Pattern Recognition 122 (2022) 108290

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

Contextual ensemble network for semantic segmentation )

Quan Zhou®*, Xiaofu Wu?, Suofei Zhang®, Bin KangP, Zongyuan Ge®¢, Longin Jan Latecki®

Check for
updates

2 National Engineering Research Center of Communications and Networking, Nanjing University of Posts and Telecommunications, Nanjing 21003, China
b Department of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 21003, China

©Monash eResearch Centre, Monash University, Melbourne, Australia

d Department of Computer and Information Science, Temple University, Philadelphia, USA

ARTICLE INFO

Article history:

Received 6 November 2020

Revised 9 March 2021

Accepted 5 April 2021

Available online 20 September 2021

Keywords:

Ensemble deconvolution
Semantic segmentation
FCNs

Context aggregation
Encoder-decoder networks

ABSTRACT

Recently, exploring features from different layers in fully convolutional networks (FCNs) has gained sub-
stantial attention to capture context information for semantic segmentation. This paper presents a novel
encoder-decoder architecture, called contextual ensemble network (CENet), for semantic segmentation,
where the contextual cues are aggregated via densely usampling the convolutional features of deep layer
to the shallow deconvolutional layers. The proposed CENet is trained in terms of end-to-end segmenta-
tion to match the resolution of input image, and allows us to fully explore contextual features through
ensemble of dense deconvolutions. We evaluate our CENet on two widely-used semantic segmentation
datasets: PASCAL VOC 2012 and CityScapes. The experimental results demonstrate our CENet achieves
superior performance with respect to recent state-of-the-art results. Furthermore, we also evaluate CENet
on MS COCO dataset and ISBI 2012 dataset for the task of instance segmentation and biological segmen-
tation, respectively. The experimental results show that CENet obtains promising results on these two

datasets.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Semantic segmentation plays a significant role in computer vi-
sion, and thus is widely applied to many real-world scenarios, such
as virtual/augmented reality, robotics, and self-driving. From the
perspective of computer vision, the goal of semantic segmenta-
tion is to create vision systems with human-like abilities to achieve
two fundamental tasks: classification and localization. As a result, a
well-designed system for semantic segmentation should deal with
these two issues simultaneously by assigning a unique semantic or
categorical label to each image pixel.

The recent years have witnessed the substantial progress of
image semantic segmentation using fully convolutional networks
(FCNs) [1-3]. These models learn powerful contextual representa-
tions that lead to the successful results: a combination of feature
descriptors extracted from FCNs are complementing each other to
achieve remarkable improvement for semantic segmentation [4-6].
In spite of achieving promising results, previous FCNs suffer from
a couple of critical limitations. Firstly, due to the consecutive pool-
ing or convolution striding at successive layers, the spatial reso-
lution is significantly reduced in feature maps. This invariance to
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local image transformation may be harmful for dense prediction
tasks, where detailed spatial information is often required to delin-
eate object shapes and boundaries [7,8]. Secondly, objects tend to
be appear in multiple scales. However, the receptive field of early
FCNs is not adaptive, leading to the problem that objects substan-
tially larger or smaller than the receptive field may be fragmented
or incorrectly classified [2,9].

In order to overcome these two challenges, the encoder-decoder
networks and their variants (as shown in Fig. 1(a) and (b)) were
proposed in recent literature [8,10,11]. In Fig. 1(a), the encoder-
decoder networks consist of two parts. Like FCNs, the encoder
gradually reduces the spatial dimension of feature maps. Con-
versely, the decoder progressively increases spatial dimension to
recover object details using upsampling and deconvolution. In or-
der to facilitate deconvolution, the indices of max-pooling are
recorded in the process of encoder [12,13]. However, these archi-
tectures still suffer from the following shortcomings. Firstly, us-
ing pooling indices is storage expensive, where a large amount of
memory spaces are required to save these indices. Secondly, al-
though pooling indices are recorded to perform upsampling, the
remaining elements are padded as zero [12], which may induce
noise to the forthcoming deconvolution. Finally, although such
structure is able to sequentially recover feature resolution, the con-
textual features of mid-level convolutional layers are often ne-
glected. To improve segmentation performance, as illustrated in
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(a) Encoder-decoder structure (b) UNet structure (c) Dense deconvolution structure

Fig. 1. Comparison of current encoder-decoder architectures (a), (b) and our dense deconvolution decoder structure (c) to capture multiple scale context. (Best viewed in

color).

Fig. 1(b), encoder-decoder architecture [10,11] has been improved
to capture more context information. More specifically, the fea-
ture maps of convolutional layers are always concatenated with
deconvolutional ones through skip-connections. As a result, more
rich features of middle layers are utilized to capture multi-scale
contextual cues. This architecture, however, exhibits a pre-defined
fixed structure, where the skip connections are only constructed
between the convolutional layer and the corresponding deconvolu-
tion counterpart, resulting in the fact that contextual cues are not
fully investigated.

