
Reinforcement Learning for Electronic Design
Automation: Case Studies and Perspectives

(Invited Paper)

Ahmet F. Budak∗†, Zixuan Jiang∗†, Keren Zhu†, Azalia Mirhoseini‡, Anna Goldie‡, and David Z. Pan†
† The University of Texas at Austin

‡ Google

{ahmetfarukbudak, zixuan, keren.zhu}@utexas.edu, {azalia, agoldie}@google.com, dpan@ece.utexas.edu

Abstract—Reinforcement learning (RL) algorithms have re-
cently seen rapid advancement and adoption in the field of elec-
tronic design automation (EDA) in both academia and industry.
In this paper, we first give an overview of RL and its applications
in EDA. In particular, we discuss three case studies: chip
macro placement, analog transistor sizing, and logic synthesis.
In collaboration with Google Brain, we develop a hybrid RL and
analytical mixed-size placer and achieve better results with less
training time on public and proprietary benchmarks. Working
with Intel, we develop an RL-inspired optimizer for analog
circuit sizing, combining the strengths of deep neural networks
and reinforcement learning to achieve state-of-the-art black-box
optimization results. We also apply RL to the popular logic
synthesis framework ABC and obtain promising results. Through
these case studies, we discuss the advantages, disadvantages,
opportunities, and challenges of RL in EDA.

I. INTRODUCTION

Reinforcement learning (RL) is a field of machine learning

that studies agents interacting with exterior environments. In

general, RL is an experience-driven paradigm of maximizing

the cumulative reward by taking actions based on the obser-

vation of the environment. It has shown huge success and

even demonstrated superhuman performance in well-defined

environments, such as playing video games [1], chess, and

Go [2]. Further, RL algorithms are applied in many real world

applications, where environments are much more complicated.

In the past decade, RL algorithms have benefited from the

representation extracted by deep learning. The deep reinforce-

ment learning algorithms have proven to be effective in high-

dimensional data with discrete or continuous action space with

the help of deep learning.

Many optimization problems in EDA share the same nature.

Therefore, RL algorithms have recently seen rapid advance-

ment and adoption in electronic design automation (EDA)

from both academia and industry [3], [4], [5]. In academia, we

have seen RL algorithms used to tackle many sub-problems in

EDA, including placement, sizing, logic synthesis, routing, etc.

In industry, we notice that companies in EDA have devoted

much effort in the direction of general artificial intelligence

(AI). For instance, Synopsys and Cadence have developed and

promoted their AI platforms DSO.ai 1 and Cerebrus 2.

This paper provides an overview of the RL algorithms and

their applications in EDA, with the paper organization shown

in Figure 1. We begin with an introduction to reinforcement

∗
The first two authors share equal contributions.

1Link to Synopsys DSO.ai
2Link to Cadence Cerebrus Intelligent Chip Explorer

Optimization and

control problems

Case 2

transistor sizing

Case 1

macro placement

Case 3

logic synthesis

Reinforcement

learning

RL in EDA

Challenges

Opportunities

Section 2 Sections 3,4,5 Section 6

Fig. 1. The paper organization.

learning algorithms. Building on that foundation, we analyze

why RL has been gaining momentum in the field of EDA and

discuss several applications. We demonstrate why and how RL

algorithms are used in EDA with three case studies in chip

placement, transistor sizing, and logic synthesis. In these three

problems, we convert a difficult optimization problem into a

control problem in the Markov decision process, which can

be effectively solved by reinforcement learning algorithms.

Specifically, RL agents make decisions on the decision vari-

ables step by step. The learning agent will evolve during the

learning process with the assistance of other machine learning

methods. We conclude this paper with discussions on the

advantages, disadvantages, opportunities, and challenges of

RL in the field of design automation.

II. REINFORCEMENT LEARNING IN EDA

In this section, we give an overview of reinforcement

learning algorithms and their applications in EDA.

A. Control problem and reinforcement learning

Reinforcement learning algorithms are usually proposed to

tackle the control problem in Markov decision process (MDP).

