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Abstract—Due to the increasingly complex design rules and geo-
metric layout constraints within advanced FinFET nodes, automated
placement of full-custom analog/mixed-signal (AMS) designs has
become increasingly challenging. Compared with traditional planar
nodes, AMS circuit layout is dramatically different for FinFET
technologies due to strict design rules and grid-based restrictions for
both placement and routing. This limits previous analog placement
approaches in effectively handling all of the new constraints while
adhering to the new layout style. Additionally, limited work has
demonstrated effective routability modeling, which is crucial for
successful routing. This paper presents a robust analog placement
framework using satisfiability modulo theories (SMT) for efficient
constraint handling and routability modeling. Experimental results
based on industrial designs show the effectiveness of the proposed
framework in optimizing placement metrics while satisfying the
specified constraints.

I. INTRODUCTION

As processor technology continues to evolve into the deep-
nanometer era, full-custom analog/mixed-signal (AMS) inte-
grated circuits (ICs) must be designed using fin-shaped field-
effect transistors (FinFETs) to meet performance requirements.
While these transistors enjoy reduced leakage currents and su-
perior control of the electric-field within the device channel,
the three-dimensional fin-shape structure imposes even more
challenges to the already intricate AMS layout process.

Restricted by manufacturability issues, circuit layout in ad-
vanced FinFET nodes (e.g., N7, N5) enforce a row-based place-
ment style for fin alignment [1]. As a result, AMS layout
implementations rely heavily on layout primitives, the basic
building block of an AMS circuit formed by a group of low-level
devices (e.g., transistors, resistors) [2]. The use of primitive cells
brings several benefits to the layout procedure. By forcing related
primitives to have standard heights, the fin alignment problem,
as well as numerous complicated design rules in the front-
end-of-line (FEOL), can be handled directly. Moreover, specific
hard-to-automate layout patterns (e.g., interdigitation) can be
directly implemented by layout experts to ensure performance
requirements for each primitive. In practice, cell-based primitives
are adopted for better coverage of a wide range of AMS circuit
classes and a higher degree of design freedom. Figure 1(a) shows
partial layout patterns of an optimized primitive cell consisting
of ten transistors.

To reduce design complexity without significantly sacrificing
solution quality and flexibility, advanced FinFET AMS circuits
adopt a region-based layout methodology, where primitive cells
with similar properties (e.g., PMOS, NMOS, standard cells) are
grouped and placed in the same region. As shown in Figure 1(b),
primitives in the same region share the same cell height to
meet the row-based placement requirement. Region-based layouts
allow easy base-layer design rule checking (DRC) and enable
making reusable stand-alone intellectual properties (IPs) as each
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Fig. 1: Example of the region-based layout style with primitives.
(a) Layout patterns of a primitive cell with 10 transistors. (b) A
2-region layout design.

region is self-contained. In real-world designs, there could be
more than five regions in a building block.

As placement determines the overall wiring topology in the
later routing stage, various geometrical constraints should be
carefully considered to guarantee circuit robustness and the
performance specification. Typical constraints include symmetry,
proximity, and fixed-boundary constraints [3]. For region-based
layouts, additional constraints exhibited in Figure 2 are intro-
duced, including

• Hierarchical Symmetry Constraints that place a set of prim-
itive cells symmetrically with respect to multiple joint axes
simultaneously. Violating hierarchical symmetry constraints
can result in degraded power-supply rejection ratio, mis-
matched differential signals, and higher offset voltages [4].

• Array Constraints that force an adjacent placement of some
cells in the same region with optional layout patterns such as
interdigitation, common-centroid, and central-symmetrical.
One can further extend array constraints to a hierarchical
structure containing an array of arrays.

• Cluster Constraints that place a set of primitive cells as
close as possible. Note that a cluster constraint can apply to
objects from different regions.

