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Editor’s notes:

This article presents MAGICAL, which is a fully automated analog IC layout
system. MAGICAL takes a netlist and design rules as inputs, and it produces

the final GDS layout in a fully automated fashion.

—Sherief Reda, Brown University

—~Pierre-Emmanuel Gaillardon, University of Utah

I THE EXPANDING MARKETS of emerging appli-
cations, including the Internet of Things (loT),
5G networks, advanced computing, healthcare
electronics, etc., create large demands for analog
and mixed-signal (AMS) integrated circuits. This
increasing demand calls for a shorter design
cycle and time-to-market. When compared with
the tremendous advancements in digital IC lay-
out design automation tools, analog IC layout still
remains a heavy manual, time-consuming, and
error-prone task. This is due to its high design
flexibility and sensitive impact on the circuit per-
formance by even minor changes in the layout
implementation.
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Traditional analog lay-
out synthesis tools rely
on various heuristic con-
straints to guide the lay-
out generation process
[1]. These heuristics are
based on human layout
techniques and enforced
during the placement
of devices and routing. Heuristic constraint-based
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methods face extreme difficulties in practical design
flows, where handcrafted constraints are often
design and technology dependent, lacking flexibil-
ity and generalization when meeting the detailed
requirements of different scenarios. There is also
the challenge of hard-encoding all such constraints
in a legal procedure, especially when numerous
contradictory constraints are present. Analytical
approaches attempt to uncover the layout design
tradeoffs either by deriving closed-form equations in
evaluating the layout-dependent effects or sensitivity
analysis simulations. With increased device scaling,
analytical sensitivity estimates of parasitics and mis-
match over performance are no longer accurate.
The most difficult thing above all is the limited
availability of analog design tools. In contrast to the
booming community of machine learning, where
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popular frameworks and data sets are open-sourced,
easily available, and heavily relied upon in research
by the academic community, commonly used tools
in analog design are largely proprietary. The lack
of implemented frameworks, benchmark circuit
data sets, and publicly available process design kits
(PDKs), severely restrict the reproducibility of current
research results and impede further improvement
and extended research.

In this article, we present our work MAGICAL, a
fully automated, end-to-end analog IC layout frame-
work that generates a completed layout from a
circuit netlist. Implemented modules include sym-
metry constraint generation, placement, and routing.
These modules are implemented in C++ for optimal
software performance, and off-theshelf with user-
friendly Python interface available. The source code!
is released on GitHub with a number of sanitized
benchmark circuits provided.? The layouts completed
by MAGICAL are validated using industrial standard
verification tools, demonstrating circuit performances
close to those handcrafted by experienced designers.

Compared with prior on procedural layout gen-
erators, such as Berkeley analog generator (BAG)
[2], MAGICAL reduces the cost of codifying specific
constraints and detailed layout implementation
such as circuit floorplan and routing topology. This
is achieved with automated symmetry extraction lev-
eraging pattern matching and graph similarity, and
area and wirelength driven placement and routing
optimization kernel. MAGICAL is also extensible to

'https://github.com/magical-eda/MAGICAL
*https://github.com/magical-eda/MAGICAL-CIRCUITS

handle custom constraints. We also present several
of our research and findings that build upon the
MAGICAL framework, including applied machine
learning techniques, custom constraints, specific
design considerations, and leveraging post layout
simulation results for performance modeling and
optimizations in the “Extensions based on MAG-
ICAL” section. Moreover, we hope to promote
research and progress in the analog design auto-
mation community, where future researchers could
embed new heuristics and algorithms leveraging our
framework. Our tool also complements other exist-
ing design automation tools in the open-source com-
munity [2]-[4].

Magical framework

The overall flow of MAGICAL is shown in Figure 1.
It takes an unannotated circuit netlist and design
rules as inputs, and produces a complete GDSII
layout as output fully automatically without human
designers in the loop. The entire flow consists of four
major modules, with each module being independ-
ent with a user-friendly Python interface. The design
rules and the extracted layout constraints are hon-
ored throughout the entire back-end flow.

Framework methodology and software
architecture

The MAGICAL system includes several individ-
ual submodules, i.e., layout constraint extractor,
device generator, placer, and router. A top-level
MAGICAL flow integrates the individual compo-
nents and manage the physical synthesis of the
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Figure 1. MAGICAL framework. (a) MAGICAL submodules. (b) MAGICAL hierarchical flow.
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circuits. Figure 1 shows the architecture of the
MAGICAL layout system. This architecture is rooted
upon the principle of divide-and-conquer nature of
the circuit design and motivated by the purposes
of creating an extensible and flexible open-source
environment.

