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a b s t r a c t 

Recently, exploring features from different layers in fully convolutional networks (FCNs) has gained sub- 

stantial attention to capture context information for semantic segmentation. This paper presents a novel 

encoder-decoder architecture, called contextual ensemble network (CENet), for semantic segmentation, 

where the contextual cues are aggregated via densely usampling the convolutional features of deep layer 

to the shallow deconvolutional layers. The proposed CENet is trained in terms of end-to-end segmenta- 

tion to match the resolution of input image, and allows us to fully explore contextual features through 

ensemble of dense deconvolutions. We evaluate our CENet on two widely-used semantic segmentation 

datasets: PASCAL VOC 2012 and CityScapes. The experimental results demonstrate our CENet achieves 

superior performance with respect to recent state-of-the-art results. Furthermore, we also evaluate CENet 

on MS COCO dataset and ISBI 2012 dataset for the task of instance segmentation and biological segmen- 

tation, respectively. The experimental results show that CENet obtains promising results on these two 

datasets. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Semantic segmentation plays a significant role in computer vi- 

ion, and thus is widely applied to many real-world scenarios, such 

s virtual/augmented reality, robotics, and self-driving. From the 

erspective of computer vision, the goal of semantic segmenta- 

ion is to create vision systems with human-like abilities to achieve 

wo fundamental tasks: classification and localization. As a result, a 

ell-designed system for semantic segmentation should deal with 

hese two issues simultaneously by assigning a unique semantic or 

ategorical label to each image pixel. 

The recent years have witnessed the substantial progress of 

mage semantic segmentation using fully convolutional networks 

FCNs) [1–3] . These models learn powerful contextual representa- 

ions that lead to the successful results: a combination of feature 

escriptors extracted from FCNs are complementing each other to 

chieve remarkable improvement for semantic segmentation [4–6] . 

n spite of achieving promising results, previous FCNs suffer from 

 couple of critical limitations. Firstly, due to the consecutive pool- 

ng or convolution striding at successive layers, the spatial reso- 

ution is significantly reduced in feature maps. This invariance to 
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ocal image transformation may be harmful for dense prediction 

asks, where detailed spatial information is often required to delin- 

ate object shapes and boundaries [7,8] . Secondly, objects tend to 

e appear in multiple scales. However, the receptive field of early 

CNs is not adaptive, leading to the problem that objects substan- 

ially larger or smaller than the receptive field may be fragmented 

r incorrectly classified [2,9] . 

In order to overcome these two challenges, the encoder-decoder 

etworks and their variants (as shown in Fig. 1 (a) and (b)) were 

roposed in recent literature [8,10,11] . In Fig. 1 (a), the encoder- 

ecoder networks consist of two parts. Like FCNs, the encoder 

radually reduces the spatial dimension of feature maps. Con- 

ersely, the decoder progressively increases spatial dimension to 

ecover object details using upsampling and deconvolution. In or- 

er to facilitate deconvolution, the indices of max-pooling are 

ecorded in the process of encoder [12,13] . However, these archi- 

ectures still suffer from the following shortcomings. Firstly, us- 

ng pooling indices is storage expensive, where a large amount of 

emory spaces are required to save these indices. Secondly, al- 

hough pooling indices are recorded to perform upsampling, the 

emaining elements are padded as zero [12] , which may induce 

oise to the forthcoming deconvolution. Finally, although such 

tructure is able to sequentially recover feature resolution, the con- 

extual features of mid-level convolutional layers are often ne- 

lected. To improve segmentation performance, as illustrated in 

https://doi.org/10.1016/j.patcog.2021.108290
http://www.ScienceDirect.com
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Fig. 1. Comparison of current encoder-decoder architectures (a), (b) and our dense deconvolution decoder structure (c) to capture multiple scale context. (Best viewed in 

color). 
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ig. 1 (b), encoder-decoder architecture [10,11] has been improved 

o capture more context information. More specifically, the fea- 

ure maps of convolutional layers are always concatenated with 

econvolutional ones through skip-connections. As a result, more 

ich features of middle layers are utilized to capture multi-scale 

ontextual cues. This architecture, however, exhibits a pre-defined 

xed structure, where the skip connections are only constructed 

etween the convolutional layer and the corresponding deconvolu- 

ion counterpart, resulting in the fact that contextual cues are not 

ully investigated. 

To address above problems, this paper introduces a contextual 

nsemble network (CENet), which aggregates multi-scale context 

nformation from all convolutional layers, for semantic segmen- 

ation. CENet still adopts encoder-decoder architecture for explor- 

ng multi-level convolution features collaboratively to capture con- 

ext information. Unlike previous methods that formulate contex- 

ual cues using attention schemes [4,6] or simply duplicated from 

he responses of encoder [10,11] , the hierarchical contextual inter- 

ctions of different resolutions are collaboratively investigated via 

ensely upsampling multi-level pyramid features from deep convo- 

ution layers to shallow layers. More specifically, while the shallow 

onvolutional layers of encoder always abstract low-level image 

tatistics, the deeper layers have powerful ability to extract high- 

evel semantics. On one hand, the high-level semantics of deeper 

ayers is helpful to guide learning stage of low-level and medium- 

evel convolutional features. On the other hand, the feature de- 

criptors of shallow layers are beneficial to correctly delineate ob- 

ect boundaries and shapes with high-level semantics. Therefore, 

he features extracted from different layers are complemented each 

ther, and their integration always leads to enhanced segmenta- 

ion performance. As illustrated in Fig. 1 (c), our CENet harvests and 

oncatenates deconvolutional features with different resolutions in 

ncoder, called ensemble deconvolution , to produce the feature rep- 

esentation in decoder, which carries both local and global con- 

ext information. Specifically, for one specific deconvolution feature 

epresentation, it is first concatenated with feature maps densely 

psampled from deeper convolutional layers in encoder (denoted 

s colored arrows in Fig. 1 (c)), and then supplemented with its 

orresponding counterpart (denoted as black arrows in Fig. 1 (c)). 

n summary, the contributions of our CENet are three-folds: 

• CENet introduces a novel encoder-decoder architecture to 

capture multi-scale context via ensemble deconvolution. The 

stacked feature maps are complemented each other, allowing 

us to fully explore multiple scale contextual information em- 

bedded in images. 
• Instead of using switch variables to record pooling indices [12] , 

the feature maps of encoder are concatenated to the decoder, 

avoiding the extra noise introduced through padding, and with- 

out extra memory space to store pooling indices at the same 

time. 
2 
• The CENet is trained end-to-end and easy to execute without 

any postprocessing, which facilitates well for semantic segmen- 

tation. We evaluated CENet on two widely-used datasets: PAS- 

CAL VOC 2012 [14] and CityScapes [15] , and the experimen- 

tal results show the superior performance of CENet with re- 

spect to recent state-of-the-art networks. To further demon- 

strate the effectiveness of CENet, we also evaluate it on MS 

COCO [16] and ISBI 2012 [17] . The experiments show that CENet 

achieves promising results for instance segmentation and bio- 

logical segmentation. 

The remainder of this paper is organized as follows. After a 

rief discussion of related work in Section 2 , the detail architec- 

ure of CENet is introduced in Section 3 . In Section 4 , we elab-

rate on the end-to-end training of CENet. The proposed network 

as been evaluated on PASCAL VOC 2012, CityScapes, MS COCO and 

SBI 2012 datasets, respectively, and the experiments can be found 

n Section 5 . Finally, the concluding remarks and future work are 

iven in Section 6 . 