• Extension Constraints that reserve extra spaces around the
target object (e.g., primitive, array, region) to be filled with
some specified dummy cells. Extension constraints ensure
spacing between adjacent cells to reduce electromigration
concerns and extension of diffusion to minimize layout-
dependent effects.

Routability awareness is also a crucial factor. As signal in-
terconnections are increasingly complicated in advanced Fin-
FET nodes, placement algorithms without routability consid-
eration could lead to severe routing congestion, making them
unroutable. Limited work has demonstrated an effective way to
simultaneously consider all the aforementioned constraints and
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Fig. 2: Illutstrations of analog placement constraints: (a) Hier-
archical symmetry constraint, (b) Array constraint, (c) Cluster
constraint, and (d) Extension constraint.

the routability issue. Furthermore, directly extending previous
methods for the region-based layout style would incur runtime
overhead and solution quality degradation.

In this paper, we proposed a novel AMS placement framework
targeting advanced FinFET designs. Translating the placement
problem into satisfiability modulo theories (SMT) formulas, the
proposed AMS placement framework is capable of handling the
above geometrical constraints and routability considerations si-
multaneously. Highlights of this work are summarized as follows:

• We propose an SMT-based placement framework targeting a
new region-based layout for advanced FinFET AMS designs
with comprehensive constraint handling.

• We develop a window-based pin density checking SMT
formulation for placement routability consideration. With-
out the checking scheme, the placement solutions may be
unroutable due to heavy local routing congestion.

• We leverage incremental SMT solving techniques for effi-
cient wirelength optimization, enabling the application of
our framework to large-scale designs.

• Experimental results on advanced industrial designs demon-
strate the effectiveness of the proposed placement frame-
work in generating high-quality solutions while satisfying
all the specified constraints.

II. RELATED WORK

We classify previous AMS placement techniques into two
paradigms: 1) stochastic methods and 2) analytical approaches.

Stochastic methods leverage probabilistic techniques (e.g.,
simulated annealing) to search solutions on topological rep-
resentations (e.g., sequence pairs, B∗-trees). These algorithms
have been shown to be effective in handling various geometric
constraints, including symmetry [5], common-centroid [6], reg-
ularity [7], proximity [8], pre-placed [9], fixed-boundary [10],
and mimimum/maximum separation [11]. Performance-related
constraints such as monotonic current flows [12] have also been
studied. Despite the aforementioned previous work for a wide
range of constraint handling, the extensibility of new constraints
and the adaptation for region-based layouts are restricted as the
manufacturing process evolves.

Analytical approaches optimize placement objectives directly
using mathematical formulations. [13] proposes a hierarchical

placement framework using mixed-integer linear programming
(MILP). However, it suffers from poor scalability for large-scale
circuits. In [14], a nonlinear programming (NLP) method is
presented to achieve better scalability while considering complex
design aspects such as system signal flows. Still, the constraint
relaxation and the extra legalization step restrict its potential
to handle various constraints simultaneously. [15] encodes the
analog placement problem into SMT formulations. The flexible
syntax of SMT enables efficient problem modeling and various
constraint support. However, it fails to manage routability con-
sideration and wirelength optimization. The use of integer theory
may also lead to runtime overhead for system-level designs (e.g.,
ADC, PLL).

Most of the previous approaches target traditional planar
layouts, and limited work has presented an end-to-end placement
framework for FinFET circuits. In [16], a meshed tree represen-
tation is proposed to handle FinFET-induced constraints (e.g., fin
alignment, mask conflict, mask density balance) together with
traditional geometric constraints. Nevertheless, the lack of ability
to consider routability and additional constraints introduced by
the new region-based layout methodology make it unsuitable for
designs in more advanced FinFET nodes.

III. PRELIMINARIES

A. Satisfiability Modulo Theories (SMT)

A first-order theory T comprises a signature ΣT and axioms
AT , where ΣT contains a set of constants, functions, and pred-
icate symbols; AT is a set of first-order logic (FOL) sentences
over ΣT providing the meaning of symbols. Specifically, the
axioms AT ensures some legal interpretations in general FOL
are not legal under T . A structure G is a T -model if G entails
A for every A ∈ AT . Consider a first-order formula F , if there
exists a T -model G and variable assignment σ such that 〈G, σ〉
entails F , then F is satisfiable modulo T .

