

1 Using an on-site laboratory for fecal steroid analysis in wild white-faced capuchins

2
3 *Jacinta C. Beehner^{a,b,c}, José Alfaro^d, Cloe Allen^a, Marcela E. Benítez^{b,e}, Thore J. Bergman^{a,b,f},
4 Margaret S. Buehler^{g,h,i}, Sofía C. Carrera^{a,b}, Emily M. Chester^{b,j}, Tobias Deschner^k, Alexander
5 Fuentes^b, Colleen M. Gaultⁱ, Irene Godoy^{l,m}, Katharine M. Jack^{h,i}, Justin D. Kim^{a,b}, Lev
6 Kolinski^b, Nelle K. Kulick^{h,i}, Teera Losch^{a,b}, Juan Carlos Ordoñez^b, Susan E. Perry^{l,m}, Fernando
7 Pinto^b, Olivia T. Reilly^{n,o}, Elizabeth Tinsley Johnson^{b,p}, Michael D. Wasserman^{b,j}

8
9
10 ^a Department of Psychology, University of Michigan, Ann Arbor, MI 48109 USA

11 ^b Capuchins at Taboga Research Project, Taboga Forest Reserve, Costa Rica

12 ^c Department of Anthropology, University of Michigan, Ann Arbor, MI 48109 USA

13 ^d School for the Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109
14 USA

15 ^e Department of Anthropology, Emory University, Atlanta, GA 30322 USA

16 ^f Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI
17 48109 USA

18 ^g Department of Anthropology, Tulane University, New Orleans, LA 70118 USA

19 ^h Santa Rosa Primate Project, Santa Rosa National Park, Costa Rica

20 ⁱ Tulane National Primate Research Center, Tulane University, Covington, LA 70433 USA

21 ^j Department of Anthropology, Indiana University, Bloomington, IN 47405 USA

22 ^k Institute of Cognitive Science, Comparative BioCognition, University of Osnabrück,
23 Artilleriestrasse 34, 49076, Osnabrück, Germany

24 ^l Lomas Barbudal Monkey Project, Lomas Barbudal Biological Reserve, Costa Rica

25 ^m Department of Anthropology, University of California, Los Angeles, CA 90095 USA

26 ⁿ Department of Psychology, Georgia State University, Atlanta, GA 30302 USA

27 ^o Language Research Center, Georgia State University, Atlanta, GA 30302 USA

28 ^p Department of Integrative Biology, Michigan State University, East Lansing, MI 48824 USA

29
30 *Corresponding author: Jacinta C. Beehner, mobile: 734-834-0899, email: jbeehner@umich.edu

31 32 33 ABSTRACT

34

35 Hormone laboratories located “on-site” where field studies are being conducted have a
36 number of advantages. On-site laboratories allow hormone analyses to proceed in near-real-time,
37 minimize logistics of sample permits/shipping, contribute to in-country capacity-building, and
38 (our focus here) facilitate cross-site collaboration through shared methods and a shared
39 laboratory. Here we provide proof-of-concept that an on-site hormone laboratory (the Taboga
40 Field Laboratory, located in the Taboga Forest Reserve, Costa Rica) can successfully run

41 endocrine analyses in a remote location. Using fecal samples from wild white-faced capuchins
42 (*Cebus imitator*) from three Costa Rican forests, we validate the extraction and analysis of four
43 steroid hormones (glucocorticoids, testosterone, estradiol, progesterone) across six assays
44 (DetectX® and ISWE, all from Arbor Assays). Additionally, as the first collaboration across
45 three long-term, wild capuchin field sites (Lomas Barbudal, Santa Rosa, Taboga) involving local
46 Costa Rican collaborators, this laboratory can serve as a future hub for collaborative exchange.

47

48 **KEY WORDS**

49 androgens, cortisol, estradiol, estrogens, field laboratory, glucocorticoids, progesterone,
50 progestogens, testosterone, validation

51

52 **INTRODUCTION**

53 Our ability to extract steroid hormones from the fecal samples of wild animals has
54 revolutionized the kinds of questions we can answer in the field of wildlife behavioral
55 endocrinology. For example, fecal hormones provide a relatively easy and non-invasive
56 approach for monitoring hormone trajectories in wild subjects where darting or capture is not
57 possible or ethical. Fecal steroids are not without limitations, and researchers should consider
58 these carefully when adopting this method (Palme, 2005). For example, the fecal steroid
59 concentrations obtained directly from immunoassay kits are not absolute measures of circulating
60 steroids. Rather, they are relative measures that are specific to that species and substrate (i.e.,
61 feces), the hormone extraction method, storage time, and the hormone assay. Even for the same
62 species, hormone values obtained from different extraction methods and different immunoassays
63 cannot be compared across studies. Because different field sites have adopted different methods

64 (based on site limitations or a history of using particular method), it is difficult to make cross-site
65 comparisons within a species. One obvious solution is for studies on the same species to follow
66 the same protocol for extraction and analysis (and, ideally, within the same laboratory). With this
67 manuscript we move closer to this goal by validating six different steroid hormone assays for use
68 in a single taxon, the white-faced capuchin (*Cebus imitator*), located at three different research
69 sites in Costa Rica. Although we carry out various steps of these validations at two different
70 laboratories (one in the U.S. and one in Costa Rica), the primary objective is to eventually have
71 all hormone analyses take place at the laboratory in Costa Rica for these projects. An in-country
72 laboratory (i.e., located in the same country as the species under study) can facilitate cross-site
73 hormone and behavior comparisons due to shared equipment, protocols, and analyses.

74 Moreover, there are several additional benefits to shifting analyses to an in-country
75 laboratory. First, this eliminates the need for export/import permits and minimizes the logistics
76 and expenses of sample shipment and preservation in-transit (since samples typically must
77 remain frozen). Second, for in-country laboratories located directly “on-site” (i.e., located at the
78 same site where samples are being collected), researchers can harness daily measures of
79 hormones (and other biomarkers) to guide same-day or next-day behavioral observations on
80 individuals with known or suspected physiological states. Most field endocrine studies are
81 unable to obtain measures for fecal hormones until months, sometimes years, later. Finally, an
82 on-site laboratory can facilitate capacity building, since local research assistants can be trained
83 on-site in hormone extraction, measurement, analyses, and troubleshooting. This has the
84 potential to move the entirety of the scientific process, from sample collection to write-up, to the
85 country where the work is being conducted. With this manuscript, we focus primarily on the

86 cross-site collaboration made possible when all researchers collect and analyze samples using
87 similar methods.

88 Here, we introduce an on-site laboratory, the Taboga Field Laboratory, located in the
89 Taboga Forest Reserve, Costa Rica. This laboratory abuts the Taboga Forest (outside of Cañas,
90 Costa Rica), largely characterized by seasonally dry tropical forest, featuring a closed canopy
91 and seasonal deciduousness (Janzen, 1988; Miles et al., 2006). The Taboga Forest is home to two
92 non-human primates, white-faced capuchins (*Cebus imitator*) and mantled howler monkeys
93 (*Alouatta palliata*), often found in the trees surrounding the laboratory itself. The Taboga Forest
94 is the home of the Capuchins at Taboga research project – investigating the cognition,
95 endocrinology, and behavior of wild white-faced capuchins. Facilitating collaborative efforts, the
96 Taboga Field Laboratory is located less than 100 km from two other long-term field sites
97 studying white-faced capuchins, the Lomas Barbudal Monkey Project and the Santa Rosa
98 Primate Project. This publication represents the first collaborative effort across all three sites. At
99 present, our knowledge of steroid hormone production and steroid metabolism in white-faced
100 capuchins is fairly limited, and most of what we know derives from wild studies on fecal
101 hormones.

102 Our primary objective was to validate six commercial steroid hormone assays in white-
103 faced capuchins (all assays are available from Arbor Assays), including assays from two
104 different glucocorticoids assays (DetectX®, ISWE), two different androgens assays (DetectX®,
105 ISWE), one estrogens assay (DetectX®), and one progestogens assay (DetectX®). All three long-
106 term capuchin sites have a history of collecting fecal samples for the extraction and measurement
107 of steroid hormones; and all three sites use similar extraction protocols (extraction and storage in
108 ethanol, EtOH), which will facilitate comparative studies in behavioral endocrinology for this

109 taxon. We specifically selected Arbor Assays as our supplier for three reasons. First, they have
110 been extremely flexible in working with us to ship reagents internationally, including helping us
111 make our own stop solution in-country, since this component is designated as “corrosive” and
112 not easily shipped internationally (this is why we added the ISWE version to our validation for
113 GCs and T). Second, they often troubleshoot their assays under less-than-perfect “field”
114 conditions, which helps ensure their assay kits work under low-budget conditions. And, third, we
115 have found Arbor Assays to provide generous technical help when helping us troubleshoot our
116 assay results or shipping the reagents to the site.

117 Behavioral endocrinologists working with fecal hormones from wild populations
118 routinely measure four broad classes of steroid hormones: glucocorticoids, androgens, estrogens,
119 and progestogens. Fortunately, steroid hormones show up in the fecal samples of most
120 vertebrates in smoothed proportions relative to recent episodic fluctuations in the bloodstream
121 (Palme, 2005). These are some of the most useful hormones to accompany behavioral
122 monitoring in wild animals. Glucocorticoids track metabolic, social, and other environmental
123 challenges that demand energy (Beehner et al., 2005; Creel et al., 2013); they are often called
124 “stress hormones” because secretion increases in response to stressful stimuli (although this term
125 has been criticized (MacDougall-Shackleton et al., 2019)). Androgens track male development,
126 reproduction, and challenges to reproductive success (Hau, 2007; Pappano and Beehner, 2014;
127 Schoof et al., 2014); most studies focus on testicular secretion in males (Muller, 2017) although
128 females secrete androgens as well (Hammes and Levin, 2019). Estrogens and progestogens track
129 female development and reproduction (Beehner et al., 2006; Deschner et al., 2004; Möhle et al.,
130 2005).

131 However, because steroids excreted in fecal matter are highly metabolized downstream
132 products (and because different taxa metabolize hormones differently (von der Ohe and
133 Servheen, 2002)), it is critical that all methods for extracting and measuring hormones be
134 validated using fecal samples for each species of interest (Touma and Palme, 2005; Ziegler and
135 Wittwer, 2005). The manuscript includes three parts: (a) a deconjugation analysis to ascertain
136 whether excreted hormones are conjugated or not; (b) an analytical validation to ascertain
137 whether the assay measurements are accurate and precise; and (c) a biological validation to
138 ascertain that the assay is producing biologically meaningful results. Here we validate six Arbor
139 Assays antibodies for use in wild white-faced capuchins. We then draw attention to the
140 differences in glucocorticoid concentrations from the wet to dry seasons across the three study
141 sites (Lomas, Santa Rosa, and Taboga) and to the normative life history trajectories for androgen
142 concentrations in maturing males for Lomas and Taboga.

143

144 **METHODS**

145 **Sites and study subjects**

146 For all three study sites, routine censuses are conducted on the white-faced capuchin
147 groups living in their natural habitats in Costa Rica. Each project conducts observational
148 sampling on multiple habituated groups, noting presence/absence of each group member,
149 additions of any group members (via birth or immigration), overall health (e.g., the presence of
150 wounds), and reproductive state (e.g., pregnancy is assigned based on abdominal protrusions and
151 confirmed after the birth of an infant; lactation is assigned based on the presence of a nursing
152 infant). Individual animals are identified by distinct markings on their faces, heads, and bodies.
153 All research for this study was non-invasive and carried out with IACUC permission from our

154 respective U.S. universities as well as permission from the Costa Rican government (UTN,
155 MINAE, SINAC, CONAGEBIO).

156

157 *Lomas Barbudal*. The Lomas Barbudal Monkey Project (hereafter, “Lomas”) monitors the
158 capuchins in the Lomas Barbudal Biological Reserve and the surrounding private farm and ranch
159 lands adjacent to the Rio Cabuyo, Rio Salto, and Rio Pijije. The Lomas project was started by
160 Dr. Susan Perry in 1990 (Perry et al., 2012), with behavioral and demographic data collected
161 near-continuously since then. The Lomas Barbudal site is a tropical dry forest that includes
162 riverine and oak forest and includes a lot of steep terrain. This area also experiences a dry season
163 that usually begins in mid-Nov and ends in mid-May each year. There are 12 groups under
164 intensive study, although the monitoring of groups changes from year to year. During the period
165 when hormone samples were routinely collected (2006-2018), the project monitored an average
166 of 9 groups per year (range 6-11 groups), with each group censused about once a week. The
167 number of individuals monitored across this time ranged from 154-245 (average of 206/yr).