The designs of complex analog systems, such
as phase-locked loops or analog-to-digital convert-
ers (ADCs), are typically decomposed into smaller
building blocks (e.g., comparators, filters, or ampli-
fiers). Human designers adopt a top-down design
methodology, where system-level performance is
translated to lower-level building block specifica-
tions. The layout design process, on the other hand,
is done bottom-up. The building block circuits are
first implemented and the performance is optimized
and verified. The system is then built with the build-
ing blocks. This divide-and-conquer practice avoids
optimizing the whole system at once and decom-
poses it into smaller and more traceable subprob-
lems. MAGICAL adopts this design methodology.
The whole physical synthesis is decomposed into
multilevel homogeneous subproblems. The top
MAGICAL flow manages and schedules the subprob-
lems, while the individual components build the lay-
out in the bottom-up manner.

The separation of submodules also allow easy
extension to the default MAGICAL flow. Convention-
ally, different components in a physical design flow
is connected by scripts and exchangeable files, for
example [4]. However, the complicated scripting
potentially make interaction between different com-
ponents difficult and hinder the flexibility on the flow.
On the other hand, the popularity of machine learn-
ing algorithm also raises question that whether the
conventional software methodology is suitable for the
emerging framework. MAGICAL is developed for easy
adaption of new components and changes on the
flow. Although the main optimizing kernels are devel-
oped in C++ for better efficiency, each submodule
has a Python interface. And the top level, MAGICAL
flow uses Python interface to assign the subproblems.
Such architecture is friendly to adoption of machine
learning framework and makes interactions easy. In
fact, there have been success on the extensions of
default MAGICAL. The “Experimental results” section
gives case studies of several MAGICAL extensions.

In the rest of this section, the default MAGICAL
submodules are explained in the detail.
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Parametric device generation

Before running the core layout flow, the device
generation step first generates the layout of the
devices and extracts their pins to facilitate the subse-
quent placement and routing stages.

The generated GDSII layout is correct by construc-
tion based on the design rules. MAGICAL currently
supports numerous different device types, including
pMOS, nMOS, metal-oxide-metal (MOM) capaci-
tors, and poly resisters. The automatic parametric
device generation considers the number of fingers
for transistors, the number of segments for resistors,
the metal layers for MOM capacitors, etc.

The MAGICAL framework is also extensible for
custom-designed devices, digital standard cells, or
even subcircuits such as capacitor or resistor arrays.

Analog layout constraint extraction

The layout constraint extractor takes a circuit
netlist as input and generates constraints to guide
the later stages. Analog designs frequently use dif-
ferential topologies to reject common-mode noise
and enhance circuit robustness and performance
[5]. Thus, correctly identifying symmetry constraints
between sensitive devices are crucial for ensuring
the quality of placement and routing.

The constraint extraction reads in the input netlist
and generates constraints for placement and rout-
ing based on the circuit connections. A significant
challenge for constraint extraction is in generating
high-quality constraints and resolving constraint
ambiguity. Since the characteristics of symmetry
among devices and between building blocks are
vastly different, we use different methods to generate
symmetry constraints.

Device symmetry

Only the symmetry constraints between devices
need to be considered for building blocks. We adopt
a method similar to the works of Eick et al. [6]. The
building block circuit is abstracted into a graph. A
pattern library of the commonly used differential
topology of transistors is predefined. We use graph
isomorphic algorithms to detect matching patterns
on the building block circuits with the pattern library.
The circuit graph is then traversed from the matched
patterns to recognize new symmetry constraints of
passive devices, self-symmetry devices, and symme-
try routing constraints.
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System symmetry

System symmetry differs from device symmetry
because on the system level, template libraries are dif-
ficult to generate, and graph isomorphic algorithms
are expensive. Since the same building block could
be referenced multiple times in system design, we pro-
pose to extract graphs that include the neighboring
circuit topology of the building blocks to resolve the
ambiguity. The extracted graphs are then compared
using an efficient graph similarity metric leveraging
spectral graph analysis [7]. Selfsymmetry constraints
and symmetry net constraints could also be extracted
similar to the approach in device symmetry.

Analog placement

Given the placement constraints and devices gen-
erated in the previous steps, we develop an analog
placement engine. The placer places each device
or building block in the layout satisfying the given
constraints while optimizing for the wirelength and
layout area.

The placement engine follows an analytical
framework as in [8]. First, the global placement
simultaneously optimizes multiple objectives in a
nonlinear objective function to generate a rough
legal placement. Then, the legalization step uses
linear programming (LP) algorithm to leaglize the
global placement results honoring input constraints
and design rules. Finally, another LP-based detailed
placement is used to optimize the wirelength further.

Analog routing

To determine the wire connections between all
the placed devices while satisfying the design con-
siderations for better circuit performance, a con-
straint-aware analog routing algorithm is applied.

