2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC) | 978-1-6654-2135-5/22/$31.00 ©2022 IEEE | DOI: 10.1109/ASP-DAC52403.2022.9712578

TA-3

Reinforcement Learning for Electronic Design
Automation: Case Studies and Perspectives

(Invited Paper)

Ahmet F. Budak*, Zixuan Jiang*T, Keren Zhu', Azalia Mirhoseini*, Anna Goldie*, and David Z. Pan'
T The University of Texas at Austin
! Google
{ahmetfarukbudak, zixuan, keren.zhu}@utexas.edu, {azalia, agoldie} @ google.com, dpan@ece.utexas.edu

Abstract—Reinforcement learning (RL) algorithms have re-
cently seen rapid advancement and adoption in the field of elec-
tronic design automation (EDA) in both academia and industry.
In this paper, we first give an overview of RL and its applications
in EDA. In particular, we discuss three case studies: chip
macro placement, analog transistor sizing, and logic synthesis.
In collaboration with Google Brain, we develop a hybrid RL and
analytical mixed-size placer and achieve better results with less
training time on public and proprietary benchmarks. Working
with Intel, we develop an RL-inspired optimizer for analog
circuit sizing, combining the strengths of deep neural networks
and reinforcement learning to achieve state-of-the-art black-box
optimization results. We also apply RL to the popular logic
synthesis framework ABC and obtain promising results. Through
these case studies, we discuss the advantages, disadvantages,
opportunities, and challenges of RL in EDA.

I. INTRODUCTION

Reinforcement learning (RL) is a field of machine learning
that studies agents interacting with exterior environments. In
general, RL is an experience-driven paradigm of maximizing
the cumulative reward by taking actions based on the obser-
vation of the environment. It has shown huge success and
even demonstrated superhuman performance in well-defined
environments, such as playing video games [1], chess, and
Go [2]. Further, RL algorithms are applied in many real world
applications, where environments are much more complicated.

In the past decade, RL algorithms have benefited from the
representation extracted by deep learning. The deep reinforce-
ment learning algorithms have proven to be effective in high-
dimensional data with discrete or continuous action space with
the help of deep learning.

Many optimization problems in EDA share the same nature.
Therefore, RL algorithms have recently seen rapid advance-
ment and adoption in electronic design automation (EDA)
from both academia and industry [3], [4], [5]. In academia, we
have seen RL algorithms used to tackle many sub-problems in
EDA, including placement, sizing, logic synthesis, routing, etc.
In industry, we notice that companies in EDA have devoted
much effort in the direction of general artificial intelligence
(AD). For instance, Synopsys and Cadence have developed and
promoted their Al platforms DSO.ai ! and Cerebrus 2.

This paper provides an overview of the RL algorithms and
their applications in EDA, with the paper organization shown
in Figure 1. We begin with an introduction to reinforcement

>kThe first two authors share equal contributions.
'Link to Synopsys DSO.ai
2Link to Cadence Cerebrus Intelligent Chip Explorer

Section 2 Sections 3,4,5 Section 6
Optimization and Case 1
control problems macro placement
Challenges
Reinforcement Case 2
learning transistor sizing

Opportunities

-/

RL in EDA)

logic synthesis

Fig. 1. The paper organization.

learning algorithms. Building on that foundation, we analyze
why RL has been gaining momentum in the field of EDA and
discuss several applications. We demonstrate why and how RL
algorithms are used in EDA with three case studies in chip
placement, transistor sizing, and logic synthesis. In these three
problems, we convert a difficult optimization problem into a
control problem in the Markov decision process, which can
be effectively solved by reinforcement learning algorithms.
Specifically, RL agents make decisions on the decision vari-
ables step by step. The learning agent will evolve during the
learning process with the assistance of other machine learning
methods. We conclude this paper with discussions on the
advantages, disadvantages, opportunities, and challenges of
RL in the field of design automation.

II. REINFORCEMENT LEARNING IN EDA

In this section, we give an overview of reinforcement
learning algorithms and their applications in EDA.