A Markov decision process is a 4-tuple (S,A, P,R), whose

elements are defined as below.

• S and A are state and action spaces, respectively.

• P is the state transition function, P (s, s′, a) =
Pr(St+1 = s′|St = s,At = a) is the probability that

action a in state s will lead to state s′ at the next

timestamp.

• R is the reward function. Specifically, R(s, s′, a) is the

immediate reward obtained after moving from state s to

state s′ with action a.

At the t-th step of a Markov decision process, we observe

the state St and reward Rt from the environment and decide

978-1-6654-2135-5/22/$31.00 ©2022 IEEE

7A-3

500

20
22

 2
7t

h
As

ia
 a

nd
 S

ou
th

 P
ac

ifi
c

De
sig

n
Au

to
m

at
io

n
Co

nf
er

en
ce

 (A
SP

-D
AC

) |
 9

78
-1

-6
65

4-
21

35
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AS
P-

DA
C5

24
03

.2
02

2.
97

12
57

8

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 19,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

the action At = π(st) based on the policy π(st). We repeat

the process of observation and decision by interacting with

the environment. Our objective is to find the optimal policy

function π∗ to maximize the expectation of accumulated

reward formulated as follows,

E[

T∑
t=0

γtRt]

where γ ∈ [0, 1] is the discounting factor and T is the total

number of steps of one episode. T =∞ means that the MDP

continues without termination.

Reinforcement learning algorithms can solve this control

problem by learning from repeated trial and error. There

are two major branches in reinforcement learning algorithms:

value based and policy based methods. In value based meth-

ods, we attempt to model and calculate the value of each state

s ∈ S or each pair of state and action (s, a) ∈ (S,A). In

policy based methods, we parameterize the policy function πθ

and optimize the parameters θ. We refer the readers to [6] for

more details.

In the past decade, machine learning, particularly deep

learning, has achieved great success. Reinforcement learning

has also benefited from the development of deep representation

learning. Specifically, we can use deep neural networks to

approximate the state space, the action space, and the policy

function.

B. Optimization problem and reinforcement learning

Most of the problems in the field of electronic design

automation can be formulated as follows:

min
x∈X

f(x)

where f is the objective function, X ⊆ R
n is the set of

feasible solutions. Several types of optimization problems can

be efficiently solved with existing algorithms. For example,

linear programs where f is linear and X is a convex polytope

can be solved with the simplex method or the interior point

method.

However, many problems cannot be tackled efficiently with

existing methods. Below, we list several reasons that these

problems are challenging.

• The feasible solution set X is discrete. For example, some

variables xi should be integers.

• The objective function f is not convex. We may be stuck

in a local minimum.

• In black box and derivative-free optimization [7], only

zero-order information of the objective function f is

accessible.

To address these challenges, the feasible solution set X is

usually explored with heuristic methods, such as grid search,

simulated annealing, or evolutionary algorithms.

Reinforcement learning has been leveraged to tackle these

difficult optimization problems [8]. In a typical routine, an

optimization problem can be converted into a control problem

in MDP, such that the problem can be solved with reinforce-

ment learning algorithms. The naive conversion is illustrated

in Figure 2. In each step of the MDP, we make a decision on

one element of the variable xi. After n steps, we obtain one

Learning agent

Action: �
�

State and Reward

Environment

Fig. 2. Converting an optimization problem into a control problem in MDP.
In each step, the agent determines one element of the variable xi and
interacts with the environment. The environment provides the state (or its
approximation) and reward. The reward is 0 except the final reward as shown
in Equation (1).

potential solution x̂ ∈ R
n, which will be used to query the

constraint and objective functions. Specifically, the reward in

the first (n − 1) steps is 0. The reward of the final step is

shown below:

Rn =

{
−f(x̂), if x̂ ∈ X
−∞, otherwise

(1)

If the RL algorithm finds the maximum accumulated reward,

we have solved the equivalent optimization problem. In this

routine, the state is all the decisions we have ever made so

far. When making decision on xt+1, we observe the state,

which is the historical decisions St = {x1, x2, ..., xt}, or its

representation f(St). The action space is the feasible set for

the decision variable.

