 convolution to output attention map §' € R'*#*W,
However, S’ is hard to encode the categories that have larger
aspect ratio in horizontal and vertical directions, such as
“pole” and “fence”. As a result, S’ is fed into two GAPs
to produce two feature maps S}, e RMH*! and 8 <
RIXIXW ' respectively, which encode pixel-wise long-distance
dependencies from two directions. Finally, S}, and S, undergo
a sigmoid function ¢ (-) to generate two spatial attention maps
Sy € Rlexl and Sy € Rlx]xW:

Sv =0(Sy), Su=0(Sy), (2)

Some methods [56]-[59] also utilize height-wise and width-
wise spatial attention, yet our approach differs in terms of
motivation and technique details. In [56] and [57], the authors
attempt to fuse features from inherently different data sources
(e.g., 2D image, 3D depth, and omnidirectional Field-of-View
data). On the other hand, the purposes of [58] and [59] are
designing efficient height-wise and width-wise spatial attention
for real-time applications. In contrast, our method designs Sy
and Sy to encode object categories that have larger aspect
ratio in horizontal and vertical directions, such as “pole” and
“fence”. Technically, [56]-[59] directly pool original features
in horizontal and vertical directions, resulting in height-wise
and width-wise attention maps with resolution C x H x 1 and
C x1x W, where H, W, and C stand for height, width, and
number of channels of input feature, respectively. Conversely,
before global average pooling, we utilize an 1 x 1 convolution
to reduce dimension, producing the sizes of Sy and Sy are
1 x Hx1and 1 x1x W, respectively.

3) Feature Integration: Taking into account the different
channel numbers between high-level features Fj; and chan-
nel attention map C, an 1 x 1 convolution is first used
to reduce feature dimensions of [, yielding feature maps
Fup € REXHxW which has equal channel number of C.
Note when low-level features F; comes from stagel, ), has
to be upsampled 2 times (denoted as red arrow shown in
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Fig. 3 (a)), before 1x 1 convolution is used to match resolution
with C. Otherwise, I}, is directly fed into 1 x 1 convolution for
dimension reduction. Thereafter, I, is reweighted by channel
attention map C, producing a channel-wise attention-enhanced
feature maps F e RCXHxW:

F, = C®F,p, 3)

where ® represents the element-wise manipulation.

On the other hand, I}, is reweighted by vertical and hori-
zontal spatial attention maps Sy and Spg, respectively, which
are then added together to produce a spatial-wise attention-
enhanced feature maps F,, ¢ RC*HxW:

Fo=08voF,)® S olF,), 4)

where © denotes row-wise or column-wise manipulation, and
@ indicates the element-wise addition.

Finally, the reweighted feature maps F, serves as the
residual function, which is helpful for the end-to-end training:

IFgab = IE‘up oF, = ]Fup D A(]Fup), (3)

where Fg,p denotes output of GAB, and A(F,,) = [Sv ©
(CRFup)1®[SH © (C®Fyp)l.

4) Analysis With Related Visual Attention: Compared with
previous attention mechanisms [37], [39], [55], our GAB
has following advantages: (1) Unlike previous methods [17],
[33], CAM calculates channel attention by fusing channel
information from low-level and high-level features together,
which is more informative than only using each individual
feature independently. (2) Different from traditional spatial
attention [36], [42], SAM divides the spatial attention map into
Sy e RIHxD 4504 Sy e R™™IXW 5o that not only
long-distance pixels correlation is obtained, but also more
compact spatial attention is achieved (W + H vs. W x H).

C. BFB

Although there are some networks [15], [16], [18], [19]
proposed to utilize boundary information for semantic segmen-
tation, the detected boundaries are either always intermittent or
contain noise interfered from non-boundary parts. In addition,
as boundary detection is associated with a binary classification
task, there exists huge amount of information redundancy
in convolutional features extracted from backbone, indicating
that small number of feature channels are enough to identify
object boundaries. Towards this end, this section presents BFB,
addressing above problems using a series of lightweight SABs.
The detail structure of SAB is illustrated in Fig. 4.

