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Abstract—MAGICAL is an open-source system for analog and
mixed-signal (AMS) circuit layout synthesis. Using custom place-
and-route and constraint extraction algorithms, MAGICAL pro-
vides a fully-automated layout implementation flow. MAGICAL
1.0 has been proven in silicon with a 40-nm 1GS/s ∆Σ ADC. The
source code has been released to enable broad usage. Recently,
MAGICAL has also been extended to cover more circuit classes
such as SAR-ADC. This tutorial/perspective paper describes the
overall MAGICAL framework and algorithms. We also provide a
tutorial on how to use and extend MAGICAL and discuss future
research directions for AMS layout design automation.

I. INTRODUCTION

Analog/mixed-signal (AMS) integrated circuits (ICs) are
essential in many emerging applications, including the Internet
of Things (IoT), 5G networks, advanced computing, and
healthcare electronics. The layout design for AMS IC has been
a heavily manual and error-prone task. Therefore, automating
layout synthesis is desired to enhance design productivity.

Layout automation for AMS IC has been an active research
area for years [1]–[4]. However, automatic AMS layout tools
have not been widely adopted in industrial flow as AMS
layout strategies usually do not have a standardized design
methodology like that in a digital design flow. An AMS
circuit often requires custom layout implementations, and its
performance is sensitive to its layout designs. These factors
impose challenges on analog design automation. Therefore,
specialized physical design algorithms are needed to consider
additional requirements in the analog domain. Researchers
have proposed alternative methods to handle the problem,
such as using existing digital tools for specific digital-like
netlists and adopting procedure-based layout generation [3].
For example, FASoc [5] creates many analog standard cells
to assist the AMS layout synthesis. BAG [6] develops a stan-
dardized interface for procedure-based layout generation [7],
[8]. However, these methodologies either are not general-
purpose or require a significant amount of manual effort to
program the layout templates. On the other hand, optimization-
based layout synthesis obtains better flexibility by applying
advanced placement and routing techniques on AMS circuits.
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Recently, researchers have developed optimization-based AMS
layout synthesis frameworks, such as MAGICAL [9]–[11] and
ALIGN [12]. Leveraging both human and machine intelli-
gence, they have shown very promising results and pushed
AMS layout synthesis closer to real-world applications.

MAGICAL is an open-source end-to-end framework for
AMS layout synthesis, aiming to generate GDSII layouts from
netlists. MAGICAL can be run with no-human-in-the-loop,
i.e., it will automatically perform layout constraint generation,
then placement and routing. MAGICAL can also be run with
user-specified layout constraints and guidance. It could also
be run with intelligent simulations in the loop. Over the
last few years, we have made tremendous progress on the
MAGICAL system, from the initial version with limited ca-
pability [9] to the silicon-proven MAGICAL 1.0 release [10].
The MAGICAL 1.0 flow has been verified in silicon tapeout
with a TSMC 40nm 1GS/s ∆Σ ADC design. The source codes
of MAGICAL 1.0 have been released on Github1. Recently,
MAGICAL 1.0 has been extended to support SAR-ADC [13]
and recently verified in silicon.

This paper aims to give a comprehensive and updated
tutorial with perspectives on the MAGICAL system. Although
there have been publications related to MAGICAL, they may
focus on individual components or algorithms [14]–[17], or
outdated [9], [11] or lacking details [10]. Furthermore, existing
publications do not provide a tutorial on the MAGICAL
release from a user’s perspective. This paper further provides
guidance on how to use and extend the MAGICAL release.

The rest of this paper will be organized as follows. Section II
reviews the key MAGICAL components and algorithms. Sec-
tion III gives a tutorial on how to use and extend MAGICAL.
Section IV provides our perspectives on future research direc-
tions in general AMS layout and design automation, followed
by conclusion in Section V.

II. MAGICAL ALGORITHMS

This section reviews the MAGICAL algorithms, including
the overall flow (Section II-A), automatic constraint extrac-
tion (Section II-B), placement engine (Section II-C), and
routing algorithms (Section II-D).

