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ABSTRACT
Transformers are considered one of the most important deep learn-
ing models since 2018, in part because it establishes state-of-the-art
(SOTA) records and could potentially replace existing Deep Neural
Networks (DNNs). Despite the remarkable triumphs, the prolonged
turnaround time of Transformer models is a widely recognized
roadblock. The variety of sequence lengths imposes additional com-
puting overhead where inputs need to be zero-padded to the max-
imum sentence length in the batch to accommodate the parallel
computing platforms. This paper targets the field-programmable
gate array (FPGA) and proposes a coherent sequence length adap-
tive algorithm–hardware co-design for Transformer acceleration.
Particularly, we develop a hardware-friendly sparse attention oper-
ator and a length-aware hardware resource scheduling algorithm.
The proposed sparse attention operator brings the complexity of
attention-based models down to linear complexity and alleviates
the off-chip memory traffic. The proposed length-aware resource
hardware scheduling algorithm dynamically allocates the hardware
resources to fill up the pipeline slots and eliminates bubbles for
NLP tasks. Experiments show that our design has very small ac-
curacy loss and has 80.2 × and 2.6 × speedup compared to CPU
and GPU implementation, and 4 × higher energy efficiency than
state-of-the-art GPU accelerator optimized via CUBLAS GEMM.
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1 INTRODUCTION
Transformers are considered as one of the most important deep
learning models since 2018 [1], in part because it could potentially
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Figure 1: The architecture of a four-head encoder. The time
consumption is measured on for TensorRT [15] onWikiText-
2 dataset [16], where the input sequence has 128 tokens.

replace existing Deep Neural Networks (DNNs), such as Convo-
lutional Neural Networks (CNN) and Recurrent Neural Networks
(RNN) [2]. By leveraging self-attention [3], Transformers have es-
tablished state-of-the-art (SOTA) records (beyond human level) in
various fields. Using computer vision as an example, CNNs were the
first choice previously [4]; but nowadays, Transformer is gradually
becoming the potential alternative, both from theoretical demon-
stration and empirical explorations, e.g., [2, 5–7].

Despite the remarkable triumphs, the prolonged turnaround
time of Transformer models is a widely recognized roadblock that
concerns real-world applications. Fig.s 1(a) and (b) depict the archi-
tecture of one encoder a.k.a. the building block for Transformers.
Briefly, one encoder takes the word embeddings of a sequence as in-
put. These embeddings pass through the self-attention mechanism
to produce an attention matrix. This matrix is fed through layer
normalization, linear transformation, and activation operations to
derive the output. Various Transformer model variants often stack
different numbers of encoders and decoders together [3]. The bad
news is that the time consumption of a single encoder in Fig. 1
could easily reach 100s of 𝜇s, which is ∼10× slower than a typical
CNN model. Of such a long latency, around 60% of the time is spent
in the self-attention workflow. According to our preliminary study,
the time consumption ratio of self-attention is projected to climb if
the number of tokens in the input sequence increases, especially in
the NLP field [8] further. There exist several initial attention-aware
optimization attempts, such as sparse attention [9] and attention
approximation [10–14], to leverage runtime approximations or do-
main knowledge, i.e., tokens only attend their nearby tokens & a
few sampled tokens as the summary of the sentence instead of at-
tending all tokens. However, these explorations, unfortunately, fall
short by either lacking generality or high computation overheads.
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To make it worse, Transformer brings the challenge of a wide
variety of input lengths, where inputs need to be zero-padded to the
maximum sentence length in the batch to accommodate the parallel
computing platforms such as GPU and Field-Programmable Gate
Array (FPGA) [17]. By nature, RNN-based models, e.g., GRU and
LSTM, process the inputs sequentially. Thus, the inputs could be
divided into unified fixed-length sub-inputs and processed indepen-
dently. Transformers leverages parallel processing and therefore
cannot enjoy the benefit of fixed-length sub-inputs. Existing works
on sequence length standardization fall into two categories. The
first one is padding or truncation, which forces the sequence length
to be the same. It leads to enormous computation overhead due to
the unnecessary computation of the padding part. The second cate-
gory divides a sequence batch into micro-batches (padding within
the micro-batch) to mitigate the computation overhead. However,
the various and irregular sequence length undermines overall per-
formance and throughput at the inter micro-batch level. Together
with the prolonged turnaround time, achieving fast and efficient
Transformer models becomes a grand challenge.