As can be seen, two 1 x 1 convolutions are first applied
to low-level features F; € RC*H*W and high-level features
F, e RICxH'<W' respectively, producing two associated
low-dimensional embeddings F; ¢ R'>*H*W and T, <
RrCxH*W with equal channel number, where a non-negative
scaling factor r € (0, 1] controls the complexity of SAB.
Similar with SAM in GAB, we use low-level features F; to
produce spatial attention map, as it often has large feature
size with respect to ;. More specifically, we feed I, into
an 1 x 1 convolution f and a sigmoid function o (-), then the
spatial attention map S € R'*#*W s defined as:

S=oa(f xF), (6)

) I=HxW

F'Jl Fa
) i x
KT Com ]

\\
HxW
=]
L]

F,

{‘H
[Norm|
o
+
ol
+
=

rCxH*W f

Fig. 4. Detail architecture of SAB. When low-level features ; come from
stagel, the high-level features Fjy have half resolution of F;. Therefore,
Fj have to be upsampled 2 times with equal resolution with F; for exact
integration (denoted as red arrow). Otherwise, [ directly passes through
1 x 1 convolution. (Best viewed in color.)

wio VS wi VS

Input GT

Fig. 5. The boundary prediction results with/without VS on Cityscapes
validation set. From left to right are Input image, GT, w/oVS and w/VS.
(Best viewed in color.)

On the other hand, F; and F} are fused together through
concatenation and a 3 x 3 convolution, generating an integrated
feature maps F, € RCxHXW  Thereafter, F, is reweighted
by spatial attention map S, producing a spatial-wise attention-
enhanced features F,,:

[E‘w = ]Fa ® S-s (7)

In order to highlight boundary pixels and suppress non-
boundary ones, the segmentation results are also introduced as
auxiliary assistants, which can be also considered as additional
spatial attention. More specifically, we compute the gradient
map VS € RIXHXW carrying boundary cues form segmenta-
tion results of SFB, and then add it with each channel of F,,.
However, as feature values of IF,, are not restricted to a certain
range, directly integrating it with VS may be inappropriate.
As the value of each element in VS is ranged from O to 1,
indicating the corresponding pixel belongs to edge or not, the
reweighted feature F,, has to be normalized into the same
value range of VS§:

F, — Fmin
Norm (]Fw) = Fmax _ ]Fmin ’ (8)
Fp = Norm(F,) & VS, (9)

where F”" and F”%* are the minimum and maximum value of
F ., respectively. Through addition with VS, the non-boundary
pixels in F,, with high normalized values could be inhibited,
and the boundary pixels in F,, with low normalized values
could be enhanced by VS.

Finally, the reweighted feature maps I, serves as the
residual function, which is helpful for the end-to-end training:

[E‘sab = [Fa @& ]Fb = [Fa @& B(]Fa)-s (10)

where Fgqp, denotes output of SAB, and B(F,;) = Nerm(F, ®
§) @ VS. To analyze the effectiveness of assistant gradient
map, we visualize the boundary prediction results of BFB
with or without using VS. Fig. 5 illustrates two examples
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in Cityscapes dataset. It can be observed that, without the
aid of VS, the “bus” in first example and the “fence” in
second example are disturbed by some non-boundary parts,
resulting in incomplete boundaries. When VS is employed as
an auxiliary, however, the boundaries of the “bus™ and “fence”
are more accurate, and some misclassified borders are correctly
rectified (denoted as yellow bounding boxes).

IV. EXPERIMENTS

In order to demonstrate the effectiveness of our method,
we have conducted exhausted experiments on three
widely-used semantic segmentation datasets: Cityscapes [22],
PASCAL-Context [25], and ADE20K [26]. In addition, this
section also reports the results of a series of ablation studies
to reveal the potential impact of various components on
performance.

A. Datasets and Evaluation Metrics

1) Cityscapes: The Cityscapes dataset focuses on street
scene segmentation, including 30 object categories selected
from 5 videos. It has 5,000 high-quality finely annotated
images and 20,000 coarsely annotated images, each of which
is a high-resolution (2048 x 1024) shot on the street. Follow-
ing [15], [18], [42], only 19 categories are used for evaluation,
and we only employ images with fine pixel-level annotations,
resulting in 2,975 training, 500 validation, and 1,525 testing
image.