To address above problems, this paper introduces a contextual
ensemble network (CENet), which aggregates multi-scale context
information from all convolutional layers, for semantic segmen-
tation. CENet still adopts encoder-decoder architecture for explor-
ing multi-level convolution features collaboratively to capture con-
text information. Unlike previous methods that formulate contex-
tual cues using attention schemes [4,6] or simply duplicated from
the responses of encoder [10,11], the hierarchical contextual inter-
actions of different resolutions are collaboratively investigated via
densely upsampling multi-level pyramid features from deep convo-
lution layers to shallow layers. More specifically, while the shallow
convolutional layers of encoder always abstract low-level image
statistics, the deeper layers have powerful ability to extract high-
level semantics. On one hand, the high-level semantics of deeper
layers is helpful to guide learning stage of low-level and medium-
level convolutional features. On the other hand, the feature de-
scriptors of shallow layers are beneficial to correctly delineate ob-
ject boundaries and shapes with high-level semantics. Therefore,
the features extracted from different layers are complemented each
other, and their integration always leads to enhanced segmenta-
tion performance. As illustrated in Fig. 1(c), our CENet harvests and
concatenates deconvolutional features with different resolutions in
encoder, called ensemble deconvolution, to produce the feature rep-
resentation in decoder, which carries both local and global con-
text information. Specifically, for one specific deconvolution feature
representation, it is first concatenated with feature maps densely
upsampled from deeper convolutional layers in encoder (denoted
as colored arrows in Fig. 1(c)), and then supplemented with its
corresponding counterpart (denoted as black arrows in Fig. 1(c)).
In summary, the contributions of our CENet are three-folds:

e CENet introduces a novel encoder-decoder architecture to
capture multi-scale context via ensemble deconvolution. The
stacked feature maps are complemented each other, allowing
us to fully explore multiple scale contextual information em-
bedded in images.

Instead of using switch variables to record pooling indices [12],
the feature maps of encoder are concatenated to the decoder,
avoiding the extra noise introduced through padding, and with-
out extra memory space to store pooling indices at the same
time.

o The CENet is trained end-to-end and easy to execute without
any postprocessing, which facilitates well for semantic segmen-
tation. We evaluated CENet on two widely-used datasets: PAS-
CAL VOC 2012 [14] and CityScapes [15], and the experimen-
tal results show the superior performance of CENet with re-
spect to recent state-of-the-art networks. To further demon-
strate the effectiveness of CENet, we also evaluate it on MS
COCO [16] and ISBI 2012 [17]. The experiments show that CENet
achieves promising results for instance segmentation and bio-
logical segmentation.

The remainder of this paper is organized as follows. After a
brief discussion of related work in Section 2, the detail architec-
ture of CENet is introduced in Section 3. In Section 4, we elab-
orate on the end-to-end training of CENet. The proposed network
has been evaluated on PASCAL VOC 2012, CityScapes, MS COCO and
ISBI 2012 datasets, respectively, and the experiments can be found
in Section 5. Finally, the concluding remarks and future work are
given in Section 6.

2. Related work

Due to the powerful ability to abstract image features, the re-
cent years have witnessed vast number of convolutional neural
networks (CNNs) for semantic segmentation, which are mainly
divided into two categories: fully convolutional networks and
encoder-decoder networks. However, multiple stages of spatial
pooling greatly reduces feature resolution, and convolution with
small filter size (e.g., 3 x 3) always leads to very limited field-of-
view. Networks with insufficient field-of-view may not be able to
capture enough context information and thus degrade the perfor-
mance. We thus review the related work based on these two as-
pects, which attempt to capture contextual clues to address these
issues.

2.1. Fully convolutional based architectures

Initially from CNNs, the FCNs (e.g., the VGG-16 [18] and ResNet
[19]) employ convolutional layers to replace fully-connected lay-
ers. Actually, the direct estimations of FCNs are essentially of low
resolution, which highly detriments segmentation accuracy. There-
fore, a variety of FCN-based methods adopt a naive method of di-
rectly encoding contextual cues through skip-connections. For ex-
ample, the developed version of FCN [1] utilizes skip-connections
to explore mid-layer context features for high-resolution predic-
tion. PSPNet [3] adds a global pooling branch to extract context
information. In [9], image pyramid is also utilized to capture multi-
scale context in FCN framework. DANet [4] and OCNet [5] encode
the semantic context using non-local attention to explore global
context, where spatial and channel attention schemes are adopted
to construct long-ranged interactions. In [6], the authors propose
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criss-cross attention block to investigate global context, yet with
very limited computational resources.

The alternative approaches to capture context clues emoploy
conditional random fields (CRFs) as postprocess after inference
from FCNs. Deeplab (2] is the typical FCN-CRF based models,
where the atrous convolution is first applyed to produce unary po-
tentials, and then the Potts model is considered as pairwise po-
tentials to encode long-range pixel interactions. CRF-RNN [20] and
deep structured network (DSN) [21] extend DeepLab family net-
works by implementing the mean field CRF inference as recurrent
layers for end-to-end learning of the dense CRF and FCN network.

2.2. Encoder-decoder based architectures

Unlike FCN-based methods, the encoder-decoder networks [22-
24| exhibit a nearly symmetrical network structure that gradually
recovers image details using upsampling and deconvolution op-
eration. For instance, [22]| employs atrous separable convolution
in decoder for semantic segmentation. Through adding skip con-
nections, UNet [10] and its dense version [11] introduce elegant
symmetric network architectures, which concatenate feature maps
from the encoder side to the corresponding decoder activations. To
capture global context, attention scheme can be also pluged into
decoder. For example, peng et al. [7] design stride spatial pyra-
mid pooling for harvesting high-level semantics, and dual atten-
tion blocks to abstract low-level statistics. In [8], context associa-
tion is formulated in decoder network by learning channel contex-
tual module and spatial contextual module, respectively. RefineNet
[25] and its variants [23,24,26] carefully design cascaded deconvo-
lution network in score map and feature map, respectively, to cap-
ture multi-scale context cues. Our CENet also utilizes the encoder-
decoder architecture, and hence can be classified into this cate-
gory. In contrast to previous methods that capture context infor-
mation using image pyramid [9,25] or simply duplicated the con-
volutional features [10,11], however, our CENet considers to trans-
fer all available encoder features in deconvolution process, yielding
dense-upsampled structure to fully investigate context clues, which
enables selective and adaptive aggregation of multi-level contex-
tual features.