The SMT problem determines whether a FOL formulation FT
is satisfiable (SAT) or unsatisfiable (UNSAT) under some back-
ground theories. A model and variable assignment 〈G, σ〉 of FT is
returned if FT is SAT. Combined theories are also supported for
a richer modeling language. Frequently implemented theories in
modern SMT solvers include the empty theory (i.e., uninterpreted
symbols with equality), arithmetic on integers/reals, bit-vectors
(BVs), and the array theory. An example SMT formula can be
written as

(a+ 2 ≤ b) ∧ (f(a) = f(b) ∨ q(a) 	= ¬q(b)), (1)

where it includes atomic formulas over a language of equality,
integer arithmetic, and uninterpreted symbols with Boolean com-
binations.

In this work, we formulate the placement problem with SMT
formulas under the BV theory with Boolean combinations. Fully
transferable to propositional logic, pure BV formulas can achieve
magnitudes of solving time speedup compared with integers
theories. Compared with propositional SAT and MILP formula-
tions, SMT formulas supports richer modeling expressions (e.g.,
if-then-else, either-or, Boolean cardinality), thus amenable for
efficient, versatile formulations for placement instances.

B. Problem Formulation

The placement problem for region-based FinFET AMS layouts
is formulated as follows:
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Problem 1 (Region-based FinFET AMS Placement): Given a
circuit netlist T , a placement grid pattern, a set of primitive cells
V = {vi|1 ≤ i ≤ |V |}, a set of regions R = {ri|1 ≤ i ≤ |R|},
and a set of AMS placement constraints (listed in Section I),
generate an overlap-free placement solution such that each cell
vi ∈ V locates in the associated region, the specified constraints
are satisfied, the routability is considered, and the total placement
cost is minimized.

IV. ALGORITHMS

The overall flow of our AMS placement framework is shown in
Figure 3, which consists of three main phases: 1) power analysis,
which specifies the netlist-dependent power abutment constraints,
2) SMT-based placement, which determines the cells’ coordinates
with optimized wirelength/routability while satisfying the con-
straints, and 3) post-processing, which inserts edge/dummy cells
for each region and sets the final placement result from the final
SMT model and variable assignment.

Circuit
netlist Constraints

Design 
rules

Cell 
mapping

Power analysis

Variable 
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formulation

Wirelength optimization
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modification

Incremental 
SMT solving

Placement 
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Fig. 3: Computation flow of our AMS placement framework.

A. Power Analysis

Before initializing the SMT formulations, we perform power
analysis to capture the power abutment constraints. Due to the
standard cell-like placement of region-based layout of primitive
cells, cells from different power groups should be placed in
disjointed rows; otherwise, a short violation between different
power nets would occur, as shown in Figure 4.

B. SMT-Based AMS Placement

To simultaneously handle all the constraints while preserving
the flexibility of considering new constraints for unseen designs,
we adopt SMT formulations to model the AMS placement prob-
lem. Additionally, an incremental solving procedure is built upon
the SMT placement kernel to optimize the placement objectives
efficiently. Table I summarizes the notations used in this paper.

TABLE I: Notations used in this paper.
Symbol Description
V /N /R The set of all cells/nets/regions.
vi/ni/ri The ith cell/net/region in V /N /R.
xvi , yvi BV vars for the scaled bottom-left coordinate of cell vi.
wvi , hvi BV constants for scaled width and height of cell vi.
xri , yri BV vars for the scaled bottom-left coordinate of region ri.
wri , hri BV vars for scaled width and height of region ri.
xl
ni

, ylni
BV vars for the bottom-left corner of ni’s bounding box.

xh
ni

, yhni
BV vars for the top-right corner of ni’s bounding box.

fR(vi) Mapping function fR : V → R that returns the region
associated with cell vi ∈ V .