168

169 *Santa Rosa*. The Santa Rosa Primate Project (hereafter, “Santa Rosa”) monitors the capuchins in
170 the Santa Rosa Sector (SSR) of the Área de Conservación Guanacaste. The Santa Rosa Project
171 was initiated by Dr. Linda Fedigan in 1983, with behavioral and demographic data collected
172 nearly continuously since that time (Fedigan and Jack, 2012; Melin et al., 2020). The project is
173 currently co-directed by Dr. Fedigan (University of Calgary), Dr. Katharine Jack (Tulane
174 University), and Dr. Amanda Melin (University of Calgary). The ~10,000 ha sector comprises
175 mainly tropical dry forest in various stages of regeneration, with several groves of old forest
176 growth and riparian forest edges along seasonally flowing streams. The area experiences a

177 distinct dry season from mid-December to mid-May; nearly all of the annual rain arrives during
178 the wet season (Fedigan and Jack, 2012). There are currently ~48 groups of capuchins residing in
179 the SSR, with 5 of these groups under intensive study comprising a study population of 119
180 individuals (40 adult females, 19 adult/subadult males). The Santa Rosa primate project conducts
181 twice-monthly censuses on each of these 5 capuchin study groups, with additional intensive
182 behavioral and ecological studies often occurring simultaneously.

183 *Taboga*. The Capuchins at Taboga Project (hereafter, “Taboga”) monitors the capuchins in the
184 Taboga Forest Reserve and the Finca Experimental (owned by the Universidad Técnica
185 Nacional, UTN). The Taboga Project (established in June 2017) is the newest of the white-faced
186 capuchin projects and is co-directed by Drs. Jacinta Beehner, Thore Bergman (University of
187 Michigan), and Marcela Benítez (Emory University). The Taboga Forest is a tropical dry forest
188 located in the foothills of the Guanacaste Mountains and part of the Tempisque River Basin, near
189 Abangares and Cañas. The full forest is 789 ha (of which 516 ha are protected and the focus of
190 this study) with extensive edge habitat and significant fragmentation. Although the area has a
191 high degree of seasonality (Tinsley Johnson et al., 2020), the water availability is tempered by a
192 series of year-round, artificial water sources (irrigation canals, including a “river” which derives
193 from the irrigation canals) used to water the nearby rice and sugarcane fields. The irrigation
194 provides a water source to the fauna species in the Taboga Forest year round, but it also appears
195 to irrigate the flora in direct contact with the canals, especially during the dry season. There are
196 also numerous fruit trees surrounding the forest including mango and banana trees that the
197 capuchins use for foraging. The Taboga project monitors four habituated capuchin groups on a
198 near-daily basis, with group sizes ranging from 16-33 individuals (Tinsley Johnson et al., 2020).

199 **Fecal sample collection and extraction**

200 The first stage of hormone analysis from wild subjects is to collect samples from known
201 individuals within a few minutes of defecation, to preserve those samples immediately, and to
202 extract the hormones from the fecal matrix. Santa Rosa and Taboga share an identical extraction
203 method, while the Lomas method of extraction is slightly different. However, the Lomas
204 extraction method overlaps the other two in the following ways: (a) samples were collected in
205 their entirety and placed on ice for several hours prior to freezing, (b) hormones were extracted
206 using 80% EtOH, and (c) extracts were stored in 80% EtOH (not buffer).

207

208 *Santa Rosa and Taboga.* The Santa Rosa and Taboga projects have adopted an identical
209 collection and extraction method. Fecal samples are identified opportunistically from known
210 individuals. Immediately following defecation, observers wearing gloves collect the entirety of
211 the fecal sample using a wooden stick and place it into a polypropylene vial labeled with the
212 individual ID, date, and time. Seeds and detritus are avoided, and samples contaminated in any
213 form (e.g., with urine or standing water) are rejected. Labeled tubes are placed into cooler bags
214 with ice packs until they are transferred to a freezer kept at -20°C, where they remain until
215 extraction.

216 For hormone extractions, researchers allow all samples to come to room temperature (~ 1
217 h). Then, each sample is thoroughly mixed with a metal spatula (1 min), 0.2 g (wet weight) of
218 fecal material (taking care to avoid seeds) is weighed, and this aliquot is added to a labeled tube
219 (15 ml Falcon polypropylene tube). Two ml of 80% EtOH are then added to each tube and
220 vortexed for 10 min using a multi-tube vortexer. Following vortexing, all samples are
221 centrifuged for 10 min (3000 rpm), then 1.5 ml of supernatant is gently transferred to a labeled
222 cryovial with an O-ring cap. Extracts are then stored in the freezer until the time of assay. Lastly,

223 the Falcon tubes containing the wet fecal sample are left uncovered allowing them to air dry.
224 Once samples have dried completely, the dry sample is weighed again (to the nearest 0.001 g).
225 For all analyses, fecal hormone measurements are calibrated according to this dry weight (not the
226 0.2 g wet weight from earlier). Although not used in the final concentration calculation, the wet
227 weight helps approximate the similar amounts of fecal material for each extraction.

228

229 *Lomas*. The Lomas project collects fecal samples opportunistically from known individuals using
230 a very similar collection protocol with only one difference: once the field team returns to camp,
231 the samples are placed in a -20°C freezer until the time of oven-drying (within a month of
232 collection). While we do not suspect this will dramatically alter hormone concentrations across
233 sites, we will specifically test this in the future prior to making direct comparisons.

234 For oven-drying, samples are brought to room temperature, thoroughly mixed, and placed
235 in an oven for 2-3 hours at 80-115°C. After drying, undigested plant and insect material is
236 removed from the samples before grinding them into a fecal powder. The samples are then stored
237 in WhirlPak bags at room temperature until they are shipped to the laboratory where they are
238 then stored in a freezer (-20°C) until extraction. To extract samples, samples are brought to room
239 temperature. Then, 0.15 g of dry fecal powder is weighted and extraced using the same
240 procedure as above.

241

242 **Deconjugation analysis**

243 Although for most catarrhine primate species steroid hormones are excreted into feces
244 primarily in the “free” unconjugated form (Heistermann, 2010), this is less often the case for the
245 platyrhine primates of the Americas (Eastman et al., 1984; Ziegler and Wittwer, 2005). Because

246 the assay kits we use here were primarily designed to measure the free forms for these hormones,
247 the hormone signal may be improved by first deconjugating the steroids (typically by hydrolysis
248 or solvolysis). A previous study on white-faced capuchin fecal hormones identified that, while
249 hydrolysis was not necessary, solvolysis released a substantial amount of conjugated androgens
250 and a smaller amount of conjugated glucocorticoids (Weltring et al., 2012). Here, we aim to
251 establish that the non-conjugated portion of the steroid metabolites in feces are strongly
252 correlated with the conjugated proportion, allowing us to bypass this step in our hormone
253 extraction protocol for this species. Therefore, we conducted solvolysis on a subset of samples
254 and examined whether the immunoassay results with and without solvolysis were sufficiently
255 correlated. Although Weltring and colleagues (2012) demonstrated that androgens had the
256 highest levels of sulfate conjugation, we nevertheless compared all four categories of steroid
257 hormones.

258 To establish whether solvolysis was needed for white-faced capuchin steroid hormones,
259 we used a range of 52 samples from the Lomas Barbudal project (extracted in 80% EtOH). This
260 analysis was conducted in the Beehner endocrine laboratory at the University of Michigan (we
261 conducted this part of the validation before the field laboratory was in operation). These samples
262 derived primarily from those used in the biological validation (see below) to ensure we were able
263 to test solvolysis across the full range of hormone values. In brief, we added a strong acid
264 (sulfuric acid) and ethyl acetate to our samples (pH of ~1.0), incubated for one hour (at 55°C),
265 then separated the organic layer (containing de-conjugated hormones) from the aqueous one. We
266 transferred the organic layer to a new tube, returned the sample to neutrality (~6.6, using
267 potassium hydroxide), dried it down, and reconstituted it in our extraction solvent (in this case,

268 80% EtOH). We then ran assays on all samples – solvolysized and non-solvolysized – for the
269 four DetectX® hormones.

270

271 **Hormone assays**

272 Because we are measuring downstream metabolized products of hormone secretion (fecal
273 hormone metabolites), most immunoassays measure several different hormone metabolites, not
274 just the specific steroid hormone. Therefore, to distinguish among the different assay kits, we
275 refer to the specific steroid (cortisol: CORT; testosterone:T; estradiol:E2; progesterone:P4), but
276 when referring to our measurements, we refer to the class of hormones that the assay antibodies
277 are cross-reacting with (glucocorticoids, androgens, estrogens, and progestogens). We also
278 recognize that metabolites from the degradation of secreted hormones may cross over from one
279 class to another, which is why a biological validation of fecal steroid hormones is so important
280 (Touma and Palme, 2005). We validated measurements of these four hormone classes from fecal
281 extractions in white-faced capuchins via competitive enzyme-linked immunosorbent assay
282 (ELISA) using the DetectX® Immunoassay kits (cortisol, testosterone, estradiol, progesterone)
283 and the ISWE mini-kit assays (cortisol, testosterone), all from Arbor Assays (Ann Arbor, MI,
284 USA). We initially selected the DetectX® assays because we already had a working relationship
285 with Arbor Assays. We then added the ISWE CORT and T assay because the kits are easier to
286 ship internationally (the stop solution contains hydrochloric acid and requires special permits to
287 ship internationally, the ISWE kits do not include this solution facilitating shipping). All
288 validation procedures, the assays and hormones validated, the fieldsite contributing the samples,
289 and the laboratory where the work was completed are listed in **Table 1**. The cross reactivity with
290 other steroid metabolites are listed in **Table 2** for each assay.

291

292 **Table 1.** Summary table of validation steps, hormones validated, assay kit used, fieldsite the
293 samples derived from, the test employed, and the outcome.

294 **INSERT TABLE 1 HERE**

295

296 **Table 2.** Cross reactivity (%) with other steroid metabolites for each Arbor Assays hormone kit
297 as indicated by the kit literature; all cross reactivities not listed are less than 0.1%.

298 **INSERT TABLE 2 HERE**

299

300 *Glucocorticoids.* To measure glucocorticoid metabolites, we validated two cortisol enzyme
301 immunoassay kits; the DetectX® CORT Enzyme Immunoassay kit (Arbor Assays, K003) and the
302 ISWE CORT Mini-Kit (Arbor Assays, ISWE002). The DetectX® kit uses a mouse monoclonal
303 antibody, a cortisol-peroxidase conjugate, with a plate coated with goat anti-mouse IgG. The
304 ISWE kit uses a rabbit polyclonal antibody, a cortisol-peroxidase conjugate, with a plate coated
305 with goat anti-rabbit IgG. The rest of the protocol for both kits is the same. Standards (7
306 standards, ranging from 50-3200 pg/ml) and samples (diluted in assay buffer from 1:16 to 1:128)
307 were added to each plate in duplicate (50 µl/well), followed by the addition of 25 µl of the
308 cortisol conjugate and 25 µl of the cortisol antibody (note that this protocol is halved from the kit
309 literature for the ISWE kit). Plates were placed on the plate shaker and incubated at room
310 temperature for 1 h (DetectX® CORT assay) or 2 h (ISWE CORT assay). Plates were then
311 washed 4x with 300 µl wash buffer per well, followed by the addition of 100 µl of TMB
312 substrate, and another 30 min incubation without shaking. The reaction was terminated with 50
313 µl of stop solution (1M HCl). All plates were read using a microtiter plate reader (BioRad

314 iMark[®]) at a wavelength of 450 nm. Concentrations in pg/mL based on optical density values
315 and accounting for sample dilution were calculated using MyAssays[®] software. Final
316 concentrations were calculated in pg/g based on the dry weight of the fecal sample. The
317 sensitivity for each assay (i.e., the lowest hormone value where the assay can statistically
318 differentiate from background) is as follows: DetectX[®] CORT assay = 27.6 pg/mL; the ISWE
319 CORT assay = 11.2 pg/mL.

320

321 *Androgens.* To measure androgen metabolites, we validated two testosterone enzyme
322 immunoassay kits; the DetectX[®] Testosterone Enzyme Immunoassay kit (Arbor Assays, K032)
323 and the ISWE Testosterone Mini-Kit (Arbor Assays, ISWE001). Both kits use a rabbit
324 polyclonal antibody, a testosterone-peroxidase conjugate, and a plate coated with goat anti-rabbit
325 IgG. Both kits follow an identical protocol. Standards (7 standards, ranging from 40.96-10,000
326 pg/ml) and samples (diluted in assay buffer from 1:8-16 for non-adult males, 1:250-1000 for
327 adult males) were added to each plate in duplicate (50 µl/well). The rest of the protocol follows
328 that for the two glucocorticoid assays. The DetectX[®] T assay has a sensitivity of 9.92 pg/mL; the
329 ISWE T assay has a sensitivity of 5.03 pg/mL.