. Related work 

Due to the powerful ability to abstract image features, the re- 

ent years have witnessed vast number of convolutional neural 

etworks (CNNs) for semantic segmentation, which are mainly 

ivided into two categories: fully convolutional networks and 

ncoder-decoder networks. However, multiple stages of spatial 

ooling greatly reduces feature resolution, and convolution with 

mall filter size (e.g., 3 × 3 ) always leads to very limited field-of- 

iew. Networks with insufficient field-of-view may not be able to 

apture enough context information and thus degrade the perfor- 

ance. We thus review the related work based on these two as- 

ects, which attempt to capture contextual clues to address these 

ssues. 

.1. Fully convolutional based architectures 

Initially from CNNs, the FCNs (e.g., the VGG-16 [18] and ResNet 

19] ) employ convolutional layers to replace fully-connected lay- 

rs. Actually, the direct estimations of FCNs are essentially of low 

esolution, which highly detriments segmentation accuracy. There- 

ore, a variety of FCN-based methods adopt a naive method of di- 

ectly encoding contextual cues through skip-connections. For ex- 

mple, the developed version of FCN [1] utilizes skip-connections 

o explore mid-layer context features for high-resolution predic- 

ion. PSPNet [3] adds a global pooling branch to extract context 

nformation. In [9] , image pyramid is also utilized to capture multi- 

cale context in FCN framework. DANet [4] and OCNet [5] encode 

he semantic context using non-local attention to explore global 

ontext, where spatial and channel attention schemes are adopted 

o construct long-ranged interactions. In [6] , the authors propose 
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riss-cross attention block to investigate global context, yet with 

ery limited computational resources. 

The alternative approaches to capture context clues emoploy 

onditional random fields (CRFs) as postprocess after inference 

rom FCNs. DeepLab [2] is the typical FCN-CRF based models, 

here the atrous convolution is first applyed to produce unary po- 

entials, and then the Potts model is considered as pairwise po- 

entials to encode long-range pixel interactions. CRF-RNN [20] and 

eep structured network (DSN) [21] extend DeepLab family net- 

orks by implementing the mean field CRF inference as recurrent 

ayers for end-to-end learning of the dense CRF and FCN network. 

.2. Encoder-decoder based architectures 

Unlike FCN-based methods, the encoder-decoder networks [22–

4] exhibit a nearly symmetrical network structure that gradually 

ecovers image details using upsampling and deconvolution op- 

ration. For instance, [22] employs atrous separable convolution 

n decoder for semantic segmentation. Through adding skip con- 

ections, UNet [10] and its dense version [11] introduce elegant 

ymmetric network architectures, which concatenate feature maps 

rom the encoder side to the corresponding decoder activations. To 

apture global context, attention scheme can be also pluged into 

ecoder. For example, peng et al. [7] design stride spatial pyra- 

id pooling for harvesting high-level semantics, and dual atten- 

ion blocks to abstract low-level statistics. In [8] , context associa- 

ion is formulated in decoder network by learning channel contex- 

ual module and spatial contextual module, respectively. RefineNet 

25] and its variants [23,24,26] carefully design cascaded deconvo- 

ution network in score map and feature map, respectively, to cap- 

ure multi-scale context cues. Our CENet also utilizes the encoder- 

ecoder architecture, and hence can be classified into this cate- 

ory. In contrast to previous methods that capture context infor- 

ation using image pyramid [9,25] or simply duplicated the con- 

olutional features [10,11] , however, our CENet considers to trans- 

er all available encoder features in deconvolution process, yielding 

ense-upsampled structure to fully investigate context clues, which 

nables selective and adaptive aggregation of multi-level contex- 

ual features. 

An early version of this work was first published in Yang et al. 

27] . This journal version extends previous one in following as- 

ects: (1) The previous version directly stacks deconvolution fea- 

ure maps, which may produce a large number of feature channels 

nd model parameters. We apply 1 × 1 convolution to reduce di- 

ension before concatenation, which is also beneficial for training 

he entire network. (2) Unlike [27] that employs two stage train- 

ng scheme, our CENet is trained in terms of end-to-end segmen- 

ation to match the resolution of input image. (3) In stead of us- 

ng VGG-16 network as backbones, our CENet employs ResNet-101 

s more powerful backbone to improve performance. (4) We have 

erformed more exhausted experimental evaluation, and reported 

ore comparisons and improved results. 

. CENet 

This section first elaborates on the overall architecture details 

f our CENet. Thereafter, the details on how to design our decoder 

s introduced in a dense upsampling manner. 

.1. The overall architecture of CENet 

Fig. 2 shows the overall architecture of the entire CENet. Simi- 

ar to previous encoder-decoder networks [10,12] , our CENet is also 

omposed of two parts: encoder and decoder network. The de- 

oder includes three fundamental components: convolution layer 

ogether with batch normalization (BN) and rectified linear unit 
3 
ReLU), concatenation layer, and softmax layer. The encoder net- 

ork corresponds to feature extractor that transforms the input 

mage to multiple scale dimensional feature representation. On 

he contrary, the decoder network delineates object shape bound- 

ries that output object segmentation from the convolution fea- 

ures produced from encoder network. Let K be the total number 

f object categories that are required to be classified. The final out- 

ut of our CENet is a (K + 1) -dimensional probability map with 

he same size of input image, indicating probability of each pixel 

elonging to one of the predefined K classes or to the additional 

ackground. 

.2. ResNet as backbone 

In order to obtain high-quality semantic segmentation outputs 

nd make fair comparison with recent state-of-the-art networks, 

e borrow the architecture widely used in ResNet [19] to construct 

ur backbone network. As shown in Fig. 2 , our encoder, pre-trained 

n ImageNet [28] , shares the same configurations of ResNet-101 to 

bstract deep features. When going deeper in the backbone, how- 

ver, it is very hard to recover tiny objects as their spatial informa- 

ion has been totally lost in the convolutional features with low- 

st resolution. Therefore, the final pooling layers and the following 

ully-connected layers are removed in our encoder network. More- 

ver, more layers result in a large number of additional computa- 

ion, thus our backbone executes more efficiently, and at the same 

ime ensures 2D representation that facilitates semantic segmen- 

ation. As a result, there are five stages in our backbone module, 

here each one has the resolution of 1 2 , 
1 
4 , 

1 
8 , 

1 
16 , and 

1 
32 with re-

pect to input image. One may also employ holding-resolution ver- 

ion of ResNet [6,29,30] using dilation convolutions, where all the 

eature maps in the last three stages have the same spatial size 

e.g., with resolution of 1 8 with respect to input image). These ap- 

roaches, however, are sacrificed with expensive computation due 

o high feature resolutions, and suffer from the gridding artifacts 

hat may degrade the performance. 

.3. The detail decoder architecture of CENet 

On the other hand, the decoder network contains a series 

f concatenation layers, convolutional layers, and a Sofmax layer, 

hich are represented by blue, brown and red boxes in Fig. 2 , re-

pectively. In order to match the resolution of input image, the 

utputs of encoder are upsampled three times, leading to four de- 

onvolution stages in the architecture of decoder. Each stage con- 

ains one concatenation layer and two convolutional layers. More 

pecifically, in addition to directly duplicate feature maps in en- 

oder [10,25,27] , our concatenation layers harvest multi-scale con- 

ext clues by stacking feature representation from previous stage in 

ecoder and a series of deconvolutional features, where the corre- 

pondingly counterparts in encoder have more deeper stages with 

espect to the stage of current concatenation layer. 