A. Control problem and reinforcement learning

Reinforcement learning algorithms are usually proposed to
tackle the control problem in Markov decision process (MDP).
A Markov decision process is a 4-tuple (S, A, P, R), whose
elements are defined as below.

e S and A are state and action spaces, respectively.

o P is the state transition function, P(s,s’,;a) =
Pr(Siy1 = §|S¢ = s,A;y = a) is the probability that
action a in state s will lead to state s’ at the next
timestamp.

e R is the reward function. Specifically, R(s,s’,a) is the
immediate reward obtained after moving from state s to
state s’ with action a.

At the t-th step of a Markov decision process, we observe
the state S; and reward R; from the environment and decide

978-1-6654-2135-5/22/$31.00 ©2022 IEEE 500
Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 19,2022 at 02:34:52 UTC from |IEEE Xplore. Restrictions apply.

the action A; = 7(s;) based on the policy 7(s;). We repeat
the process of observation and decision by interacting with
the environment. Our objective is to find the optimal policy
function 7* to maximize the expectation of accumulated
reward formulated as follows,

T
E[Y 7'Ri]
t=0

where v € [0,1] is the discounting factor and T is the total
number of steps of one episode. 7" = co means that the MDP
continues without termination.

Reinforcement learning algorithms can solve this control
problem by learning from repeated trial and error. There
are two major branches in reinforcement learning algorithms:
value based and policy based methods. In value based meth-
ods, we attempt to model and calculate the value of each state
s € S or each pair of state and action (s,a) € (S, A). In
policy based methods, we parameterize the policy function 7y
and optimize the parameters 6. We refer the readers to [6] for
more details.

In the past decade, machine learning, particularly deep
learning, has achieved great success. Reinforcement learning
has also benefited from the development of deep representation
learning. Specifically, we can use deep neural networks to
approximate the state space, the action space, and the policy
function.

B. Optimization problem and reinforcement learning

Most of the problems in the field of electronic design

automation can be formulated as follows:

min f(z)

where f is the objective function, X C R”™ is the set of
feasible solutions. Several types of optimization problems can
be efficiently solved with existing algorithms. For example,
linear programs where f is linear and & is a convex polytope
can be solved with the simplex method or the interior point
method.

However, many problems cannot be tackled efficiently with
existing methods. Below, we list several reasons that these
problems are challenging.

o The feasible solution set X" is discrete. For example, some

variables x; should be integers.

o The objective function f is not convex. We may be stuck

in a local minimum.

o In black box and derivative-free optimization [7], only

zero-order information of the objective function f is
accessible.

To address these challenges, the feasible solution set X' is
usually explored with heuristic methods, such as grid search,
simulated annealing, or evolutionary algorithms.
Reinforcement learning has been leveraged to tackle these
difficult optimization problems [8]. In a typical routine, an
optimization problem can be converted into a control problem
in MDP, such that the problem can be solved with reinforce-
ment learning algorithms. The naive conversion is illustrated
in Figure 2. In each step of the MDP, we make a decision on
one element of the variable x;. After n steps, we obtain one

TA-3

Action: x;

Learning agent Environment

State and Reward

Fig. 2. Converting an optimization problem into a control problem in MDP.
In each step, the agent determines one element of the variable z; and
interacts with the environment. The environment provides the state (or its
approximation) and reward. The reward is 0 except the final reward as shown
in Equation (1).

potential solution z € R”, which will be used to query the
constraint and objective functions. Specifically, the reward in
the first (n — 1) steps is 0. The reward of the final step is
shown below:

ifted

otherwise

—f (@),

—0Q,

R, = (L
If the RL algorithm finds the maximum accumulated reward,
we have solved the equivalent optimization problem. In this
routine, the state is all the decisions we have ever made so
far. When making decision on x;y;, we observe the state,
which is the historical decisions S; = {x1,xa, ...,z }, or its
representation f(S;). The action space is the feasible set for
the decision variable.