2) PASCAL-Context: The PASCAL-Context dataset pro-
vides pixel-level annotation semantic tags for the entire scene
related to “things™ and “stuff”. It contains 4,998 and 5,105
images respectively for training and verification. Follow-
ing [37], [60], we evaluated and reported the results of
the 59 most common categories and additional background
categories.

3) ADE20K: The ADE20K dataset is a large-scale dataset
used in ImageNet Scene Parsing Challenge 2016, containing
up to 150 classes with a total of 1,038 image-level labels
for diverse scenes. The categories include a large variety
of objects and stuff. The dataset is divided into 20K/2K/3K
images for training, validation, and testing, respectively.
Unlike Cityscapes, both objects and stuff are annotated in this
dataset, resulting in more challenges for evaluated approaches.

4) Evaluation Metric: In experiment, we use following
measures to evaluate the performance: 1) Average intersection
union (mloU) [42], [53], [55] used to evaluate segmenta-
tion accuracy. 2) F-score [15], [16], [18] used to evaluate
boundary detection. Specifically, given segmentation mask,
the high-quality boundaries are first produced using a small
slack in the distance, then F-score is calculated along the
boundary of this segmentation mask. Following [16], [18],
we measure F-score using thresholds 3 x 10_4, 5% 10_4, and
8.8 x 1074, corresponding to 1, 2 and 3 pixels of boundary
width, respectively. Since boundaries are not provided for the
Cityscapes testing set, we use the Cityscapes validation set to
compute F-scores as a metric to evaluate boundary detection
accuracy. Finally, the running efficiency is evaluated using
metrics of GFLOPs, occupied GPU memory, and number of
network parameters.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

B. Implementation Details

1) Training Loss: Motivated by [16], [61], [62], our train-
ing objective has two supervisions: The first one is the
cross-entropy loss function L,, and the second one is the
binary cross-entropy loss function L, after the output of
SFB and BFB, respectively. Therefore, our loss function is
composed jointly by two losses as:

Liotal = Ls + A% Lp. (11)

where the parameter A is a non-negative number to balance
the segmentation loss L; and the boundary loss L. In our
experiment, 4 is set to 0.1, empirically.

2) Training Setting: Our BANet is implemented in the
hardware platform of the deep learning server with RTX
2080Ti GPU. The software code is based on an open source
repository for semantic segmentation using Pytorch. For all
datasets, our BANet is trained using the stochastic gradient
descent algorithm [24] with batch size of 16, where the initial
learning rate is set to 10~2, together with momentum and
weight decay, which are set to 0.9 and 10~%, respectively.
Following [8], we use the “poly” learning rate policy, where

iter -\ power ;
— with
MaXjer )

the learning rate is multiplied by (1 —
power = 0.9. To augment training data, we first randomly
crop out high-resolution patches with resolution of 512 x
512 from original images as the inputs for all datasets. Finally,
our model is trained using 180 epochs for Cityscapes [22]
and 200 epochs for PASCAL-Context [25] and ADE20K [26]
datasets. In inference, the testing results on all datasets are
submitted to the official online servers for evaluation. Our code

is publicly available https://github.com/yong-qiang/BANet.

C. Comparisons With State-of-the-Arts

1) Results on Cityscapes: To verify the effectiveness of
our method, we divide the selected state-of-the-art baselines
into two categories: performing semantic segmentation with
or without boundary assistant. Table II and III show the com-
parative results on the validation and testing set of Cityscapes
dataset, respectively. In Table II, it can be seen that BANer is
superior to the previous state-of-the-art networks [15], [16],
[391, [42], [53], achieving 82.5% mloU. Specially, Compared
with some state-of-the-art networks that also utilize bound-
ary information, such as GSCNN [16], SegFix [18], and
OCRNet [53], BANet improves 1.7%, 1.0%, and 0.7% in
terms of mloU, respectively. Furthermore, Table III reports
that BANet obtains 83.8% mloU trained on augmented coarse
annotated dataset, surpassing some approaches using aug-
mented training set (e.g., SETR-PUP [35] and DNLNet [63]).
Particularly, compared with the methods also using bound-
ary cues, such as [16], [18], improving 2.2% and 1.7%
mloU, respectively. BANet also outperforms networks [35],
[49] using transformer backbones. Moreover, Table I reports
the comparison results of each individual category on the
Cityscapes testing set. It is observed from table that our
method obtains best mloU scores on 11 out of the 19 object
categories. including 1.5% for “fence”, 1.7% for “pole”, and
1.2% for “truck”, respectively. Finally, Fig. 6 also illustrates
the performance of our model against other state-of-the-arts in
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TABLE I