As shown in Fig. 2 , the concatenation layers are produced 

hrough three basic operations: upsampling (denoted as red, green 

nd purple arrows), convolution (denoted as blue arrows), and con- 

atenation. However, directly concatenating all features will lead to 

he vast number of feature channels in concatenation layers. Con- 

idering the case of rightmost concatenation layer in Fig. 2 , it is 

roduced by stacking convolution features from stage1 to stage4 in 

ncoder. If features are directly concatenated, the channel number 

ill be 64 + 256 + 512 + 1024 = 1856 using RseNet-101 as back-

one. Training such complicated network is a non-trivial work, and 

robably limits the generalization ability and resulting in overfit- 

ing of our model. To this end, unlike our preliminary version [27] , 

he dimension of feature maps, which are used for aggregating, has 
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Fig. 2. Overall architecture of the proposed CENet. On top of the network based on UNet [10] , we construct dense skip-connections from encoder to decoder, producing the 

delineated segmentation map of an input image. For input image, W , H, and C stand for width, height, and number of channels of input image, respectively. (Best viewed in 

color). 
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o be reduced. Specifically, we resort to employ an 1 × 1 convo- 

ution to reduce feature dimension before stacking them in each 

oncatenated path. For convenient computing, the number of fea- 

ure channels keeps the same with counterpart convolution layer 

n encoder. Immediately below, we introduce how to produce the 

oncatenation layer in each stage. 

As shown in Fig. 2 , the resolution of feature maps F p from 

repositive convolutional layer is first enlarged twice, and then 

onvoluted with a 3 × 3 filter kernels F 3 ×3 (·) , which halves the 

umber of feature channels: 

ˆ  p = F 3 ×3 (U r=2 (F p )) (1) 

here U r=2 (·) stands for two times upsampling. On the other hand, 

he feature maps F e within deeper layers in encoder network have 

o be expanded with different upsampling ratio r (denoted as col- 

red arrows in Fig. 2 ), resulting in feature representation of equal 

esolution for stacking. After that, an 1 × 1 convolution F 1 ×1 (·) 
ith stride 1 is applied into the enlarged feature maps to further 

xtract contextual information, and reduce feature channels at the 

ame time: 

ˆ  e = F 1 ×1 (U r (F e )) , r ∈ { 2 , 4 , 8 } (2)

inally, due to having the same resolution, the feature maps F c of 

ounterpart in encoder are directly fed into an 1 × 1 convolution 

 1 ×1 (·) for dimension reduction, without upsampling operation: 

ˆ  c = F 1 ×1 (F c ) (3) 

hereafter, all the convolutional feature maps are stacked together 

o generate our concatenation layer, allowing us to fully explore 

ultiple scale context cues: 

ˆ  s = ˆ F p 

⊙ 

ˆ F e 

⊙ 

ˆ F c (4) 

here 
⊙ 

indicates concatenated operation. Still taking the right- 

ost concatenation layer in Fig. 2 into account, it only has 64 

eature channels, since an 1 × 1 convolution is utilized to evenly 

educe channel number to 16 in each stacking path. Therefore, 

lthough a series of stacking operations are used to aggregate 

ensely upsampled features, the decoder of our network achieves 

ery small model size and high implementing efficiency, demon- 

trated by the experimental results in Section 5.7.2 . 

These concatenated feature maps ˆ F s , carrying both local and 

lobal context, are fed into two 3 × 3 convolutions, each followed 

y a batch normalization layer and ReLU activation layer. At the 

nd of decoder, an 1 × 1 convolution is used to map each feature 

ector to the desired number of classes K, received supervisions 

rom the ground truth. 

. Training CENet 

In this section, we first introduce batch normalization, which is 

idely used for network training. Then we will elaborate on the 
4 
etails of how to train CENet in terms of end-to-end manner, al- 

hough it is very deep (nearly twice deeper than FCNs [1,2] ). 

.1. Batch normalization (BN) 

According to Ioffe and Szegedy [31] , it is very hard to train a 

eep neural network due to the internal-covariate-shift problem. 

ince the parameters of previous layers have been updated, the 

istributions of filter responses in current layer change in the pro- 

ess of iterative training. This is not beneficial for optimizing our 

ENet since such changes may be amplified through back propaga- 

ion across layers, probably leading to the vanishing or exploding 

radient. In order to address this problem, there are some widely- 

sed tricks in training process such as BN [31] , Glorot initialization 

32] , and Adam solver [33] for solving image understanding tasks 

1,2,19] . In our CENet, an extra BN layer is added to the output of

very convolution layer, where the filter responses are normalized 

o a standard Gaussian distribution. In the experiments, we observe 

hat the batch normalization is critical to optimize our network, 

hich helps our training algorithm to straggle from poor local op- 

imum. 

.2. End-to-end training 

In our CENet, a soft-max function, which is the generalization of 

ogistic function, is adopted to convert the outputs of Softmax layer 

o probabilities between (0,1). Let a k ( x , θ) denotes the activation 

or k th category for pixel x given network parameters θ, then the 
oft-max function p k ( x , θ) is defined as: 

p k ( x , θ) = 

exp { a k ( x , θ) } 
∑ K 

k ′ exp { a k ′ ( x , θ) } (5) 

n the inference process, the k th semantic category is assigned 

o pixel x if it achieves the highest predicted probability k ∗ = 

rg max k p k ( x , θ) . 

For the task of semantic segmentation which is always formu- 

ated as a dense pixel-wise classification problem, we use the stan- 

ard cross-entropy loss [1,8] as objective function to evaluate seg- 

entation estimation with respect to the associated ground truth. 

he loss is summed up over all the pixels in a mini-batch. Let N be 

he total number of pixels in a training batch and y k 
i 
is the ground- 

ruth semantic label of k th category for pixel x i , our training tar- 

et is to find an optimal model parameters θ
∗
that minimizes the 

ross-entropy loss L ( x , θ) : 

∗ = min 
θ

L ( x , θ) = min 
θ

λ

2 
|| θ|| 2 2 −

N ∑ 

i =1 

K ∑ 

k =1 

y k i log p k ( x i , θ) (6)

here a regularization is added to network parameters θ, and λ
s a non-negative weight decay parameter. We can apply stochas- 

ic gradient descent (SGD) methods to optimize the above problem 
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n the process of back propagation, where the gradient ∇ θL ( x , θ)

s easily computed by applying the chain rule as in conventional 

NNs [1,19] . One problem in training is category unbalancing, 

here there is large variation in the number of pixels in each class 

n the training set. An example is the category of “traffic sign” and 

road” in CityScapes dataset, in which the object instants of first 

lass occupy a very small number of image regions, while those 

f the second one occupy a large number of pixels. Therefore, it is 

equired to reweight the category loss according to the true class 

istribution. We use median frequency balancing [34] to solve this 

roblem, where the assigned weight to a class in Eq. (6) is the ratio

f the median of class frequencies divided by the class frequency, 

alculated on the entire training set. This implies that the cate- 

ories with larger number of training data have a weight smaller 

han 1, and conversely, those with smallest number of training 

amples achieve the highest weights. 