In addition to connectivity and design rules, an
analog routing problem is usually imposed with sym-
metric net constraints, which are specified to ensure
matched nets routed symmetrically on some axes. In
MAGICAL, the routing engine takes the constraints
specification as an input from the layout constraint
generator and honors the symmetric and self-sym-
metric requirement for matched nets.

Our routing framework divides the routing prob-
lem into two stages, global routing and detailed rout-
ing, similar to the standard digital routing flow. To
generated a global routing solution, a sequential sym-
metry-aware grid-based A* search routing engine is
employed. The circuit is cut into unified grids whose

width and height are decided based on track width
on the first metal layer. More specifically, the global
routing engine divides the layout into a 3-D graph
with grids as the vertices and the connection between
neighboring grids as the edges. The capacity of each
edge is calculated based on free space modeling and
the actual congestion inside the grids. The symme-
try-aware global routing algorithm using mirroring
techniques then generates the solution for each net.

Given the global routing results as guidance, the
detailed routing engine completes the final routing
and assigns metal wire geometries. In contrast to
digital circuits, analog designs usually have various
metal widths and multiple via cuts for different nets,
along with a number of special specifications such
as symmetric constraints. To solve the detailed rout-
ing problem, the symmetric-aware A* path search-
ing algorithm is performed while satisfying design
rules and specific requirements for each net (e.g.,
wire width). After the detailed routing stage, the final
GDSII format layout file is exported.

Extensions based on magical

In this section, we present several of our research
that builds on top of the default MAGICAL frame-
work. We hope to demonstrate the extensibility of
the framework and the increased efficiency in the
development of novel algorithms and methods by
leveraging MAGICAL.

Machine learning guided well generation

Generating wells and inserting contacts are
required in layout synthesis. The default MAGICAL
framework generates separate NWELL contacts for
each individual pMOS devices. This provides supe-
rior device isolation and reduction in well proximity
effect at the increased overhead of area.

However, individual well contacts for transistor is
seldom adopted in manual layout strategy. Sharing
the same body connection leads to more compact
layout. WellGAN [9] provides an alternative to the
individual well contact. It formulates the well gener-
ation problem into a computer vision task and super-
visedly learns how human designers draw the well
using generative adversarial network (GAN). After
the training, the GAN model can generate images of
well based on the placement results and a legaliza-
tion routine can draw the well and insert the con-
tacts based on the model prediction.
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Machine learning guided analog routing

In the default MAGICAL, the routing is targeting
wirelength and geometric constraints. However, the
router can be easily changed with a machine learn-
ing guided algorithm.

Zhu et al. [10] proposed GeniusRoute is developed
upon the MAGICAL router. It attempts to learn the
manual analog routing strategy by leveraging a varia-
tional autoencoder (VAE) model. Similar to WellGAN,
GeniusRoute formulates the learning into an image
generation task. The VAE models learn where human
designers are likely to route the nets in analog circuits
and generate prediction on unseen new circuits. The
router is modified to adapt the routing prediction.

Analog placement quality prediction

In the default MAGICAL framework, the analog
analytical placement engine only optimizes the
wire-length and area. While the wire-length might be
a natural surrogate for performance and highly cor-
related with the power and performance of digital
circuits, analog layout performance rarely has strong
relevance to the total wire-length. Thus, to satisfy
post layout performance requirements and achieve
design closure, a feedback loop from performance
simulation to the design flow is needed in the devel-
opment of practical layout synthesis tools.

To reduce the design exploration runtime and
limit the number of performance simulations, the
work of Liu et al. [11] proposes to predict of the lay-
out quality early in the layout design flow. To over-
come the difficulty of obtaining high-quality human

layout training data, MAGICAL was used to generate
multiple layout solutions for the same circuits auto-
matically. An effective placement feature extraction
method with 3-D convolution neural network was
developed for effective placement quality predic-
tion. The number of training data needed to obtain
satisfactory classification results was significantly
reduced by leveraging transfer learning.

Efficient layout synthesis with Bayesian
optimization

The works of Liu et al. [12] extended the default
MAGICAL framework considering custom con-
straints and design-specific considerations. It lev-
erages post layout simulations in driving the layout
implementation process for building block circuits.
By formulating the performance optimization as a
multiobjective black-box optimization problem, it
closes the design loop and guarantees post layout
performance through iterative simulations and a
data-efficient Bayesian optimization algorithm.