C. RL in EDA

There are many control problems and optimization prob-

lems that cannot be solved efficiently with existing algorithms

in the field of electronic design automation. Human engineers

in the design flow usually try to obtain acceptable solutions

via trial and error. Specifically, designers have to try different

settings many times to achieve design closure, which heavily

relies on human knowledge and experience. Imitating the

manual design process, RL algorithms can be leveraged to

address these problems effectively.

In the following sections, we use three cases to investigate

why and how RL algorithms are applied to different EDA

problems.

III. CASE 1: CHIP MACRO PLACEMENT

We show why and how we use RL algorithms to handle the

macro placement in this section.

A. Why is RL a good fit for the placement problem?

In chip placement, we determine the locations of movable

instances (e.g., macros and standard cells) in the physical

layout. In the perspective of the optimization problem, the

variables are the locations of movable instances. There are

several constraints on this problem. For instance, no overlap is

allowed between any two instances. Several instances should

be located in a sub-region of the whole placement canvas.

The objective function is usually a criterion to measure the

performance of the chip design, such as the wirelength.

Prior to RL approaches, the state-of-the-art algorithm is

analytical placement [9], which consists of three stages: global

placement, legalization, and detailed placement. In global

placement, we perform relaxation on the original constraints

such that the optimization problem is solvable with existing

7A-3

501
Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 19,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

methods. Legalization recovers the original constraints, and

detailed placement refines the solution.

There are usually two kinds of instances in the very-large-

scale integrated (VLSI) circuits, macros and standard cells.

The macros may have irregular shapes and sizes, while the

standard cells follow the library specifications. Although the

number of large macros (usually less than one thousand) is

much smaller than that of standard cells (in the magnitude of

millions), the location of large macros has a significant impact

on the performance of circuit designs. The final solution is

more sensitive to the tiny movement of a macro due to its

large size and irregular shape.

RL is a promising approach to device placement opti-

mization, the problem of efficiently partitioning large neural

network models across multiple computing devices [10], [11],

[12], [13], [14]. Given the similarity of the chip and device

placement problems, it is natural to consider applying a similar

approach to the chip placement problem. The chip placement

problem, however, introduces several new challenges. For ex-

ample, a chip netlist can have hundreds of macros and millions

of standard cells, representing a search space of magnitude

larger than the device placement problem. Furthermore, in

device placement, the actual cost function is easy to quickly

and accurately measure. In contrast, we care about the final

results when the design closure is achieved for chip placement,

which can take several days with commercial EDA tools.

In [15], Google proposed a deep RL approach to macro

placement. Unlike prior approaches to this problem, the RL-

based method improves as it solves more instances of the

chip placement problem, and is capable of generalizing across

chip blocks. Building on this work, [16] integrates DREAM-

Place [17] into the loop of the RL algorithm to improve

performance further and reduce the execution time.

B. How do we apply RL to the placement problem?

General framework. We convert the placement problem

into an optimization problem, following the formulation in

Section II-B. As proposed in [15], we place one macro at

each time step. After placing all macros, we call the reward

function as shown in Equation (1) to obtain the performance

of this episode. We use a neural network to model the RL

policy function. Given the reward signal at the end of each

optimization episode, we use policy-based methods (such as

PPO [18]) to update the parameters of the policy function such

that it generates better placements over time.

Approximation. Due to the enormous size of the design

space, we must apply approximations to make the problem

tractable. Similar to many RL algorithms, we discretize the

state and action space. Specifically, we only place macros

on the grids of the placement canvas. Moreover, we only

use RL algorithms to place macros. Standard cells are placed

with the force-directed method or DREAMPlace [17] in the

environment since the number of standard cells is large. We

refer the readers to [15], [16] for more details regarding the

approximations.