VDD VDDL

Short violation

Wire (M1) Wire (M2) Via (V12)
Fig. 4: Example of a power abutment constraint violation. The
overlapping power pins of cells vi and vj are associated with
nets VDD and VDDL, respectively.

1) SMT Variable Initialization: Given a user-specified utiliza-
tion ratio γur and aspect ratio γar , we calculate the expected
width W and height H of the design as

W = γarÂ, H =
Â

γar
, (2)

where Â = A
γur is the estimated total area, and A =∑

vi∈V area(vi) is the summation of the area of each cell vi ∈ V .
Letting the greatest common divider (GCD) of all cell widths

and heights be w̄ and h̄, we scale down the entire design by
dividing variables/constants in Table I related to the x-axis, y-
axis by w̄ and h̄, respectively, and define

Lx = log2(W̃ ) + 1, Ly = log2(H̃) + 1, (3)

where Lx (resp. Ly) represents the size for BV variables as-
sociated with the x (resp. y) coordinate, W̃ = W

w̄ denotes the
scaled design width, and H̃ = H

h̄
is the scaled design height.

By scaling down the BV variables, every feasible SMT solution
for the placement formulation directly guarantees a row-based
implementation demanded by region-based layouts and makes
sure that all the leftover spaces can be filled by dedicated dummy
cells with width w̄ and height h̄. Significant runtime speedup is
also achieved due to the refined solution search space.

C. SMT Constraint Formulation

a) Region Constraints: For each region ri, region con-
straints determine its dimension, ensure non-overlapping between
ri and every other region rj ∈ R \ {ri}, and restrict the
cells vi ∈ V with fR(vi) = ri within the boundaries of ri.
To decide the dimension of a region ri, we generate a set of
scaled width/height candidate pairs Sri such that for each pair
(w′, h′) ∈ Sri , we have

(w′ − 1)h′ < Âri , w′(h′ − 1) < Âri , and w′h′ ≥ Âri , (4)

where Âri =
Ari

γurri
denotes the approximated area of ri, Ari is

the area summation of cells in ri, and γurri is the user-defined
utilization ratio for ri. We formulate the constraints for region
dimension as: ∨

(w′,h′)∈Sri

(wri = w′ ∧ hri = h′). (5)

For non-overlapping of regions, we define the SMT formulas as:

∀ri, rj ∈ R, i 	= j.(
ule(xri + wri +Dx, xrj ) ∨ ule(xrj + wrj +Dx, xri)∨

ule(yri + hri +Dy, yrj ) ∨ ule(yrj + hrj +Dy, yri)
)
,

(6)
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where ule(·, ·) represents the “unsigned less than or equal to
operator (≤)” for BVs, and Dx (resp. Dy) is the reserved space
for left/right (resp. bottom/top) region edge cells. To limit the
cells inside the boundaries of their associated regions, we have

∀vi ∈ V.
(
ule(xr, xvi) ∧ ule(xvi + wvi , xr + wr)∧

ule(yr, yvi) ∧ ule(yvi + hvi , yr + hr)
)
,

(7)

where r = fR(vi) is the associated region of vi. The non-
overlapping between cells can be formulated similarly as in (6)
by setting the reserved space to 0.

b) Hierarchical Symmetry Constraints: For a symmetry
group Csym , we formulate the y-axis symmetry constraints as:{

2xvi + wvi = 2xsym , vi is self-symmetric,
xvi + wvi + xv′

i
= 2xsym , otherwise,

(8)

where xsym is an auxiliary BV variable representing the symme-
try axis, and v′i ∈ Csym is the cell to be placed symmetrically
to vi. The symmetry constraints for other symmetry axes can
be defined similarly. Note that with a hierarchical symmetry
constraint, a cell can be placed symmetrically with respect to
multiple symmetry axes simultaneously.