Across all the popular hardware, e.g., CPUs, GPUs, FPGAs, and
Application-Specific Integrated Circuits (ASICs), FPGAs strike an
effective balance among massive parallelism, high energy efficiency
and short development cycle, hence lend themselves as the top
choice to expedite the Transformer architecture. In this paper, we
believe that the ideal Transformers acceleration should have a co-
herent algorithm–hardware co-design. We believe that (i) Trans-
formers should have their dedicated efficient algorithm de-
signs. Since self-attention cares more about the value relativity
of all the attention scores than the absolute value of any specific
attention score, we propose an efficient scheme to exploit two
different self-attention approximations adaptively. Note, our ap-
proximation mechanisms are quantization-based designs that are
not only computation-efficient but also hardware-friendly. We also
think that (ii) Transformers should efficiently support various
sequence length inputs. For instance, SQuAD v2.0 [8] has an
average and maximum sequence length of 171 and 975, respectively.
When padding the sequence with 975, it causes 5.7× computational
and memory bandwidth overhead on average. The inputs are sorted
and processed according to the order of length. Compared to ex-
isting works, we achieve 4 × higher energy efficiency than GPU
accelerator optimized through CUBLAS GEMM routine [18, 19]
with small accuracy loss, and comparable energy efficiency com-
pared to ASIC accelerator designs [12, 13]. Our contributions are:

• We propose sparse attention which is computation-efficient
and hardware-friendly to reduce the need for computational
resources and memory bandwidth.
• We propose a sequence length adaptive design to allocate
coarse pipeline stages dynamically to eliminate pipeline bub-
bles and achieve the highest possible throughput under dif-
ferent sequence length inputs.
• Transformer exhibits a highly skewed distribution of compu-
tation complexity among the operators. We further develop
a loop fusion to orchestrate the multiple attention operators
and re-arrange various Transformer computations to en-
hance temporal locality and efficient hardware design with
finer granularity.

2 RELATEDWORK
Attention-aware Optimization. We also notice several recent
attention-aware optimization attempts, such as sparse attention [9]
and attention approximation [10–14], which unfortunately fall short

by either lack of generality or high computation overheads. Partic-
ularly, sparse attention mechanisms [9] leverage domain knowledge,
i.e., tokens only attend their nearby tokens and a few sampled
tokens as the summary of the sentence instead of attending all
tokens, to reduce computation and memory consumption during
self-attention computation. Such design requires a pre-determined
attention mask that lacks generality.

Approximation-based attention leverages runtime approxima-
tions to derive sparse attention which faces non-trivial overheads.
BP-Transformer [10] and Reformer [11] convert the self-attention
computation into a nearest neighbor search problem and use either
tree-based search, Locality Sensitive Hashing (LSH), or low-rank
approximationto find similar tokens for attention. A3 [12] embraces
architecture innovation to estimate the closeness between tokens.
However, the estimation process still requires full access to original
matrices and does not alleviate memory bottleneck for attention
computation according to SpAtten [13]. ELSA [14] uses LSH dis-
tance for attention rank approximation, but it again suffers signifi-
cant overheads for LSH.
Sequence length standardization. TensorRT [15] utilized the
padding and truncation [17] to standardize the sequence length
for parallel computing. It makes the hardware design regularized
but leads to enormous computation overhead due to the unneces-
sary computation of the zero-padding part. TurboTransformer [20]
divided a batch into micro-batches with similar lengths; however,
within the micro-batch, it still required maximum sequence length
padding. To make things worse, when we implement this method
on FPGA, it introduces significant pipeline bubbles.

3 SPARSE ATTENTION ALGORITHM
3.1 Overview
Approximation-based attention leverages run-time approximations
to derive sparse attention which faces non-trivial overheads. BP-
Transformer [10] and Reformer [11] convert the self-attention com-
putation into a nearest neighbor search problem and use either
tree-based search, Locality Sensitive Hashing (LSH), or low-rank
approximation to find similar tokens for attention. A3 [12] embraces
architecture innovation to estimate the closeness between tokens.
However, the estimation process still requires full access to original
matrices and does not alleviate memory bottleneck for attention
computation according to SpAtten [13].

We propose to compute sparse self-attention via rapid attention
rank approximation and sparse attention computation. We firstly
quantize the full precision Q and K into low bits representation, i.e.,
1 bit or 4 bits. Then we conduct matrix multiplication on quantized
value and get the Top-𝑘 candidates index. At last, we conduct full
precision sparse attention computation based on Top-𝑘 candidates.
The algorithm reduces the attention complexity from 𝑂 (𝑛2)
to 𝑂 (𝑛), where 𝑛 is sequence length.