. Experiments 

We evaluate our method on four challenging semantic segmen- 

ation datasets: CityScapes [15] , PASCAL VOC 2012 [14] , Microsoft 

OCO [16] , and ISBI 2012 [17] , which cover various types of ap-

lications and associated scene images, including self-driving for 

treet scene, indoor/outdoor scene understanding, and cell seg- 

entation for biological medicine scene etc. The purpose of exper- 

ments is to understand the underlying behavior of our network in 

ifferent applications and challenges. 

.1. Datasets 

Cityscapes [15] is very popular for self-driving task, where a car 

s treated as an autonomous robot to perceive surroundings, in- 

luding recognizing and localizing objects. It provides a large-scale 

ataset that contains high-resolution street scene images from 50 

ifferent cities, where 50 0 0 images with pixel-level annotations 

re provided for 19 object categories, such as road, car, pedestrian, 

icycle, sky etc. All images are divided into three parts: 2975 train- 

ng, 500 validation and 1525 testing images. We use the trainval 

et (3475 images) for training. Since the ground truth of the test 

et is not available, we evaluate our method through an online 

valuation server. 

PASCAL VOC 2012 [14] is widely-used for scene semantic seg- 

entation. This dataset contains 21 object categories (20 fore- 

round categories and one additional background class). The orig- 

nal dataset includes 1464 (train), 1449 (val), and 1456 (test) im- 

ges for training, validation, and testing, respectively, where the 

mages in training and validation sets have per pixel-level annota- 

ions. For training, we use the extra augmented segmentation an- 

otations from [35] , which includes 10,582 training and validation 

mages. The remaining 1456 test images are used to evaluate the 

erformance of our CENet. 

The ISBI 2012 [17] is a biological image dataset, including a set 

f 30 images (with solution of 512 × 512 pixels) of the Drosophila 

rst instar larva ventral nerve cord (VNC) from serial section trans- 

ission electron microscopy. Each image is pixel-wised annotated 

sing a binary ground truth, where white color denotes cells and 

lack color indicates the membranes. However, using only few 

raining samples may lead to the variance and non-robustness of 

he network. Therefore, we utilize the data augmentation to ex- 

and training set. More specifically, each training image is split 

nto 256 image patches with 32 × 32 pixels, resulting in 7680 

raining data. The ground truth has a corresponding split. The test 

et is publicly available, but the associated segmentation maps are 

ot provided. We following [10] to evaluate CENet by sending the 

stimated segmentation probability maps to the organizers. 
5 
Microsoft COCO [16] is a very challenging dataset for instance 

egmentation. This dataset contains 115k images over 80 categories 

or training, 5k images for validation and 20k images for testing. In 

tead of using mIoU that is widely accepted to measure semantic 

egmentation, we evaluate our CENet over COCO datset in terms of 

P and AP50. 

.2. Implementation details 

To show the advantages of our approach, we selected 5 state-of- 

he-art models as baselines to evaluate on CityScapes [15] and PAS- 

AL VOC 2012 [14] , including FCN-8s [1] , MDCNet [36] , DeepLab 

22] , CONet [37] , APCNet [38] . For ISBI 2012 [17] dataset, we

mploy UNet [10] and UNet++ [11] as baselines. For MS COCO 

16] dataset, we use the competitive Mask R-CNN model [39] as 

aseline. Experimental results of some baseline models are pro- 

uced using default parameter settings given by the authors, while 

thers are directly taken from the literature. 

For CityScapes and PASCAL VOC 2012 datasets, the segmenta- 

ion performance is measured by the mean intersection-over-union 

mIoU) score [22,37,38] . Let c i j be the number of pixels with the 

 th category as the ground truth and the j th class as the predic- 

ion; t i is the total number of pixels for the i th category in the 

round truth, then mIoU score calculates the mean portion of the 

ntersection between the ground truth and the prediction: 

IoU = 

1 

K 

∑ 

i 

c ii 
t i + 

∑ 

j c i j − c ii 
(7) 

For ISBI 2012 dataset, on the other hand, we measure the seg- 

entation outputs in terms of foreground-restricted rand scoring 

RST) and foreground-restricted information theoretic scoring (IST) 

fter border thinning, provided by the organizers [17] . 

The entire CENet is implemented based on Caffe framework 

40] . The input images and the corresponding pixel-wised anno- 

ated ground truth are used to train the network using the stochas- 

ic gradient descent algorithm [41] . In order to make full use of 

he GPU memory, we favor a large batch size (set as 14) to train 

atch normalization parameters, where initial learning rate, mo- 

entum and weight decay are set to 10 −3 , 0.99 and 5 × 10 −4 , re-

pectively. Following [2] , we employ a “poly” learning rate policy 

here the initial learning rate is multiplied by (1 − iter 
max _ iter 

) power 

ith power = 0 . 9 . 

.3. Evaluation results on CityScapes 

Table 1 compares our method with baseline networks on 

ityScapes dataset, and reports results in terms of individual 

ategory mIoU and average mIoU over all categories. It clearly 

emonstrates that our CENet outperforms other state-of-the-art 

pproaches, where 12 out of 19 categories achieve the best perfor- 

ance. Among all methods, our CENet achieves the best segmen- 

ation performance with 82.5% mIoU, improving 0.7% mIoU com- 

ared with the second best network CONet [37] . Among all base- 

ines, the FCN-8s [1] is at the lowest rank, probably because of 

ts very simple network architecture, which is not able to capture 

ulti-scale contextual cues effectively. It is intriguing that our ap- 

roach is superior to the existing methods [22] that employ CRF 

s post-processing to explore short-ranged and long-ranged inter- 

ctions among pixels. This indicates CENet has powerful ability to 

apture wide scale context information to further improve the per- 

ormance of segmentation outputs. 

In order to show the qualitative results, we also trained our 

ENet using only “train” set (2,975 images), and produce segmen- 

ation results on “val” set. Some visual example of simultaneous 

ecognition and segmentation ares shown in Fig. 3 . Each example 

hows both the original image and the color coded output labeling. 
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Table 1 

Individual category results and the average over all categories on the CityScapes test set in terms of 

mIoU scores. The best performance for each individual class is marked with a bold-face number. 

Method Roa Sid Bui Wal Fen Pol TLi TSi Veg Ter 

FCN-8s [1] 97.1 76.6 88.1 32.9 38.5 48.3 56.4 62.1 90.7 66.7 

MDCNet [36] 97.4 79.6 89.0 45.8 47.3 59.1 59.3 70.6 90.5 68.3 

APCNet [38] 98.7 86.9 93.5 58.4 63.8 67.7 76.1 80.5 93.6 72.2 

DeepLab [22] 98.6 86.2 93.5 55.2 63.2 70.0 77.1 81.3 93.8 72.3 

CONet [37] 98.9 87.9 93.9 61.3 63.1 72.1 79.3 82.4 94.0 73.4 

Ours 98.8 89.1 94.6 62.7 63.7 66.4 75.7 79.7 94.7 73.6 

Method Sky Ped Rid Car Tru Bus Tra Mot Bic mIoU 

FCN-8s [1] 92.7 74.3 44.3 91.5 36.9 41.3 32.8 45.7 62.7 62.1 

MDCNet [36] 94.8 76.2 52.4 92.6 60.5 71.2 50.4 50.2 69.1 69.7 

APCNet [38] 95.3 86.8 71.9 96.2 77.7 91.5 83.6 70.8 77.5 81.2 

DeepLab [22] 95.9 87.6 73.4 96.3 75.1 90.4 85.1 72.1 78.3 81.3 

CONet [37] 96.0 88.5 75.1 96.5 72.5 88.1 79.9 73.1 79.2 81.8 

Ours 96.4 87.3 75.4 94.2 79.4 91.9 86.8 73.3 79.7 82.5 

Fig. 3. The visual comparison on CityScapes val dataset. From top to bottom are original images, the corresponding ground truth, segmentation outputs from FCN-8s [1] , 

MDCNet [36] , APCNet [38] , DeepLab [22] , CONet [37] and our CENet. (Best viewed in color). 