Representation learning. Placement takes in an abstract

hypergraph representation (a netlist with devices as nodes

and interconnections as hyperedges) and outputs a geometric

representation (a layout). Information in the input hypergraph

is critical for optimizing the placement, as reward functions

such as wirelength and congestion are heavily impacted by

the netlist information. We, therefore, take a graph convo-

lution network to extract representations of the netlist graph

structure, which can be used in downstream tasks. We use this

graph neural network as the encoder for the policy and value

networks of the RL agent. We pre-train the policy on a large

set of training netlists. These learned graph representations

enable the generalization to previously unseen circuits with

fine-tuning.

IV. CASE 2: ANALOG TRANSISTOR SIZING

In collaboration with Intel, we have developed an RL-

inspired black-box optimization algorithm tailored for analog

circuit sizing, which combined the strengths of deep neural

networks and reinforcement learning to achieve state-of-the-

art results [19].

A. Why do we use RL on the sizing problem?

In analog sizing, design parameters are configured in a such

a way that the resulting design satisfies the predetermined

performance requirements. Typically, circuit instances such

as transistors, resistors, capacitors, etc. are sized to tune the

performance. We formulate analog circuit sizing task as a

constrained optimization problem succinctly as below.

minimize f0(x)

subject to fi(x) ≤ 0 for i = 1, . . . ,m
(2)

where x ∈ D
d is the design parameter vector, and d is the

number of design variables of the sizing task. f0(x) is the

objective performance metric we aim to minimize. Without

loss of generality, we denote ith constraint by fi(x). In general,

a weighted summation of the objective and constraints is used

as the Figure of Merit (FoM) value to assess the overall quality

of a design.

The majority of the proposed algorithms are simulation-

based optimization methods in the community. Since the

simulations for analog circuits can be very time-consuming,

efficient optimization methods are sought. This led to an

increased focus on using surrogate models for better utilization

of the existing samples. Hybrid evolutionary or derivatives of

Bayesian optimization have successfully adapted to the area.

However, such algorithms suffer from scalability issues since

they are limited to a small number of parameters and typically

has high modeling cost.

Then learning-based algorithms, such as RL, are applied in

the field. When applying RL methods in the sizing problem,

we are motivated by the idea that the state of the design is

represented by the values (sizes) of the circuit parameters,

and changing the values of these parameters can be viewed as

taking actions in the MDP space. Furthermore, the resulting

circuit FoM corresponds to the return obtained from taking

that action. In this perspective, we can train an agent that

learns how to change design parameters to improve the per-

formance metrics, which is the goal for the analog sizing task.

7A-3

502
Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 19,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

B. How do we apply RL on the sizing problem?

General Framework. In order to solve the zero-order

analog sizing optimization problem, we developed an RL-

inspired framework, called DNN-Opt [19]. It comprises a two-

stage deep neural network architecture that interacts with a

circuit simulator during the optimization process. A critic-

network is used as a proxy to circuit simulator to predict any

new design point’s performance. The actor-network uses the

predictions from the critic-network to find a potential good

design when the optimization flow is iterated. In this way,

we efficiently explore the design space to find good designs.

Besides, the actions are further regularized by adopting a

population control scheme.

The two-stage network architecture of our work borrows

its structure from the Deep Deterministic Policy Gradient

(DDPG) algorithm [20], which is an RL actor-critic algorithm

[21] developed for continuous action spaces. However, we do

not apply the DDPG algorithm directly due to efficiency con-

siderations. Instead, we adapt it with significant modifications

and tailor it for the analog circuit sizing problem.

Adaptation for Sizing Task. In our work, we represented

the state of a design by the optimization parameters (circuit

design variables), and each action corresponds to a change in

the optimization parameters vector. In expectation, the actions

are taken to change design variables to result in better FoM

circuits.

Critic-Network: Originally, a critic-network can approximate

the return for a state-action pair. In our case, we modify its role

and use it as an approximator of the costly SPICE simulator.

At the output layer of critic-network, each node approximates

a spec value. We later use this layer to calculate an FoM

approximation which can be interpreted as the return value.