C. RL in EDA

There are many control problems and optimization prob-
lems that cannot be solved efficiently with existing algorithms
in the field of electronic design automation. Human engineers
in the design flow usually try to obtain acceptable solutions
via trial and error. Specifically, designers have to try different
settings many times to achieve design closure, which heavily
relies on human knowledge and experience. Imitating the
manual design process, RL algorithms can be leveraged to
address these problems effectively.

In the following sections, we use three cases to investigate
why and how RL algorithms are applied to different EDA
problems.

III. CASE 1: CHIP MACRO PLACEMENT

We show why and how we use RL algorithms to handle the
macro placement in this section.

A. Why is RL a good fit for the placement problem?

In chip placement, we determine the locations of movable
instances (e.g., macros and standard cells) in the physical
layout. In the perspective of the optimization problem, the
variables are the locations of movable instances. There are
several constraints on this problem. For instance, no overlap is
allowed between any two instances. Several instances should
be located in a sub-region of the whole placement canvas.
The objective function is usually a criterion to measure the
performance of the chip design, such as the wirelength.

Prior to RL approaches, the state-of-the-art algorithm is
analytical placement [9], which consists of three stages: global
placement, legalization, and detailed placement. In global
placement, we perform relaxation on the original constraints
such that the optimization problem is solvable with existing

501

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 19,2022 at 02:34:52 UTC from |IEEE Xplore. Restrictions apply.

methods. Legalization recovers the original constraints, and
detailed placement refines the solution.

There are usually two kinds of instances in the very-large-
scale integrated (VLSI) circuits, macros and standard cells.
The macros may have irregular shapes and sizes, while the
standard cells follow the library specifications. Although the
number of large macros (usually less than one thousand) is
much smaller than that of standard cells (in the magnitude of
millions), the location of large macros has a significant impact
on the performance of circuit designs. The final solution is
more sensitive to the tiny movement of a macro due to its
large size and irregular shape.

RL is a promising approach to device placement opti-
mization, the problem of efficiently partitioning large neural
network models across multiple computing devices [10], [11],
[12], [13], [14]. Given the similarity of the chip and device
placement problems, it is natural to consider applying a similar
approach to the chip placement problem. The chip placement
problem, however, introduces several new challenges. For ex-
ample, a chip netlist can have hundreds of macros and millions
of standard cells, representing a search space of magnitude
larger than the device placement problem. Furthermore, in
device placement, the actual cost function is easy to quickly
and accurately measure. In contrast, we care about the final
results when the design closure is achieved for chip placement,
which can take several days with commercial EDA tools.

In [15], Google proposed a deep RL approach to macro
placement. Unlike prior approaches to this problem, the RL-
based method improves as it solves more instances of the
chip placement problem, and is capable of generalizing across
chip blocks. Building on this work, [16] integrates DREAM-
Place [17] into the loop of the RL algorithm to improve
performance further and reduce the execution time.

B. How do we apply RL to the placement problem?

General framework. We convert the placement problem
into an optimization problem, following the formulation in
Section II-B. As proposed in [15], we place one macro at
each time step. After placing all macros, we call the reward
function as shown in Equation (1) to obtain the performance
of this episode. We use a neural network to model the RL
policy function. Given the reward signal at the end of each
optimization episode, we use policy-based methods (such as
PPO [18]) to update the parameters of the policy function such
that it generates better placements over time.

Approximation. Due to the enormous size of the design
space, we must apply approximations to make the problem
tractable. Similar to many RL algorithms, we discretize the
state and action space. Specifically, we only place macros
on the grids of the placement canvas. Moreover, we only
use RL algorithms to place macros. Standard cells are placed
with the force-directed method or DREAMPIlace [17] in the
environment since the number of standard cells is large. We
refer the readers to [15], [16] for more details regarding the
approximations.