1https://github.com/magical-eda/MAGICAL
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Fig. 1: The MAGICAL hierarchical layout synthesis frame-
work.

A. Overall Flow

MAGICAL is a hierarchical layout synthesis framework. It
starts from the bottom-level building blocks (e.g., comparator,
amplifier) in a hierarchical circuit and completes the entire
layout level by level. Figure 1 illustrates an example of the
flow. MAGICAL first synthesizes the block-level sub-circuits.
An automatic constraint extractor first analyzes its topology
and generates the symmetry constraints for a sub-circuit.
Then the sub-circuit is placed and routed under the extracted
constraints. After routing the sub-circuit, MAGICAL verifies
its post-layout performance if its simulation scripts are given.
MAGICAL repeats the layout generation process when the
performance specifications are not met. Once all block-level
layouts are implemented, they are then integrated into the
system-level circuit using placement and routing techniques.
The details of MAGICAL’s hierarchical layout implementation
flow are described in [14].

B. Automatic Constraint Extraction

MAGICAL has two automatic constraint extractors: one
for device-level symmetry constraints and one for system-
level symmetry constraints. Device-level symmetry constraints
target primitive devices (e.g., transistors and capacitors), while
system-level constraints are applied to sub-circuit. Automatic
constraint extraction for analog circuits has been a fast-
growing area in recent years. [18] gives an overview of recent
developments in automatic constraint extraction research.

MAGICAL adopts a heuristic algorithm using pattern li-
brary and signal flow-based graph traversal for device-level

(a)

(b)

Fig. 2: Device-level constraint extraction illustration. (a) Pat-
tern library. (b) Signal flow-based graph traversal [9].

symmetry constraint extraction. First, an input circuit is con-
verted into a graph. Then, its local structures are compared
with a pattern library to generate the seed patterns for sym-
metry pairs. Finally, graph traversals are performed from
the seed patterns to expand the recognized constraints and
reduce constraint ambiguity. Figure 2 illustrates the device-
level constraint generation algorithms, where Figure 2(a) gives
examples in the pattern library, and Figure 2(b) depicts the
signal flow-based graph traversal method. More details can be
found in [9].

On the other hand, system-level constraint extraction is
based on measuring the graph similarity between two sub-
circuits. The entire netlist is first converted to a graph. Sub-
circuit pairs in the same circuit hierarchy are then checked
one by one. The sub-circuits and their neighboring structures
are extracted into sub-graphs from the graph. The constraint
extractor compares the two sub-graphs and measures their
topological similarity. A symmetry constraint is labeled if the
graph similarity is larger than a threshold. The graph similarity
metric is computed by a statistical method. The eigenvalues
of the graph Laplacians are computed, and Kolmogorov-
Smirnov (K-S) tests are used to score the graph similarity
between two eigenvalue vectors. More details of the MAGI-
CAL device-level symmetry constraints can be found in [15].
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C. Analytical AMS Placement

MAGICAL’s placement engine is used for building-block-
level layout generation and system-level integration. It in-
cludes a non-linear programming-based global placer and a
linear programming-based legalizer. It honors the symmetry
and self-symmetry constraints while optimizing for other ob-
jectives.

Global placement determines a rough position for each
instance and overall floorplan. During global placement, a
non-linear objective function is iteratively optimized over the
positions of instances. Optimizing the cost function minimizes
the objectives, such as wirelength, and the penalties, such as
overlapping. The objectives include wirelength and system-
signal flow. The penalties include overlapping, asymmetry,
and violation of direct current flow. These different costs are
optimized together in a weighted cost function. The weights of
penalties are increased over the iterations to ensure the global
placement results are closed to legal solutions.

After global placement, the resulting placement is further
legalized and optimized. With a linear programming-based
legalization procedure, instance positions are adjusted to en-
force non-overlapping and symmetry constraints. The linear
programming-based legalization maintains the relative posi-
tions between instances from the global placement results. The
legalization process is performed twice for each placement:
The first execution legalizes the placement to minimize the
area. The second execution further optimizes the wirelength
without increasing the area.