330

331 *Estrogens.* To measure estrogens, we used the DetectX[®] Estradiol Enzyme Immunoassay kit
332 (Arbor Assays, K030). Standards (5 standards, ranging from 39.06-100,000 pg/ml) and samples
333 (diluted in assay buffer from 1:16-32 for lactating females, 1:128-256 for pregnant females) were
334 added to each plate in duplicate (50 µl/well). The rest of the protocol follows that for the other
335 assays. The DetectX[®] E2 assay has a sensitivity of 39.6 pg/mL.

336

337 *Progestogens.* To measure progestogens, we used the DetectX® Progesterone Enzyme
338 Immunoassay Kit (Arbor Assays, K025). Standards (7 standards, ranging from 50-3200 pg/ml)
339 and samples (diluted in assay buffer from 1:20-80 for lactating females, 1:5000-10,000 for
340 pregnant females) were added to each plate in duplicate (50 μ l/well). The rest of the protocol
341 follows that for the other assays. The DetectX® P4 assay has a sensitivity of 47.9 pg/mL.

342

343 **Analytical validation**

344 Analytical validation establishes that the assay (mainly the antibody) is operating as
345 expected after accounting for any matrix interference and the full range of the dose-response
346 curve (typically 20-80% binding, but smaller ranges can also be used). We analytically validated
347 all assays by creating three different fecal pools (adult mixed-sex, adult male-only, adult female-
348 only) for use in the CORT (both kits), T (both kits) and E2/P4 kits, respectively.

349

350 *Serial dilutions.* The first step to an analytical validation is to establish a serial dilution for the
351 appropriate fecal pool that spans from low concentration (80% binding) to high concentration
352 (20% binding). To accomplish this, we started with a fecal pool (neat) and diluted each step by
353 half until it spanned the same range as the standards.

354

355 *Parallelism.* To test for parallelism, we ran a set of standards and a serial dilution of the
356 appropriate fecal pool in the same plate. We then assigned the concentration from the standard
357 binding closest to 50% to the sample from the serial dilution that was binding closest to 50%.
358 Using this assigned concentration, we then back-calculated the “expected” values for each
359 sample in our serial dilution based on the dilution factor. We then plotted the log of these back-

360 calculated values and those of our standards as a function of percent binding, and we visually
361 inspected whether the slope of the serial dilution paralleled the slope of the standards for each of
362 the four assays. We also established parallelism statistically, by checking if there is a significant
363 interaction between the concentrations in a linear model (although many behavioral
364 endocrinologists have confirmed that a visual determination of parallelism is sufficient and
365 sometimes more conservative than statistics alone; ISWE-members listserv discussion Mar 10-
366 25, 2021; (Ganswindt et al., 2012)).

367

368 *Accuracy.* To test the accuracy of each assay, we added an aliquot of each standard with a known
369 concentration to an aliquot of our fecal pool (i.e., the mixed-sex pool for glucocorticoids, the
370 male-only pool for androgens, and the female-only pool for estrogens and progestogens). We
371 then calculated the expected value of these “spiked” samples (based on the known values of the
372 standard plus the sample), and we compared the observed to expected concentrations.

373

374 *Precision.* Precision establishes whether the assay retrieves the same concentration when a
375 sample is assayed multiple times. There are two different measures of precision that are required:
376 one to measure the precision (or coefficient of variation, CV) *within* each assay (*intra-assay CV*)
377 and one to measure the precision *across* all assays (*inter-assay CV*). Although some studies use
378 the average of the CVs for each of their duplicate concentration measurements as an intra-assay
379 CV, this is inappropriate. Samples are run in duplicate to identify mechanical errors in pipetting,
380 not to establish an intra-assay CV. Many studies use kit controls (i.e., pure hormones in buffer)
381 to calculate assay CVs which have two advantages – they are readily available for commercial
382 kits, and they do not degrade. However, we chose to use a fecal pool because CV for these will

383 be closer to the true variation that we see within and across assays due to some degree of fecal
384 matrix effects. To establish the intra-assay CV for our assays, we ran our fecal pool at a low
385 concentration (~60-80% binding) and a high concentration (~20-40% binding) multiple times
386 within the same assay. Our sample size for the intra-assay CV is the number of times we
387 repeated the sample within the assay (counting each well, not each duplicate, as a separate
388 “sample”). To establish the inter-assay CV for our assays, we ran these same low and high
389 concentration pools as controls in each plate. We then calculated the CVs as the standard
390 deviation for these pool concentrations divided by the mean for pool concentrations. Our sample
391 size for the inter-assay CV is the number of plates we ran for each assay.

392

393 **Biological validation**

394 Biological validation establishes that known biological patterns for the native hormone in
395 blood samples can be replicated with the fecal extracts using the assay components. Biological
396 validations can include (a) hormone or behavioral challenges (e.g., for glucocorticoid
397 concentrations, researchers often use an ACTH challenge or the addition of a known stressor
398 (Beehner and McCann, 2008; Goymann et al., 1999; Wasserman et al., 2013; Young et al.,
399 2017); for androgen concentrations, researchers often use a GnRH challenge or the addition of an
400 invader male (Dloniak et al., 2004; Hirschenhauser et al., 2000; Pappano and Beehner, 2014)),
401 (b) a comparison to serum hormone values (Capezzuto et al., 2008; Sheriff et al., 2010) or (c)
402 comparisons across groups that *should* vary in an expected direction (e.g., adult males should
403 have higher androgen concentrations than juvenile males (Beehner et al., 2009); for estrogens
404 and progestogens, pregnant females should have higher hormone concentrations than lactating
405 females (Roberts et al., 2017)).

406 Unfortunately, because we added the ISWE CORT and T assays afterwards, our
407 biological validations for these two hormones did not use the same set of samples. Therefore, we
408 are unable to directly compare performance across assay kits. However, our purpose here was
409 not to identify the “best” kit for use but rather to simply validate each kit for use on the same
410 species. Testing for the “best” assay (e.g., most sensitive, most accurate, most precise, etc.)
411 typically relies on pharmacological manipulations to assess how and when measurements using
412 each antibody respond to known changes in hormone secretion. We would pursue this route if we
413 discover later that these assays do not yield sufficient variability when applied to our various
414 research questions. All analyses were run in R (R version 4.2.0).

415

416 *Glucocorticoids (GCs)* - In line with many studies on GCs in tropical mammals where water and
417 food are restricted during the dry months (Carnegie et al., 2011b; Garber et al., 2020; Gesquiere
418 et al., 2008; Medina-Cruz et al., 2020), we expected GC concentrations in white faced capuchins
419 during the dry season to be higher than during wet season. We used samples from all three study
420 sites for this biological validation (Table 1). Based on the antibodies already in use at each site,
421 we validated the DetectX® CORT antibody using the Lomas samples (Lomas: 36 females/359
422 samples, all adults), and we validated the ISWE CORT antibody using the Santa Rosa (Santa
423 Rosa: 5 females/18 samples, 10 males/45 samples, all adults) and Taboga samples (Taboga: 22
424 females/294 samples, 29 males/272 samples, all ages). We selected samples from well within the
425 dry and wet seasons of Costa Rica (leaving approximately a one-month buffer on either end).
426 Therefore, for any given year, samples for the dry season (all sites) were from Jan-Apr, and
427 samples from the wet season (all sites) were from Jun-Nov. For the Lomas (DetectX® CORT)
428 and the Santa Rosa and Taboga datasets (ISWE CORT), we constructed linear mixed models

429 (LMMs) with fecal GC metabolites (log-transformed) as a function of *season* (wet/dry), with
430 *individual ID* included as a random effect. Additionally, we included *sex* as a factor for the two
431 datasets that were mixed-sex (Santa Rosa, Taboga) and *age* as a covariate for the dataset that
432 contained non-adults (Taboga).

433

434 *Androgens* - In line with the onset of puberty, testis maturation, and the onset of testosterone
435 production by the mammalian testes (Beehner et al., 2009; Behringer et al., 2014; O'Brien et al.,
436 2017; Wolf et al., 2018), androgen concentrations in adults are expected to be higher than those
437 of juveniles, with subadults somewhere in between. We therefore expected the following pattern
438 for androgen concentrations in white faced capuchin males: adult males > subadult males >
439 juvenile males. We used samples from Lomas (N=14 males, 14 samples) to validate the
440 DetectX® T assay, and we used samples from Taboga (N=29 males, 308 samples) to validate the
441 ISWE T assay. We use the following approximations for age categories: juveniles from 2.0-5.0
442 years, subadults from 5.0-10.0 years, and adults from 10.1 years and older. The Lomas samples
443 used for this validation derived from juvenile males (N=5 juveniles), subadult males (N=5
444 males), or adult males that had achieved alpha status at the time of sampling (N=4 adult alpha
445 males). To maximize our range for androgen concentrations in the small Lomas sample, we
446 selected only alpha adult males for the validation because alpha males are known to have higher
447 androgens than subordinate males in white-faced capuchins (Jack et al., 2014; Schaebs et al.,
448 2017; Schoof et al., 2011; Schoof and Jack, 2013). For Lomas, we constructed a linear model
449 (LM) with fecal androgen metabolites (log-transformed) as a function of age category. The
450 Taboga samples derived from males of all ages and dominance ranks including 3 infants (13
451 samples), 5 juveniles (79 samples), 14 subadults (143 samples), and 10 adults (72 samples). All

452 males in the Taboga dataset < 5 years had known ages; all males >5 years had estimated ages
453 based on size and tooth wear at the start of the study (in 2017) or at the time of immigration. For
454 Taboga, we ran an LMM with fecal androgen metabolites (log-transformed) as a function of age
455 (linear) and age² (inverse-U shaped), with individual ID as a random effect.

456

457 *Estrogens* - In most female primates, estrogens are expected to increase across gestation
458 (Beehner et al., 2006; Carroll et al., 1990; Roberts et al., 2017). We expected the following
459 pattern for estrogens in white faced capuchin females: pregnant females > lactating females. For
460 both estrogens and progestogens, the Lomas samples used for this validation derived from
461 known pregnant females (back-dated from the birth of an infant, N=5 females) and known
462 lactating females (presence of a nursing infant, within the first year of lactation, N=4 females).
463 We ran an LMM with fecal estrogen metabolites (log-transformed) as a function of reproductive
464 category with individual ID as a random effect.

465

466 *Progestogens* - Similar to estrogens, we expected the following pattern for progestogens in white
467 faced capuchin females: pregnant females > lactating females. The sample dataset used for this
468 validation was the same as the one used for the estrogens validation. We ran an LMM with fecal
469 progestogen metabolites (log-transformed) as a function of reproductive category with individual
470 ID as a random effect.

471

472 **RESULTS**

473 **Deconjugation analysis**

474 Conducting solvolysis on capuchin fecal extracts released some conjugates from
475 glucocorticoids and androgens but not from estrogens or progestogens. Where conjugates were
476 released (glucocorticoids and androgens), we found that non-solvolyzed and solvolysized
477 samples: (1) were highly correlated with one another (~98%), and (2) maintained the same (or
478 similar) rank order from the highest to the lowest sample (even across close-in-value samples,
479 **Fig. 1**).

INSERT FIGURE 1 HERE

Figure 1. Hormone measures without chemical solvolysis are closely correlated with measures following solvolysis for glucocorticoids and androgens. Correlation plot between log-transformed hormone samples (in pg/ml) as a function of the same samples that have undergone chemical solvolysis for: (a) glucocorticoids and (b) androgens

486 *Glucocorticoids.* We conducted chemical solvolysis on 20 Lomas capuchin samples (selected to
487 represent a range of different glucocorticoid values) and compared these values to the same
488 sample without solvolysis. Deconjugation via solvolysis produced a higher concentration of
489 glucocorticoids as measured by the CORT assay for all samples except one (29% of the
490 immunoreactive GCs were conjugated, IQR = 18% – 44%). However, CORT values from
491 samples *that did not* undergo solvolysis were highly correlated with values from samples *that did*
492 (Pearson: $r(19) = 0.98$, $p < 0.001$, **Fig. 1a**); and the rank order of samples was maintained (12/20
493 samples had identical ranks, and 8/20 samples differed by 3 ranks or less).