Representation learning. Placement takes in an abstract
hypergraph representation (a netlist with devices as nodes
and interconnections as hyperedges) and outputs a geometric
representation (a layout). Information in the input hypergraph

TA-3

is critical for optimizing the placement, as reward functions
such as wirelength and congestion are heavily impacted by
the netlist information. We, therefore, take a graph convo-
lution network to extract representations of the netlist graph
structure, which can be used in downstream tasks. We use this
graph neural network as the encoder for the policy and value
networks of the RL agent. We pre-train the policy on a large
set of training netlists. These learned graph representations
enable the generalization to previously unseen circuits with
fine-tuning.

IV. CASE 2: ANALOG TRANSISTOR SIZING

In collaboration with Intel, we have developed an RL-
inspired black-box optimization algorithm tailored for analog
circuit sizing, which combined the strengths of deep neural
networks and reinforcement learning to achieve state-of-the-
art results [19].

A. Why do we use RL on the sizing problem?

In analog sizing, design parameters are configured in a such
a way that the resulting design satisfies the predetermined
performance requirements. Typically, circuit instances such
as transistors, resistors, capacitors, etc. are sized to tune the
performance. We formulate analog circuit sizing task as a
constrained optimization problem succinctly as below.

minimize fo(x)

subject to f;(x) <0 @

fori=1,...,m

where x € D? is the design parameter vector, and d is the
number of design variables of the sizing task. fy(x) is the
objective performance metric we aim to minimize. Without
loss of generality, we denote i constraint by f;(x). In general,
a weighted summation of the objective and constraints is used
as the Figure of Merit (FoM) value to assess the overall quality
of a design.

The majority of the proposed algorithms are simulation-
based optimization methods in the community. Since the
simulations for analog circuits can be very time-consuming,
efficient optimization methods are sought. This led to an
increased focus on using surrogate models for better utilization
of the existing samples. Hybrid evolutionary or derivatives of
Bayesian optimization have successfully adapted to the area.
However, such algorithms suffer from scalability issues since
they are limited to a small number of parameters and typically
has high modeling cost.

Then learning-based algorithms, such as RL, are applied in
the field. When applying RL methods in the sizing problem,
we are motivated by the idea that the state of the design is
represented by the values (sizes) of the circuit parameters,
and changing the values of these parameters can be viewed as
taking actions in the MDP space. Furthermore, the resulting
circuit FOM corresponds to the return obtained from taking
that action. In this perspective, we can train an agent that
learns how to change design parameters to improve the per-
formance metrics, which is the goal for the analog sizing task.

502

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 19,2022 at 02:34:52 UTC from |IEEE Xplore. Restrictions apply.

B. How do we apply RL on the sizing problem?

General Framework. In order to solve the zero-order
analog sizing optimization problem, we developed an RL-
inspired framework, called DNN-Opt [19]. It comprises a two-
stage deep neural network architecture that interacts with a
circuit simulator during the optimization process. A critic-
network is used as a proxy to circuit simulator to predict any
new design point’s performance. The actor-network uses the
predictions from the critic-network to find a potential good
design when the optimization flow is iterated. In this way,
we efficiently explore the design space to find good designs.
Besides, the actions are further regularized by adopting a
population control scheme.

The two-stage network architecture of our work borrows
its structure from the Deep Deterministic Policy Gradient
(DDPG) algorithm [20], which is an RL actor-critic algorithm
[21] developed for continuous action spaces. However, we do
not apply the DDPG algorithm directly due to efficiency con-
siderations. Instead, we adapt it with significant modifications
and tailor it for the analog circuit sizing problem.

Adaptation for Sizing Task. In our work, we represented

the state of a design by the optimization parameters (circuit
design variables), and each action corresponds to a change in
the optimization parameters vector. In expectation, the actions
are taken to change design variables to result in better FoM
circuits.
Critic-Network: Originally, a critic-network can approximate
the return for a state-action pair. In our case, we modify its role
and use it as an approximator of the costly SPICE simulator.
At the output layer of critic-network, each node approximates
a spec value. We later use this layer to calculate an FoM
approximation which can be interpreted as the return value.
Since we want the critic to predict spec values, the following
Mean Squared Error loss function is used for training.