INDIVIDUAL CATEGORY RESULTS AND THE AVERAGE OVER ALL CATEGORIES ON THE CITYSCAPES TEST SET IN TERMS OF MIOU SCORES. THE BEST
PERFORMANCE FOR EACH INDIVIDUAL CLASS IS MARKED WITH A BOLD-FACE NUMBER

Method | road | s.walk | build. | wall | fence | pole | t-light | t-sign | veg |terrain | sky |person |rider| car |truck | bus | train | motor | bike | mIoU(%)
BFP [21] 98.7| 87.0 | 93.5 |59.8| 63.4 |68.9| 76.8 | 80.9 (93.7| 72.8 |95.5| 87.0 |72.1|96.0|77.6 |89.0|869| 69.2 |77.6| 814
DANet [36] 98.6| 87.1 | 935 |56.1| 63.3 |69.7| 773 | 81.3 |93.9| 729 [957| 873 |729|962| 768 894|865 | 722 |782| 815
RPCNet [19] 98.7| 867 | 939 (624|628 |70.5| 775 | 81.1 |94.0| 723 |959| 878 |74.1|963| 765 |88.0(852| 71.0 |78.6 81.8
OCRNet [53] [98.2| 88.2 | 942 (67.6| 65.3 |72.2| 79.1 | 824 |94.1| 73.8 |96.0| 88.1 | 75 (964|769 (92.3(909| 72.8 |789| 818
Deeplabv3+ [9] |98.7| 87.0 | 940 [59.5| 63.7 [71.4| 782 | 822 |94.0| 73.0 |95.8| 88.0 |73.3|/964|78.0|91.0(840| 73.8 |[789| 819
GSCNN [16] |98.7| 874 | 942 |61.9| 64.6 [72.9| 79.6 | 82.5 |94.3| 743 |96.2| 88.3 |742(96.0|77.2 |90.1|87.7| 726 [79.4| 828
DecoupleNet [15][98.7| 87.2 | 93.9 [62.1| 62.9 |71.2| 785 | 81.8 (94.0| 73.3 |96.0| 88.1 |74.4|96.5|79.4 (92.5(89.8| 73.3 |78.7| 828
DRANet [43] |98.8| 87.6 | 94.1 |61.7| 62.7 |72.9| 80.0 | 83.0 |942| 73.8 |96.0| 88.8 |76.1|96.6| 76.6 |89.8|88.0| 73.8 [80.0| 829
Ours  |98.6| 87.8 | 94.4 |67.9] 6.8 |74.6| 80.2 | 822 |94.3| 745 [96.1| 882 |74.9|96.8|80.6 93.2[913| 73.1 [79.1| 838

TABLE II

EVALUATION RESULTS OF BANef AND OTHER STATE-OF-THE-ARTS
ON CITYSCAPES VALIDATION SET. THE SELECTED BASELINES
ARE DIVIDED INTO TWO CATEGORIES: PERFORMING SEMANTIC
SEGMENTATION WITH OR WITHOUT USING
BOUNDARY ASSISTANT

Method | Year | Backbone | mIoU(%)
Deeplabv3+ [9] ECCV2018 ResNet101 79.1
ANNet [39] ICCV2019 | Dilated-ResNet101 79.9
Seg-B-Mask/16 [34] CVPR2021 DeiT-B 80.7
CCNet [42] ICCV2019 | Dilated-ResNet101 81.3
SPNet [37] CVPR2020 ResNet101 81.9
Panoptic-DeepLab [64] | CVPR2021 | Dilated-ResNet101 81.5
RPCNet [19] CVPR2020 | Dilated-ResNet101 82.1
SegFormer [65] NeurlP52021 MiT-B5 824
GSCNN [16] ICCV2019 ResNet101 80.8
SegFix [18] ECCV2020 ResNet101 81.5
DecoupleNet [15] ECCV2020 ResNet101 81.5
OCRNet [53] ECCV2020 | Dilated-ResNet101 81.8
Ours | - | Dilated-ResNet101 | 82.5

