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Editor’s notes:
This article presents MAGICAL, which is a fully automated analog IC layout 
system. MAGICAL takes a netlist and design rules as inputs, and it produces 
the final GDS layout in a fully automated fashion.

—Sherief Reda, Brown University
—Leon Stock, IBM

—Pierre-Emmanuel Gaillardon, University of Utah

 The expanding markets of emerging appli-
cations, including the Internet of Things (IoT), 
5G networks, advanced computing, healthcare 
electronics, etc., create large demands for analog 
and mixed-signal (AMS) integrated circuits. This 
increasing demand calls for a shorter design 
cycle and time-to-market. When compared with 
the tremendous advancements in digital IC lay-
out design automation tools, analog IC layout still 
remains a heavy manual, time-consuming, and 
error-prone task. This is due to its high design 
flexibility and sensitive impact on the circuit per-
formance by even minor changes in the layout 
implementation.
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Traditional analog lay-
out synthesis tools rely 
on various heuristic con-
straints to guide the lay-
out generation process 
[1]. These heuristics are 
based on human layout 
techniques and enforced 
during the placement 

of devices and routing. Heuristic constraint-based 
methods face extreme difficulties in practical design 
flows, where handcrafted constraints are often 
design and technology dependent, lacking flexibil-
ity and generalization when meeting the detailed 
requirements of different scenarios. There is also 
the challenge of hard-encoding all such constraints 
in a legal procedure, especially when numerous 
contradictory constraints are present. Analytical 
approaches attempt to uncover the layout design 
tradeoffs either by deriving closed-form equations in 
evaluating the layout-dependent effects or sensitivity 
analysis simulations. With increased device scaling, 
analytical sensitivity estimates of parasitics and mis-
match over performance are no longer accurate.

The most difficult thing above all is the limited 
availability of analog design tools. In contrast to the 
booming community of machine learning, where 
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popular frameworks and data sets are open-sourced, 
easily available, and heavily relied upon in research 
by the academic community, commonly used tools 
in analog design are largely proprietary. The lack 
of implemented frameworks, benchmark circuit 
data sets, and publicly available process design kits 
(PDKs), severely restrict the reproducibility of current 
research results and impede further improvement 
and extended research.

In this article, we present our work MAGICAL, a 
fully automated, end-to-end analog IC layout frame-
work that generates a completed layout from a 
circuit netlist. Implemented modules include sym-
metry constraint generation, placement, and routing. 
These modules are implemented in C++ for optimal 
software performance, and off-the-shelf with user-
friendly Python interface available. The source code1 
is released on GitHub with a number of sanitized 
benchmark circuits provided.2 The layouts completed 
by MAGICAL are validated using industrial standard 
verification tools, demonstrating circuit performances 
close to those handcrafted by experienced designers.

Compared with prior on procedural layout gen-
erators, such as Berkeley analog generator (BAG) 
[2], MAGICAL reduces the cost of codifying specific 
constraints and detailed layout implementation 
such as circuit floorplan and routing topology. This 
is achieved with automated symmetry extraction lev-
eraging pattern matching and graph similarity, and 
area and wirelength driven placement and routing 
optimization kernel. MAGICAL is also extensible to 

1https://github.com/magical-eda/MAGICAL
2https://github.com/magical-eda/MAGICAL-CIRCUITS 

handle custom constraints. We also present several 
of our research and findings that build upon the 
MAGICAL framework, including applied machine 
learning techniques, custom constraints, specific 
design considerations, and leveraging post layout 
simulation results for performance modeling and 
optimizations in the “Extensions based on MAG-
ICAL” section. Moreover, we hope to promote 
research and progress in the analog design auto-
mation community, where future researchers could 
embed new heuristics and algorithms leveraging our 
framework. Our tool also complements other exist-
ing design automation tools in the open-source com-
munity [2]–[4].

Magical framework
The overall flow of MAGICAL is shown in Figure 1. 

It takes an unannotated circuit netlist and design 
rules as inputs, and produces a complete GDSII 
layout as output fully automatically without human 
designers in the loop. The entire flow consists of four 
major modules, with each module being independ-
ent with a user-friendly Python interface. The design 
rules and the extracted layout constraints are hon-
ored throughout the entire back-end flow.

Framework methodology and software 
architecture

The MAGICAL system includes several individ-
ual submodules, i.e., layout constraint extractor, 
device generator, placer, and router. A top-level 
MAGICAL flow integrates the individual compo-
nents and manage the physical synthesis of the 

Figure 1. MAGICAL framework. (a) MAGICAL submodules. (b) MAGICAL hierarchical flow.
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circuits. Figure 1 shows the architecture of the 
MAGICAL layout system. This architecture is rooted 
upon the principle of divide-and-conquer nature of 
the circuit design and motivated by the purposes 
of creating an extensible and flexible open-source 
environment.