3.2 Sparse Attention Via Q & K Quantization
In self-attention, the input is transformed into three matrices Q,
K and V. Then Q and K are multiplied to arrive at S = Q · K𝑇 ,
where each element in the resultant matrix is an attention score. A
row of attention scores in S represent the dot-product between a
row vector in Q and all row vectors in K respectively. Step 0 in
Fig. 3 illustrates one row of Q multiplying with K, where q is one
row in matrix Q. Subsequently, we perform a softmax operation
on S, which is S𝑖 =

exp(qk𝑖 )∑4
𝑗=1 exp(qk𝑗 )

, i.e., step 1 in Fig. 3. The key
observation is: since softmax is a normalization method, it is the
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Figure 2: (a) Sparse attention on FPGA; (b) State machine.
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value relativity of all the attention scores, as opposed to the absolute
value of any specific attention score, that matters.

We propose to quantize Q and K from the full-precision repre-
sentation (usually 32-bit floating-point) into a low-precision integer
representation. Because both quantization and exponential opera-
tions used in softmax are monotonically increasing operators, the
quantized results maintain the order of attention scores. We use our
fast quantized matrix multiplication to extract dominant attention
values. Afterward, we perform accurate attention computation only
for dominant attention scores. The design is depicted in Fig. 3.

Particularly, we first find out the suitable scaling factor 𝑀 for
the given tensor to quantization, then perform 𝑥 ′ = 𝑟𝑜𝑢𝑛𝑑 ( 23−1|𝑀 | 𝑥),
which casts all the floating point values into a desired integer. For
example, the scaling factor𝑀 of K in Figure 3 is 0.77, so each ele-
ment is be multiplied with 23−1

0.77 and rounded to the nearest integer.
We follow a similar procedure to quantize q into q’. Subsequently,
we again use a look-up table to perform the multiplication. For
instance, if we multiply two 4-bit integers, the look-up table only
needs 256 entries. We can easily estimate the multiplied value. At
the end of step 2 , we derive the Q′ ·K′𝑇 . As the examples indicate,
the quantized results keep the same rank and distribution compared
with their full-precision counterpart.

We conduct Top-𝑘 sort and select the Top-𝑘 ranked attention
scores for exact matrix multiplication, which derives more accurate
softmax values. This is faster than the original design because we
only need to compute Top-𝑘 attention scores. In step 4 in Fig. 3,
we select Top-2 element 𝑘1 and 𝑘3 to perform matrix multiplication
and softmax, which is used as an approximation of the result of
self-attention. Subsequently, we will perform full-precision Q · K𝑇
for the selected attention scores at 5 and final softmax at step 6 .
4 HARDWARE ACCELERATOR DESIGN AND

SCHEDULING ALGORITHM
The proposed quantization-based sparse attention system design
is more fit on FPGAs than general-purpose processors because
the latter are instruction-driven architecture. At the same time,

FPGAs are data-driven architecture that avoids instruction fetch
and related memory access. When compared to the popular GPU
accelerators, FPGAs excel for the following reasons: (1) The on-chip
memory capacity of FPGAs is much higher (360×) than that of GPUs
(i.e., 35 MB in Xilinx Alveo U200 vs. 96 KB in V100). The FPGA
on-chip memory features its high memory bandwidth (31 TB/s) and
low access latency (single clock cycle), enabling higher throughput
and lower latency design [21–23]. With more on-chip memory
size, we can achieve a better computation to communication (CTC)
ratio for the same operations, i.e., matrix multiply and matrix add.
(2) FPGA provides more design opportunities on fine-grained and
coarse-grained pipelining and loop fusion techniques. We can have
better data locality optimization, and design space freedom on
FPGA through polyhedral analysis and proper loop reschedule. (3)
FPGAs are more power-efficient, and therefore more suitable for
resource-constrained scenarios.

The FPGA platform enables better intra-attention coarse grain
pipelining design and leaves more freedom on FPGA resource allo-
cation. The commonly used way for NLP tasks with variable length
inputs is to unify input sequence to a fixed length through padding
and cutting. However, length padding introduces unnecessary over-
head, and length cutting leads to information loss. To accelerate
the NLP tasks with variable sequence length, we propose sequence
length adaptive Transformer hardware design on the FPGA plat-
form and the corresponding hardware scheduling algorithms to
optimize the coarse-grained stage throughput. Compared to com-
monly used padding and cutting methods, our proposed method
has higher hardware throughput and less information loss.