terms of detected boundary accuracy (measured by F-score) at
different thresholds. Ideally, we hope our method works well in
the strictest regime (e.g., smallest boundary width), where the
estimated boundaries are expected to exactly match the ground
truth. Following [16], [18], we thus conducted experiments by
reducing boundary width step-by-step. As shown in Fig. 6, it is
discovered that, compared with SegFix [18] and GSCNN [16],
BANet averagely improves 1.1 and 2.2 F-score, respectively.
Especially, our method achieves 1.4 and 3.1 F-score improve-
ment in the strictest regime (width = 1px).

Fig. 7 shows some visual results between our method and
some state-of-the-art methods on the Cityscapes validation
set. As can be seen, BANet produces more consistent seg-
mentation predictions with accurately delineated object shapes
and boundaries, such as “bus”, “fence”, and “wall” in the
first, fourth, and fifth examples (denoted as yellow bounding
boxes). Moreover, Fig. 8 also exhibits the qualitative boundary
detection results on the Cityscapes validation set. It is observed
that, compared with [16], [18], BANet can produce more com-
plete boundaries and suppress non-boundary noise (denoted
as yellow bounding boxes). The last row of Fig. 7 shows
an example with poor segmentation output (denoted as blue
bounding boxes). Due to extremely similar visual appearance,
some pixels of different semantic categories, e.g., “building”,

TABLE III

EVALUATION RESULTS OF BANef AND OTHER STATE-OF-THE-ARTS ON
CITYSCAPES TESTING SET. SUPERSCRIPT “1’ DENOTES
TRAINING USING ADDITIONAL COARSE ANNOTATED DATA. THE
SELECTED BASELINES ARE DIVIDED INTO TWO CATEGORIES:
PERFORMING SEMANTIC SEGMENTATION WITH OR
WITHOUT USING BOUNDARY ASSISTANT

Method | Year | Backbone | mIoU(%)
Panoptic-DeepLab [64] | CVPR2021 | Dilated-ResNet101 794
CCNet [42] ICCV2019 | Dilated-ResNet101 81.4
SETR-PUPT [35] CVPR2021 ViT-Large 81.6
ACFNet [55] ICCV2019 | Dilated-ResNet101 81.8
DNLNett [63] ECCV2020 | Dilated-ResNet101 82.0
CDGC [66] ECCV2020 ResNet101 82.0
UN-EPT [49] arXiv2021 DeiT-B 82.2
DRANet [43] TNNLS2020 | Dilated-ResNet101 82.6
SegFormer [65] NeurIPS2021 MiT-B5 83.1
DCNAS [67] CVPR2021 NAS 83.6
BFP [21] ICCV2019 | Dilated-ResNet101 81.4
GSCNN [16] ICCV2019 ResNet101 81.6
OCRNet [53] ECCV2020 | Dilated-ResNet101 81.8
SegFix [18] ECCV2020 ResNet101 82.1
DecoupleNet [15] ECCV2020 ResNet101 823
Ours - Dilated-ResNet101 82.6
Ours’ - Dilated-ResNet101 |  83.8
76
—#— GSCNN
74 4 —o— Segfix

—e— BANet

Bounda.ryzwidth(px)

Fig. 6. Comparison on boundary detection at different thresholds in terms
of F-score on the Cityscapes validation set. (Best viewed in color.)

“fence”, and “wall”, are incorrectly classified. Even so, our
method still achieves good segmentation results with respect
to Deeplabv3+- [9], GSCNN [16], and SegFix [18].
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Fig. 7.

Comparison of some visual examples of semantic segmentation on Cityscapes validation set. From left to right are input image, Ground truth, and

segmentation results from Deeplabv34- [9], GSCNN [16], SegFix [18], and BANet, respectively. In last row, we also illustrate a visual example with poor

segmentation output. (Best viewed in color.)

Fig. 8.