494

495 *Androgens.* We conducted chemical solvolysis on 14 Lomas capuchin samples (selected to
496 represent a range of different testosterone values) and compared these values to the same
497 samples without solvolysis. Deconjugation via solvolysis produced a higher concentration of
498 androgens as measured by the T assay for all samples except two samples (32% of the

499 immunoreactive androgens were conjugated, IQR = 4% – 50%). However, similar to
500 glucocorticoids, the samples that did not undergo solvolysis had measures that were highly
501 correlated with those from samples that did (Pearson: $r(12) = 0.98$, $p < 001$, **Fig. 1b**); and the rank
502 order of samples was almost entirely maintained (11 of 14 samples had an absolute rank
503 difference of ≤ 1 ; and the other 3 samples differed by only 2 ranks).

504

505 *Estrogens.* We conducted chemical solvolysis on 14 Lomas capuchin samples (selected to
506 represent a range of different estrogen values) and compared these values to the same samples
507 without solvolysis. Deconjugation via solvolysis did not produce a higher concentration of
508 estrogens as measured by the DetectX® E2 assay. Indeed, most samples after solvolysis were
509 lower in value, likely due to some hormone metabolites lost during the solvolysis procedure
510 (median decrease = -11%, IQR = -21% – -2%).

511

512 *Progesterogens.* We conducted chemical solvolysis on 14 Lomas capuchin samples (selected to
513 represent a range of different progesterogen values) and compared these values to the same
514 samples without solvolysis. Deconjugation via solvolysis did not produce a higher concentration
515 of progesterogens as measured by the DetectX® P4 assay. Similar to the estrogens results, all
516 samples were lower in value after solvolysis (median decrease = -24%, IQR = -49% – -11%),
517 likely due to the solvolysis procedure.

518

519 **Analytical validation**

520 Lomas samples were used for all four hormones using DetectX® assay kits and Taboga
521 samples were used for ISWE CORT and ISWE T assay kits. Please refer to Table 1 for a list of
522 which samples from which site were used to validate which hormone for which assay.

523

524 *Parallelism.* First, we determined parallelism for each assay both visually and by modeling the
525 percent binding from the concentrations of a serial dilution of a fecal pool and the assay standard
526 curve. All assays showed sufficient parallelism between the binding range of 20-80% (**Fig. 2a-f**).
527 Additionally, there was no significant interaction between the concentrations and the type of
528 sample (serial dilution vs. standard) for any of our assays, indicating that the slopes of these lines
529 were not significantly different.

530

- *Glucocorticoids (DetectX®)* - ANOVA: $F = 3.73$, $p = 0.085$
- *Glucocorticoids (ISWE)* - ANOVA: $F = 2.13$, $p = 0.654$
- *Androgens (DetectX®)* - ANOVA: $F = 2.38$, $p = 0.157$
- *Androgens (ISWE)* - ANOVA: $F = 0.351$, $p = 0.567$
- *Estrogens (DetectX®)* - ANOVA: $F = 0.09$, $p = 0.767$
- *Progesterogens (DetectX®)* - ANOVA: $F = 1.99$, $p = 0.189$

536

537 **INSERT FIGURE 2 HERE**

538 **Figure 2. All assays demonstrated parallelism.** Assay standards and a diluted fecal pool
539 showed sufficient parallelism between the binding range of 20-80% for (a) DetectX®
540 glucocorticoids; (b) ISWE glucocorticoids; (c) DetectX® androgens; (d) ISWE androgens; (e)
541 DetectX® estrogens; and (f) DetectX® progestogens.

542

543 *Accuracy.* Second, we determined the accuracy for each assay by spiking the standards with a
544 diluted aliquot of our pool and comparing observed to expected values. Mean recovery for

545 observed compared to expected values indicated that each assay recovers accurate fecal
546 measurements (<15% difference between observed and expected values).

547 • *Glucocorticoids (DetectX®)* - 100% (range: 87 – 112%), N=6
548 • *Glucocorticoids (ISWE)* - 104% (range: 95 – 117%), N=7
549 • *Androgens (DetectX®)* - 101% (range: 90 – 112%), N=7
550 • *Androgens (ISWE)* - 105% (range: 103 – 115%), N=7
551 • *Estrogens (DetectX®)* - 103% (range: 86 – 115%), N=5
552 • *Progesterogens (Detect X®)* - 101% (range: 87 – 110%), N=7

553

554 *Precision.* Third, we established the intra- and inter-assay coefficients of variation (CVs) for
555 measuring hormone metabolites (glucocorticoids, androgens, estrogens, and progesterogens) with
556 each assay. Using a low (60-80% binding) and a high concentration pool (20-40% binding), the
557 CVs for low and high pools for all assays were within the acceptable level of assay precision
558 (**Table 3**).

559

560 **Table 3.** Hormone metabolite intra-assay and inter-assay precision (CVs) for all assays

561 **INSERT TABLE 3 HERE**

562

563 **Biological validation**

564 *Glucocorticoids.* We conducted a biological validation on fecal GCs by comparing
565 concentrations for individuals during the dry and wet seasons at each site. We used the DetectX®
566 CORT assay for the Lomas dataset (adult females only) and the ISWE CORT assay for the Santa
567 Rosa (adult males and females) and Taboga (all ages and sexes) datasets to examine how GC

568 concentrations varied as a function of season (and age and sex where relevant). The Lomas
569 samples exhibited significantly higher GC concentrations in the dry season than in the wet
570 season (Lomas LMM: *season*: beta = -0.218, t = -2.71, p<0.01, **Fig. 3a**). The Santa Rosa
571 samples, like Lomas, also exhibited higher GC concentrations in the dry season compared to the
572 wet season (Santa Rosa LMM: *season*: beta = -0.384, t = -2.71, p<0.01, **Fig. 3b**). However, the
573 Taboga samples exhibited no difference across seasons (Taboga LMM: *season*: beta = 0.058, t =
574 1.53, p=0.125, **Fig. 3c**).

575

576 **INSERT FIGURE 3 HERE**

577 **Figure 3. The biological validation for the DetectX® and ISWE CORT assays.** Applying the
578 DetectX® CORT assay to Lomas samples revealed **(a)** higher GC concentrations in the dry
579 season compared to the wet season. Applying the ISWE CORT assay to the Santa Rosa and
580 Taboga samples indicated **(b)** Santa Rosa also had higher GCs in the dry than wet season, and **(c)**
581 Taboga samples exhibited no difference across seasons. All values are shown as log-scaled
582 hormone concentrations (pg/g).

583

584 *Androgens.* We compared fecal T concentrations in samples collected from 14 Lomas capuchin
585 males classified as juveniles (5 males), subadults (5 males), or alpha adults (4 males). For
586 Lomas, age category was a significant predictor of log androgen concentrations (Lomas LM: *age*
587 *category* - F=27.12, p<0.001). Alpha adult males had higher measures than juvenile males (Z = -
588 2.45, p < 0.05) and subadult males (Z = -2.45, p < 0.05, **Fig. 4a**). However, contrary to
589 expectations, there was no difference between juvenile males and subadult males for this small
590 sample (Z = -0.31, p = 0.75). The Taboga males exhibited a steady increase in fecal androgens
591 from infant to adult males, with a leveling off at adulthood (**Fig. 4b**), with age as a significant
592 predictor of log androgen concentrations (Taboga LMM: *age*: beta = 0.153, t = 3.07, p<0.01) and
593 *age*² approaching significance (Taboga LMM: *age*²: beta = -0.003, t = -1.67, p<0.1).

594
595
596
597
598
599
600
601
602
603

INSERT FIGURE 4 HERE

Figure 4. The biological validation for the DetectX® and ISWE T assays. (a) The biological validation for the DetectX® T assay for the Lomas males exhibited significantly higher androgens for alpha adult males compared to subadults or juveniles. (b) The ISWE T assay for the Taboga males showed the expected pattern with adults having higher androgens than other males. All values shown as log-scaled hormone concentrations (pg/g), rounded to the nearest age.

604 *Estrogens.* Fecal estrogen concentrations were compared in Lomas samples collected from 5
605 pregnant females and 4 lactating females (no female had samples in more than one state).
606 Pregnant females had higher measures of estrogens than lactating females (Lomas LM: *state*:
607 $\beta = 1.318$, $t = 9.31$, $p < 0.001$, **Fig. 5a**).

608

609 *Progestogens.* Fecal progesterone concentrations were also compared in Lomas samples
610 collected from 5 pregnant females and 4 lactating females (no female had samples in more than
611 one state). Pregnant females had higher measures of progestogens than lactating females (Lomas
612 LM: *state*: $\beta = 1.756$, $t = 13.74$, $p < 0.001$, **Fig. 5b**).

613
614
615
616
617
618
619
620

INSERT FIGURE 5 HERE

Figure 5. The biological validations for the DetectX® E2 and P4 assays were successful for the Lomas capuchins. For Lomas capuchins, (a) pregnancy females had higher estrogen and (b) progestogen concentrations than lactating females. All values are shown as log-scaled hormone concentrations (pg/g).

621 DISCUSSION

622 In this manuscript, we introduce our on-site field laboratory, the Taboga Field Lab,
623 located just outside the Taboga Forest Reserve in Costa Rica. We demonstrated that it functions
624 under field conditions and can serve to validate and measure a wide variety of hormones and

625 other biomarkers from Costa Rican wildlife. Specifically, we validated six Arbor Assay hormone
626 assays for measuring hormone metabolites (glucocorticoids, androgens, estrogens, and
627 progestogens) in wild white-faced capuchins from three different field sites laying the
628 groundwork for future comparisons across these populations. Because the data obtained are
629 method-specific and other immunoassays may yield significantly different absolute
630 concentrations, this is one of the best ways to conduct cross-site comparisons (employing the
631 same assay and conducting analyses in the same laboratory). Such comparative studies have the
632 potential to identify the health and environmental impacts on one population compared to
633 another that may not be identifiable with the physiology from a single population.

634 Previous research demonstrated that hydrolysis was not necessary for measuring steroid
635 hormones from white-faced capuchins (Weltring et al., 2012), and we now additionally showed
636 that solvolysis is probably also not necessary. Conjugated samples were proportional to
637 unconjugated samples for glucocorticoid and androgen metabolites, suggesting that the
638 unconjugated fraction of these hormone metabolites in white-faced capuchin fecal samples
639 appear to be biologically meaningful.

640 Both the analytical and biological validations in white-faced capuchins were successful
641 for glucocorticoids, androgens, estrogens, and progestogens (and their metabolites). Hormone
642 metabolites as measured by the two ISWE and the four DetectX® kits (all from Arbor Assays)
643 across both laboratories were parallel, accurate, and precise. Moreover, hormones measured with
644 these kits revealed the expected biological patterns. All individuals at both Lomas (females only)
645 and Santa Rosa (males and females) exhibited significantly higher concentrations of GC
646 metabolites during the dry season compared to the wet season. This common pattern has been
647 observed in many primate taxa, including white-faced capuchins (Carnegie et al., 2011b) and is

648 often attributed to the elevated metabolic stress imposed on animals when food and/or water are
649 more difficult to access (Campos and Fedigan, 2009). Additionally, the dry season is much
650 warmer than the wet season in tropical dry forests (Schoof et al., 2016; Tinsley Johnson et al.,
651 2020), so the rise in glucocorticoids could also be due to thermoregulatory stressors similar to
652 other studies (Wessling et al., 2018). The Taboga population showed less of a difference between
653 GC concentrations in wet and dry seasons. However, given that Santa Rosa demonstrated the
654 expected pattern using the same assay, we propose that this does not indicate a failed biological
655 validation but rather a possible biological difference altogether. Taboga capuchins may be
656 somewhat buffered from the severity of the Costa Rican dry season due to the year-round water
657 available from irrigation canals running through the forest (Tinsley Johnson et al., 2020) –
658 although Lomas capuchins also have ready access to rivers throughout their range. The year-
659 round access to water (and fruit from agricultural products) at Taboga may also account for why
660 this site has the highest density of capuchins reported (Tinsley Johnson et al., 2020).