An early version of this work was first published in Yang et al.
[27]. This journal version extends previous one in following as-
pects: (1) The previous version directly stacks deconvolution fea-
ture maps, which may produce a large number of feature channels
and model parameters. We apply 1 x 1 convolution to reduce di-
mension before concatenation, which is also beneficial for training
the entire network. (2) Unlike [27] that employs two stage train-
ing scheme, our CENet is trained in terms of end-to-end segmen-
tation to match the resolution of input image. (3) In stead of us-
ing VGG-16 network as backbones, our CENet employs ResNet-101
as more powerful backbone to improve performance. (4) We have
performed more exhausted experimental evaluation, and reported
more comparisons and improved results.

3. CENet

This section first elaborates on the overall architecture details
of our CENet. Thereafter, the details on how to design our decoder
is introduced in a dense upsampling manner.

3.1. The overall architecture of CENet

Fig. 2 shows the overall architecture of the entire CENet. Simi-
lar to previous encoder-decoder networks [10,12], our CENet is also
composed of two parts: encoder and decoder network. The de-
coder includes three fundamental components: convolution layer
together with batch normalization (BN) and rectified linear unit
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(ReLU), concatenation layer, and softmax layer. The encoder net-
work corresponds to feature extractor that transforms the input
image to multiple scale dimensional feature representation. On
the contrary, the decoder network delineates object shape bound-
aries that output object segmentation from the convolution fea-
tures produced from encoder network. Let K be the total number
of object categories that are required to be classified. The final out-
put of our CENet is a (K + 1)-dimensional probability map with
the same size of input image, indicating probability of each pixel
belonging to one of the predefined K classes or to the additional
background.

3.2. ResNet as backbone

In order to obtain high-quality semantic segmentation outputs
and make fair comparison with recent state-of-the-art networks,
we borrow the architecture widely used in ResNet [19] to construct
our backbone network. As shown in Fig. 2, our encoder, pre-trained
on ImageNet [28], shares the same configurations of ResNet-101 to
abstract deep features. When going deeper in the backbone, how-
ever, it is very hard to recover tiny objects as their spatial informa-
tion has been totally lost in the convolutional features with low-
est resolution. Therefore, the final pooling layers and the following
fully-connected layers are removed in our encoder network. More-
over, more layers result in a large number of additional computa-
tion, thus our backbone executes more efficiently, and at the same
time ensures 2D representation that facilitates semantic segmen-
tation. As a result, there are five stages in our backbone module,
where each one has the resolution of }, 1, §, . and 35 with re-
spect to input image. One may also employ holding-resolution ver-
sion of ResNet [6,29,30] using dilation convolutions, where all the
feature maps in the last three stages have the same spatial size
(e.g., with resolution of % with respect to input image). These ap-
proaches, however, are sacrificed with expensive computation due
to high feature resolutions, and suffer from the gridding artifacts
that may degrade the performance.

3.3. The detail decoder architecture of CENet

On the other hand, the decoder network contains a series
of concatenation layers, convolutional layers, and a Sofmax layer,
which are represented by blue, brown and red boxes in Fig. 2, re-
spectively. In order to match the resolution of input image, the
outputs of encoder are upsampled three times, leading to four de-
convolution stages in the architecture of decoder. Each stage con-
tains one concatenation layer and two convolutional layers. More
specifically, in addition to directly duplicate feature maps in en-
coder [10,25,27], our concatenation layers harvest multi-scale con-
text clues by stacking feature representation from previous stage in
decoder and a series of deconvolutional features, where the corre-
spondingly counterparts in encoder have more deeper stages with
respect to the stage of current concatenation layer.

As shown in Fig. 2, the concatenation layers are produced
through three basic operations: upsampling (denoted as red, green
and purple arrows), convolution (denoted as blue arrows), and con-
catenation. However, directly concatenating all features will lead to
the vast number of feature channels in concatenation layers. Con-
sidering the case of rightmost concatenation layer in Fig. 2, it is
produced by stacking convolution features from stagel to stage4 in
encoder. If features are directly concatenated, the channel number
will be 64+ 256 + 512 + 1024 = 1856 using RseNet-101 as back-
bone. Training such complicated network is a non-trivial work, and
probably limits the generalization ability and resulting in overfit-
ting of our model. To this end, unlike our preliminary version [27],
the dimension of feature maps, which are used for aggregating, has
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Fig. 2. Overall architecture of the proposed CENet. On top of the network based on UNet [10], we construct dense skip-connections from encoder to decoder, producing the
delineated segmentation map of an input image. For input image, W, H, and C stand for width, height, and number of channels of input image, respectively. (Best viewed in

color).

to be reduced. Specifically, we resort to employ an 1 x 1 convo-
lution to reduce feature dimension before stacking them in each
concatenated path. For convenient computing, the number of fea-
ture channels keeps the same with counterpart convolution layer
in encoder. Immediately below, we introduce how to produce the
concatenation layer in each stage.