Comparison of some visual examples of boundary detection on Cityscapes validation set. From left to right are input image, Ground truth, and

detection results form GSCNN [16], SegFix [18], and BANet, respectively. (Best viewed in color.)

TABLE IV

EVALUATION RESULTS OF BANef AND OTHER METHODS
ON PASCAL-CONTEXT TESTING SETS

Method |  Year | Backbone | mIoU(%)
DANet [36] CVPR2019 | Dilated-ResNet101 52.6
ANNet [39] ICCV2019 | Dilated-ResNet101 52.8

EMANet [68] ICCV2019 | Dilated-ResNet101 53.1
SVCNet [69] CVPR2019 | Dilated-ResNet101 532
BFP [21] ICCV2019 | Dilated-ResNet101 53.6
SETR-Naive [35] | CVPR2021 ViT-Large 53.6
DMNet [70] ICCV2019 ResNet101 544
SPNet [37] CVPR2020 ResNet101 549
Ours | - | Dilated-ResNet101 | 553

2) Results on PASCAL-Context: In this section, we demon-
strate that BANet scales nicely on PASCAL-Context dataset.
Quantitative results are reported in Table IV. As can be seen,
with the pre-trained dilated-ResNet101, BANef achieves 55.3%
mloU score, which outperforms previous networks by a large
margin. Among state-of-the-art baselines, SPNet [37] obtains

TABLE V
EVALUATION RESULTS OF BANef AND OTHER METHODS ON
ADE20K VALIDATION SETS

Method |  Year |  Backbone | mloU(%)
HRNetV2 [71] arXiv2019 | HRNetV2-W48 43.0
APCNet [52] CVPR2019 | Dilated-ResNet101 | 454
DNL [63] ECCV2020 | HRNetV2-W48 45.8
DRANet [43] TNNLS2020 | Dilated-ResNet101 | 462
CPNet [29] CVPR2020 | Dilated-ResNet101 | 463
SETR-MLA [35] | CVPR2021 ViT-Large 48.6
Seg-B-Mask/16 [34] | CVPR2021 DeiT-B 48.8
Ours | - | Dilated-ResNet101 |  49.4

best performance of 54.9% mloU score. We improve this result
by margin of 0.4%, probably due to the fact that the dilated
version of ResNet101 is employed in our backbone.

3) Results on ADE20K: This section evaluates the scal-
ability of BANet with augmented number of object labels
on ADE20K validation dataset. Table V reports the quan-
titative results and comparisons with recent networks. More
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Fig. 9.

Some visual examples of segmenting outputs on Cityscapes validation set, when boundary cues are sequentially introduced. From left to right are

input image, Ground truth, segmentation results using backbone, backbone + SFB, backbone + SFB + BFB(without VS), and backbone 4+ SFB + BFB

(with V§). Dilated-ResNet101 is used as backbone. (Best viewed in color.)

TABLE VI

CONTRIBUTIONS OF EACH COMPONENT IN BANef ON CITYSCAPES
VALIDATION SET WITHOUT DATA AUGMENTATION. D-RES50/101
DENOTES EMPLOYING DILATED-RESNET50/101 AS BACKBONE,
AND RES50/101 INDICATES USING RESNET50/101 WITHOUT
DILATED CONVOLUTIONS. THE RESULTS ARE REPORTED IN
TERMS OF MIOU(%) AND F-SCORE
(WIDTH=3px), RESPECTIVELY

ILI mloU(%) | E-

Backbone | SFB

|7 | wlo VS| wi VS | | score
D-Res50/Res50 74.24/74.10 -
D-Res50/Res50 v 76.65/76.18 -
D-Res50/Res50 v v T7.34/77.13 | 73.3/72.4
D-Res50/Res50 v v 77957747 | 73.7/72.8
D-Res101/Res101 75.94/75.55 -
D-Res101/Res101 | v 78.44/77.74 -
D-Res101/Res101 | « v 79.05/78.72 | 74.5/73.7
D-Res101/Res101 | v v 79.74/79.21 | 75.2/74.8

specifically, BANet achieves the best 49.4% mloU score with
respect to all selected state-of-the-art baselines. Particularly,
the proposed method surpasses the recent transformers, such
as Seg-B-Mask/16 [34] and SETR-MLA [35], improving 0.6%
and 0.8% in terms of mloU, respectively.