c) Array Constraints: We model the array constraints as:(
xl
arr = min

vi∈Carr

xvi

)
∧
(
xh
arr = max

vi∈Carr

xvi + wvi

)
∧(

yl
arr = min

vi∈Carr

yvi

)
∧
(
yh
arr = max

vi∈Carr

yvi + hvi

)
∧(

(xh
arr − xl

arr )(y
h
arr − yl

arr ) = |Carr |
)
,

(9)

where xl
arr , xh

arr , yl
arr , yh

arr are the left, right, bottom, and top
array boundaries, and Carr contains the set of cells inside the
array. Additional constraints can be formulated to realize specific
array patterns. For example, the widely adopted common-centroid
pattern can be modeled as:( ∑

va∈CA
arr

xva =
∑

vb∈CB
arr

xvb

)
∧
( ∑

va∈CA
arr

yva =
∑

vb∈CB
arr

yvb

)
,

(10)
where CA

arr , C
B
arr ⊂ Carr are two disjoint cell groups in the

array.
d) Cluster Constraints: For cluster Cclus , we add a virtual

net connecting the cells in Cclus and define four new auxiliary
variables xl

clus , xh
clus , yl

clus , and yh
clus similarly as in (9) for the

net bounding box. Then, by assigning a higher weight constant
to the virtual net, cells within a cluster will be placed as close
as possible after wirelength optimization.

e) Extension Constraints: For extension constraints on re-
gions, cells, and arrays, we adjust their non-overlapping con-
straints to reserve extra spaces from their boundaries. For in-
stance, the adjusted non-overlapping constraints on cell va in
Figure 2(d) can be modeled as:

∀vi ∈ V, i 	= a, fR(vi) = fR(vj).(
ule(xvi + wvi +DL

va , xva) ∨ ule(xva + wva +DR
va , xvi)∨

ule(yvi + hvi , yva) ∨ ule(yvj + hvj , yva)
)
,

(11)
where DL

va and DR
va denote the reserved space for va from the

left and right boundaries, respectively. The extension constraints
for regions and arrays can be formulated similarly as in (11).

Cell (R1) Edge cell (R1) Dummy cell (R1)

Max pin count 16 

Pin count 18
(violation)

Window

4 4 
2 4 4 

2 
2 

4 2 

2 2 

Fig. 5: Example of a pin density constraint violation, where the
total pin count inside the window exceeds the threshold.

f) Power Abutment Constraints: For a set of power groups
P , we introduce |P | − 1 auxiliary variables, denoted as
y1pow , y

2
pow , . . . , y

|P |−1
pow such that y1pow < y2pow < · · · < y

|P |−1
pow .

Then, for cells in the ith power group Pi, we have

∀vi ∈ Pi.
(
yi−1
pow ≤ yvi ∧ yvi + hvi ≤ yi

pow

)
. (12)

Note that the lower (resp. upper) bound of the first (resp. last)
power group is bounded by the region boundary constraints.

g) Pin Density Constraints: Compared with digital circuits,
AMS designs have fewer nets, and thus the routability issue is
dominated by local pin density. Therefore, we propose a window-
based pin density checking formulation to prevent localized
routing congestion. Let W̃ and H̃ be the scaled width and height
of a design, βx and βy be the scaled width and height of a
check window, we construct a set of check windows M with
|M | = (W̃ − βx + 1)(H̃ − βy + 1) covering the entire design
floorplan. For each check window mj ∈ M , we add a set of
auxiliary Boolean indicators B such that |B| = |V |, where
bi,j ∈ B equals 1 if cell vi overlaps with mj . Let the bottom-left
coordinate of mj be (xmj

, ymj
). The indicators bi,j satisfy the

following formulation:

∀vi ∈ V.
((

ugt(xmj + βx, xvi) ∧ ugt(xvi + wvi , xmj )∧

ugt(ymj
+ βy, yvi) ∧ ugt(yvi + yvi , ymj

)
)
→ bi,j

)
,

(13)
where ugt(·, ·) denote the “unsigned greater than operator (>)”
for BVs. To further restrict the total pin count inside every
window by a threshold λth, we apply pseudo-Boolean constraints

∀mj ∈ M.
( |B|∑

i=1

|P (vi)| · bi,j ≤ λth

)
, (14)

where P (vi) represents the set of signal pins inside vi. Figure 5
illustrates the concept of window-based pin density checking.
Combining (13) and (14), our formulation improves the overall
routability by eliminating local pin density hotspots.