The designs of complex analog systems, such 
as phase-locked loops or analog-to-digital convert-
ers (ADCs), are typically decomposed into smaller 
building blocks (e.g., comparators, filters, or ampli-
fiers). Human designers adopt a top-down design 
methodology, where system-level performance is 
translated to lower-level building block specifica-
tions. The layout design process, on the other hand, 
is done bottom-up. The building block circuits are 
first implemented and the performance is optimized 
and verified. The system is then built with the build-
ing blocks. This divide-and-conquer practice avoids 
optimizing the whole system at once and decom-
poses it into smaller and more traceable subprob-
lems. MAGICAL adopts this design methodology. 
The whole physical synthesis is decomposed into 
multilevel homogeneous subproblems. The top 
MAGICAL flow manages and schedules the subprob-
lems, while the individual components build the lay-
out in the bottom-up manner.

The separation of submodules also allow easy 
extension to the default MAGICAL flow. Convention-
ally, different components in a physical design flow 
is connected by scripts and exchangeable files, for 
example [4]. However, the complicated scripting 
potentially make interaction between different com-
ponents difficult and hinder the flexibility on the flow. 
On the other hand, the popularity of machine learn-
ing algorithm also raises question that whether the 
conventional software methodology is suitable for the 
emerging framework. MAGICAL is developed for easy 
adaption of new components and changes on the 
flow. Although the main optimizing kernels are devel-
oped in C++ for better efficiency, each submodule 
has a Python interface. And the top level, MAGICAL 
flow uses Python interface to assign the subproblems. 
Such architecture is friendly to adoption of machine 
learning framework and makes interactions easy. In 
fact, there have been success on the extensions of 
default MAGICAL. The “Experimental results” section 
gives case studies of several MAGICAL extensions.

In the rest of this section, the default MAGICAL 
submodules are explained in the detail.

Parametric device generation
Before running the core layout flow, the device 

generation step first generates the layout of the 
devices and extracts their pins to facilitate the subse-
quent placement and routing stages.

The generated GDSII layout is correct by construc-
tion based on the design rules. MAGICAL currently 
supports numerous different device types, including 
pMOS, nMOS, metal–oxide–metal (MOM) capaci-
tors, and poly resisters. The automatic parametric 
device generation considers the number of fingers 
for transistors, the number of segments for resistors, 
the metal layers for MOM capacitors, etc.

The MAGICAL framework is also extensible for 
custom-designed devices, digital standard cells, or 
even subcircuits such as capacitor or resistor arrays.

Analog layout constraint extraction
The layout constraint extractor takes a circuit 

netlist as input and generates constraints to guide 
the later stages. Analog designs frequently use dif-
ferential topologies to reject common-mode noise 
and enhance circuit robustness and performance 
[5]. Thus, correctly identifying symmetry constraints 
between sensitive devices are crucial for ensuring 
the quality of placement and routing.

The constraint extraction reads in the input netlist 
and generates constraints for placement and rout-
ing based on the circuit connections. A significant 
challenge for constraint extraction is in generating 
high-quality constraints and resolving constraint 
ambiguity. Since the characteristics of symmetry 
among devices and between building blocks are 
vastly different, we use different methods to generate 
symmetry constraints.

Device symmetry
Only the symmetry constraints between devices 

need to be considered for building blocks. We adopt 
a method similar to the works of Eick et al. [6]. The 
building block circuit is abstracted into a graph. A 
pattern library of the commonly used differential 
topology of transistors is predefined. We use graph 
isomorphic algorithms to detect matching patterns 
on the building block circuits with the pattern library. 
The circuit graph is then traversed from the matched 
patterns to recognize new symmetry constraints of 
passive devices, self-symmetry devices, and symme-
try routing constraints.
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System symmetry
System symmetry differs from device symmetry 

because on the system level, template libraries are dif-
ficult to generate, and graph isomorphic algorithms 
are expensive. Since the same building block could 
be referenced multiple times in system design, we pro-
pose to extract graphs that include the neighboring 
circuit topology of the building blocks to resolve the 
ambiguity. The extracted graphs are then compared 
using an efficient graph similarity metric leveraging 
spectral graph analysis [7]. Self-symmetry constraints 
and symmetry net constraints could also be extracted 
similar to the approach in device symmetry.

Analog placement
Given the placement constraints and devices gen-

erated in the previous steps, we develop an analog 
placement engine. The placer places each device 
or building block in the layout satisfying the given 
constraints while optimizing for the wirelength and 
layout area.