Fig. 4. Some failure visual examples on CityScapes validation dataset. From left to right are original images, corresponding ground truth, and our segmenting results. (Best 

viewed in color). 
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5

xcept some boundary pixels that exhibit relative higher confusion, 

early all pixels are correctly classified. Our method also obtains 

etter segmenting results for the tiny object instances, such as “bi- 

ycle”, “traffic sign” and “traffic light”, etc. As shown in Fig. 4 , we 

lso illustrate some failure visual examples. It is discovered that 

he area of “road” and “sidewalk” are sometimes incorrectly clas- 

ified, probably due to the fact that these two categories share 

d

6 
xtremely similar visual appearance (e.g., intensity, color and tex- 

ure). 

.4. Evaluation results on pascal VOC 2012 

We now demonstrate that our method scales nicely in in- 

oor/outdoor scenario when augmenting the number of images 
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Table 2 

Individual category results and the average over all categories on the PASCAL VOC 2012 test set in terms of mIoU 

scores. The best performance for each individual class is marked with a bold-face number. 

Method aero bike bird boat bottle bus car cat chair cow mIoU 

FCN-8s [1] 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 62.2 

DeepLab [22] 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 71.6 

MDCNet [36] 85.2 41.0 83.4 69.4 80.4 89.5 85.1 87.1 40.3 78.1 73.1 

APCNet [38] 95.8 75.8 84.5 76.0 80.6 96.9 90.0 96.0 42.0 93.7 84.2 

CONet [37] 95.7 71.9 95.0 76.3 82.8 94.8 90.0 95.9 37.1 92.6 84.2 

Ours 95.1 77.0 90.8 74.2 80.9 95.8 91.6 96.4 43.1 91.5 84.7 

Method table dog horse mbk person plant sheep sofa train tv mIoU 

FCN-8s [1] 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2 

DeepLab [22] 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6 

MDCNet [36] 47.8 82.2 76.9 79.0 84.5 58.5 83.2 53.3 84.2 72.1 73.1 

APCNet [38] 75.4 91.6 95.0 90.5 89.3 75.8 92.8 61.9 88.9 79.6 84.2 

CONet [37] 73.0 93.4 94.6 89.6 88.4 74.9 95.2 63.2 89.7 78.2 84.2 

Ours 73.3 91.9 94.2 90.6 90.4 77.3 93.8 66.9 89.1 78.3 84.7 

Fig. 5. The visual comparison on PASCAL VOC 2012 val dataset. From top to bottom are original images, the corresponding ground truth, segmentation outputs from FCN-8s 

[1] , DeepLab [22] , MDCNet [36] , APCNet [38] , CONet [37] and our CENet. (Best viewed in color). 
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Table 3 

Segmentation results on MS COCO validation set in terms of 

AP and AP50. 

Method AP mask AP 50 
mask 

AP bbox AP 50 
bbox 

Mask R-CNN [39] 36.1% 57.5% 40.0% 60.5% 

Ours 36.7% 58.4% 40.8% 61.6% 

5

d

s

c

m

[  

f

p

t

s

t

m

nd classes on PASCAL VOC segmentation dataset [14] . Table 2 

hows the superior performance of the proposed approach. Com- 

ared with the state-of-the-art baselines, our CENet achieves high- 

st 84.7% mIOU accuracy. It obtains the best score on 9 out of the 

0 categories. This superior performance can be attributed to the 

rchitecture of CENet, which allows us to effectively capture the 

ontextual clues within different scales. Consistent with Table 1 , 

CN-8s once again ranks at the bottom, only obtaining 62.2% mIoU. 

ompared with the images in CityScapes dataset, the images in 

ASCAL VOC 2012 dataset have larger variance in visual appearance 

nd more complex and clutter background. 

Fig. 5 shows some visual examples of segmentation outputs 

n the PASCAL VOC validation set. Each example also exhibits 

he input image and the corresponding color coded output. Com- 

ared with baselines, our CENet not only correctly classifies objects 

ith different scales, but also produces better consistent qualita- 

ive results for all classes. Other networks, such as FCN-8s [1] and 

eepLab [22] achieve poor segmentation output, since their recep- 

ive fields are not adaptive to encode multi-scale context, resulting 

n the problem that objects substantially larger or smaller than the 

eceptive field may be fragmented or incorrectly classified. For in- 

tance, the “cat” in the sixth example and the “glass” in the sev- 

nth example in Fig. 5 . 
m

7 
.5. Evaluation results on MS COCO 

To further demonstrate the generality of our CENet, we con- 

uct the instance segmentation task on MS COCO [16] , where the 

egmentation head is replaced by our method. We use the offi- 

ial implementation with end-to-end joint training whose perfor- 

ance is almost the same as the baseline reported in Huang et al. 

6] , Wang et al. [42] . For fair comparison, all models are fine-tuned

rom pre-trained model based on ImageNet. Table 3 reports com- 

arison results between baseline and our method. It can be seen 

hat our method achieves 36.7% AP and 58.4% AP50 in terms of 

egmentation masks, and 40.8% AP and 61.6% AP50 in terms of de- 

ected bounding boxes, respectively, representing a clear improve- 

ent by a margin of 0.6%, 0.9%, 0.8%, and 1.1% over Mask R-CNN 

odel. Fig. 6 also illustrates some qualitative visual results of our 
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Fig. 6. The visual comparison on MS COCO val dataset. From top to bottom are instance segmentation results from our approach and baseline Mask R-CNN model [39] . (Best 

viewed in color). 

Table 4 

Segmentation results on the ISBI 

2012 test set in terms of RST and IST 

scores. 

Method RST IST 

UNet [10] 0.9621 0.9808 

UNet + [11] 0.9653 0.9877 

Ours 0.9696 0.9914 
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Table 5 

Contributions of different scale context combinations in terms of mIoU (%). 

Method CityScapes [15] PASCAL VOC [14] 

scale1 67.1 70.3 

scale1 + scale2 69.6 73.7 

scale1 + scale2 + scale3 70.2 74.1 

scale1 + scale2 + scale3 + scale4 70.5 74.4 
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ethod in terms of detected bounding boxes and segmentation 

asks. It clearly shows that our method achieves better visual re- 

ults with respect to baseline model. For instance, in first example, 

ur method correctly segments and identifies the area of “motor- 

ycle”, while the left tire is misclassified as “bicycle” using Mask 

-CNN model [39] . This can be also observed in second and third 

xamples, where the “bench” is missing and woman hair are incor- 

ectly classified as “tie”. Although the goal of our method is to per- 

orm semantic segmentation, it is interesting to point out that our 

ethod achieves less false positive of detective bounding boxes, 

uch as “person” in second and forth examples. This is probably 

ecause that object detection task is benefit from our segmenta- 

ion results. 