In MAGICAL 1.0, system-signal flow is an optional input
to the placement engine. Parasitic RC and couplings from
the layout on the critical system signals can change the
behavior of the circuits and degrade post-layout performance.
A typical layout strategy to mitigate this issue is to maintain
the regularity of system signal flow in the placement stage.
Figure 3 illustrates an example of system signal flows on a
continuous-time ∆Σ modulator (CTDSM) design. There are
critical forward and feedback signal paths in the schematic
design (Figure 3(a)). In an ideal floorplan, the signal paths
are regular in a “schematic-like” manner (Figure 3(b)). The
placement engine considers the system signal flow in the
global placement.

More details of the MAGICAL placement algorithm can be
found in the paper [17].

D. AMS Detailed Routing

AMS detailed routing finishes the interconnections while
considering geometrical and electrical constraints. Geometrical
constraints in the MAGICAL router include four variants of
symmetry constraints: mirror-symmetry, cross-symmetry, self-
symmetry, and partial symmetry. Figure 4 illustrates these
symmetry constraint variants.

The core detailed routing process consists of three phases.
First, pre-processing is applied to detect the unspecified sym-
metry constraints and model the geometric metal shapes into
access point sets. Then, the core routing engine connects the
nets. Finally, the remaining design rule violations are corrected
in the post-refinement phase.
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Fig. 3: An illustration of system-signal flows in a CTDSM
circuit. (a) The schematic. (b) A layout implementation with
regular system-signal flows [17].
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Fig. 4: Examples of the four symmetry constraint variants. (a)
Mirror-symmetry. (b) Cross-symmetry. (c) Self-symmetry. (d)
Partial-symmetry [16].

The pre-processing phase first analyzes the pins in the
placed layouts. In addition to the given symmetry constraints,
it also identifies the symmetric pins in the layouts. Those
symmetric pins are also routed symmetrically later. The pre-
processing phase also analyzes the pin shapes and determines
the access points, which benefit the pin access in the later
path-searching procedure.

The core routing phase is based on an obstacle-aware
path-finding algorithm. It searches the feasible routing paths
connecting the pins. Symmetry is considered by simultane-
ously performing obstacle-aware path-finding on both sides
of the symmetric axis. Design rules, including parallel run
spacing, end-of-line spacing, min-area, and min-step, are also
checked in the path-finding process. When no feasible routing
solution is found, the detailed router starts a rip-up and reroute
optimization loop until reaching a feasible solution.

Finally, post-processing checks the remaining design rule
violations of the routing solution. Min-step violations are
fixed by adding patches to the metal shapes. More details are
described in [16].
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III. HOW TO USE AND EXTEND MAGICAL

This section gives a tutorial on using and further extending
the open-sourced MAGICAL software. Selected results of the
MAGICAL 1.0 system are presented in Section III-C. The
following tutorial is based on the MAGICAL 1.0 release 2.

A. Using MAGICAL

This section covers the tutorial for MAGICAL from a user’s
perspective.

Setting-up the software: MAGICAL is developed on the
Linux operating system. To the best of our knowledge, the
necessary dependencies of the MAGICAL system are all open-
sourced. To compile MAGICAL from scratch on a Linux
system, a user can refer to README and Dockerfile files
under the root of the MAGICAL directory. An alternative
way is to use the Docker image [19]. We provide a complete
Docker image installed with the MAGICAL tool and its
dependencies. A user can use the tool out-of-box using the
Docker image. The README file contains the instruction to
use the Docker image.

Configuring the parameters: MAGICAL 1.0 is currently
developed for TSMC 40nm technology. Due to the non-
disclosure agreement, the publicly released MAGICAL is
sanitized and uses some fake parameters related to the tech-
nology. A user can edit flow/python/Params.py and
device_generation/glovar.py to correct those pa-
rameters.

Running the examples: MAGICAL 1.0 release contains
several example circuits under the directory examples for
users’ reference. After installing the MAGICAL tool, a user
can execute the run.sh script to run an example. The
example benchmark can generate a layout from the input
netlist.