As shown in Fig. 2, the resolution of feature maps Fp from
prepositive convolutional layer is first enlarged twice, and then
convoluted with a 3 x 3 filter kernels F3,3(-), which halves the
number of feature channels:

Fp = Faus U2 (Fp)) (1)

where U,_, (-) stands for two times upsampling. On the other hand,
the feature maps F. within deeper layers in encoder network have
to be expanded with different upsampling ratio r (denoted as col-
ored arrows in Fig. 2), resulting in feature representation of equal
resolution for stacking. After that, an 1 x 1 convolution Fj,q(-)
with stride 1 is applied into the enlarged feature maps to further
extract contextual information, and reduce feature channels at the
same time:

]@‘e:]:]xl(ur(]FE))?rE {2’478} (2)

Finally, due to having the same resolution, the feature maps F. of
counterpart in encoder are directly fed into an 1 x 1 convolution
Fix1(-) for dimension reduction, without upsampling operation:

]’Fc:}—lxl(Fc) (3)

Thereafter, all the convolutional feature maps are stacked together
to generate our concatenation layer, allowing us to fully explore
multiple scale context cues:

fi, =, O F O (4)
where () indicates concatenated operation. Still taking the right-
most concatenation layer in Fig. 2 into account, it only has 64
feature channels, since an 1 x 1 convolution is utilized to evenly
reduce channel number to 16 in each stacking path. Therefore,
although a series of stacking operations are used to aggregate
densely upsampled features, the decoder of our network achieves
very small model size and high implementing efficiency, demon-
strated by the experimental results in Section 5.7.2.

These concatenated feature maps s, carrying both local and
global context, are fed into two 3 x 3 convolutions, each followed
by a batch normalization layer and ReLU activation layer. At the
end of decoder, an 1 x 1 convolution is used to map each feature
vector to the desired number of classes K, received supervisions
from the ground truth.

4. Training CENet

In this section, we first introduce batch normalization, which is
widely used for network training. Then we will elaborate on the

details of how to train CENet in terms of end-to-end manner, al-
though it is very deep (nearly twice deeper than FCNs [1,2]).

4.1. Batch normalization (BN)

According to loffe and Szegedy [31], it is very hard to train a
deep neural network due to the internal-covariate-shift problem.
Since the parameters of previous layers have been updated, the
distributions of filter responses in current layer change in the pro-
cess of iterative training. This is not beneficial for optimizing our
CENet since such changes may be amplified through back propaga-
tion across layers, probably leading to the vanishing or exploding
gradient. In order to address this problem, there are some widely-
used tricks in training process such as BN [31], Glorot initialization
[32], and Adam solver [33] for solving image understanding tasks
[1,2,19]. In our CENet, an extra BN layer is added to the output of
every convolution layer, where the filter responses are normalized
to a standard Gaussian distribution. In the experiments, we observe
that the batch normalization is critical to optimize our network,
which helps our training algorithm to straggle from poor local op-
timum.

4.2. End-to-end training

In our CENet, a soft-max function, which is the generalization of
logistic function, is adopted to convert the outputs of Softmax layer
to probabilities between (0,1). Let a;(x,#) denotes the activation
for kth category for pixel x given network parameters 6, then the
soft-max function py(x, @) is defined as:

exp{a;(x,0)}
>k explay (x.0)}

In the inference process, the kth semantic category is assigned
to pixel x if it achieves the highest predicted probability k* =
arg maxy py(x, 9).

For the task of semantic segmentation which is always formu-
lated as a dense pixel-wise classification problem, we use the stan-
dard cross-entropy loss [1,8] as objective function to evaluate seg-
mentation estimation with respect to the associated ground truth.
The loss is summed up over all the pixels in a mini-batch. Let N be
the total number of pixels in a training batch and y{? is the ground-
truth semantic label of kth category for pixel x;, our training tar-
get is to find an optimal model parameters @* that minimizes the
cross-entropy loss £(x,0):

Pi(x.0) = (5)

R A Y&
6" = min £(x.6) = min 7 |16]|3 =Y yflog py(x;.6) (6)
i=1 k=1
where a regularization is added to network parameters #, and A
is a non-negative weight decay parameter. We can apply stochas-
tic gradient descent (SGD) methods to optimize the above problem
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in the process of back propagation, where the gradient V£ (x, 0)
is easily computed by applying the chain rule as in conventional
CNNs [1,19]. One problem in training is category unbalancing,
where there is large variation in the number of pixels in each class
in the training set. An example is the category of “traffic sign” and
“road” in CityScapes dataset, in which the object instants of first
class occupy a very small number of image regions, while those
of the second one occupy a large number of pixels. Therefore, it is
required to reweight the category loss according to the true class
distribution. We use median frequency balancing [34] to solve this
problem, where the assigned weight to a class in Eq. (6) is the ratio
of the median of class frequencies divided by the class frequency,
calculated on the entire training set. This implies that the cate-
gories with larger number of training data have a weight smaller
than 1, and conversely, those with smallest number of training
samples achieve the highest weights.