Since we want the critic to predict spec values, the following

Mean Squared Error loss function is used for training.

L
(
θQ

)
= 1

Nb(m+1)

∑Nb

k=1

∑m+1
l=1

(
Q(xk,Δxk)

l − f(xk +Δxk)
l
)2

(3)

where Q(xk,Δxk)
l is the critic-network’s approximation for

kth sample’s lth performance and f(xk+Δxk)
l is the SPICE

simulated value for the same design-performance pair.

Actor-Network: An actor-network, in general, is utilized to

determine the action for a given state. In DNN-Opt, it provides

the change in the design parameter vector for a given design.

To explore the design space and find potential good designs,

we train actor-network based on the predictions of critic-

network. Therefore, training of actor-network is done after

critic network is trained and its hyperparameters are fixed. We

use the circuit performance vector and custom normalization

coefficients to define an FoM function, g(·), in the following

form.

g [f(x)] = w0×f0(x)+
m∑
i=1

min (1,max(0, wi × fi(x))) (4)

where wi is the weighting factor. Note, a max(·) clipping used

for equating designs after constraint are met and min(·) clip-

ping is used for practical purposes to prevent single constraint

violation to dominate g(·) value. In the FoM expression, we

can replace the real simulation values f(·) with the critic-

network predictions Q(x,Δx) in order to quantify the quality

of any point in design space. In this context, for a batch-size

of Nb samples, the following loss function is used to train

actor-network parameters.

L (θμ) =
1

Nb

Nb∑
k=1

(g [Q(xk, μ(xk | θμ))] + ‖λ ∗ violk‖2) (5)

where μ(xk | θμ) is proposed parameter change vector Δxk

by the actor-network. The statistics of a population based

on the ‘elite” solutions is used to restrict the search space.

We penalize the actor-network proposals resulting in designs

outside this restricted region which is reflected at the second

part of the loss function. This regularization mimics the

population based search mechanism where the search space

is restricted based on the elite solutions and hyperparameters

of the optimization algorithm (e.g., evolutionary).

V. CASE 3: OPTIMIZATION IN LOGIC SYNTHESIS

In this case study, We show why and how to apply RL

for finding the sequence of optimization operations in logic

synthesis problem [22].

A. Why do we use RL on the logic synthesis problem?

One of the core problems in logic synthesis is how to

optimize a Boolean logic without altering its function. A

typical methodology to this problem is to represent the logic

as a logic graph, such as an and-inverter graph (AIG), and then

perform graph operation to optimize the graph size and logic

depth. Those graph operations are sub-graph optimization

steps that alter the topology of a logic graph with an equivalent

logic representation. In practice, a sequence of different graph

operations are applied on the logic graph to find solutions.

However, finding the best optimization step receipt is rarely

studied.

Typical sub-graph optimization steps replace the sub-graphs

with equivalent logic. The outcome of a certain operation

is deterministically based on the current graph structure.

Therefore, the logic optimization process can be viewed as a

dynamic decision making process. Given an initial logic graph,

we operate a certain number of sub-graph optimization steps,

and our objective is the outcome after these steps. We observe

a current logic graph at each step and choose a graph operation

from candidate actions. This procedure is well aligned with a

typical MDP formulation.

B. How do we apply RL to the logic synthesis problem?

General framework. We employ a well-adopted open-

source academic logic synthesis framework ABC [23] to

build our environment. The targeting Boolean logic is first

converted in AIG representation. Then, for each episode, we

apply a fixed number of graph operations on the AIGs to

find the lowest number of nodes and logic depth of the final

AIG. At each step, the agent obverses the current AIG and

freely choose one optimization operation from five actions,

balance, rewrite, refactor, rewrite with zero-cost replacement,

and refactor with zero-cost replacement. All of the five actions

are implemented in the ABC framework and are deterministic.