Applying to new designs: A user to refer to the examples
for the input files. The MAGICAL takes a JSON file for the
input parameters and files. The essential input files include
a spectre or hspice netlist and several technology files. The
MAGICAL release provides an example set of technology files
in the examples directory for the technology files. There are
several optional input files. A sym file specifies the placement
symmetry constraints. A symnet file specifies the routing
symmetry net constraints. The MAGICAL tool will automati-
cally generate the sym and symnet files if the user does not
give them. The user can use the optional symmetry constraint
files to override the automatically extracted constraints. On the
other hand, the system signal flow can not be automatically
extracted. The user can use a sigpath file to specify the
system signal flow. There are examples of these optional input
files in the examples named adc1 and adc2.

Standard cells or other IP cells can also be used
in MAGICAL instances. To add a new standard cell,
the user needs to add the name of standard cells to
flow/python/Params.py. Then the GDS layout and its
pin locations need to be given to the tool. There are examples
of using the digital standard cells in the examples of adc1

2https://github.com/magical-eda/MAGICAL/releases/tag/v1.0.2

and adc2. Note that those standard cells in the public release
are sanitized.

B. Extending MAGICAL

This section intends to give software developers a tutorial
on extending the MAGICAL tool further.

Software structure and new feature development: MAG-
ICAL is written in Python and C++. It consists of five mod-
ules: device generation, constraint generation, placer, router,
and hierarchical flow integration. The first four modules are
developed as standalone sub-modules, and each of them can
function individually. At the same time, they all provide a
Python interface for easy integration with other programs.
The MAGICAL flow is for integrating the sub-modules into a
complete end-to-end framework. It accesses other sub-modules
through their Python interfaces.

The ideology of MAGICAL software structure is to expose
the Python parts to the users and develop the computation-
intense parts in C++. For computational efficiency, most data
structures and core optimization schemes are written in C++.
We use Pybind11 [20] to implement the Python interfaces for
these C++ modules. We encourage the software developers
to follow a similar approach. A developer can change the
existing or extend the Python interfaces of the sub-modules
exposed to the top-level flow scripts. The users can adjust the
programming language based on their needs.

Migration to other technologies: Porting MAGICAL to
another technology can be non-trivial. MAGICAL 1.0 is
currently developed for planar CMOS technology. The device
generation and technology configuration need to be changed
to migrate MAGICAL to another planar CMOS technology.
The device generation module generates the correct layout of
devices, such as transistors and capacitors, from the netlists.
The device generation needs to be correctly changed according
to the technology. The engineering efforts may vary depending
on the technology.

Another challenge is on the design rules. The design
rules differ in different technologies. The configuration, such
as metal width and spacing, can be edited in the file
flow/python/Params.py. The additional design rules
in placement or routing, on the other hand, might need
modification on the placer and router modules.

C. Selected MAGICAL 1.0 Results

The MAGICAL system overall provides a fully-automated
solution to AMS layout synthesis. MAGICAL can generate
the layouts in seconds to minutes while providing competi-
tive post-layout performance. Table I shows the comparisons
between the MAGICAL generated and manual layouts of a
comparator and an operational amplifier. The MAGICAL 1.0
reduces signal mismatching in OP and obtains better offset
and CMRR than the manual layout. The delay and area
overheads for the COMP mainly come from the individual
wells. The shared well islands algorithm is being developed
to optimize the placement [21]. The post-layout simulation
results demonstrate the capability of the MAGICAL system.
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(a) (b) (c)

Fig. 5: Examples of MAGICAL 1.0 Generated layouts. (a) A
comparator. (b) An inverter-based feed-forward OTA. (c) A
second-order CTDSM.