661 Second, the Lomas and Taboga adult males exhibited higher androgen metabolites
662 compared to subadult or juvenile males in the same population. Importantly, the Lomas adult
663 males selected for this analysis were alpha males at the time we measured their androgens in
664 order to maximize the androgen range for the validation. This result is therefore consistent with
665 male developmental processes across age and status in vertebrates (Beehner et al., 2009;
666 Behringer et al., 2014; O'Brien et al., 2017; Wolf et al., 2018) and more specifically with
667 previous results from white-faced capuchins indicating that alpha males have higher androgen
668 concentrations than non-alpha males (Jack et al., 2014; Schaebs et al., 2017; Schoof et al., 2011;
669 Schoof and Jack, 2013). Although the Lomas dataset was too small to identify a more-detailed
670 difference across the younger ages, the gap in ages was small compared to the age gap between

671 the alpha adults and all younger males. For the larger Taboga dataset analyzed here, males
672 exhibited a continuous rise in androgen metabolites across all ages until approximately age 10,
673 when androgens leveled off. Confirming this life history pattern of androgens, in a different age-
674 based analysis of androgen profiles in the Santa Rosa white-faced capuchins (using a different
675 androgen assay than what is presented in this manuscript), authors found higher androgen
676 concentrations in subadults than juveniles (Jack et al., 2014). A future collaborative project will
677 include an age- and status-based analysis of androgens across capuchin sites to identify the
678 normative “pivot points” for androgens in the life histories of this taxon. Moreover, although
679 white-faced capuchins do not have a strict breeding season, births do tend to be clustered during
680 half the year (Carnegie et al., 2011a; Perry et al., 2012). Therefore, similar to other androgen
681 studies (Schoof et al., 2016, 2014), seasonality needs to be taken into account for this taxon.

682 Finally, estrogen and progestogen metabolites were orders of magnitude higher in
683 pregnant than in lactating females. This pattern is not surprising given that these hormones are
684 required to maintain pregnancy in primates, and they are lowest in females who have temporarily
685 ceased ovarian cycling due to lactational amenorrhea (Ryniec and McGee, 2020). Although our
686 samples across the different trimesters of gestation in our small dataset did not reveal a steady
687 rise in these hormones from early to mid to late gestation as typically observed in catarrhine
688 primates (Beehner et al., 2006; Czekala et al., 1983; Roberts et al., 2017), previous analyses in
689 the Lomas white-faced capuchins have demonstrated overlap in progestagen values across
690 trimesters in white-faced capuchins (Godoy, 2015). It appears that capuchins may mirror other
691 platyrhine primates with an accelerated and highly variable increase in estrogens and
692 progestogens following conception (Eastman et al., 1984; Moorman et al., 2002). Because fecal
693 hormone methods capture broad categories of downstream hormone metabolites (not the original

694 secreted hormones during gestation), we do not know the breakdown of which hormones take
695 precedence at which stage of gestation. Serum hormone concentrations will be necessary to
696 ascertain this information.

697 We were equally as successful at carrying out hormone validations in our field laboratory
698 as we were in our university laboratory. There are often logistical reasons that field laboratories
699 are not possible (i.e., no access to electricity, clean water, or access to supplies). However, where
700 these logistical problems can be overcome, we would like to highlight some of the advantages of
701 having a laboratory on site where study subjects live. The most obvious of the logistic
702 advantages is that Santa Rosa and Lomas researchers can gain quicker access to hormone
703 measures (within weeks), and Taboga researchers can gain immediate hormone measures for
704 subjects. At Taboga, for example, if we collect a fecal sample from a female in the morning, we
705 could know her hormone concentrations by as early as the afternoon of the same day. This is
706 particularly valuable for primates, like capuchins, who have concealed ovulation and extended
707 lactational amenorrhea (Recabarren et al., 2000). If we can plan our daily observations armed with
708 this physiological information about each animal, we can collect more targeted behavioral data in
709 our research endeavors.

710 On-site laboratories also have the advantage of reducing the logistics necessary to export
711 samples to an out-of-country laboratory, saving time, money, and energy on behalf of the
712 research team while ensuring minimal degradation of the samples. Additionally, because they are
713 located within the host country, on-site laboratories can foster technology and knowledge
714 transfer between all researchers involved creating more equal research partnerships that extend
715 beyond logistics planning and data collection (Minasny et al., 2020). Host-country researchers
716 can gain experience and confidence by conducting laboratory analyses, troubleshooting, and data

717 processing – all marketable skills that can be harnessed in other laboratories and transferred to
718 other young researchers. Biological research stations, such as Taboga, can serve as hubs for
719 researchers to develop collaborative networks to help facilitate in-country capacity building and
720 encourage comparative research across sites (Beck et al., 2019). We hope that the Taboga Field
721 Laboratory can serve as a model for future field sites with the capability to build laboratories on-
722 site; and we look forward to future collaborative white-faced capuchin hormone studies.

723

724 **ACKNOWLEDGEMENTS**

725 Each of the three projects would like to extend our heartfelt thanks to each of the
726 following Costa Rican institutions that have allowed us to do our work in their country: the
727 Ministerio de Ambiente y Energía (MINAE), el Sistema Nacional de Áreas de Conservación
728 (SINAC), and the Comisión Nacional para la Gestión de la Biodiversidad (CONAGEBIO).

729 The Santa Rosa Primate Project would like to thank the administrative team in Sector
730 Santa Rosa of the Área de Conservación Guanacaste, especially Roger Blanco Segura and María
731 Marta Chavarria, for their assistance with permits and logistics over the past four decades. Our
732 ongoing research in Santa Rosa would not be possible without the in-country logistical support
733 of our project manager, Saul Cheves. We would also like to thank the following field assistants
734 for their help in sample collection: Zoe Albert, Gabriel Benson, Catalina Chaves-Cordero, Maël
735 Dang Van Sung, and Giulia Severino.

736 The Lomas Barbudal Monkey Project would like to thank Hacienda Pelon de la Bajura,
737 Brin d'Amor, and the community of San Ramon de Bagaces for permission to work on the lands
738 adjacent to Lomas Barbudal. Don Cohen assisted with the maintenance of the project's database.
739 The following field assistants helped S. Perry, C. Gault, and I. Godoy with sample collection and

740 processing for the data included in this paper: Brendan Barrett, Ricky Berl, Lisa Blankenship,
741 Teresa Borcuch, Shana Caro, Maria Corrales, Juliane Damm, Chris Dillis, Katie Feilen, Jim
742 Fenton, Isabel Gottlieb, Lindsey Hack, Chris Hirsch, Josie Hubbard, Melanie Jackson, Kotrina
743 Kajokaite, William Krimmel, Wiebke Lammers, Corey Mitchell, Yukiko Namba, Ava Neyer,
744 Rhiannon Popa, Katie Reinhardt, Summer Sanford, C. Michael Saul, Savannah Schulze, Amy
745 Scott, Silvana Sita, Kathrine Stewart, James Vandermeer, Joey Verge, Victoria Vonau, and Erika
746 Williams.

747 The Capuchins at Taboga Project would like to thank the Universidad Técnica Nacional
748 (UTN) for allowing us to use their facilities and the Taboga Forest and for providing us support
749 in all of our research endeavors. We would also like to thank the following assistants and
750 students for their invaluable help in collecting and extracting fecal samples along the way:
751 Courtney Anderson, Jahmaira Archbold, Celia McLean, Arieck Norford, Evan McLean, Sophia
752 Prisco, Karenza Rees, Emily Boucker, Melissa Painter, Samuel Fiello, and Sarah Kovalaskas.

753

754 **FUNDING**

755 **This work was supported by the following:**

- 756 • **Santa Rosa project:** The National Science Foundation [grant number BCS-2051573, and
757 an NSF-GRFP to NKK], the Leakey Foundation [to MSB], an American Society of
758 Primatologists grant [to MSB], the Tulane School of Liberal Arts.
- 759 • **Lomas Barbudal project:** The Max Planck Institute for Evolutionary Anthropology, the
760 L.S.B. Leakey Foundation, the National Geographic Society, and the National Science
761 Foundation [grant numbers BCS-0613226, BCS-848360, BCS-1638428, BCS-1232371].

- **Taboga project:** The National Science Foundation [BCS-1945121, SMA-1714923], Emory University, and the University of Michigan.
- Additional funding was provided by a Georgia State University 2nd Century Initiative Primate Social Cognition, Evolution, and Behavior Doctoral Fellowship to [OTR] and a National Science Foundation International Research Experience for Students grant [IRES grant number 1559223] and Indiana University to MW.

769 COMPETING INTEREST STATEMENT

770 The authors have no competing interest to declare.

771 DATA AND CODE AVAILABILITY

772 Data and code are available at: <https://github.com/Capuchins-at-Taboga/Beehner->
773 hormone.validation-2022

775 REFERENCES

776 Beck, P., Quirós, R., Johnson, C.E., Wasserman, M.D., 2019. Biological research stations as central nodes
 777 in promoting North–South collaborative networks for teaching and research. *Current Opinion in*
 778 *Environmental Sustainability* 39, 31–38.

779 Beehner, J.C., Bergman, T.J., Cheney, D.L., Seyfarth, R.M., Whitten, P.L., 2005. The effect of new alpha
 780 males on female stress in free-ranging baboons. *Anim. Behav.* 69, 1211–1221.

781 Beehner, J.C., Gesquiere, L., Seyfarth, R.M., Cheney, D.L., Alberts, S.C., Altmann, J., 2009.
 782 Testosterone related to age and life-history stages in male baboons and geladas. *Horm. Behav.* 56,
 783 472–480.

784 Beehner, J.C., McCann, C., 2008. Seasonal and altitudinal effects on glucocorticoid metabolites in a wild
 785 primate (*Theropithecus gelada*). *Physiol. Behav.* 95, 508–514.

786 Beehner, J.C., Nguyen, N., Wango, E.O., Alberts, S.C., Altmann, J., 2006. The endocrinology of
 787 pregnancy and fetal loss in wild baboons. *Horm. Behav.* 49, 688–699.

788 Behringer, V., Deschner, T., Deimel, C., Stevens, J.M.G., Hohmann, G., 2014. Age-related changes in
 789 urinary testosterone levels suggest differences in puberty onset and divergent life history strategies in
 790 bonobos and chimpanzees. *Horm. Behav.* 66, 525–533.

791 Campos, F.A., Fedigan, L.M., 2009. Behavioral adaptations to heat stress and water scarcity in white-
 792 faced capuchins (*Cebus capucinus*) in Santa Rosa National Park, Costa Rica. *Am. J. Phys.*
 793 *Anthropol.* 138, 101–111.

794 Capezzutto, A., Chelini, M.O.M., Felippe, E.C.G., Oliveira, C.A., 2008. Correlation between serum and
 795 fecal concentrations of reproductive steroids throughout gestation in goats. *Anim. Reprod. Sci.* 103,
 796 78–86

797 Carnegie, S.D., Fedigan, L.M., Melin, A.D., 2011a. Reproductive seasonality in female capuchins (*Cebus*
798 *capucinus*) in Santa Rosa (area de Conservación Guanacaste), Costa Rica. *Int. J. Primatol.* 32, 1076–
799 1090.

800 Carnegie, S.D., Fedigan, L.M., Ziegler, T.E., 2011b. Social and environmental factors affecting fecal
801 glucocorticoids in wild, female white-faced capuchins (*Cebus capucinus*). *American Journal of*
802 *Primateology*. <https://doi.org/10.1002/ajp.20954>

803 Carroll, J.B., Abbott, D.H., George, L.M., Hindle, J.E., Martin, R.D., 1990. Urinary endocrine monitoring
804 of the ovarian cycle and pregnancy in Goeldi's monkey (*Callimico goeldii*). *J. Reprod. Fertil.* 89,
805 149–161.

806 Creel, S., Dantzer, B., Goymann, W., Rubenstein, D.R., 2013. The ecology of stress: effects of the social
807 environment. *Funct. Ecol.* 27, 66–80.

808 Czekala, N.M., Benirschke, K., McClure, H., Lasley, B.L., 1983. Urinary estrogen excretion during
809 pregnancy in the gorilla (*Gorilla gorilla*), orangutan (*Pongo pygmaeus*) and the human (*Homo*
810 *sapiens*). *Biol. Reprod.* 28, 289–294.

811 Deschner, T., Heistermann, M., Hodges, K., Boesch, C., 2004. Female sexual swelling size, timing of
812 ovulation, and male behavior in wild West African chimpanzees. *Horm. Behav.* 46, 204–215.

813 Dloniak, S.M., French, J.A., Place, N.J., Weldele, M.L., Glickman, S.E., Holekamp, K.E., 2004. Non-
814 invasive monitoring of fecal androgens in spotted hyenas (*Crocuta crocuta*). *Gen. Comp. Endocrinol.*
815 135, 51–61.

816 Eastman, S.A., Makawiti, D.W., Collins, W.P., Hodges, J.K., 1984. Pattern of excretion of urinary steroid
817 metabolites during the ovarian cycle and pregnancy in the marmoset monkey. *J. Endocrinol.* 102,
818 19–26.

819 Fedigan, L.M., Jack, K.M., 2012. Tracking Neotropical Monkeys in Santa Rosa: Lessons from a
820 Regenerating Costa Rican Dry Forest, in: Kappeler, P.M., Watts, D.P. (Eds.), *Long-Term Field*
821 *Studies of Primates*. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 165–184.