The placement engine follows an analytical 
framework as in [8]. First, the global placement 
simultaneously optimizes multiple objectives in a 
nonlinear objective function to generate a rough 
legal placement. Then, the legalization step uses 
linear programming (LP) algorithm to leaglize the 
global placement results honoring input constraints 
and design rules. Finally, another LP-based detailed 
placement is used to optimize the wirelength further.

Analog routing
To determine the wire connections between all 

the placed devices while satisfying the design con-
siderations for better circuit performance, a con-
straint-aware analog routing algorithm is applied.

In addition to connectivity and design rules, an 
analog routing problem is usually imposed with sym-
metric net constraints, which are specified to ensure 
matched nets routed symmetrically on some axes. In 
MAGICAL, the routing engine takes the constraints 
specification as an input from the layout constraint 
generator and honors the symmetric and self-sym-
metric requirement for matched nets.

Our routing framework divides the routing prob-
lem into two stages, global routing and detailed rout-
ing, similar to the standard digital routing flow. To 
generated a global routing solution, a sequential sym-
metry-aware grid-based A* search routing engine is 
employed. The circuit is cut into unified grids whose 

width and height are decided based on track width 
on the first metal layer. More specifically, the global 
routing engine divides the layout into a 3-D graph 
with grids as the vertices and the connection between 
neighboring grids as the edges. The capacity of each 
edge is calculated based on free space modeling and 
the actual congestion inside the grids. The symme-
try-aware global routing algorithm using mirroring 
techniques then generates the solution for each net.

Given the global routing results as guidance, the 
detailed routing engine completes the final routing 
and assigns metal wire geometries. In contrast to 
digital circuits, analog designs usually have various 
metal widths and multiple via cuts for different nets, 
along with a number of special specifications such 
as symmetric constraints. To solve the detailed rout-
ing problem, the symmetric-aware A* path search-
ing algorithm is performed while satisfying design 
rules and specific requirements for each net (e.g., 
wire width). After the detailed routing stage, the final 
GDSII format layout file is exported.

Extensions based on magical
In this section, we present several of our research 

that builds on top of the default MAGICAL frame-
work. We hope to demonstrate the extensibility of 
the framework and the increased efficiency in the 
development of novel algorithms and methods by 
leveraging MAGICAL.

Machine learning guided well generation
Generating wells and inserting contacts are 

required in layout synthesis. The default MAGICAL 
framework generates separate NWELL contacts for 
each individual pMOS devices. This provides supe-
rior device isolation and reduction in well proximity 
effect at the increased overhead of area.

However, individual well contacts for transistor is 
seldom adopted in manual layout strategy. Sharing 
the same body connection leads to more compact 
layout. WellGAN [9] provides an alternative to the 
individual well contact. It formulates the well gener-
ation problem into a computer vision task and super-
visedly learns how human designers draw the well 
using generative adversarial network (GAN). After 
the training, the GAN model can generate images of 
well based on the placement results and a legaliza-
tion routine can draw the well and insert the con-
tacts based on the model prediction.
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Machine learning guided analog routing
In the default MAGICAL, the routing is targeting 

wirelength and geometric constraints. However, the 
router can be easily changed with a machine learn-
ing guided algorithm.

Zhu et al. [10] proposed GeniusRoute is developed 
upon the MAGICAL router. It attempts to learn the 
manual analog routing strategy by leveraging a varia-
tional autoencoder (VAE) model. Similar to WellGAN, 
GeniusRoute formulates the learning into an image 
generation task. The VAE models learn where human 
designers are likely to route the nets in analog circuits 
and generate prediction on unseen new circuits. The 
router is modified to adapt the routing prediction.

Analog placement quality prediction
In the default MAGICAL framework, the analog 

analytical placement engine only optimizes the 
wire-length and area. While the wire-length might be 
a natural surrogate for performance and highly cor-
related with the power and performance of digital 
circuits, analog layout performance rarely has strong 
relevance to the total wire-length. Thus, to satisfy 
post layout performance requirements and achieve 
design closure, a feedback loop from performance 
simulation to the design flow is needed in the devel-
opment of practical layout synthesis tools.

To reduce the design exploration runtime and 
limit the number of performance simulations, the 
work of Liu et al. [11] proposes to predict of the lay-
out quality early in the layout design flow. To over-
come the difficulty of obtaining high-quality human 

layout training data, MAGICAL was used to generate 

multiple layout solutions for the same circuits auto-

matically. An effective placement feature extraction 

method with 3-D convolution neural network was 

developed for effective placement quality predic-

tion. The number of training data needed to obtain 

satisfactory classification results was significantly 

reduced by leveraging transfer learning.

Efficient layout synthesis with Bayesian 
optimization

The works of Liu et al. [12] extended the default 

MAGICAL framework considering custom con-

straints and design-specific considerations. It lev-

erages post layout simulations in driving the layout 

implementation process for building block circuits. 