D. Ablation Studies

1) Ablation Study of Different Components in BANet: In
Table VI, we show some ablation studies on Cityscapes valida-
tion set, which quantify the influence of two main components:
SFB and BFB (w/o VS), respectively. The experiment shows
that each component is continuously improving the perfor-
mance. Moreover, we can see that compared with the baseline
Dilated-ResNet50, employing SFB yields a result of 76.65%
in mloU, which brings 2.41% improvement. Meanwhile,
adding BFB without VS improves 0.69% mloU score, while
adding BFB with VS achieves 1.3% improvement margin.
Furthermore, when a deeper pre-trained backbone (Dilated-
ResNet101) is adopted, a remarkable margin of 3.8% mloU is
achieved using two branches together. In Table VI, addition-
ally, we have also conducted experiments using ResNet50/101
without dilated convolutions within different settings. The
results reported in Table VI demonstrate that using dilated
version of ResNet always leads to better performance than the
counterpart without dilated convolutions.

Qualitative results in Fig. 9 also demonstrate that using
boundary information as auxiliary is indeed helpful to improve
the performance of semantic segmentation. Taking “bus” and
“people” (marked by the yellow bounding boxes) as examples,

T =TTG(T9.74) * r=116(79.74)
79.6 79.6
A e 11933 I = T
=92 G r= A5 =792 L p=1a2(79.05)
=} =]
T =
78.8 o r="147877) L TR TTY
8.6 FEATESTY e 8.6 = 12(T8.57) =
8.4 84
0 100 200 300 400 [l 5 0
FLOPs(G) of BFB Parameters(M) of BEB
(@ ()
Fig. 10. Impact of scaling factor r. (a) Changes of mloU and GFLOPs of

BFB under different settings of r. (b) Changes of mlIoU and Parameters of
BFB under different settings of r. (Best viewed in color.)

Fig. 9 shows that, when SFB is introduced, some misidentified
categories are correctly classified. With the help of BFB (with-
out VS), example instances obtain more accurate boundaries,
yet still far from the corresponding ground truth. Finally,
with the assistance of VS, we achieve consistent segmentation
outputs with more delineated object boundaries.

2) Ablation Study for Scaling Factor r in BFB: This section
evaluates the impact of scaling factor r in terms of model size,
GFLOPs of BFB, and segmentation mloU. Fig. 10 (a) shows
the changes of mloU and GFLOPs of BFB, along with the
variety of r. It is observed that the segmentation performance
peaks when r = %. Note that smallest GFLOPs are achieved
when r = %, yet delivering poor segmentation accuracy of
0.42% mloU drop. This indicates that only small proportion of
feature channels in BFB are useful for semantic segmentation,
but too few feature channels may lead to significant informa-
tion loss, eventually degrading the performance. In Fig. 10 (b),
we observe similar and consistent results with Fig. 10 (a).

3) Ablative Study on Implementing Efficiency: To analyze
running efficiency of entire BANet, we carry on ablative studies
on the Cityscapes validation set, and compared with some
state-of-the-arts [9], [14], [32], [36], [39], [53], [65], [72],
in terms of model size, GPU memory, GFLOPs, and FPS.
The resolution of input images is 769 x 769 in all experiments
for fair comparison. As shown in Table VII, compared with
selected baselines, our BANet achieves the fastest running
speed (12.64 FPS), yet only has 54.6M model parameters,
together with 347 GFLOPs. Particularly, BANet has the fewest
GPU memory consumption (430M), mainly stemming from
the lightweight design of BFB that produces the fewest number
of model parameters.

4) Ablation Study for Augmented Training Data: Deep
neural networks are data-hungry models, thus whether train-
ing data are enough or not plays an essential role for the
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Fig. 11.

Some visual examples of the produced gradient maps on Cityscapes validation set. From left to right are input images, ground truth of boundaries,

the gradient maps generated from the first, tenth, fiftieth, 100th, and 180th epoch in training process. (Best viewed in color.)