822 Ganswindt, A., Brown, J.L., Freeman, E.W., Kouba, A.J., Penfold, L.M., Santymire, R.M., Vick, M.M.,
823 Wielebnowski, N., Willis, E.L., Milnes, M.R., 2012. International Society for Wildlife
824 Endocrinology: the future of endocrine measures for reproductive science, animal welfare and
825 conservation biology. *Biol. Lett.* 8, 695–697.

826 Garber, P.A., McKenney, A., Bartling-John, E., Bicca-Marques, J.C., De la Fuente, M.F., Abreu, F.,
827 Schiel, N., Souto, A., Phillips, K.A., 2020. Life in a harsh environment: the effects of age, sex,
828 reproductive condition, and season on hair cortisol concentration in a wild non-human primate. *PeerJ*
829 8, e9365.

830 Gesquiere, L.R., Khan, M., Shek, L., Wango, T.L., Wango, E.O., Alberts, S.C., Altmann, J., 2008.
831 Coping with a challenging environment: Effects of seasonal variability and reproductive status on
832 glucocorticoid concentrations of female baboons (*Papio cynocephalus*). *Hormones and Behavior*.
833 <https://doi.org/10.1016/j.yhbeh.2008.04.007>

834 Godoy, I., 2015. Kin Recognition, Mechanisms, and Inbreeding Avoidance in *Cebus capucinus*.
835 University of California.

836 Goymann, W., Möstl, E., Van't Hof, T., East, M.L., Hofer, H., 1999. Noninvasive fecal monitoring of
837 glucocorticoids in spotted hyenas, *Crocuta crocuta*. *Gen. Comp. Endocrinol.* 114, 340–348.

838 Hammes, S.R., Levin, E.R., 2019. Impact of estrogens in males and androgens in females. *J. Clin. Invest.*
839 129, 1818–1826.

840 Hau, M., 2007. Regulation of male traits by testosterone: implications for the evolution of vertebrate life
841 histories. *Bioessays* 29, 133–144.

842 Heistermann, M., 2010. Non-invasive monitoring of endocrine status in laboratory primates: methods,
843 guidelines and applications. *Adv. Sci. Res.* 5, 1–9.

844 Hirschenhauser, K., Möstl, E., Péczely, P., Wallner, B., Dittami, J., Kotrschal, K., 2000. Seasonal
845 relationships between plasma and fecal testosterone in response to GnRH in domestic ganders. *Gen.*
846 *Comp. Endocrinol.* 118, 262–272.

847 Jack, K.M., Schoof, V.A.M., Sheller, C.R., Rich, C.I., Klingelhofer, P.P., Ziegler, T.E., Fedigan, L., 2014.

848 Hormonal correlates of male life history stages in wild white-faced capuchin monkeys (*Cebus*
849 *capucinus*). *Gen. Comp. Endocrinol.* 195, 58–67.

850 Janzen, D.H., 1988. Tropical dry forests. *Biodiversity* 15, 130–137.

851 MacDougall-Shackleton, S.A., Bonier, F., Romero, L.M., Moore, I.T., 2019. Glucocorticoids and “Stress”
852 Are Not synonymous. *Integrative Organismal Biology*. <https://doi.org/10.1093/iob/obz017>

853 Medina-Cruz, G.E., Salame-M’endez, A., Briones-Salas, M., 2020. Glucocorticoid profiles in frugivorous
854 bats on wind farms in the Mexican tropics. *Acta Chiropt.* 22, 147–155.

855 Melin, A.D., Hogan, J.D., Campos, F.A., Wikberg, E., King-Bailey, G., Webb, S., Kalbitzer, U., Asensio,
856 N., Murillo-Chacon, E., Cheves Hernandez, S., Guadamuz Chavarria, A., Schaffner, C.M.,
857 Kawamura, S., Aureli, F., Fedigan, L., Jack, K.M., 2020. Primate life history, social dynamics,
858 ecology, and conservation: Contributions from long- term research in Área de Conservación
859 Guanacaste, Costa Rica. *Biotropica* 52, 1041–1064.

860 Miles, L., Newton, A.C., DeFries, R.S., Ravilious, C., May, I., Blyth, S., Kapos, V., Gordon, J.E., 2006.
861 A global overview of the conservation status of tropical dry forests. *J. Biogeogr.* 33, 491–505.

862 Minasny, B., Fiantis, D., Mulyanto, B., Sulaeman, Y., Widyatmanti, W., 2020. Global soil science
863 research collaboration in the 21st century: Time to end helicopter research. *Geoderma* 373, 114299.

864 Möhle, U., Heistermann, M., Dittami, J., Reinberg, V., Hodges, J.K., 2005. Patterns of anogenital
865 swelling size and their endocrine correlates during ovulatory cycles and early pregnancy in free-
866 ranging barbary macaques (*Macaca sylvanus*) of Gibraltar. *American Journal of Primatology*.
867 <https://doi.org/10.1002/ajp.20161>

868 Moorman, E.A., Mendoza, S.P., Shideler, S.E., Lasley, B.L., 2002. Excretion and measurement of
869 estradiol and progesterone metabolites in the feces and urine of female squirrel monkeys (*Saimiri*
870 *sciureus*). *Am. J. Primatol.* 57, 79–90.

871 Muller, M.N., 2017. Testosterone and reproductive effort in male primates. *Horm. Behav.* 91, 36–51.

872 O’Brien, J.K., Steinman, K.J., Fetter, G.A., Robeck, T.R., 2017. Androgen and glucocorticoid production
873 in the male killer whale (*Orcinus orca*): influence of age, maturity, and environmental factors.
874 *Andrology* 5, 180–190.

875 Palme, R., 2005. Measuring fecal steroids: guidelines for practical application. *Ann. N. Y. Acad. Sci.*
876 1046, 75–80.

877 Pappano, D.J., Beehner, J.C., 2014. Harem-holding males do not rise to the challenge: androgens respond
878 to social but not to seasonal challenges in wild geladas. *R Soc Open Sci* 1, 140081.

879 Perry, S., Godoy, I., Lammers, W., 2012. The Lomas Barbudal Monkey Project: Two Decades of
880 Research on *Cebus capucinus*, in: Kappeler, P.M., Watts, D.P. (Eds.), *Long-Term Field Studies of*
881 *Primates*. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 141–163.

882 Recabarren, M.P., Vergara, M., Martinez, M.C., Gordon, K., Serón- Ferré, M., 2000. Impact of lactation
883 upon fertility in the New World primate capuchin monkey (*Cebus apella*). *J Med Primatol*, 29, 350–
884 360.

885 Roberts, E.K., Lu, A., Bergman, T.J., Beehner, J.C., 2017. Female reproductive parameters in wild
886 geladas (*Theropithecus gelada*). *Int. J. Primatol.* 38, 1–20.

887 Ryniec, J.A., McGee, E.A., 2020. Chapter 9 - Ovarian Function During Pregnancy and Lactation, in:
888 Kovacs, C.S., Deal, C.L. (Eds.), *Maternal-Fetal and Neonatal Endocrinology*. Academic Press, pp.
889 117–127.

890 Schaebs, F.S., Perry, S.E., Cohen, D., Mundry, R., Deschner, T., 2017. Social and demographic correlates
891 of male androgen levels in wild white- faced capuchin monkeys (*Cebus capucinus*). *Am. J.*
892 *Primatol.* 79, e22653.

893 Schoof, V.A.M., Bonnell, T.R., Jack, K.M., Ziegler, T.E., Melin, A.D., Fedigan, L.M., 2016. Male
894 endocrine response to seasonally varying environmental and social factors in a neotropical primate,
895 *Cebus capucinus*. *Am. J. Phys. Anthropol.* 159, 671–682.

896 Schoof, V.A.M., Jack, K.M., 2013. The association of intergroup encounters, dominance status, and fecal
897 androgen and glucocorticoid profiles in wild male white- faced capuchins (*Cebus capucinus*). *Am. J.*
898 *Primatol.*

899 Schoof, V.A.M., Jack, K.M., Carnegie, S.D., 2011. Rise to Power: A Case Study of Male Fecal Androgen
900 and Cortisol Levels before and after a Non-Aggressive Rank Change in a Group of Wild White-
901 Faced Capuchins (*Cebus capucinus*). *Folia Primatol.* 82, 299–307.
902 Schoof, V.A.M., Jack, K.M., Ziegler, T.E., 2014. Male response to female ovulation in white-faced
903 capuchins (*Cebus capucinus*): Variation in fecal testosterone, dihydrotestosterone, and
904 glucocorticoids. *Int. J. Primatol.* 35, 643–660.
905 Sheriff, M.J., Krebs, C.J., Boonstra, R., 2010. Assessing stress in animal populations: Do fecal and
906 plasma glucocorticoids tell the same story? *Gen. Comp. Endocrinol.* 166, 614–619.
907 Tinsley Johnson, E., Benítez, M.E., Fuentes, A., McLean, C.R., Norford, A.B., Ordoñez, J.C., Beehner,
908 J.C., Bergman, T.J., 2020. High density of white-faced capuchins (*Cebus capucinus*) and habitat
909 quality in the Taboga Forest of Costa Rica. *Am. J. Primatol.* 82, 10.
910 Touma, C., Palme, R., 2005. Measuring fecal glucocorticoid metabolites in mammals and birds: the
911 importance of validation. *Ann. N. Y. Acad. Sci.* 1046, 54–74.
912 von der Ohe, C.G., Servheen, C., 2002. Measuring Stress in Mammals Using Fecal Glucocorticoids:
913 Opportunities and Challenges. *Wildl. Soc. Bull.* 30, 1215–1225.
914 Wasserman, M.D., Chapman, C.A., Milton, K., Goldberg, T.L., Ziegler, T.E., 2013. Physiological and
915 behavioral effects of capture darting on red Colobus monkeys (*Procolobus rufomitratus*) with a
916 comparison to chimpanzee (*pan troglodytes*) predation. *Int. J. Primatol.* 34, 1020–1031.
917 Weltring, A., Schaebs, F.S., Perry, S.E., Deschner, T., 2012. Simultaneous measurement of endogenous
918 steroid hormones and their metabolites with LC–MS/MS in faeces of a New World primate species,
919 *Cebus capucinus*. *Physiol. Behav.* 105, 510–521.
920 Wessling, E.G., Kühl, H.S., Mundry, R., Deschner, T., Pruetz, J.D., 2018. The costs of living at the edge:
921 Seasonal stress in wild savanna-dwelling chimpanzees. *J. Hum. Evol.* 121, 1–11.
922 Wolf, T.E., Schaebs, F.S., Bennett, N.C., Burroughs, R., Ganswindt, A., 2018. Age and socially related
923 changes in fecal androgen metabolite concentrations in free-ranging male giraffes. *Gen. Comp.*
924 *Endocrinol.* 255, 19–25.
925 Young, C., Ganswindt, A., McFarland, R., de Villiers, C., van Heerden, J., Ganswindt, S., Barrett, L.,
926 Henzi, S.P., 2017. Faecal glucocorticoid metabolite monitoring as a measure of physiological stress
927 in captive and wild vervet monkeys. *Gen. Comp. Endocrinol.* 253, 53–59.
928 Ziegler, T.E., Wittwer, D.J., 2005. Fecal steroid research in the field and laboratory: improved methods
929 for storage, transport, processing, and analysis. *American Journal of Primatology.*
930 <https://doi.org/10.1002/ajp.20175>