.6. Evaluation results on ISBI 2012 

In this section, we evaluate our CENet on the task of bio-image 

egmentation over ISBI 2012 dataset [17] , where the segmentation 

esults are binary outputs. The quantitative results are reported 

n Table 4 . Our CENet obtains 0.9696 and 0.9914 score in terms 

f RST and IST. Compared with second-rank model UNet++ [11] , 

ur approach improves RST and IST by 0.0 043 and 0.0 037, respec- 

ively. Some qualitative results compared with UNet++ [11] model 

re shown in Fig. 7 , in which our method produces more flat seg-

entation area of cell inside regions (marked with red rectangles), 

nd more smooth segmentation boundary of membranes (marked 

ith blue rectangles). This is probably because the integration of 

ultiple deconvolutional features has more powerful representa- 

ion than the context encoding scheme adopted in UNet++ [11] , 

here individual deconvolutional feature is considered. 

.7. Ablative studies 

To understand the underlying behavior of our system, this sec- 

ion reports the results of a series of ablation studies. Note all the 

xperiments are evaluated on validation set. 

.7.1. Ablative study on sequential context introduction 

To investigate the effectiveness of the different scale context 

f our proposed CENet, we conduct ablative studies on CityScapes 

nd PASCAL VOC 2012 dataset, where multiple scale context cues 
8 
denoted as different color arrows in Fig. 2 ) are sequentially added 

o our systerm, using the same training scheme and loss functions. 

ore specifically, the baseline, denoted as scale1 , is constructed by 

oncatenating the feature maps with same resolution of encoder 

nd decoder (blue arrows shown in Fig. 2 ). Then different scales 

f context features, such as red, purple, and green arrows shown 

n Fig. 2 (denoted as scale2, scale3 , and scale4 , respectively), are 

equentially introduced. Table 5 reports the contributions of their 

ombinations in terms of mIoU. 

It is observed that the performance increases as more scale 

ontext cues are investigated. Specifically, using the full scale con- 

ext leads to 70.5% and 74.4% for the two datasets. This is due to 

he fact that the semantic features of deeper layers are helpful to 

ectify classification error from shallow layers, while the shallow 

ayers provide more spatial details to delineate object shapes and 

oundaries. Another interesting observation is that, with the in- 

roduction of different scale context information, the performance 

ain is gradually reduced, i.e. 2.5%, 0.6%, and 0.3% on CityScapes 

ataset, and 3.4%, 0.4%, and 0.3% on PASCAL VOC 2012 dataset, re- 

pectively. This indicates that integrating 4 scales of middle-level 

onvolutional features provides enough context for these segmen- 

ation tasks. Some segmentation outputs of visual examples from 

wo datasets are illustrated in Fig. 8 . It is evident that when more 

ontextual information is captured in our CENet, the segmented 

bjects have more accurate boundaries, i.e., “building”, “tree”, and 

person”, even for tiny object instances such as “bicycle”, “traffic 

ign” and “traffic light”. 

.7.2. Ablative study on implementing efficiency 

To analyze running efficiency of our CENet, we carry on abla- 

ive studies on the Cityscapes dataset by adopting different scales 

f contextual features. We have aslo compare with some recent 

tate-of-the-art networks including UNet [10] , UNet++ [11] , and CC- 

et [6] in terms of model size and FLOPs. Note all experiments 

re conducted using ResNet-101 as backbone, thus we only com- 

are model size and FLOPs of decoder. Besides, the resolution of 

nput images keeps 769 × 769 for fair comparison. The results are 

eported in Table 6 . We observe that in spite of adopting concate- 

ating features, our system has similar model size and FLOPs with 

espect to UNet++ [11] , but achieves smaller model size and lower 

LOPs than CCNet [6] . The main reason is that an 1 × 1 convolution 

s always adopted before feature concatenation in each upsampling 
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Fig. 7. The visual comparison on ISBI 2012 test dataset. The first row depicts original images, the second and third rows are binary segmentation results produced by UNet++ 

[11] and our CENet. (Best viewed in color). 

Fig. 8. Some visual segmentation outputs by sequentially adding multiple scale context on (a) CityScapes and (b) PASCAL VOC 2012 dataset. From top to bottom are input 

images, the ground truth, and segmentation results from scale1, scale1 + scale2, scale1 + scale2 + scale3 , and full scales. (Best viewed in color). 

Fig. 9. The loss vs iteration on (a) CityScapes and (b) PASCAL VOC 2012 dataset, respectively, where multi-scale context information are sequentially considered in our 

network. (Best viewed in color). 
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tep, resulting in great reduction of model parameters and FLOPs 

o accelerate running speed. In spite of having nearly symmetri- 

al structure as well as UNet [10] , our system is still implemented 

lower than UNet [10] since our CENet involves more complicated 

kipped connections. Note when only first scale context is added 

o baseline, our network degenerates to UNet model, thus achiev- 

ng nearly the same model size and FLOPs with respect to UNet. 
9 
.7.3. Ablative study on convergence of training process 

To further demonstrate the effectiveness of our method, 

ig. 9 also plots the curves of loss function as the iteration num- 

er increases on CityScapes and PASCAL VOC 2012 datasets. Once 

gain, one can observe that the more context information is uti- 

ized, the faster convergence speed can be achieved, which is con- 

istent with the conclusion of Table 5 . We also discover that, com- 
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Table 6 

Comparison of implementing efficiency on Cityscapes validation 

dataset. FLOPs and model size are estimated for an input of reso- 

lution 769 × 769 . 

Method FLOPs Parameters (M) 

baseline 0 0 

baseline + scale1 6.7 40.6 

baseline + scale1 + scale2 8.1 46.6 

baseline + scale1 + scale2 + scale3 8.8 50.5 

baseline + full scales 9.3 53.3 

CCNet [6] 24.7 208 

UNet [10] 6.7 40.5 

UNet + [11] 8.9 51.8 
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ared with PASCAL VOC 2012 dataset, more flatten curves are ob- 

ained on CityScapes dataset. This is probably because PASCAL VOC 

012 dataset involves more training data, greater visual variance, 

nd larger number of object categories. 

. Conclusion remarks and future work 

This paper has proposed a novel encoder-decoder network, 

amed CENet, to explore hierarchy convolution features collabora- 

ively for accurate pixel-wised semantic segmentation. Compared 

ith recent encoder-decoder networks, our CENet provides a more 

owerful representation to capture multi-scale context information 

hrough constructing ensemble deconvolution from encoder to de- 

oder. Dense upsampling enables CENet to combine feature maps 

ith different receptive fields, thus allowing us to fully investi- 

ate local and global context cues. To evaluate our method, the 

xperiments are conducted on CityScapes and PASCAL VOC 2012 

atasets. The experimental results show that our CENet outper- 

orms recent state-of-the-art networks, and demonstrate that our 

pproach can produce more accurate predictions and delineated 

egmentation outputs. We also validate the scalability of CENet on 

S COCO dataset for instance segmentation with augmented train- 

ng images and semantic categories. Our method still achieves out- 

tanding performance. Finally, we demonstrate our approach for 

he task of biological segmentation, where the experimental results 

how the effectiveness of our approach on ISBI 2012 dataset. 