5. Experiments

We evaluate our method on four challenging semantic segmen-
tation datasets: CityScapes [15], PASCAL VOC 2012 [14], Microsoft
COCO [16], and ISBI 2012 [17], which cover various types of ap-
plications and associated scene images, including self-driving for
street scene, indoor/outdoor scene understanding, and cell seg-
mentation for biological medicine scene etc. The purpose of exper-
iments is to understand the underlying behavior of our network in
different applications and challenges.

5.1. Datasets

Cityscapes [15] is very popular for self-driving task, where a car
is treated as an autonomous robot to perceive surroundings, in-
cluding recognizing and localizing objects. It provides a large-scale
dataset that contains high-resolution street scene images from 50
different cities, where 5000 images with pixel-level annotations
are provided for 19 object categories, such as road, car, pedestrian,
bicycle, sky etc. All images are divided into three parts: 2975 train-
ing, 500 validation and 1525 testing images. We use the trainval
set (3475 images) for training. Since the ground truth of the test
set is not available, we evaluate our method through an online
evaluation server.

PASCAL VOC 2012 [14] is widely-used for scene semantic seg-
mentation. This dataset contains 21 object categories (20 fore-
ground categories and one additional background class). The orig-
inal dataset includes 1464 (train), 1449 (val), and 1456 (test) im-
ages for training, validation, and testing, respectively, where the
images in training and validation sets have per pixel-level annota-
tions. For training, we use the extra augmented segmentation an-
notations from [35], which includes 10,582 training and validation
images. The remaining 1456 test images are used to evaluate the
performance of our CENet.

The ISBI 2012 [17] is a biological image dataset, including a set
of 30 images (with solution of 512 x 512 pixels) of the Drosophila
first instar larva ventral nerve cord (VNC) from serial section trans-
mission electron microscopy. Each image is pixel-wised annotated
using a binary ground truth, where white color denotes cells and
black color indicates the membranes. However, using only few
training samples may lead to the variance and non-robustness of
the network. Therefore, we utilize the data augmentation to ex-
pand training set. More specifically, each training image is split
into 256 image patches with 32 x 32 pixels, resulting in 7680
training data. The ground truth has a corresponding split. The test
set is publicly available, but the associated segmentation maps are
not provided. We following [10] to evaluate CENet by sending the
estimated segmentation probability maps to the organizers.
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Microsoft COCO [16] is a very challenging dataset for instance
segmentation. This dataset contains 115k images over 80 categories
for training, 5k images for validation and 20k images for testing. In
stead of using mloU that is widely accepted to measure semantic
segmentation, we evaluate our CENet over COCO datset in terms of
AP and AP50.

5.2. Implementation details

To show the advantages of our approach, we selected 5 state-of-
the-art models as baselines to evaluate on CityScapes [15] and PAS-
CAL VOC 2012 [14], including FCN-8s [1], MDCNet [36], DeepLab
[22], CONet [37], APCNet [38]. For ISBI 2012 [17] dataset, we
employ UNet [10] and UNet++ [11] as baselines. For MS COCO
[16] dataset, we use the competitive Mask R-CNN model [39] as
baseline. Experimental results of some baseline models are pro-
duced using default parameter settings given by the authors, while
others are directly taken from the literature.

For CityScapes and PASCAL VOC 2012 datasets, the segmenta-
tion performance is measured by the mean intersection-over-union
(mloU) score [22,37,38]. Let ¢;; be the number of pixels with the
ith category as the ground truth and the jth class as the predic-
tion; t; is the total number of pixels for the ith category in the
ground truth, then mloU score calculates the mean portion of the
intersection between the ground truth and the prediction:

1 Cii
mioU K Z ti + Zj Cij — Cij (7)

For ISBI 2012 dataset, on the other hand, we measure the seg-
mentation outputs in terms of foreground-restricted rand scoring
(RST) and foreground-restricted information theoretic scoring (IST)
after border thinning, provided by the organizers [17].

The entire CENet is implemented based on Caffe framework
[40]. The input images and the corresponding pixel-wised anno-
tated ground truth are used to train the network using the stochas-
tic gradient descent algorithm [41]. In order to make full use of
the GPU memory, we favor a large batch size (set as 14) to train
batch normalization parameters, where initial learning rate, mo-
mentum and weight decay are set to 10-3, 0.99 and 5 x 104, re-
spectively. Following [2], we employ a “poly” learning rate policy
where the initial learning rate is multiplied by (1 — #j{er)nower
with power = 0.9.

5.3. Evaluation results on CityScapes

Table 1 compares our method with baseline networks on
CityScapes dataset, and reports results in terms of individual
category mloU and average mloU over all categories. It clearly
demonstrates that our CENet outperforms other state-of-the-art
approaches, where 12 out of 19 categories achieve the best perfor-
mance. Among all methods, our CENet achieves the best segmen-
tation performance with 82.5% mloU, improving 0.7% mloU com-
pared with the second best network CONet [37]. Among all base-
lines, the FCN-8s [1] is at the lowest rank, probably because of
its very simple network architecture, which is not able to capture
multi-scale contextual cues effectively. It is intriguing that our ap-
proach is superior to the existing methods [22] that employ CRF
as post-processing to explore short-ranged and long-ranged inter-
actions among pixels. This indicates CENet has powerful ability to
capture wide scale context information to further improve the per-
formance of segmentation outputs.