931

Figure 1

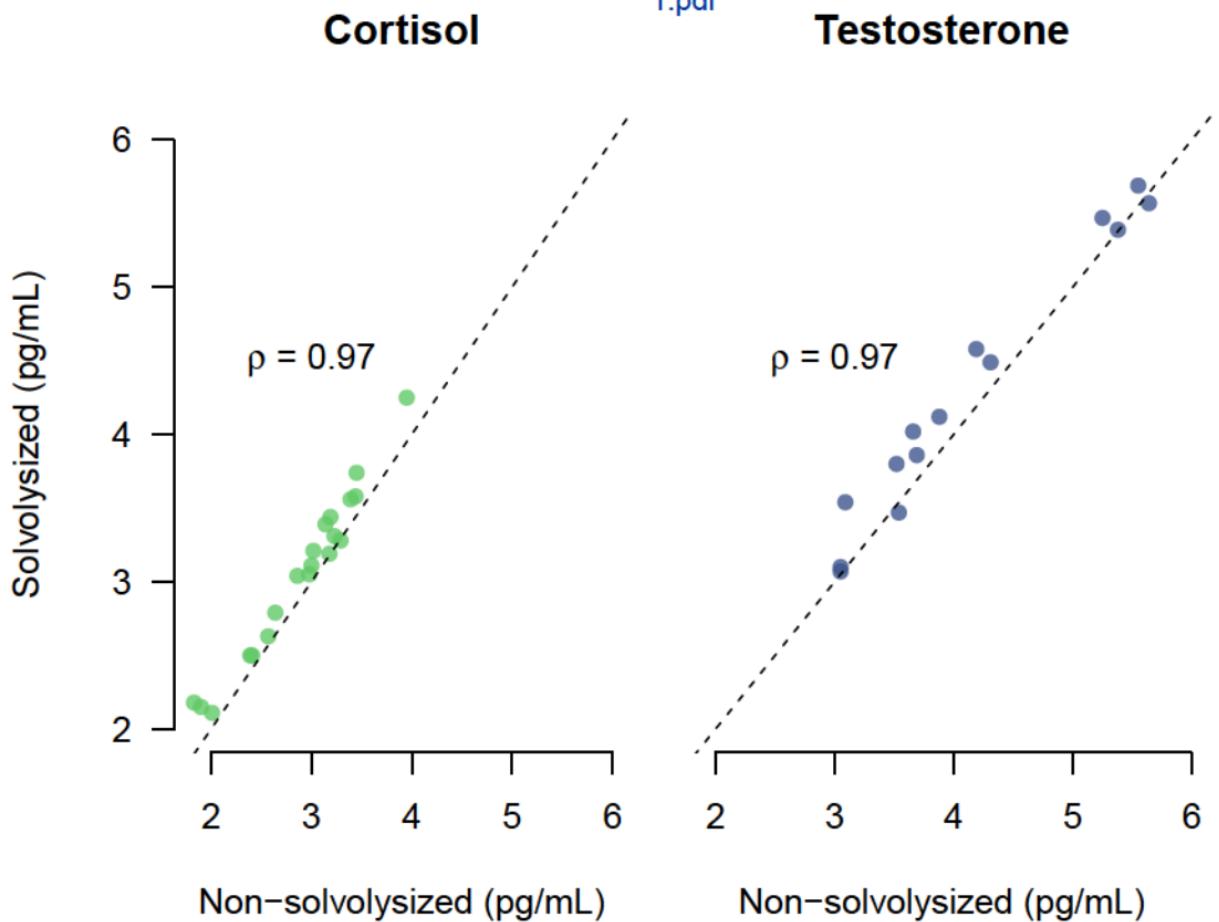
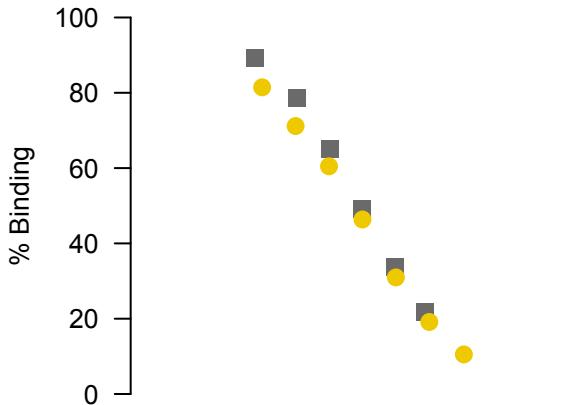
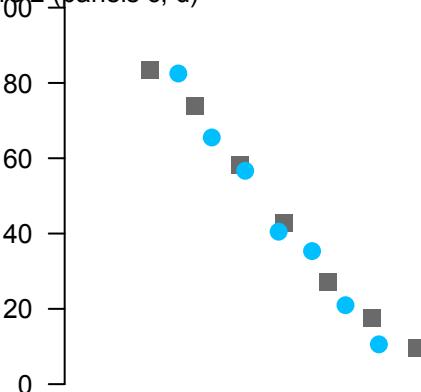


[Click here to access/download;Figure;Figure 1.pdf](#)

Figure 2 (panels a-b)


Glucocorticoids (DetectX)

Click here to access/download Figure 2 (a,b).pdf

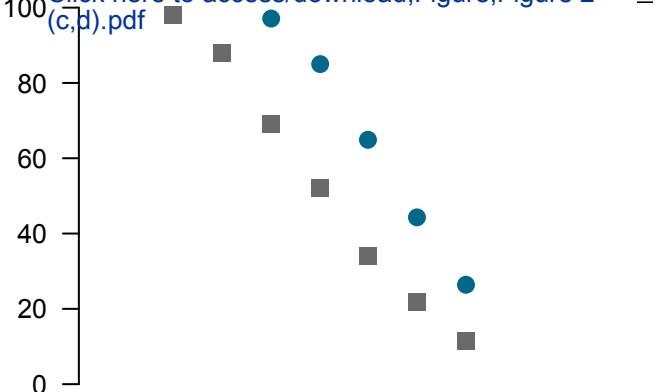
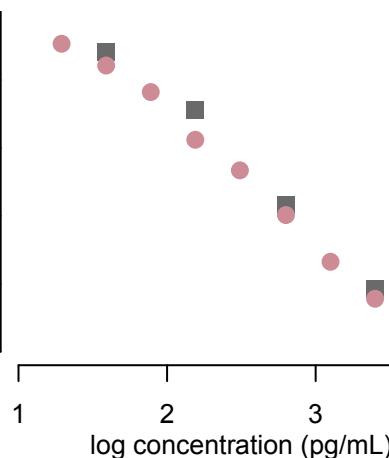
Glucocorticoids (ISWE)

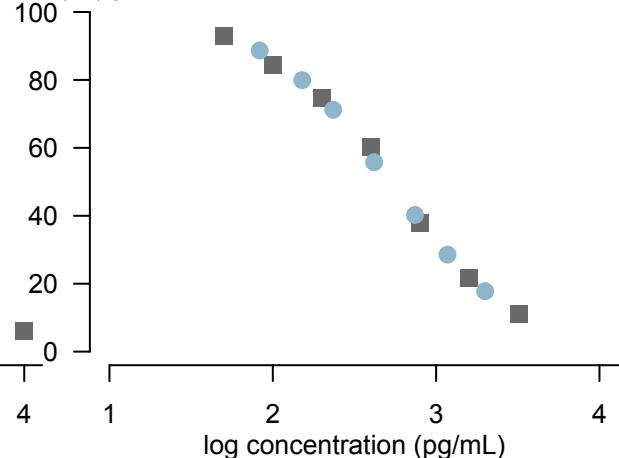
Androgens (DetectX)

Figure 2 (panels c, d)

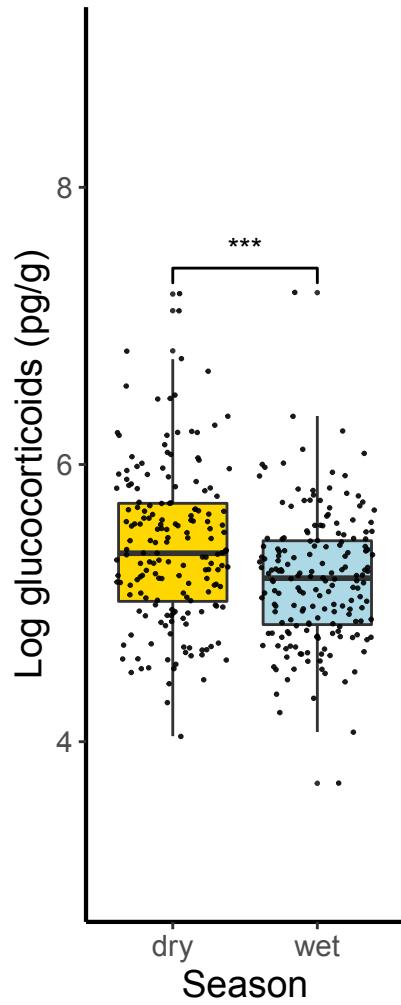
Androgens (ISWF)

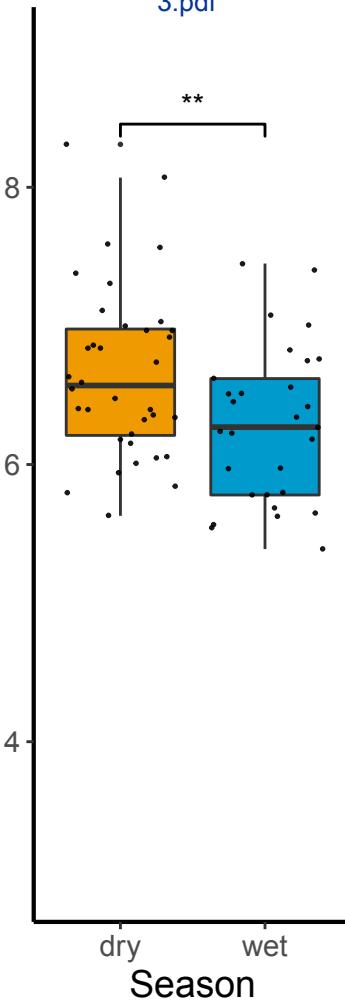
Click here to access/download Figure 2 (c,d).pdf

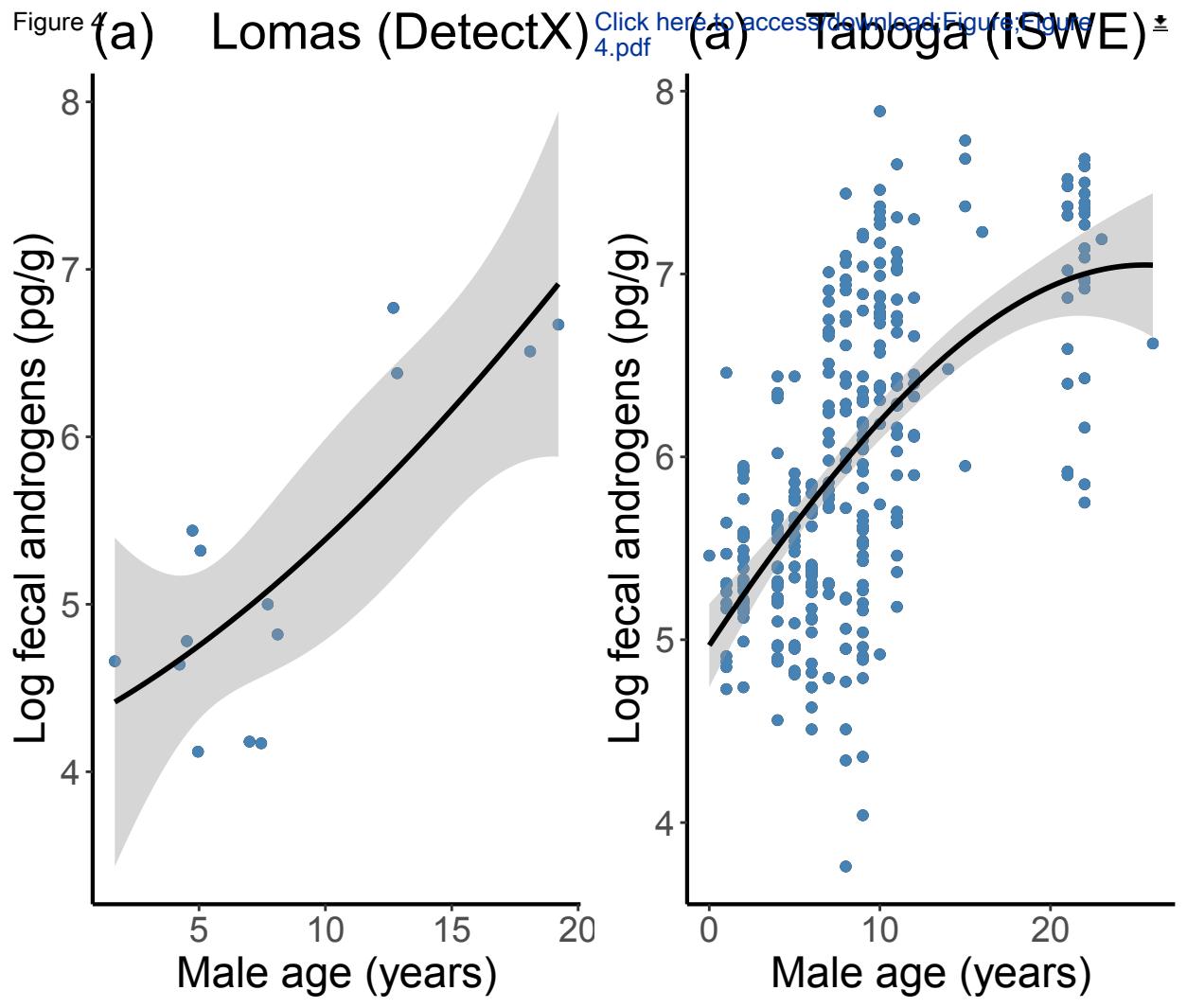




Figure 2 (panels e, f)