Furthermore, the 40nm CTDSM ADC tape-out measure-
ment results show that the MAGICAL system can produce
similar performance, area, and power compared to manually
optimized layouts. The measured SNDR and SFDR of 67.4 dB
and 80.8 dB of the MAGICAL layout are close to the manual
layout of 65.6 dB and 82.6 dB. The detailed measurement
results can be found in [10]. More post-layout simulation
results of MAGICAL 1.0 can be found in the papers [16], [17].
Figure 5 shows more examples of MAGICAL 1.0 generated
layouts.

TABLE I: Comparisons of Manual and MAGICAL Generated
Layouts.

Circuits Schematic Manual
Layout

MAGICAL
1.0

COMP

Delay (ps) 69 99 122
Offset (µV) - 0.122 0.233

Noise (µVrms) 372 380 362
Area (µm2) - 51 156

Runtime - Hours 9.5s

OP

DC Gain (dB) 38.2 37.0 37.9
Bandwidth (MHz) 110.5 110.0 108.2
Phase Margin (◦) 64.7 67.8 63.3

Offset (µV) - 0.20 0.01
CMRR (dB) - 103.0 184.7
Area (µm2) - 2550 2400

Runtime - Hours 14.2s

IV. PERSPECTIVES ON FUTURE DIRECTIONS

This section gives our perspectives on MAGICAL and
the general research in automating AMS layout synthesis. It
also discusses the future research and software development
directions in the field.

A. Open-source Software Development

MAGICAL focuses on expanding the user base and partic-
ipating in the open-source hardware community.

MAGICAL has demonstrated silicon-proven success. How-
ever, there are still challenges to making it cover a larger
user base and provide consistent and high-quality results. A
major issue we observe is that the users are using different
technologies. It is difficult for us to obtain access to many
technology PDKs, and there are large amounts of engineering
efforts to migrate MAGICAL to new technologies. Therefore,
the users sometimes need to make significant development

efforts to use the MAGICAL tool, especially those unfamiliar
with software development.

We are currently closely collaborating with the open-source
hardware community and the MAGICAL users to expand our
capability. The ongoing actions include developing toward the
open-source Skywater 130nm PDK 3 and making MAGICAL
more technology-agnostic based on the users’ feedback.

B. MAGICAL for Advanced FinFET Technologies

Another ongoing development target for MAGICAL is on
supporting the advanced FinFET technologies. In FinFET,
the layout design methodology differs from the conventional
planar CMOS technologies. The FinFET layouts are more
regular in a grid structure and have more strict design rules
from the layout automation perspective. Instead of directly
adapting the current MAGICAL to FinFET technology, our
vision predicts AMS layout synthesis for FinFET technology
needs a distinctive design methodology.

We are currently actively researching the AMS layout
synthesis for FinFET technologies. Our ongoing research for
the FinFET AMS layout system has a region-based and grid-
ded style [22]. It includes significant changes are placement,
routing, and device generation.

C. Machine Learning in AMS Layout Synthesis

Incorporating more Machine learning (ML) and artificial
intelligence (AI) into AMS layout synthesis system is an
important direction in the field. ML for AMS layout synthesis
is an active research area, from placement to routing, to
performance/parasitic predictions [21], [23]–[29]. Adopting
ML techniques allows automatic tools to learn from human
layout [9], [15], [21], [23], [30] and makes optimization more
efficient [14], [26], [28]. In addition to applying ML, an open
question to answer is how to make the AI-assisted design
automation frameworks reliable and robust.

We are currently actively researching and developing ML-
assisted MAGICAL. Our ongoing exploration includes robust
ML models and effective ML-assisted layout optimization
techniques.

V. CONCLUSION

The paper presents a comprehensive and updated tuto-
rial/perspective on MAGICAL, a silicon-proven open-source
analog IC layout system. The overall flow and algorithms
in MAGICAL are described, together with how to use and
extend MAGICAL. We also present our perspectives on the
future directions of automatic AMS layout synthesis and open-
source software development. Although analog layout design
automation is still far behind its counterpart of digital IC
design automation, we believe that with the advancement of
computing power and AI, coupled with the stringent demand
of design productivity and turn-around-time, analog design au-
tomation shall receive more and more attention and adoption.

3https://github.com/google/skywater-pdk
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