L (09) = mgirn Sacs St (QGer, Axy)' — f i + Axe)!)” - (3)

where Q(x3, Axy)! is the critic-network’s approximation for
k" sample’s I*" performance and f(x;+ Axy)! is the SPICE
simulated value for the same design-performance pair.
Actor-Network: An actor-network, in general, is utilized to
determine the action for a given state. In DNN-Opt, it provides
the change in the design parameter vector for a given design.
To explore the design space and find potential good designs,
we train actor-network based on the predictions of critic-
network. Therefore, training of actor-network is done after
critic network is trained and its hyperparameters are fixed. We
use the circuit performance vector and custom normalization
coefficients to define an FoM function, g(-), in the following
form.

g[F(x)] = wox fo(x)+ Y min (1, max(0,w; x f;(x))) (4)

=1

where w; is the weighting factor. Note, a max(-) clipping used
for equating designs after constraint are met and min(-) clip-
ping is used for practical purposes to prevent single constraint
violation to dominate g(-) value. In the FoM expression, we
can replace the real simulation values f(-) with the critic-
network predictions Q(x, Ax) in order to quantify the quality

TA-3

of any point in design space. In this context, for a batch-size
of N, samples, the following loss function is used to train
actor-network parameters.

Ny
L") = =3 (g1Q(xk slxk | 69)] + [+ violk l2) (5)

k=1

where p(xj | 0*) is proposed parameter change vector Axy
by the actor-network. The statistics of a population based
on the ‘elite” solutions is used to restrict the search space.
We penalize the actor-network proposals resulting in designs
outside this restricted region which is reflected at the second
part of the loss function. This regularization mimics the
population based search mechanism where the search space
is restricted based on the elite solutions and hyperparameters
of the optimization algorithm (e.g., evolutionary).

V. CASE 3: OPTIMIZATION IN LOGIC SYNTHESIS

In this case study, We show why and how to apply RL
for finding the sequence of optimization operations in logic
synthesis problem [22].

A. Why do we use RL on the logic synthesis problem?

One of the core problems in logic synthesis is how to
optimize a Boolean logic without altering its function. A
typical methodology to this problem is to represent the logic
as a logic graph, such as an and-inverter graph (AIG), and then
perform graph operation to optimize the graph size and logic
depth. Those graph operations are sub-graph optimization
steps that alter the topology of a logic graph with an equivalent
logic representation. In practice, a sequence of different graph
operations are applied on the logic graph to find solutions.
However, finding the best optimization step receipt is rarely
studied.

Typical sub-graph optimization steps replace the sub-graphs
with equivalent logic. The outcome of a certain operation
is deterministically based on the current graph structure.
Therefore, the logic optimization process can be viewed as a
dynamic decision making process. Given an initial logic graph,
we operate a certain number of sub-graph optimization steps,
and our objective is the outcome after these steps. We observe
a current logic graph at each step and choose a graph operation
from candidate actions. This procedure is well aligned with a
typical MDP formulation.

B. How do we apply RL to the logic synthesis problem?

General framework. We employ a well-adopted open-
source academic logic synthesis framework ABC [23] to
build our environment. The targeting Boolean logic is first
converted in AIG representation. Then, for each episode, we
apply a fixed number of graph operations on the AIGs to
find the lowest number of nodes and logic depth of the final
AIG. At each step, the agent obverses the current AIG and
freely choose one optimization operation from five actions,
balance, rewrite, refactor, rewrite with zero-cost replacement,
and refactor with zero-cost replacement. All of the five actions
are implemented in the ABC framework and are deterministic.
We formulate the rewards as the improvement on the number
of nodes and logic depth, which is easily calculated by

503

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 19,2022 at 02:34:52 UTC from |IEEE Xplore. Restrictions apply.

comparing the current and initial logic graphs. The MDP state,
on the other hand, is more challenging to represent. Intuitively,
the state is the current AIG. However, the graph-structural data
cannot be directly embedded into a vector representation for
the RL agent. On the one hand, we use graph statistics and
action history as part of state representation. On the other
hand, we also apply a graph neural network to obtain graph
embedding as part of the state vectors.