We formulate the rewards as the improvement on the number

of nodes and logic depth, which is easily calculated by

7A-3

503
Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 19,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

comparing the current and initial logic graphs. The MDP state,

on the other hand, is more challenging to represent. Intuitively,

the state is the current AIG. However, the graph-structural data

cannot be directly embedded into a vector representation for

the RL agent. On the one hand, we use graph statistics and

action history as part of state representation. On the other

hand, we also apply a graph neural network to obtain graph

embedding as part of the state vectors.

Graph Embedding. We use a graph convolutional network

to obtain a graph embedding for an AIG network. We first

represent the AIG as a directed graph. We use an one-hot

vector as the initial node features to distinguish the node type.

The graph then passes four graph convolutions as shown in

the Equation 6.

h
(k)
i = σ(

∑
j∈N(i)

1

cij
h(k−1)
u W (k−1) + b(k−1)), (6)

where h(k) is the kth layer output, σ(·) is the activation

function, N(i) represents the neighbors of node i, W is a

weight matrix and b is the bias. After the graph convolutions,

each node has a new node embedding. Then we compute

the mean of the node embeddings and obtain the final graph

embedding. The resulting vector is concatenated with other

state features.

With the MDP formulation above, we apply REIN-

FORCE [24] algorithm in our RL agent. For each circuit,

the RL agent searches operation receipts. We observe the

performance of the RL agent improve over the episode and

outperform existing operation sequence heuristics at the cost

of search time.

VI. FUTURE DIRECTIONS

So far, we have discussed why and how we can use rein-

forcement learning for electronic design automation through

three case studies. In this section, we delve into the nature

of reinforcement learning and propose some future research

directions of RL in EDA.

A. Challenges

High Cost on learning materials and computation.
Reinforcement learning algorithms usually require extensive

exploration before the learning agent can leverage the acquired

knowledge. Evaluating the reward function in EDA problems

requires slow and often expensive EDA tools. Since RL

needs many iterations to converge, calling an EDA tool in

the loop of RL training would significantly slow down the

training. This problem can be mitigated by running multiple

parallel instances of EDA tools to collect data in large batches.

However, commercial EDA licenses are expensive, and open-

source alternatives are typically unreliable for most EDA tasks.

Another related challenge is that most real-world bench-

marks are not public or widely accessible. For example, public

benchmarks for the chip placement problem are outdated and

do not reflect modern hardware and technology node sizes.

Moreover, it is usually expensive to generate and process such

datasets. For example, it typically takes several hours to run

the complete design or simulation flow.

The inherent complexity of EDA problems exacerbates this

issue. Namely, we need more training data and computational

resources in order to be able to handle more complex prob-

lems. This high cost often necessitates approximations to the

state and action spaces and the reward function.

The computational cost of training RL algorithms can also

be substantial, and most successfully deployed RL policies

were trained on distributed platforms. Although this cost can

be easily justified when developing commercial hardware, it

may be prohibitively expensive for academic researchers.

Generalization and Transferability. The ability to gen-

eralize and transfer knowledge are critical properties of an

algorithm. For example, with the simplex method or the

interior point method, we can solve linear programs. Thus,

once a problem can be formulated as a linear program, we

can solve it effectively due to the generality of the above

algorithms.

Given that an RL agent achieves high performance on

a particular problem instance, we wonder how much the

RL agent’s knowledge transfers to other related problems,

allowing it to generalize to new previously unseen examples

quickly.

However, generality and transferability are known concerns

of the RL algorithms. The RL agent and the representation

learned by deep neural networks usually cannot extrapolate

effectively. If we intend to tackle different benchmarks, we

have to conduct fine-tuning or learning from scratch.

In [15], it is shown that as the policy is trained on a larger set

of chip netlists, its performance on unseen netlists improves.

This means that the policy is able to transfer the knowledge it

acquired by placing previous chips and applying it effectively

to new chips.

Interpretability. Interpretability is also a known challenge

for the current reinforcement learning algorithms. The theo-

retical analysis and explanation regarding deep learning are

currently insufficient. Hence, we cannot interpret the rein-

forcement learning algorithms thoroughly, which means the

learned RL agent is essentially a black box for us. While we

may not know why an RL agent makes a given decision, we

can observe that that decision yields a better solution.