In order to show the qualitative results, we also trained our
CENet using only “train” set (2,975 images), and produce segmen-
tation results on “val” set. Some visual example of simultaneous
recognition and segmentation ares shown in Fig. 3. Each example
shows both the original image and the color coded output labeling.
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Individual category results and the average over all categories on the CityScapes test set in terms of
mloU scores. The best performance for each individual class is marked with a bold-face number.

Method Roa Sid Bui Wal Fen Pol TLi TSi Veg Ter
FCN-8s [1] 97.1 76.6  88.1 329 385 483 564 621 90.7 66.7
MDCNet [36] 974 796 89.0 458 473 59.1 593 706 905 683
APCNet [38] 987 869 935 584 638 67.7 76.1 805 936 722
Deeplab [22] 98,6 862 935 552 632 700 77.1 813 938 723
CONet [37] 989 879 939 613 631 721 793 824 940 734
Ours 988 89.1 946 627 637 664 757 797 947 73.6
Method Sky Ped Rid Car Tru Bus Tra Mot Bic mloU
FCN-8s [1] 92.7 743 443 915 369 413 328 457 627 621
MDCNet [36] 948 762 524 926 605 712 504 502 69.1 69.7
APCNet [38] 953 868 719 962 777 915 836 708 775 812
Deeplab [22] 959 876 734 963 75.1 904  85.1 721 783 813
CONet [37] 96.0 88.5 75.1 96.5 725 88.1 799 731 79.2 818
Ours 964 873 754 942 794 919 868 733 797 825

Fig. 3. The visual comparison on CityScapes val dataset. From top to bottom are original images, the corresponding ground truth, segmentation outputs from FCN-8s [1],
MDCNet [36], APCNet [38], DeepLab [22], CONet [37] and our CENet. (Best viewed in color).

Fig. 4. Some failure visual examples on CityScapes validation dataset. From left to right are original images, corresponding ground truth, and our segmenting results. (Best

viewed in color).

Except some boundary pixels that exhibit relative higher confusion,
nearly all pixels are correctly classified. Our method also obtains
better segmenting results for the tiny object instances, such as “bi-
cycle”, “traffic sign” and “traffic light”, etc. As shown in Fig. 4, we
also illustrate some failure visual examples. It is discovered that
the area of “road” and “sidewalk” are sometimes incorrectly clas-

sified, probably due to the fact that these two categories share

extremely similar visual appearance (e.g., intensity, color and tex-
ture).

5.4. Evaluation results on pascal VOC 2012

We now demonstrate that our method scales nicely in in-
door/outdoor scenario when augmenting the number of images
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Table 2
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Individual category results and the average over all categories on the PASCAL VOC 2012 test set in terms of mloU

scores. The best performance for each individual class is marked with a bold-face number.

Method aero bike bird boat bottle bus car cat chair  cow mloU
FCN-8s [1] 76.8 342 689 494 603 75.3 74.7 776 214 625 62.2
Deeplab [22] 84.4 54,5 815 63.6 659 85.1 79.1 834  30.7 741 71.6
MDCNet [36] 85.2 41.0 834 694 80.4 89.5 85.1 87.1 403 78.1 73.1
APCNet [38] 95.8 75.8 845 76.0  80.6 96.9 90.0 96.0 42.0 93.7 842
CONet [37] 95.7 719  95.0 763 828 94.8 90.0 959 371 926 842
Ours 95.1 770 908 74.2 80.9 95.8 91.6 964 431 915 847
Method table dog horse mbk  person plant  sheep sofa train tv mloU
FCN-8s [1] 46.8 718 639 76.5 73.9 45.2 724 374 709 55.1 62.2
Deeplab [22]  59.8 79.0 761 83.2 80.8 59.7 82.2 504 731 63.7 716
MDCNet [36] 47.8 822 769 79.0 845 58.5 83.2 533 842 721 73.1
APCNet [38] 754 91.6 95.0 90.5 89.3 75.8 92.8 619 889 79.6 842
CONet [37] 73.0 934 946 89.6 884 74.9 95.2 632  89.7 782  84.2
Ours 73.3 919 942 90.6 904 773 93.8 66.9 89.1 783 847

Fig. 5. The visual comparison on PASCAL VOC 2012 val dataset. From top to bottom are original images, the corresponding ground truth, segmentation outputs from FCN-8s
[1], DeepLab [22], MDCNet [36], APCNet [38], CONet [37] and our CENet. (Best viewed in color).

and classes on PASCAL VOC segmentation dataset [14]. Table 2
shows the superior performance of the proposed approach. Com-
pared with the state-of-the-art baselines, our CENet achieves high-
est 84.7% mlIOU accuracy. It obtains the best score on 9 out of the
20 categories. This superior performance can be attributed to the
architecture of CENet, which allows us to effectively capture the
contextual clues within different scales. Consistent with Table 1,
FCN-8s once again ranks at the bottom, only obtaining 62.2% mloU.
Compared with the images in CityScapes dataset, the images in
PASCAL VOC 2012 dataset have larger variance in visual appearance
and more complex and clutter background.

Fig. 5 shows some visual examples of segmentation outputs
on the PASCAL VOC validation set. Each example also exhibits
the input image and the corresponding color coded output. Com-
pared with baselines, our CENet not only correctly classifies objects
with different scales, but also produces better consistent qualita-
tive results for all classes. Other networks, such as FCN-8s [1] and
DeepLab [22] achieve poor segmentation output, since their recep-
tive fields are not adaptive to encode multi-scale context, resulting
in the problem that objects substantially larger or smaller than the
receptive field may be fragmented or incorrectly classified. For in-
stance, the “cat” in the sixth example and the “glass” in the sev-
enth example in Fig. 5.