4.1 Sparse Attention Accelerator Design
We break down the original single Transformer Encoder stage
pipeline into three coarse-grained pipelines and overlap their exe-
cution time by inserting buffers for each concatenated pipeline pair,
as shown in Fig. 2(a). Stage 1 contains the linear transformation
(using MatMul (MM)) and quick attention approximations (a.k.a,
pre-selection) (At-Sel) hardware. The MM result is directly fed into
the bits selector hardware for ultra-low bit quantization. The result
is stored in the on-chip buffer for candidate pre-selection computa-
tion (utilizing LUT hardware for approximate distance calculation).
The approximate distance output and address are then fed to the
merge sort hardware for high throughput (II=1) scalable Top-𝑘 sort
[24]. The Top-𝑘 results (e.g., index and value pairs) are stored back
to HBM for inter-stage buffering. Stage 2 is attention computation
(At-Comp) and Stage 3 is feedforward (FdFwd). Stage 2 is divided
into three sub-stages and implemented with the intra-layer coarse-
grained pipeline to enhance hardware utilization. Stage 2.1, the data
loading stage, utilizes the Top-𝑘 results from stage 1 to choose the
attention candidates. As discussed in Section. 3.2, each 𝑄𝑟𝑜𝑤𝑖 have
selected candidates 𝐾𝑠𝑖 and 𝑉𝑠𝑖 matrix for attention computation.
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Figure 4: An attention kernel fusion example.

Stage 2.2 is implemented with loop fusion and is composed of oper-
ators 4 to 6 in Fig. 3. Stage 2.3 is composed of 𝑍𝑖 = 𝑆𝑖 ·𝑉 /𝑠𝑢𝑚(𝑆𝑖 )
operation for each row 𝑖 . The double-buffers added between stages
buffer the data produced/consumed by the previous/current stage
for coarse-grained pipelining. Stage 2.3 conduct the final MM oper-
ation between 𝑍𝑖 and 𝑉 Stage 3 (feedforward) is composed of MM,
add, layer normalization, and GELU unit.

In stage 2, We divide the softmax 6 in Fig. 3 into two operations:
exponent calculation and normalization. We leverage the FPGA’s
fine-grained pipelining characteristic to fuse multiple attention
operators (i.e., 5 to 6.1 ) into a single loop. An example is given in
Fig. 4, the scaling, mask, and exponential operations are conducted
at the last loop iterations. 𝑄𝑟𝑜𝑤𝑖 is the processed row and 𝐾𝑠 is
the corresponding selected candidate for the attention. 𝐾𝑠 .𝑑𝑖𝑚1
and 𝐾𝑠 .𝑑𝑖𝑚2 are the size of 1st and 2st dimension of 𝐾𝑠 . 𝑆𝑟𝑜𝑤𝑖 is
the processed attention score result. Thanks to the reconfigurable
architecture of FPGAs, we enable fusing the loops with different
iteration trip counts while GPU designs (e.g., TensorRT) only can
fuse specific loops (e.g., scale + matrix multiply). Both Stage 1 and
3 leverage on-chip memory and proper loop allocation to mitigate
communication bottlenecks between the on and off-chip memory.

4.2 Length-aware Scheduling Algorithm
Different length sequences tasks consume different computational
resources and have different latency, which introduces pipeline
bubbles due to irregular and unpredictable dataflow. Because all
operators have 𝑂 (𝑛) complexity where n is sequence length, we
proposed a novel length-aware coarse-grained pipeline algorithm to
dynamically adjust the hardware resource allocation to illuminate
the pipeline bubble. We leverage FPGA characteristics to adjust the
resource allocation according to stages’ computation complexity,
eliminate redundant computation and achieve ultra-high through-
put. We propose the techniques detailed below.