Human experts usually know what they have learned from

particular experiments, but they cannot always explain their

decisions or summarize their experiences. If we could under-

stand and interpret deep reinforcement learning, we could not

only solve problems human experts cannot handle, but also

obtain insights, which help us understand these problems and

their solutions.

Optimality. When we tackle optimization problems with

reinforcement learning algorithms, there is no theoretical

guarantee that optimal results are achieved. We do not even

know the gap between the obtained solutions and the optimal

ones. Hence, we are unaware of the solution quality compared

with the optimal solution.

B. Opportunities

Learning capacity. With deep learning, we can enlarge the

model capacity and extract better representations from large

amounts of data, which can then be used in downstream tasks.

For example, we can train on a large corpus of chip netlists,

derive expressive embeddings for these chips, and use these

7A-3

504
Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 19,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

representations to guide decision-making in various optimiza-

tion tasks, such as placement, block shaping, pin assignment,

and routing. In addition, RL can help with tackling function

approximation problems in high dimensions. Analytical solu-

tions such as linear regression or Gaussian processes suffer

from the curse of dimensionality, whereas deep RL has more

modeling capacity with the high dimensional feature spaces. In

[19], RL demonstrates strong results for tuning large number

of circuit design variables.

Prior knowledge. When using reinforcement learning to

solve a specific problem, we can integrate the prior knowledge

to reduce the complexity of the problem. For example, the

AlphaGo [25] learns from extensive training from human

and computer play, which consists of the knowledge from

human players. On the contrary, it is also possible to achieve

better results without prior knowledge. The AlphaGo Zero [2]

surpasses all the old versions of AlphaGo with playing games

against itself.

When we apply RL algorithms, we can integrate our prior

knowledge regarding the related problems. This prior knowl-

edge will guide the RL agent to explore the environment. We

can also discard the knowledge and allow the RL agent to

discover the whole design space. In this way, we may mitigate

the issue induced by our prejudice and bias.

Active community. Many researchers are active in the

machine learning community. Reinforcement learning has

received more and more attention in terms of both its un-

derlying theory and its practical applications. The abundance

of open-sourced algorithms allows peers to contribute faster

development of the field. Furthermore, a successful application

in one area is easily reflected in the areas with similar problem

formulation.

VII. CONCLUSION

In this paper, we analyze why and how RL algorithms

are applied in the field of EDA. We also demonstrate its

potential by presenting three successful case studies in macro

placement, transistor sizing, and logic synthesis. We further

discuss what challenges and opportunities arise from deploy-

ing such algorithms in EDA problems. We believe reinforce-

ment learning, combined with other AI and analytical/heuristic

algorithms can reshape and even revolutionize the field of

electronic design automation.

ACKNOWLEDGEMENT

This work is supported in part by NSF under grants

1704758, 1718570, and 2112665.

REFERENCES

[1] K. Shao, Z. Tang, Y. Zhu, N. Li, and D. Zhao, “A survey of deep rein-
forcement learning in video games,” arXiv preprint arXiv:1912.10944,
2019.

[2] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., “Mastering chess
and shogi by self-play with a general reinforcement learning algorithm,”
arXiv preprint arXiv:1712.01815, 2017.

[3] H. Ren, S. Godil, B. Khailany, R. Kirby, H. Liao, S. Nath, J. Raiman, and
R. Roy, “Optimizing vlsi implementation with reinforcement learning,”
in 2021 International Conference On Computer-Aided Design (ICCAD),
IEEE/ACM, 2021.

[4] M. Rapp, H. Amrouch, Y. Lin, B. Yu, D. Z. Pan, M. Wolf, and J. Henkel,
“Mlcad: A survey of research in machine learning for cad keynote
paper,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, pp. 1–1, 2021.