Table 3

Segmentation results on MS COCO validation set in terms of

AP and AP50.
Method APposc AP APy AP
Mask R-CNN [39]  36.1%  57.5%  40.0%  60.5%
Ours 36.7% 584%  40.8%  61.6%

5.5. Evaluation results on MS COCO

To further demonstrate the generality of our CENet, we con-
duct the instance segmentation task on MS COCO [16], where the
segmentation head is replaced by our method. We use the offi-
cial implementation with end-to-end joint training whose perfor-
mance is almost the same as the baseline reported in Huang et al.
[6], Wang et al. [42]. For fair comparison, all models are fine-tuned
from pre-trained model based on ImageNet. Table 3 reports com-
parison results between baseline and our method. It can be seen
that our method achieves 36.7% AP and 58.4% AP50 in terms of
segmentation masks, and 40.8% AP and 61.6% AP50 in terms of de-
tected bounding boxes, respectively, representing a clear improve-
ment by a margin of 0.6%, 0.9%, 0.8%, and 1.1% over Mask R-CNN
model. Fig. 6 also illustrates some qualitative visual results of our
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Fig. 6. The visual comparison on MS COCO val dataset. From top to bottom are instance segmentation results from our approach and baseline Mask R-CNN model [39]. (Best

viewed in color).

Table 4
Segmentation results on the ISBI
2012 test set in terms of RST and IST
scores.

Method RST IST
UNet [10] 09621  0.9808
UNet+ [11] 09653  0.9877
Ours 0.9696  0.9914

method in terms of detected bounding boxes and segmentation
masks. It clearly shows that our method achieves better visual re-
sults with respect to baseline model. For instance, in first example,
our method correctly segments and identifies the area of “motor-
cycle”, while the left tire is misclassified as “bicycle” using Mask
R-CNN model [39]. This can be also observed in second and third
examples, where the “bench” is missing and woman hair are incor-
rectly classified as “tie”. Although the goal of our method is to per-
form semantic segmentation, it is interesting to point out that our
method achieves less false positive of detective bounding boxes,
such as “person” in second and forth examples. This is probably
because that object detection task is benefit from our segmenta-
tion results.

5.6. Evaluation results on ISBI 2012

In this section, we evaluate our CENet on the task of bio-image
segmentation over ISBI 2012 dataset [17], where the segmentation
results are binary outputs. The quantitative results are reported
on Table 4. Our CENet obtains 0.9696 and 0.9914 score in terms
of RST and IST. Compared with second-rank model UNet++ [11],
our approach improves RST and IST by 0.0043 and 0.0037, respec-
tively. Some qualitative results compared with UNet++ [11] model
are shown in Fig. 7, in which our method produces more flat seg-
mentation area of cell inside regions (marked with red rectangles),
and more smooth segmentation boundary of membranes (marked
with blue rectangles). This is probably because the integration of
multiple deconvolutional features has more powerful representa-
tion than the context encoding scheme adopted in UNet++ [11],
where individual deconvolutional feature is considered.

5.7. Ablative studies

To understand the underlying behavior of our system, this sec-
tion reports the results of a series of ablation studies. Note all the
experiments are evaluated on validation set.

5.7.1. Ablative study on sequential context introduction

To investigate the effectiveness of the different scale context
of our proposed CENet, we conduct ablative studies on CityScapes
and PASCAL VOC 2012 dataset, where multiple scale context cues

Table 5
Contributions of different scale context combinations in terms of mloU (%).

Method CityScapes [15] PASCAL VOC [14]
scalel 67.1 70.3
scalel + scale2 69.6 73.7
scalel + scale2 + scale3 70.2 741
scalel + scale2 + scale3 + scale4  70.5 74.4

(denoted as different color arrows in Fig. 2) are sequentially added
to our systerm, using the same training scheme and loss functions.
More specifically, the baseline, denoted as scalel, is constructed by
concatenating the feature maps with same resolution of encoder
and decoder (blue arrows shown in Fig. 2). Then different scales
of context features, such as red, purple, and green arrows shown
in Fig. 2 (denoted as scale2, scale3, and scale4, respectively), are
sequentially introduced. Table 5 reports the contributions of their
combinations in terms of mloU.

It is observed that the performance increases as more scale
context cues are investigated. Specifically, using the full scale con-
text leads to 70.5% and 74.4% for the two datasets. This is due to
the fact that the semantic features of deeper layers are helpful to
rectify classification error from shallow layers, while the shallow
layers provide more spatial details to delineate object shapes and
boundaries. Another interesting observation is that, with the in-
troduction of different scale context information, the performance
gain is gradually reduced, i.e. 2.5%, 0.6%, and 0.3% on CityScapes
dataset, and 3.4%, 0.4%, and 0.3% on PASCAL VOC 2012 dataset, re-
spectively. This indicates that integrating 4 scales of middle-level
convolutional features provides enough context for these segmen-
tation tasks. Some segmentation outputs of visual examples from
two datasets are illustrated in Fig. 8. It is evident that when more
contextual information is captured in our CENet, the segmented
objects have more accurate boundaries, i.e., “building”, “tree”, and
“person”, even for tiny object instances such as “bicycle”, “traffic
sign” and “traffic light”.