Resource Scheduling Algorithm. The slowest stage con-
strains the throughput of the coarse-grained pipeline. We first
develop a Encoder coarse-grained stage allocation algorithm (Al-
gorithm 1) to schedule operators efficiently. For original operator
graph 𝐺 = (𝑉 , 𝐸), each vertex 𝑣𝑖 ∈ 𝑉 represents an operator and
the edge 𝑒𝑖 𝑗 represents the data dependency between 𝑣𝑖 and 𝑣 𝑗 .
Each vertex 𝑣𝑖 has a weight𝑊 (𝑤𝑖 , 𝑠𝑎𝑣𝑔) which is the associated
arithmetic computational complexity. It takes the 𝐺 and Encoder
operator weight set𝑊 (𝑉 , 𝑠𝑎𝑣𝑔) at average sequence length 𝑠𝑎𝑣𝑔 , and
Encoder operator priority set at average sequence length 𝑃 (𝑉 , 𝑠𝑎𝑣𝑔)
as input and outputs operator subgraph of each Encoder compu-
tation stage 𝐺𝑘 = (𝑉𝑘 , 𝐸𝑘 ) shown in Eq. 1, where𝑊 (𝑣𝑖 , 𝑠𝑎𝑣𝑔) and
𝑃 (𝑣𝑖 , 𝑠𝑎𝑣𝑔) denote their value at vertex (𝑣𝑖 , 𝑠𝑎𝑣𝑔). To fully utilize
the resources of a certain FPGA chip for sequence length adap-
tive design, we further adjust the operator parallelism 𝑁 (𝑣𝑖 , 𝑠𝑖 ) for

Algorithm 1: Encoder coarse-grained Stage Allocation.
Input: Encoder operator graph𝐺 = (𝑉 , 𝐸) , Encoder operator weight set𝑊 (𝑉 , 𝑠𝑎𝑣𝑔) ,

and Encoder priority set 𝑃 (𝑉 , 𝑠𝑎𝑣𝑔) ;
Output: operator subgraph of each Encoder computation stage𝐺𝑘 = (𝑉𝑘 , 𝐸𝑘 ) ;
Traverse𝐺 = (𝑉 , 𝐸) and compute priority set 𝑃 (𝑉 , 𝑠𝑎𝑣𝑔) for the Encoder;
𝑘 ← 1, 𝑁 (𝑉 ) ← {1},𝐺1 ← 𝑣1 ; // add a operator to a new stage
foreach 𝑣𝑖 ∈ V in decreasing order of 𝑃 (𝑣, 𝑠𝑎𝑣𝑔) do

foreach 𝑁 ′ (𝑣𝑗 ) ∈ 𝐺𝑘 do

𝑁 ′ (𝑣𝑗 ) ← 𝑁 (𝑣𝑗 ) · ⌈
𝑊 (𝑣𝑗 ,𝑠𝑎𝑣𝑔 )
𝑊 (𝑣𝑖 ,𝑠𝑎𝑣𝑔 )

⌉;
end
if resource constraints are satisfied then

𝐺 𝑗 ← 𝑣; // add a operator to current stage

𝑁 (𝑉 ) ← 𝑁 ′ (𝑉 ) ; // update operator parallelisms
else

𝑘,𝐾 ← 𝑘 + 1;
𝐺𝑘 ← 𝑣𝑖 ; // add a operator to a new stage

end
end
return {𝐺1,𝐺2, ...,𝐺𝐾 };

intra coarse-grained pipeline stages and enumerate pipeline repli-
cation factor 𝑅(𝐺𝑘 , 𝑠𝑖 ) to obtain the optimal setting with the help
of analytical performance and resource models.

𝑃 (𝑣𝑖 , 𝑠𝑎𝑣𝑔) =

𝑊 (𝑣𝑖 , 𝑠𝑎𝑣𝑔) + max

𝑣𝑗 ∈𝑆𝑢𝑐𝑐 (𝑣𝑖 )
𝑃 (𝑣𝑗 , , 𝑠𝑎𝑣𝑔), 𝑣𝑖 ≠ 𝑣𝑠𝑖𝑛𝑘

𝑊 (𝑣𝑠𝑖𝑛𝑘 , 𝑠), otherwise
(1)

Length-aware Coarse-grained Pipeline Algorithm.We then
develop a length adaptive resource scheduling method to dynami-
cally patch the pipeline bubbles for a batch of tasks with different
sequence lengths. The effectiveness of the proposed scheduling
method relies on the fact that all operators have O(n) complex-
ity. The batch inputs are sorted and processed according to the
decreasing order of length, under the control of a dedicated state
machine (three states shown in Fig. 2(b): 𝑆𝑡𝑎𝑡𝑒𝑀𝑀 , 𝑆𝑡𝑎𝑡𝑒𝐴𝑡𝑡𝑒𝑛 and
𝑆𝑡𝑎𝑡𝑒𝐹𝐹 ) during its Encoder activation period. The state machines
dynamically allocate hardware resources (stages and buffers) to
eliminate pipeline bubbles and ensure a high hardware utilization
for batch sentences with varying lengths. Each stage has almost
100% utilization, and there is no pipeline bubble. We could signifi-
cantly reduce the latency (denoted as "saved").