[5] G. Huang, J. Hu, Y. He, J. Liu, M. Ma, Z. Shen, J. Wu, Y. Xu, H. Zhang,
K. Zhong, X. Ning, Y. Ma, H. Yang, B. Yu, H. Yang, and Y. Wang,
“Machine learning for electronic design automation: A survey,” ACM
Trans. Des. Autom. Electron. Syst., vol. 26, June 2021.

[6] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: A Bradford Book, 2018.

[7] C. Audet and M. Kokkolaras, “Blackbox and derivative-free optimiza-
tion: theory, algorithms and applications,” 2016.

[8] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, “Reinforce-
ment learning for combinatorial optimization: A survey,” Computers &
Operations Research, p. 105400, 2021.

[9] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “RePlAce: Advancing
solution quality and routability validation in global placement,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 38, no. 9, pp. 1717–1730, 2019.

[10] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou,
N. Kumar, M. Norouzi, S. Bengio, and J. Dean, “Device placement
optimization with reinforcement learning,” in Proceedings of the 34th
International Conference on Machine Learning (D. Precup and Y. W.
Teh, eds.), vol. 70 of Proceedings of Machine Learning Research,
pp. 2430–2439, PMLR, 06–11 Aug 2017.

[11] A. Mirhoseini, A. Goldie, H. Pham, B. Steiner, Q. V. Le, and J. Dean,
“A Hierarchical Model for Device Placement,” International Conference
on Learning Representations, 2018.

[12] R. Addanki, S. Bojja Venkatakrishnan, S. Gupta, H. Mao, and M. Al-
izadeh, “Learning Generalizable Device Placement Algorithms for
Distributed Machine Learning,” in Advances in Neural Information
Processing Systems, 2019.

[13] Y. Zhou, S. Roy, A. Abdolrashidi, D. Wong, P. C. Ma, Q. Xu,
H. Liu, M. P. Phothilimtha, S. Wang, A. Goldie, A. Mirhoseini, and
J. Laudon, “Transferable graph optimizers for ML compilers,” CoRR,
vol. abs/2010.12438, 2020.

[14] A. Goldie and A. Mirhoseini, “Placement optimization with deep
reinforcement learning,” in Proceedings of the 2020 International Sym-
posium on Physical Design, ISPD ’20, (New York, NY, USA), p. 3–7,
Association for Computing Machinery, 2020.

[15] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang,
Y.-J. Lee, E. Johnson, O. Pathak, A. Nazi, et al., “A Graph Placement
Methodology for Fast Chip Design,” Nature, vol. 594, no. 7862,
pp. 207–212, 2021.

[16] Z. Jiang, E. Songhori, S. Wang, A. Goldie, A. Mirhoseini, J. Jiang, Y.-J.
Lee, and D. Z. Pan, “Delving into macro placement with reinforcement
learning,” in 2021 ACM/IEEE 3rd Workshop on Machine Learning for
CAD (MLCAD), pp. 1–3, IEEE, 2021.

[17] Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z.
Pan, “DREAMPlace: Deep learning toolkit-enabled gpu acceleration for
modern vlsi placement,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 40, no. 4, pp. 748–761, 2021.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[19] A. F. Budak, P. Bhansali, B. Liu, N. Sun, D. Z. Pan, and C. V. Kashyap,
“DNN-Opt an rl inspired optimization for analog circuit sizing using
deep neural networks,” in Proceedings of the 58th ACM/EDAC/IEEE
Design Automation Conference, DAC ’21, 2021.

[20] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning.,” in ICLR, 2016.

[21] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” in SIAM Journal
on Control and Optimization, MIT Press, 2000.

[22] K. Zhu, M. Liu, H. Chen, Z. Zhao, and D. Z. Pan, “Exploring
logic optimizations with reinforcement learning and graph convolutional
network,” in 2020 ACM/IEEE Workshop on Machine Learning for CAD
(MLCAD), 2020.

[23] A. Mishchenko, “ABC: A system for sequential synthesis and verifica-
tion.”

[24] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in Advances in neural information processing systems, pp. 1057–1063,
2000.

[25] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

7A-3

505
Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 19,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