D. Wirelength Optimization

Given an SMT placement instance FT specifying the con-
straints described above, we optimize the total wirelength by per-
forming incremental SMT solving on FT . Algorithm 1 sketches
the incremental solving procedure. For each net ni ∈ N , we
attach four auxiliary variables xl

ni
, xh

ni
, yl

ni
, and yh

ni
signifying

the net bounding box. In Lines 1-3, we initialize an SMT
expression Φ for the weighted total wirelength with the weight
ηni

of each net. Virtual nets added by cluster constraints are
also included. Then, incremental solving on FT continues until
reaching the maximum iteration Kiter or the ending criteria (i.e.,
UNSAT, timeout) is met, as shown in Lines 4-10. If FT is SAT,
we record the resulting solution and add a stricter wirelength
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Algorithm 1 IncrementalSMTSolving(FT )

Input: The SMT placement formulation FT = (ΣT , AT ).
Output: A model and variable assignment 〈G, σ〉 with wirelength Φ.

1: Φ := 0;
2: for each net ni ∈ N do � Init. the total wirelength expression
3: Φ := Φ + ηni

(xh
ni

− xl
ni
+ yh

ni
− yl

ni
);

4: for i = 1 to Kiter do
5: if Solve(FT ) = SAT then
6: 〈G, σ〉 := Model(FT );
7: Φ′ := Wirelength(〈G, σ〉);
8: Add wirelength optimization constraint (Φ < ζΦ′) to FT ;
9: Add assumptions to freeze some region/cell variables in ΣT ;

10: else break;
return (〈G, σ〉,Φ);

constraint (Φ < ζΦ′) to FT , where ζ ∈ (0, 1] is a constant whose
value decreases as the iteration increases, and Φ′ denote the
total wirelength based on the current solution 〈G, σ〉. By adding
assumptions to some regions and cell variables (Line 9), we can
achieve significant runtime speedup due to the refined solution
space. In practice, we maintain two sorted queues in descending
order for regions and cells to select the assumed variables,
denoted as Qr and Qv , respectively. The priority functions PRri

for region ri and PRvi for cell vi are defined as:

PRri = Ari , PRvi = δ1|P (vi)|+ δ2
∑

ni∈N(vi)

deg(ni), (15)

where P (vi) denotes the set of pins on vi, N(vi) is the set of
nets connected to vi, deg(ni) is the degree of ni, and δ1, δ2 are
weighted constants. In our implementation, δ1 and δ2 are set to
10 and 1, respectively.

V. EXPERIMENTAL RESULTS

The proposed AMS placement framework is implemented in
C++ with the Z3 SMT solver [17]. All experiments are conducted
on a Linux workstation with an Intel Xeon 2.7 GHz CPU
with 128GB memory. We conduct experiments on two industrial
designs, including a multiplexing buffer (BUF) and a voltage-
controlled oscillator (VCO). Figure 6 shows the circuit schemat-
ics. All benchmark circuits are designed by experienced AMS
circuit designers under TSMC 5nm process, and the placement
constraints are annotated by layout experts. After generating
the placement layouts, the routing is completed by an analog
router [18] with slight manual adjustment if needed. Then, we
analyze the routed layouts by comparing detailed post-layout
extractions and simulations with the optimized manual layout.
Table II lists the benchmark statistics.