In spite of obtaining impressive results on segmentation accu- 

acy, our method sacrifices implementing efficiency. The experi- 

ental results show that our CENet performs slower than UNet 

10] and UNet++ [11] . As a result, one future direction will involve 

n-depth model design, regarding the lightweight architecture to 

educe the number of model parameters and computational bur- 

en, without significant performance drop simultaneously. In addi- 

ion, we are interested in extending our model in spatio-temporal 

omain (e.g., video sequence) to perform video segmentation. 

eclaration of Competing Interest 

Authors declare that they have no conflict of interest. 

cknowledgments 

The authors would like to thank the Editor in Chief and all 

he anonymous reviewers for their insightful suggestions and 

aluable comments. This work was jointly supported in part by 

he National Natural Science Foundation of China under Grants 

1876093 , 61701252 , 61801242 , the National Natural Science Foun- 

ation of Jiangsu Province under Grant BK20181393 , the National 

cience Foundation under Grant IIS-1302164 . 

eferences 

[1] J. Long , E. Shelhamer , T. Darrell , Fully convolutional networks for semantic seg-

mentation, IEEE Trans. Pattern Anal. Mach. Intell. 39 (4) (2017) 640–651 . 
10 
[2] C. Liang-Chieh , P. George , K. Iasonas , M. Kevin , Y. Alan L. , DeepLab: seman-
tic image segmentation with deep convolutional nets, atrous convolution, and 

fully connected CRFs, IEEE Trans. Pattern Anal. Mach. Intell. 40 (4) (2018) 
834–848 . 

[3] H. Zhao , J. Shi , X. Qi , X. Wang , J.Y. Jia , Pyramid scene parsing network, in: IEEE
International Conference on Computer Vision and Pattern Recognition, 2016, 

pp. 6230–6239 . 
[4] J. Fu , J. Liu , H. Tian , Z. Fang , H. Lu , Dual attention network for scene segmenta-

tion, in: IEEE International Conference on Computer Vision and Pattern Recog- 

nition, 2019, pp. 3141–3149 . 
[5] Y.H. Yuan, J.D. Wang, Ocnet: object context network for scene parsing, 

arXiv preprint arXiv:1809.00916 2018. 
[6] Z.L. Huang , X.G. Wang , L.C. Huang , C. Huang , Y.C. Wei , W.Y. Liu , CcNet:

criss-cross attention for semantic segmentation, in: IEEE International Confer- 
ence on Computer Vision, 2019, pp. 603–612 . 

[7] C.L. Peng , J.Y. Ma , Semantic segmentation using stride spatial pyramid pooling

and dual attention decoder, Pattern Recognit. 107 (6) (2020) 107498–107513 . 
[8] J. Fu , J. Liu , Y. Li , Y.J. Bao , W.P. Yan , Z.W. Fang , H.Q. Lu , Contextual deconvo-

lution network for semantic segmentation, Pattern Recognit. 101 (1) (2020) 
107152–107163 . 

[9] M. Orši , S. Šegvic , Efficient semantic segmentation with pyramidal fusion, Pat-
tern Recognit. 110 (8) (2021) 107611–107624 . 

[10] O. Ronneberger , P. Fischer , T. Brox , U-net: convolutional networks for biomed-

ical image segmentation, in: International Conference on Medical Image Com- 
puting and Computer Assisted Intervention, 2015, pp. 225–233 . 

[11] Z.W. Zhou , M.M.R. Siddiquee , N. Tajbakhsh , J.M. Liang , Unet++: redesigning skip
connections to exploit multiscale features in image segmentation, IEEE Trans. 

Med. Image 39 (6) (2020) 1856–1867 . 
12] H. Noh , S. Hong , B. Han , Learning deconvolution network for semantic

segmentation, in: IEEE International Conference on Computer Vision, 2015, 

pp. 1520–1528 . 
[13] B. Vijay , A. Kendall , R. Cipolla , SegNet: a deep convolutional encoder-decoder

architecture for image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 39 
(12) (2017) 2481–2495 . 

[14] M. Everingham , S.M.A. Eslami , L.V. Gool , C.K.I. Williams , J. Winn , A. Zisserman ,
The pascal visual object classes challenge: aretrospective, Int. J. Comput. Vis. 

111 (1) (2015) 98–136 . 

[15] M. Cordts , M. Omran , S. Ramos , T. Rehfeld , M. Enzweiler , R. Benenson ,
U. Franke , S. Roth , B. Schiele , The cityscapes dataset for semantic urban scene

understanding, in: IEEE International Conference on Computer Vision and Pat- 
tern Recognition, 2016, pp. 3213–3223 . 

[16] T. Lin , M. Maire , S.J. Belongie , J. Hays , P. Perona , D. Ramanan , P. Dollár , C. Zit-
nick , Microsoft coco: common objects in context, in: European Conference on 

Computer Vision, 2014, pp. 740–755 . 

[17] Www: Web page of the em segmentation challenge, ( http://brainiac2.mit.edu/ 
isbi _ challenge/ ), Accessed May 2, 2012. 

[18] K. Simonyan , A. Zisserman , Very deep convolutional networks for large-scale 
image recognition, in: International Conference on Learning Representations, 

2015, pp. 248–255 . 
[19] K. He , X. Zhang , S. Ren , J. Sun , Deep residual learning for image recognition,

in: IEEE International Conference on Computer Vision and Pattern Recognition, 
2016, pp. 770–778 . 

20] S. Zheng , S. Jayasumana , B.R. Paredes , V. Vineet , Z.Z. Su , D.L. Du , C. Huang ,

P.H. Torr , Conditional random fields as recurrent neural networks, in: IEEE In-
ternational Conference on Computer Vision, 2015, pp. 1529–1537 . 

21] G.S. Lin , C.H. Shen , D.H. Van , I. Reid , Exploring context with deep structured
models for semantic segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 40 

(6) (2018) 1352–1366 . 
22] L.C. Chen , Y.K. Zhu , G. Papandreou , F. Schroff, H. Adam , Encoder-decoder with

atrous separable convolution for semantic image segmentation, in: European 

Conference on Computer Vision, 2018, pp. 1–18 . 
23] H.H. Ding , X.D. Jiang , B. Shuai , A.Q. Liu , G. Wang , Semantic segmentation with

context encoding and multi-path decoding, IEEE Trans. Image Process. 29 (1) 
(2020) 3520–3533 . 

24] P. Bilinski , V. Prisacariu , Dense decoder shortcut connections for single-pass 
semantic segmentation, in: IEEE International Conference on Computer Vision 

and Pattern Recognition, 2018, pp. 6596–6605 . 

25] G.S. Lin , F.Y. Liu , A. Milan , C.H. Shen , I. Reid , Refinenet: multi-path refinement
networks for dense prediction, IEEE Trans. Pattern Anal. Mach. Intell. 42 (5) 

(2020) 1228–1242 . 
26] T. Pohlen , A. Hermans , M. Mathias , B. Leibe , Full-resolution residual networks

for semantic segmentation in street scenes, in: IEEE International Conference 
on Computer Vision and Pattern Recognition, 2017, pp. 3309–3318 . 