Since system-level transistor simulation is unaf-
fordable, Liu et al. [12] optimized the system-level
layout by extending the original MAGICAL frame-
work to include custom constraints and design
specific considerations. Specific constraints and con-
siderations include net criticality, routing sequence,
net spacing assignments, and regularized signal
flow paths. The layout for a complete ADC system
with regularized signal flow paths were generated,
achieving close to schematic simulation results.
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Figure 2. OTA results. (a) Circuit schematic. (b) Manual layout. (c) MAGICAL layout.
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Figure 3. CTDSM results. (a) System architecture.
(b) MAGICAL layout.
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Experimental results

The MAGICAL flow is implemented in Python
and C/C++, and the experiments are performed on
a Linux server with an 8-core 3.4-GHz Intel CPU and
32-GB memory. All designs are in TSMC 40-nm tech-
nology. The layout results are validated using Calibre
DRC/LVS/PEX, and evaluated using Cadence Virtu-
oso ADE simulation environment.

The post-layout simulation results for two bench-
mark circuits, a two-stage operational transconduct-
ance amplifier (OTA), and a continuous time AX
modulator (CTDSM), are shown in Figures 2 and 3,
respectively. The circuit performances of the OTA
layout results generated by MAGICAL are compared
against tape-out quality manual layouts by experi-
enced analog IC designers, under the same test bench
suites. The simulation results are shown in Table 1,
where UGB stands for the unity gain bandwidth, PM
denotes the phase margin, and CMRR denotes the
common-mode rejection ratio. The simulation results
for the CTDSM are shown in Table 2, where F, denotes
the sampling frequency, BW is the bandwidth, SNDR

[ I |
Table 1. OTA simulation results.

Metrics Gain | UGB PM CMRR | Offset
(dB) | (MHz) | (degree) (dB) (mV)

Schematic 69.5 2192 73.5 - -
Manual 69.8 1567 65.8 97.2 0.012
MAGICAL | 69.7 1496 63.2 92.1 0.027

I |
Table 2. CTDSM simulation results.

Schematic | MAGICAL

Supply (V) 1.2

Fs (MHz) 320

BW (MHz) 5

SNDR (dB) 67.8 65.9
SFDR (dB) 84.7 80.5
Power (mW) 0.84 0.86
Area (um?) — 9450

denotes the signalto-noise and distortion ratio, and
SFDR denotes the spurious-free dynamic range. The
results demonstrate that MAGICAL can automatically
generate validated layouts from unannotated cir-
cuit netlist (both Spectre and HSPICE format), and
the postlayout performances are close to the sche-
matic designs. Some performance metrics, includ-
ing input-referred offset and CMRR, could be further
improved by extensively considering layout depend-
ent effects, minimizing coupling to sensitive nets, etc.

Future directions

Being part of the open-source hardware/EDA eco-
system, the future development of the MAGICAL will
both benefit from and contribute to the community.
Although the existing components in different open-
source EDA tools may have different algorithms and
methodologies, there are some overlapping between
their functionality. Both analog and digital layout
automation flows share many common infrastruc-
tural components with MAGICAL. MAGICAL can learn
from the recent emerging open-source EDA tools.

Besides the EDA tools, open-sourcing AMS cir-
cuit designs is another driving force for analog
layout automation. On the one hand, lacking of
training data has been a major challenge in machine
learning-based EDA algorithm. On the other hand,
the lack of a unified test circuit benchmark suite
makes it difficult to evaluate and compare different
analog EDA tools. Open-source designs will not only
make it possible for the EDA tools to have common
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evaluation metrics, but also provide training data for
machine learning-based EDA algorithms.

While MAGICAL has demonstrated satisfactory
results, it currently only minimizes post-layout circuit
performance degradation implicitly by considering
the analog layout constraints. Although direct opti-
mization methods have been applied and demon-
strated to be effective, the overhead of repetitive
simulations is still expensive and impractical, espe-
cially for system-level designs. In the future research
and development, MAGICAL will investigate into the
performance-aware techniques, especially machine
learning algorithms, throughout its entire flow.

Preliminary simulation results have also demon-
strated the potential of generating entire system-level
designs with MAGICAL. However, MAGICAL still needs
to improve its current placement and routing algo-
rithms for better design rule handling. Furthermore,
there is still large room for improvement, especially
for system-level designs, including circuit reliability,
clock coupling mitigation, IR drop aware routing,
and integration with digital flows. Generating tape-out
quality layout designs proven with silicon chip meas-
urements will be the future goal of MAGICAL.

IN THIS ARTICLE, we presented MAGICAL, an open-
source fully automated end-to-end analog IC layout
system from circuit netlists to GDSII layouts. Human
and machine intelligence are strategically incorpo-
rated into MAGICAL by pattern matching and deep
learning techniques. The circuit performances of the
layouts completed by MAGICAL are close to those
handcrafted by experienced designers, while the
design cycle is shortened substantially. ]
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