TABLE II: Statistics of the circuit benchmarks.
Benchmark #Regions #Cells #Nets Tech

BUF 1 42 66 5nm FinFET
VCO 2 110 71 5nm FinFET

A. 16-to-1 Multiplexing Buffer

The multiplexing buffer is a full-custom design that selects
between 16 signals using 4-bit control for performance and status
monitoring. The circuit includes an output buffer for driving large
parasitic and device loads, as shown in Figure 6(a). Hierarchical
symmetry constraints should be applied for lower delay and
parasitic capacitance variability between stages. To demonstrate

(a) (b)

Fig. 6: Circuit schematics. (a) 16-to-1 multiplexing buffer. (b)
Four-stage voltage-controlled oscillator.
TABLE III: Comparisons of total area, half-perimeter wirelength
(HPWL), routed wirelength (RWL), routed via count (VIA), and
runtime of the BUF.

Manual w/o Cstr. w/ Cstr.
Area (μm2) 56.64 (1.49) 38.09 (1.00) 38.09 (1.00)
HPWL (μm) N/A 95.07 (1.35) 70.22 (1.00)
RWL (μm) N/A 134.33 (1.62) 82.90 (1.00)

VIA N/A 326 (1.08) 300 (1.00)
Runtime (s) N/A 798.54 (6.87) 116.18 (1.00)

the importance of the proposed constraints, we generate layouts
with and without the hierarchical symmetry constraints. Critical
constraints such as pin density constraints are applied to both
layouts to ensure routablility. Note that for both layouts, the
optimization loop (Algorithm 1) terminates after five iterations.

Table III shows the comparisons of the basic placement met-
rics. Capable of generating numerous solutions while satisfying
the constraints, our framework can potentially produce superior
placement results. The manual layout results in a 49% larger
total area. Comparing the layouts with and without hierarchical
symmetry constraints, we observe that the layout without proper
constraints results in 35% longer HPWL, 62% longer RWL, 8%
more vias, and 6.87× longer runtime, authenticating that with
accurate design constraints specified, the proposed SMT-based
placer has significant runtime speedup and quality improvement.

Table IV shows the detailed analyses of the insertion delays
and rise/fall times, including the results of all internal stages. For
the internal stages, the automated layout with proper constraints
achieves an 8% reduction in insertion delay with lower delay
variability compared to the manual layout. It also obtains lower
average rise/fall times with significantly smaller variability. For
the delays of all input-to-output paths, the automated layout
achieves 6% average insertion delay reduction and considerably
smaller delay variability. The notable performance degradation
of the layout generated without the additional constraints demon-
strates the significance of accurate constraint specification.

B. Four-Stage Voltage-Controlled Oscillator

The four-stage VCO is designed to generate complimentary
7.7GHz in-phase and quadrature-phase clocks at a nominal
750mV supply. As shown in Figure 6(b), it includes start-
up circuitry and 3-bit thermometer-encoded control of digitally
tunable capacitors for frequency trimming. We apply hierarchical
symmetry, array, cluster, and extension constraints on top of the
necessary constraints. To highlight the efficacy of the proposed
design constraints, we generate another layout without applying
the crucial constraints above. The optimization loop terminates
after four iterations.

Table V details the results on placement metrics. With superb
constraint solving ability, our SMT-based AMS placer achieves
a more optimized circuit size where the area of the manual
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TABLE IV: Comparison of the post-layout insertion delay and
rise/fall times of the BUF.

Stage Insertion Delay (ps) Rise/Fall Time (ps)

Manual w/o
Cstr.

w/
Cstr. Manual w/o Cstr. w/ Cstr.