5.7.2. Ablative study on implementing efficiency

To analyze running efficiency of our CENet, we carry on abla-
tive studies on the Cityscapes dataset by adopting different scales
of contextual features. We have aslo compare with some recent
state-of-the-art networks including UNet [10], UNet++ [11], and CC-
Net [6] in terms of model size and FLOPs. Note all experiments
are conducted using ResNet-101 as backbone, thus we only com-
pare model size and FLOPs of decoder. Besides, the resolution of
input images keeps 769 x 769 for fair comparison. The results are
reported in Table 6. We observe that in spite of adopting concate-
nating features, our system has similar model size and FLOPs with
respect to UNet++ [11], but achieves smaller model size and lower
FLOPs than CCNet [6]. The main reason is that an 1 x 1 convolution
is always adopted before feature concatenation in each upsampling
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Fig. 7. The visual comparison on ISBI 2012 test dataset. The first row depicts original images, the second and third rows are binary segmentation results produced by UNet++

[11] and our CENet. (Best viewed in color).

(a) CityScapes dataset

(b) PASCAL VOC 2012 dataset

Fig. 8. Some visual segmentation outputs by sequentially adding multiple scale context on (a) CityScapes and (b) PASCAL VOC 2012 dataset. From top to bottom are input
images, the ground truth, and segmentation results from scalel, scalel + scale2, scalel + scale2 + scale3, and full scales. (Best viewed in color).

Curve of training loss

Curve of training loss

14

— Scale |
= Scale 1 + Scale 2
= Scale | + Scale 2 + Scale 3

12

= Full Scalcs

10

1
‘ ‘»"““,u"“m‘i*“x‘ﬁ‘\ I

|
*‘s“‘ { \ J“

Loss(1075)

Loss(1075)

— Scale |

— Scale 1 + Scale 2

= Scalc 1 +Scale 2 + Scale 3
= Full Scales

=

; \W\MWMWWM\W‘ i

i)

0 1 2 3 4 5 6 7

Iterations(10"4)
(a) CityScapes dataset

7.5 10.0 12.5 15.0 17.5
Iterations(10"4)

(b) PASCAL VOC 2012 dataset

0.0 2.5 5.0

Fig. 9. The loss vs iteration on (a) CityScapes and (b) PASCAL VOC 2012 dataset, respectively, where multi-scale context information are sequentially considered in our

network. (Best viewed in color).

step, resulting in great reduction of model parameters and FLOPs
to accelerate running speed. In spite of having nearly symmetri-
cal structure as well as UNet [10], our system is still implemented
slower than UNet [10] since our CENet involves more complicated
skipped connections. Note when only first scale context is added
to baseline, our network degenerates to UNet model, thus achiev-
ing nearly the same model size and FLOPs with respect to UNet.

5.7.3. Ablative study on convergence of training process

To further demonstrate the effectiveness of our method,
Fig. 9 also plots the curves of loss function as the iteration num-
ber increases on CityScapes and PASCAL VOC 2012 datasets. Once
again, one can observe that the more context information is uti-
lized, the faster convergence speed can be achieved, which is con-
sistent with the conclusion of Table 5. We also discover that, com-
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Table 6

Comparison of implementing efficiency on Cityscapes validation
dataset. FLOPs and model size are estimated for an input of reso-
lution 769 x 769.

Method FLOPs  Parameters (M)
baseline 0 0

baseline + scalel 6.7 40.6

baseline + scalel + scale2 8.1 46.6

baseline + scalel + scale2 + scale3 8.8 50.5

baseline + full scales 9.3 533

CCNet [6] 24.7 208

UNet [10] 6.7 40.5

UNet+ [11] 8.9 51.8

pared with PASCAL VOC 2012 dataset, more flatten curves are ob-
tained on CityScapes dataset. This is probably because PASCAL VOC
2012 dataset involves more training data, greater visual variance,
and larger number of object categories.

6. Conclusion remarks and future work

This paper has proposed a novel encoder-decoder network,
named CENet, to explore hierarchy convolution features collabora-
tively for accurate pixel-wised semantic segmentation. Compared
with recent encoder-decoder networks, our CENet provides a more
powerful representation to capture multi-scale context information
through constructing ensemble deconvolution from encoder to de-
coder. Dense upsampling enables CENet to combine feature maps
with different receptive fields, thus allowing us to fully investi-
gate local and global context cues. To evaluate our method, the
experiments are conducted on CityScapes and PASCAL VOC 2012
datasets. The experimental results show that our CENet outper-
forms recent state-of-the-art networks, and demonstrate that our
approach can produce more accurate predictions and delineated
segmentation outputs. We also validate the scalability of CENet on
MS COCO dataset for instance segmentation with augmented train-
ing images and semantic categories. Our method still achieves out-
standing performance. Finally, we demonstrate our approach for
the task of biological segmentation, where the experimental results
show the effectiveness of our approach on ISBI 2012 dataset.

In spite of obtaining impressive results on segmentation accu-
racy, our method sacrifices implementing efficiency. The experi-
mental results show that our CENet performs slower than UNet
[10] and UNet++ [11]. As a result, one future direction will involve
in-depth model design, regarding the lightweight architecture to
reduce the number of model parameters and computational bur-
den, without significant performance drop simultaneously. In addi-
tion, we are interested in extending our model in spatio-temporal
domain (e.g., video sequence) to perform video segmentation.
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