27] W.B. Yang , Q. Zhou , J.N. Lu , X.F. Wu , S.F. Zhang , L.J. Latecki , Dense deconvo-

lutional network for semantic segmentation, in: IEEE International Conference 
on Image Processing, 2018, pp. 1573–1577 . 

28] J. Deng , W. Dong , R. Socher , L.J. Li , K. Li , F.F. Li , ImageNet: a large-scale hier-
archical image database, in: IEEE International Conference on Computer Vision 

and Pattern Recognition, 2009, pp. 248–255 . 
29] Z. Zhu , M.D. Xu , S. Bai , T.T. Huang , X. Bai , Asymmetric non-local neural net-

works for semantic segmentation, in: IEEE International Conference on Com- 

puter Vision, 2019, pp. 593–602 . 
30] F. Zhang , Y.Q. Chen , Z.H. Li , Z.B. Hong , J.T. Liu , F.F. Ma , J.Y. Han , E. Ding , AcfNet:

attentional class feature network for semantic segmentation, in: IEEE Interna- 
tional Conference on Computer Vision, 2019, pp. 6797–6806 . 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100004608
https://doi.org/10.13039/100000001
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0004
http://arxiv.org/abs/1809.00916
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0016
http://brainiac2.mit.edu/isbi_challenge/
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0030


Q. Zhou, X. Wu, S. Zhang et al. Pattern Recognition 122 (2022) 108290 

[

[  

[

[

[  

[  

[  

[  

[  

[  

[

[  

Q
H

i
e

i

X
N

r
v

o
a

S

n
o

i
d

B
a

T

C
H

Z

t
f

a

v

L

U
v

s

i
n

I

31] S. Ioffe , C. Szegedy , Batch normalization: accelerating deep network training 
by reducing internal covariate shift, in: International Conference on Machine 

Learning, 2015, pp. 448–456 . 
32] X. Glorot , A. Bordes , Y. Bengio , Deep sparse rectifier neural networks, in: Inter-

national Conference on Artificial Intelligence and Statistics, 2012, pp. 315–323 . 
33] D. Kingma , J. Ba , Adam: a method for stochastic optimization, in: International 

Conference on Learning Representations, 2015, pp. 1–11 . 
34] D. Eigen , R. Fergus , Predicting depth, surface normals and semantic labels with 

a common multi-scale convolutional architecture, in: IEEE International Con- 

ference on Computer Vision, 2015, pp. 2650–2658 . 
35] B. Hariharan , P. Arbeláez , L. Bourdev , S. Maji , J. Malik , Semantic contours from

inverse detectors, in: IEEE International Conference on Computer Vision, 2011, 
pp. 991–998 . 

36] Q. Zhou , W. Yang , G. Gao , W. Ou , H. Lu , J. Chen , L.J. Latecki , Multi-scale deep
context convolutional neural networks for semantic segmentation, World Wide 

Web 22 (3) (2019) 555–570 . 

37] H. Zhang , H. Zhang , C.G. Wang , J.Y. Xie , Co-occurrent features in semantic seg-
mentation, in: IEEE International Conference on Computer Vision and Pattern 

Recognition, 2019, pp. 548–557 . 
38] J.J. He , Z.Y. Deng , L. Zhou , Y.L. Wang , Y. Qiao , Adaptive pyramid context network

for semantic segmentation, in: IEEE International Conference on Computer Vi- 
sion and Pattern Recognition, 2019, pp. 7511–7520 . 

39] K.M. He , G. Gkioxari , P. Dollár , R. Girshick , Mask R-CNN, in: IEEE International

Conference on Computer Vision, 2017, pp. 2980–2988 . 
40] Y. Jia , E. Shelhamer , J. Donahue , S. Karayev , J. Long , R. Girshick , S. Guadarrama ,

T. Darrell , Caffe: convolutional architecture for fast feature embedding, in: ACM 

International Conference on Multimedia, 2014, pp. 675–678 . 

41] L. Bottou , Large-scale machine learning with stochastic gradient descent, in: 
International Conference on Computational Statistics, 2010, pp. 177–186 . 

42] X. Wang , R. Girshick , A. Gupta , K. He , Non-local neural networks, in: IEEE

International Conference on Computer Vision and Pattern Recognition, 2018, 
pp. 7794–7803 . 

uan Zhou received Ph.D. degree in electronics and information engineering from 

uazhong University of Science and Technology, Wuhan, China in 2013. Now he 

s an associated professor in the college of Telecommunications and Information 
ngineering at Nanjing University of Posts and Telecommunications. His research 

nterests include computer vision and pattern recognition. 
11 
iaofu Wu received the B.S. and M.S. degrees in electrical engineering from the 
anjing Institute of Communications Engineering, Nanjing, China, in 1996 and 1999, 

espectively, and the Ph.D. degree in electrical engineering from the Peking Uni- 
ersity, Beijing, China, in 2005. He is now a full Professor of Nanjing University 

f Posts and Telecommunications. His research interests include, machine learning, 
nd computer vision. 

uofei Zhang received the Ph.D. degree in School of Information Science and Engi- 

eering from Southeast University in 2013. In 2013, he joined the School of Internet 
f Things at the Nanjing University of Posts and Telecommunications. His research 

nterests include computer vision, video surveillance, real-time object tracking and 
eep learning based image processing. 

in Kang received the M.S. degree in Circuits and Systems from Lanzhou University, 
nd the Ph.D. degree in Electrical Engineering from Nanjing University of Posts and 

elecommunications, in 2011 and 2016, respectively. He is currently a lecturer at 

ollege of Internet of Things, Nanjing University of Posts and Telecommunications. 
is research interests include computer vision and pattern recognition. 

ongyuan Ge received the bachelor’s degree in electrical engineering from The Aus- 

ralian National University, Australia, in 2012, and the Ph.D. degree in engineering 
rom the Queensland University of Technology, Australia, in 2016. He is currently 

 Research Scientist at Monash University, Australia. His research interests are face 

erification, and medical image processing. 

ongin Jan Latecki received the Ph.D. degree in computer science from Hamburg 

niversity, Germany, in 1992. He is a professor of computer science at Temple Uni- 
ersity, Philadelphia. His main research interests include shape representation and 

imilarity, object detection and recognition in images, robot perception, data min- 

ng, and digital geometry. He is now the Associate Editors-in-Chief of Pattern Recog- 
ition and an editorial board member of the International Journal of Mathematical 

maging. 

http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00470-2/sbref0042

	Contextual ensemble network for semantic segmentation
	1 Introduction
	2 Related work
	2.1 Fully convolutional based architectures
	2.2 Encoder-decoder based architectures

	3 CENet
	3.1 The overall architecture of CENet
	3.2 ResNet as backbone
	3.3 The detail decoder architecture of CENet

	4 Training CENet
	4.1 Batch normalization (BN)
	4.2 End-to-end training

	5 Experiments
	5.1 Datasets
	5.2 Implementation details
	5.3 Evaluation results on CityScapes
	5.4 Evaluation results on pascal VOC 2012
	5.5 Evaluation results on MS COCO
	5.6 Evaluation results on ISBI 2012
	5.7 Ablative studies
	5.7.1 Ablative study on sequential context introduction
	5.7.2 Ablative study on implementing efficiency
	5.7.3 Ablative study on convergence of training process


	6 Conclusion remarks and future work
	Declaration of Competing Interest
	Acknowledgments
	References