1 Avg 12.3 10.3 9.5 12.1 / 10.9 11.0 / 10.01 10.0 / 9.1
SD 0.88 0.83 0.07 0.55 / 0.55 1.31 / 1.16 0.06 / 0.06

2 Avg 12.0 11.9 10.5 12.2 / 12.5 11.9 / 11.9 10.4 / 10.6
SD 0.91 0.51 0.17 0.77 / 0.59 0.76 / 0.71 0.17 / 0.17

3 Avg 12.4 12.3 11.8 13.4 / 11.6 11.9 / 10.9 12.0 / 10.9
SD 0.50 0.35 0.04 0.98 / 0.41 0.26 / 0.21 0.02 / 0.04

4 Avg 9.4 11.0 10.1 10.2 / 10.4 10.2 / 10.2 9.2 / 9.2
SD 1.01 0.01 0.15 - - -

OUT Avg 35.8 35.8 35.2 5.8 / 5.8 6.1 / 6.2 6.1 / 6.2
SD - - - - - -

Total Avg 82.0 81.4 77.2 - - -
SD 0.92 1.28 0.18 - - -

TABLE V: Comparison of total area, half-perimeter wirelength
(HPWL), routed wirelength (RWL), routed via count (VIA), and
runtime of the VCO.

Manual w/o Cstr. w/ Cstr.
Area (μm2) 68.89 (1.23) 56.14 (1.00) 56.14 (1.00)
HPWL (μm) N/A 231.82 (1.57) 147.90 (1.00)
RWL (μm) N/A 292.32 (1.88) 155.45 (1.00)

VIA N/A 576 (1.60) 361 (1.00)
Runtime (s) N/A 205.90 (1.87) 110.26 (1.00)

layout is 23% larger. Comparing the two layouts generated
by our framework, we can find that without specifying proper
constraints it produces 57% longer HPWL, 88% longer RWL,
60% more vias, and 87% longer runtime. Since more constraints
are specified for a refined solution space, the runtime of the
VCO is faster even though it is a more complicated design with
more regions, cells, and nets than the BUF circuit. In practice,
complicated AMS systems require sophisticated constraints, thus
suited to our framework.

Table VI summarizes the post-layout simulation results. One
can observe that the layout generated by our framework con-
sistently outperforms the manual design in terms of power con-
sumption and operating frequency under various supply voltages
(from 650mV to 900mV). As shown in Table VI, the manual
layout results in 2% higher power consumption and 2% slower
oscillation frequency on average compared with ours. Comparing
the two automated layouts, we observe that the layout without
correct constraints results in 12% degradation on the oscillation
frequency. To further investigate the layout behavior at ultra-
high speed, we analyze the oscillation frequency for various
capacitor trim codes. Figure 7 plots the performance comparisons
with different capacitor trim codes. As shown in Figure 7,
with various supply voltages, the automated layout with precise
constraints consistently achieves higher oscillation frequency for
all capacitor trim codes.

VI. CONCLUSION

This work has presented an end-to-end AMS placement frame-
work for advanced FinFET technology. SMT formulations have
been shown to handle various placement constraints simulta-
neously for region-based AMS layouts. A window-based pin
density checking method has been proposed to eliminate local
congestion for better routability. An incremental SMT solving
scheme has been proposed to optimize the placement objectives.
Experimental results have demonstrated the efficiency and effec-
tiveness of the proposed framework in producing high-quality
placement solutions.

TABLE VI: Comparison of the post-layout power consumption
and oscillation frequency of the VCO.

Supply
(mV)

Power (μW) Frequency (GHz)

Manual w/o
Cstr.

w/
Cstr. Manual w/o

Cstr.
w/

Cstr.
650 304.4 302.2 300.2 3.02 2.76 3.08
700 398.8 395.1 392.7 3.28 2.97 3.34
750 507.5 501.2 499.6 3.49 3.15 3.55
800 632.4 622.2 621.6 3.67 3.28 3.73
850 774.6 759.7 758.5 3.83 3.39 3.88
900 936.0 912.6 914.4 3.96 3.48 4.00

Norm. 1.02 1.00 1.00 0.98 0.88 1.00

Manual w/ Cstr.w/o Cstr.
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Fig. 7: Oscillation frequency v.s. Supply voltage under various
capacitor trim codes for the VCO.
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