A length-aware scheduling timing diagram example is given in
Fig. 5, where the batch size is 5, and the input sequence length
varies from 72 to 140. The batch inputs are sorted and fed into
the Encoder coarse-grained stages in decreasing order of sequence
length. Fig. 5(a) shows how each of the Encoder coarse-grained
stages processes each sequence input. Most attention-based models
have multiple Encoder layers, so the batch input is processed by
the layer order. Fig. 5(b) shows the hardware resource occupation
of Encoder coarse-grained stages. With the state machine-based
scheduling algorithm implemented, the pipeline stages of different
sequence length inputs and different Encoder layers are patched
together without pipeline bubble, so both stages have almost 100%
hardware utilization. The intra-layer coarse-grained pipeline is
implemented in each stage to exploit the trade-off between spatial
& temporal data locality and hardware resource occupation. The
communication and computation are overlapped with each other
through coarse-grained pipeline and data prefetching.

5 EXPERIMENT
We evaluate several well-known self-attention centric models to
demonstrate the algorithm & hardware design performance. For
NLP models, we choose four of the most popular ones: BERT-base
[25], BERT-large, and DistilBERT [26], and RoBERTa [27]. Model
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Figure 5: Length-aware coarse-grained dynamic pipeline algorithm example: (a) timing diagram; (b) hardware utilization.

configurations are given in Table 1. These models are self-attention-
centric and have a similar structure. For BERT-base, DistilBERT
and RoBERTa, we run 3 representative datasets to evaluate the
performance: SQuAD v1.1 [28], RTE [29], andMRPC [30]. For BERT-
large, we run SQuAD v1.1 for evaluation. The minimum sequence
length, average sequence, and maximum sequence of those datasets
are also given. Max/Avg ratio also corresponds to the computational
overhead introduced through padding.

Table 1: Model & evaluation dataset.
Model Layers Hidden dim Num. of Heads

DistilBERT 6 768 12
BERT-base, RoBERTa 12 768 12

BERT-large 24 1024 16
Evaluation dataset Avg Max Max/Avg

SQuAD v1.1 177 821 4.6
RTE 68 253 3.7
MRPC 53 86 1.6

The FPGA hardware design and evaluation are conducted on
the Alveo U280 platform. We also evaluate the hardware perfor-
mance on CPU, edge GPU, and GPU server platforms for cross-
platform comparison: Intel(R) Xeon(R) Gold 5218 CPU, Jetson TX2,
and Quadro RTX 6000. The FPGA design is conducted on software
version Vivado 2020.1, whereas GPU and CPU design is completed
on Pytorch 1.10.0 and Transformers 4.13.0.dev0.
5.1 Sparse Attention Accuracy Evaluation
We evaluate the models mentioned above and datasets on the Top-𝑘
sparse attention algorithm. The state-of-the-art models are quan-
tized into 8 bits fixed-point representation without accuracy drop
[31]. The 𝑄 & 𝐾 quantization is conducted based on 1-bit quantiza-
tion, which is a sign function. For the sparse attention algorithm, the
quantized models are directly used without model fine-tuning. For
SQuAD v1.1 andMRPC datasets, we use the F1 score as our accuracy
measure. For the RTE dataset, the raw accuracy is reported. Experi-
mented are conducted on the corresponding validation dataset.

Fig. 6 shows the accuracy test of evaluated models and datasets.
We choose 𝑘 value from 10 to 50 to assess the effectiveness of
sparse attention, where the 𝑘 value determines the degree of ap-
proximation for sparse attention computation. Generally, smaller 𝑘
indicates aggressive approximation and leads to a higher accuracy
drop. For most of the evaluation, Top-10 sparse attention lead to
non-negligible performance degradation. Top-30 provides a good
trade-off between the accuracy drop and sparsity ratio, whereas all
evaluations have less than 2% accuracy drop. With a Top-30 sparse
attention, the attention computation complexity can be reduced by
more than 80% in average.