TABLE VII

COMPARISON OF IMPLEMENTING EFFICIENCY ON CITYSCAPES
VALIDATION SET IN TERMS OF MIOU, MODEL SIZE,
GPU MEMORY, GFLOPs, AND FPS

Method | Years  |mloU(%)|Paras(M)Mem(M)|FLOPs(G)| FPS
DenseASPP [14]| CVPR2018 | 79.0 | 1427 | 1467 1332 |6.93
DANet [36] | CVPR2019 | 81.5 553 | 2614 1223|896
CCNet [32] | ICCV2019 | 814 553 702 917 |8.89
ANNet [39] | ICCV2019 | 81.3 552 | 2443 732 [9.12
OCRNet [53] | ECCV2020 | 81.8 552 477 453 |6.73
Deeplabv3+ [9] | ECCV2018 | 82.1 60.2 559 605 |7.36
FASNet [72] | TPAMI2021| 826 67 657 532 |7.53
SegFormer [65] [NeurIPS2021| 83.1 847 2674 1448 | 10.6
Ours | - | 838 | 546 | 430 | 347 |12.64
TABLE VIII

ABLATION EXPERIMENTS USING DIFFERENT DATA AUGMENTED
METHODS ON CITYSCAPES VALIDATION SET

Backbone | RS MS RF | mloU(%)
Dilated-ResNet101 79.7
Dilated-ResNet101 v 80.8
Dilated-ResNet101 v v 81.8
Dilated-ResNet101 v v v 825

performance. This section measures this effect by considering
the augmented training data. Table VIII exhibits the ablation
results on Cityscapes validation set using different augmented
settings, including random scaling (RS), multi-scale test (MS),
and random flipping (RF), respectively. The experimental
results show that, using all augmentation approaches, BANet
achieves the best performance, yielding 2.8% mloU improve-
ment. It is also shown that each of these augmentation methods
consistently improves the performance, improving segmenta-
tion results by 1.1%, 1.0%, and 0.7% of mloU, respectively.
5) Study on the Contribution of Auxiliary Loss: This section
evaluates the impact of the introduced auxiliary loss L, which
helps to optimize the entire training process, and has no
interference with learning the SFB loss L;. By tuning hyper-
parameter A in the range of [0.05, 0.4] with updated step
0.05, we conduct a series of experiments using SFB and BFB
together. The results are shown in Table IX. We observe that
when 4 = 0.1, adding auxiliary loss Lj; reaches the best
performance of 79.74% mloU on the Cityscapes validation set.
As the increase of A, the performance declines significantly.
6) Study on the Gradient Map VS: To further demonstrate
our method, in Figure 11, we also exhibit the gradient maps
produced from the segmentation results along with different
training epochs. It shows that the produced gradient maps
are always blurred and incompleted at the beginning. With

TABLE IX

EXPERIMENTS ON THE CONTRIBUTION OF THE AUXILIARY BOUNDARY
Loss To OUR BANet ON CITYSCAPES VALIDATION SET

A ]005 01 015 02 025 03 035 04
Cityscapes | 77.9 79.7 795 793 784 717 711 767

continuous iteration of whole training procedure, however,
the gradient maps become increasingly close to ground truth
(denoted in yellow bounding boxes). This is probably because
the information iterations between two branches and the opti-
mization of joint loss, enabling BANet obtains more accurate
segmentation outputs step-by-step.

V. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we have presented a novel encoder-decoder
network, called BANet, which investigates boundary informa-
tion for semantic segmentation. The encoder of BANet adopts
dilated-ResNet101 as backbone. The decoder includes dual
branches: SFB and BFB to perform semantic segmentation
and boundary detection independently. In SFB, a series of
GABs are used to correctly locate and classify objects and
stuff. In BFB, on the other hand, a set of SABs are employed to
identify object boundaries, with the aid of gradient of segmen-
tation predictions. We have evaluated BANet on Cityscapes,
PASCAL-Context, and ADE20K datasets. The experimental
results show the superior performance of BANetf over recent
state-of-the-art networks. The visual results also demonstrate
that our approach not only predicts more accurate boundaries,
but also improves the performance of semantic segmentation.

In spite of achieving state-of-the-art results, BANet is still
too heavy to deploy in edge equipment. In the future, we would
like to extend BANer to a lightweight version, satisfying
real-time applications in a timely fashion.
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