By formulating the performance optimization as a 

multiobjective black-box optimization problem, it 

closes the design loop and guarantees post layout 

performance through iterative simulations and a 

data-efficient Bayesian optimization algorithm.

Since system-level transistor simulation is unaf-

fordable, Liu et al. [12] optimized the system-level 

layout by extending the original MAGICAL frame-

work to include custom constraints and design 

specific considerations. Specific constraints and con-

siderations include net criticality, routing sequence, 

net spacing assignments, and regularized signal 

flow paths. The layout for a complete ADC system 

with regularized signal flow paths were generated, 

achieving close to schematic simulation results.

Figure 2. OTA results. (a) Circuit schematic. (b) Manual layout. (c) MAGICAL layout.
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Experimental results
The MAGICAL flow is implemented in Python 

and C/C++, and the experiments are performed on 
a Linux server with an 8-core 3.4-GHz Intel CPU and 
32-GB memory. All designs are in TSMC 40-nm tech-
nology. The layout results are validated using Calibre 
DRC/LVS/PEX, and evaluated using Cadence Virtu-
oso ADE simulation environment.

The post-layout simulation results for two bench-
mark circuits, a two-stage operational transconduct-
ance amplifier (OTA), and a continuous time ∆Σ 
modulator (CTDSM), are shown in Figures 2 and 3, 
respectively. The circuit performances of the OTA 
layout results generated by MAGICAL are compared 
against tape-out quality manual layouts by experi-
enced analog IC designers, under the same test bench 
suites. The simulation results are shown in Table 1, 
where UGB stands for the unity gain bandwidth, PM 
denotes the phase margin, and CMRR denotes the 
common-mode rejection ratio. The simulation results 
for the CTDSM are shown in Table 2, where Fs denotes 
the sampling frequency, BW is the bandwidth, SNDR 

denotes the signal-to-noise and distortion ratio, and 

SFDR denotes the spurious-free dynamic range. The 

results demonstrate that MAGICAL can automatically 

generate validated layouts from unannotated cir-

cuit netlist (both Spectre and HSPICE format), and 

the post-layout performances are close to the sche-

matic designs. Some performance metrics, includ-

ing input-referred offset and CMRR, could be further 

improved by extensively considering layout depend-

ent effects, minimizing coupling to sensitive nets, etc.

Future directions
Being part of the open-source hardware/EDA eco-

system, the future development of the MAGICAL will 

both benefit from and contribute to the community. 

Although the existing components in different open-

source EDA tools may have different algorithms and 

methodologies, there are some overlapping between 

their functionality. Both analog and digital layout 

automation flows share many common infrastruc-

tural components with MAGICAL. MAGICAL can learn 

from the recent emerging open-source EDA tools.

Besides the EDA tools, open-sourcing AMS cir-

cuit designs is another driving force for analog 

layout automation. On the one hand, lacking of 

training data has been a major challenge in machine 

learning-based EDA algorithm. On the other hand, 

the lack of a unified test circuit benchmark suite 

makes it difficult to evaluate and compare different 

analog EDA tools. Open-source designs will not only 

make it possible for the EDA tools to have common 

Figure 3. CTDSM results. (a) System architecture. 
(b) MAGICAL layout.

 
Table 2. CTDSM simulation results.

 
Table 1. OTA simulation results.
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evaluation metrics, but also provide training data for 
machine learning-based EDA algorithms.

While MAGICAL has demonstrated satisfactory 
results, it currently only minimizes post-layout circuit 
performance degradation implicitly by considering 
the analog layout constraints. Although direct opti-
mization methods have been applied and demon-
strated to be effective, the overhead of repetitive 
simulations is still expensive and impractical, espe-
cially for system-level designs. In the future research 
and development, MAGICAL will investigate into the 
performance-aware techniques, especially machine 
learning algorithms, throughout its entire flow.

Preliminary simulation results have also demon-
strated the potential of generating entire system-level 
designs with MAGICAL. However, MAGICAL still needs 
to improve its current placement and routing algo-
rithms for better design rule handling. Furthermore, 
there is still large room for improvement, especially 
for system-level designs, including circuit reliability, 
clock coupling mitigation, IR drop aware routing, 
and integration with digital flows. Generating tape-out 
quality layout designs proven with silicon chip meas-
urements will be the future goal of MAGICAL.

In this article, we presented MAGICAL, an open-
source fully automated end-to-end analog IC layout 
system from circuit netlists to GDSII layouts. Human 
and machine intelligence are strategically incorpo-
rated into MAGICAL by pattern matching and deep 
learning techniques. The circuit performances of the 
layouts completed by MAGICAL are close to those 
handcrafted by experienced designers, while the 
design cycle is shortened substantially.� 
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