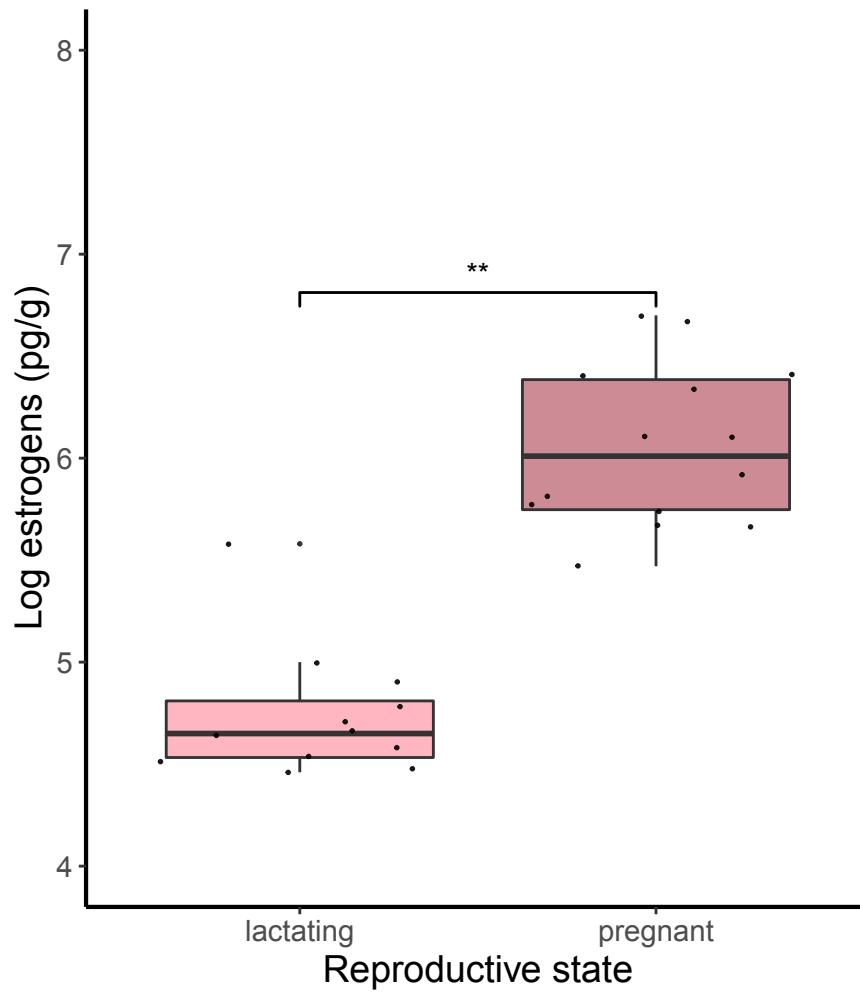
Estrogens


% Binding

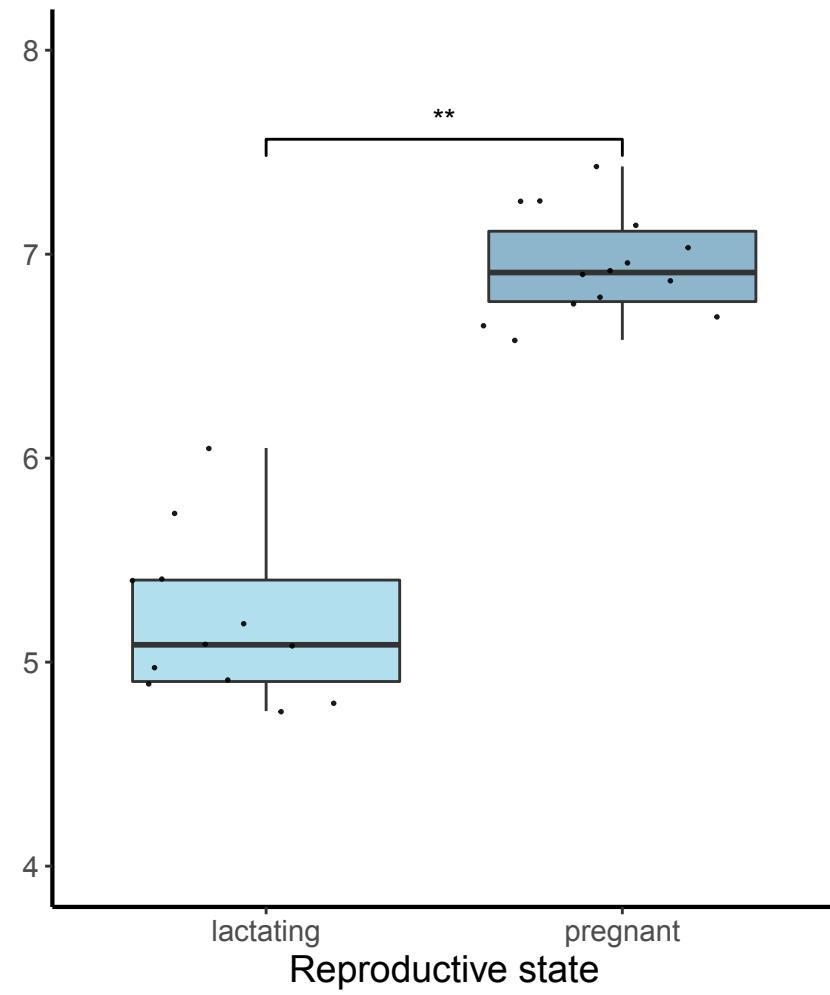

Click here to access/download Figure;Figure 2 (e,f).pdf


Progesterogens

Figure(a) Lomas (DetectX)



(b) Santa Rosae (ISWE)
Glossary (ISWE)
3.pdf
CIB
Santa Rosae (ISWE)
Access/downoad
had,Taloga (ISWE)
Taloga (ISWE)
±



Figure(5) Lomas estrogens (DetectX)

(b) Lomas progestogens (DetectX) [Click here to access/download Figure;Figure 5.pdf](#)

Manuscript section	Hormone	Assay	Fieldsite	Laboratory	Test	Outcome
Solvology	Glucocorticoids	DetectX® CORT	Lomas	Michigan	solvology vs. non-solvology	solvology not needed
	Androgens	DetectX® T	Lomas	Michigan	solvology vs. non-solvology	solvology not needed
	Estrogens	DetectX® E2	Lomas	Michigan	solvology vs. non-solvology	solvology not needed
	Progestogens	DetectX® P4	Lomas	Michigan	solvology vs. non-solvology	solvology not needed
Analytical validation	Glucocorticoids	DetectX® CORT	Lomas	Michigan	parallelism, accuracy, precision	analytically validated
	Glucocorticoids	ISWE CORT	Taboga	Taboga	parallelism, accuracy, precision	analytically validated
	Androgens	DetectX® T	Lomas	Michigan	parallelism, accuracy, precision	analytically validated
	Androgens	ISWE T	Taboga	Taboga	parallelism, accuracy, precision	analytically validated
	Estrogens	DetectX® E2	Lomas	Michigan	parallelism, accuracy, precision	analytically validated
	Progestogens	DetectX® P4	Lomas	Michigan	parallelism, accuracy, precision	analytically validated
	Glucocorticoids	DetectX® CORT	Lomas	Michigan	wet season vs dry season	higher in dry season
	Glucocorticoids	ISWE CORT	Taboga	Taboga	wet season vs dry season	no difference
	Glucocorticoids	ISWE CORT	Santa Rosa	Taboga	wet season vs dry season	higher in dry season
	Androgens	DetectX® T	Lomas	Michigan	across male ages	higher in adult males

	Cortisol (DetectX®)	Cortisol (ISWE)	Testosterone (DetectX®)	Testosterone (ISWE)	17β-Estradiol (DetectX®)	Progesterone (DetectX®)
Cortisol	100.00	100.00		<0.02	<0.004	<0.10
Dehydrocortisol	7.80	42.08				
Cortisone	1.20	26.53		<0.02	<0.004	
Dexamethasone	18.80	4.10				
Prednisone		3.37				
Corticosterone	1.20	0.35		<0.02	<0.004	<0.10
Desoxycorticosterone		0.18				
Tetrahydrocorticosterone		<0.16				
Aldosterone				<0.04		
Testosterone	<0.10		100.00	100.00	<0.10	
5a-Dihydrotestosterone			56.80	35.40		
11-Ketotestosterone			2.34			
Androstenedione			0.27			<0.10
17β-Estradiol	<0.10		0.02		100.00	
Estrone	<0.10				0.78	
17α-Estradiol	<0.10				0.22	
17β-Estradiol				<0.004		
Progesterone	<0.10		<0.02	0.02	<0.10	100.00
3α-hydroxy-progesterone						188.00
3β-hydroxy-progesterone						172.00
11α-hydroxy-progesterone						147.00
5a-dihydroprogesterone					<0.10	7.00
Pregnenolone			<0.02			5.90
11β-hydroxy-progesterone						2.70

HORMONE METABOLITE	INTRA-ASSAY CV (%)			INTER-ASSAY CV (%)		
	N	Low pool (60-80% binding)	High pool (20-30% binding)	N	Low pool (70-80% binding)	High pool (20-30% binding)
<i>Glucocorticoids</i>						
<i>(DetectX®):</i>	6	4.4	11.7	6	14.0	10.5
<i>(ISWE):</i>	8	4.1	4.2	6	6.8	6.6
<i>Androgens</i> <i>(ISWE):</i>	6	9.7	6.7	18	13.2	11.7
<i>Androgens</i> <i>(DetectX®):</i>	6	5.5	7.0	3	5.3	4.6
<i>Estrogens</i> <i>(DetectX®):</i>	6	13.6	7.5	3	1.2	7.9
<i>Progesterogens</i> <i>(DetectX®):</i>	5	12.2	8.4	3	16.0	15.3

Author Statement

Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Project administration; Resources; Supervision; Validation; Visualization; Writing - original draft; Writing - review & editing.

Data curation; Project administration; Supervision; Writing - original draft

Jacinta C. Beehner – Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Project administration; Resources; Supervision; Validation; Visualization; Writing - original draft; Writing - review & editing

José Alfaro – Funding acquisition; Project administration; Resources; Writing - original draft

Cloe Allen – Data curation; Formal analysis; Validation; Writing - original draft

Marcela E. Benítez – Conceptualization; Data curation; Funding acquisition; Investigation; Methodology; Project administration; Resources; Supervision; Writing - original draft

Thore J. Bergman – Data curation; Formal analysis; Funding acquisition; Investigation; Project administration; Resources; Supervision; Writing - original draft; Writing - review & editing.

Margaret S. Buehler – Data curation; Formal analysis; Validation; Writing - original draft

Sofia C. Carrera – Data curation; Formal analysis; Visualization; Writing - original draft

Emily M. Chester – Data curation; Formal analysis; Validation; Writing - original draft

Tobias Deschner – Investigation; Methodology; Supervision; Writing - original draft; Writing - review & editing

Alexander Fuentes - Data curation; Investigation; Supervision; Writing - original draft

Colleen M. Gault – Data curation; Formal analysis; Funding acquisition; Investigation; Project administration; Resources; Supervision; Writing - original draft; Writing - review & editing

Irene Godoy – Data curation; Formal analysis; Funding acquisition; Investigation; Project administration; Resources; Supervision; Writing - original draft; Writing - review & editing

Katharine M. Jack – Data curation; Funding acquisition; Investigation; Project administration; Resources; Supervision; Writing - original draft; Writing - review & editing

Justin D. Kim – Data curation; Formal analysis; Validation; Writing - original draft

Lev Kolinski – Data curation; Formal analysis; Validation; Writing - original draft; Writing – review & editing

Nelle K. Kulick – Data curation; Formal analysis; Validation; Writing - original draft; Writing – review & editing

Teera Losch – Data curation; Formal analysis; Validation; Writing - original draft

Juan Carlos Ordoñez – Data curation; Investigation; Supervision; Writing - original draft; Writing – review & editing

Susan E. Perry – Data curation; Funding acquisition; Investigation; Project administration; Resources; Supervision; Writing - original draft; Writing - review & editing

Fernando Pinto – Project administration; Supervision; Resources; Writing - original draft

Olivia T. Reilly – Data curation; Formal analysis; Validation; Writing - original draft

Elizabeth Tinsley Johnson – Data curation; Project administration; Supervision; Writing - original draft

Michael D. Wasserman - Funding acquisition; Project administration; Resources; Writing - original draft