5.2 Cross-platform Throughput Evaluation
Based on the model accuracy evaluation, we choose a sweet point
𝑘 = 30 for Top-𝑘 pre-selection, then we mapped models into FPGA
hardware coarse-grained stages through Algorithm 1. We exploit
the design space to maximize the hardware throughput and CTC ra-
tio for the hardware design. The attainable FPGA design frequency
is 200 MHz, and most of the hardware resources (BRAM, FF, LUT)
consumption are congested inside the SLR0 of the Alveo U280 board
since the only SLR0 is connected to HBM channels. HBM channels
provide a maximum of 460 GB/s bandwidth. The batch size is set
as 16 to maximize the hardware utilization.

For the FPGA platform, 8 bits fixed-point number multiply &
accumulate consumes 1 DSP unit. And there are 3000 DSP units
within the SLR0 in total. So the maximum attainable computation
throughput of the FPGA platform is 1.2 TFLOPS. Thanks to the
reconfiguration structure, the FPGA design can efficiently map
variable sequence length computation into hardware through the
scheduling algorithm discussed in Sec. 4.2. The FPGA design can
surpass GPU server performance in all the models & tasks evalua-
tion through efficient scheduling. BERT-base on SQuAD v1.1, RTE,
andMRPC, and BERT-large model on SQuAD v1.1 are used for hard-
ware design demonstration. DistilBERT and RoBERTa has similar
structure and thus similar hardware performance to BERT-base.

The end-to-end hardware throughput comparison is given in
Fig. 7a. FPGA baseline indicates the FPGA design without length-
ware scheduling and sparse attention algorithm implemented. The
sequence length is padded to the maximum sequence length for the
CPU and GPU design to evaluate the tasks. The geomean speedup of
the FPGA length-aware sparse attention design is 80.2 ×, 41.3 ×, 2.6
×, 3.1× than CPU, edge GPU, GPU server, and FPGA baseline design.
As for the self-attention computation, the hardware throughput is
also recorded during the evaluation, and the corresponding speedup
is given in Fig. 7b. The FPGA sparse attention hardware achieves
a geomean speedup of 1073 ×, 550 ×, 35 ×, 41 × than CPU, edge
GPU, GPU server, and FPGA baseline design. Our FPGA design
achieves an equivalent hardware throughput of 3.6 TFLOPS on
8 bits fixed-point operations with length-aware scheduling and
sparse attention algorithm implemented.

5.3 Cross-work Energy Efficiency Comparison
We further conduct cross-platform and cross-work energy efficiency
comparison between GPU baseline, GPU design optimized through
CUBLAS GEMM routine [18], FPGA [32], and ASIC implementa-
tions [12, 13] of Transformer accelerator. The result is shown in
Table 2. Our FPGA surpasses GPU baseline implementation and
existing state-of-the-art FPGA design in terms of both throughput
and energy efficiency with an acceptable accuracy drop. With the
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Figure 7: Cross platform hardware evaluation.

length-aware scheduling and sparse attention algorithms imple-
mented, our work has a comparable energy efficiency to existing
ASIC designs dedicated to transformer acceleration.

Table 2: Energy efficiency & throughput comparison.
Work/platform Throughput Energy eff. Accuracy drop

(GOPS) (GOP/J) (average)(%)
GPU RTX 6000 1380 8 1.8

GPU V100: E.T. [18] 7550 25 2.1
Ours FPGA 3600 102 1.8

FPGA design [32] 76 N/A 3.8
ASIC: A3 [12] 221 269 1.6

ASIC: SpAtten [13] 360 382 1.1

6 CONCLUTION
In this paper, we propose a hardware-friendly sparse attention algo-
rithm through query and key values quantization, where we bring
down the complexity of self-attention from 𝑂 (𝑛2) to 𝑂 (𝑛). We
develop a length-aware hardware scheduling algorithm to accom-
modate variable sequence length computation into coarse-grained
pipeline stages without pipeline bubbles. To alleviate the off-chip
memory access, we further develop an attention kernel fusion to
process the attention computation. We exploit temporal data local-
ity through the on-chip buffer to enhance the CTC ratio and push
the hardware design to the computation roof. Experimental results
show that we achieve 80.2 × and 2.6 × speedup compared to CPU
and GPU implementation with 1.8% accuracy loss. Our FPGA design
has more than 4 × higher energy efficiency than GPU accelerator
optimized through CUBLAS GEMM routine and has comparable
energy efficiency compared to state-of-the-art ASIC designs.
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