Graph Embedding. We use a graph convolutional network
to obtain a graph embedding for an AIG network. We first
represent the AIG as a directed graph. We use an one-hot
vector as the initial node features to distinguish the node type.
The graph then passes four graph convolutions as shown in
the Equation 6.

B =03 SADWED 4 kD) ()

o
JENG)

where h(*) is the k' layer output, o(-) is the activation
function, N (i) represents the neighbors of node i, W is a
weight matrix and b is the bias. After the graph convolutions,
each node has a new node embedding. Then we compute
the mean of the node embeddings and obtain the final graph
embedding. The resulting vector is concatenated with other
state features.

With the MDP formulation above, we apply REIN-
FORCE [24] algorithm in our RL agent. For each circuit,
the RL agent searches operation receipts. We observe the
performance of the RL agent improve over the episode and
outperform existing operation sequence heuristics at the cost
of search time.

VI. FUTURE DIRECTIONS

So far, we have discussed why and how we can use rein-
forcement learning for electronic design automation through
three case studies. In this section, we delve into the nature
of reinforcement learning and propose some future research
directions of RL in EDA.

A. Challenges

High Cost on learning materials and computation.
Reinforcement learning algorithms usually require extensive
exploration before the learning agent can leverage the acquired
knowledge. Evaluating the reward function in EDA problems
requires slow and often expensive EDA tools. Since RL
needs many iterations to converge, calling an EDA tool in
the loop of RL training would significantly slow down the
training. This problem can be mitigated by running multiple
parallel instances of EDA tools to collect data in large batches.
However, commercial EDA licenses are expensive, and open-
source alternatives are typically unreliable for most EDA tasks.

Another related challenge is that most real-world bench-
marks are not public or widely accessible. For example, public
benchmarks for the chip placement problem are outdated and
do not reflect modern hardware and technology node sizes.
Moreover, it is usually expensive to generate and process such
datasets. For example, it typically takes several hours to run
the complete design or simulation flow.

The inherent complexity of EDA problems exacerbates this
issue. Namely, we need more training data and computational

TA-3

resources in order to be able to handle more complex prob-
lems. This high cost often necessitates approximations to the
state and action spaces and the reward function.

The computational cost of training RL algorithms can also
be substantial, and most successfully deployed RL policies
were trained on distributed platforms. Although this cost can
be easily justified when developing commercial hardware, it
may be prohibitively expensive for academic researchers.

Generalization and Transferability. The ability to gen-
eralize and transfer knowledge are critical properties of an
algorithm. For example, with the simplex method or the
interior point method, we can solve linear programs. Thus,
once a problem can be formulated as a linear program, we
can solve it effectively due to the generality of the above
algorithms.

Given that an RL agent achieves high performance on
a particular problem instance, we wonder how much the
RL agent’s knowledge transfers to other related problems,
allowing it to generalize to new previously unseen examples
quickly.

However, generality and transferability are known concerns
of the RL algorithms. The RL agent and the representation
learned by deep neural networks usually cannot extrapolate
effectively. If we intend to tackle different benchmarks, we
have to conduct fine-tuning or learning from scratch.

In [15], itis shown that as the policy is trained on a larger set
of chip netlists, its performance on unseen netlists improves.
This means that the policy is able to transfer the knowledge it
acquired by placing previous chips and applying it effectively
to new chips.

Interpretability. Interpretability is also a known challenge
for the current reinforcement learning algorithms. The theo-
retical analysis and explanation regarding deep learning are
currently insufficient. Hence, we cannot interpret the rein-
forcement learning algorithms thoroughly, which means the
learned RL agent is essentially a black box for us. While we
may not know why an RL agent makes a given decision, we
can observe that that decision yields a better solution.

Human experts usually know what they have learned from
particular experiments, but they cannot always explain their
decisions or summarize their experiences. If we could under-
stand and interpret deep reinforcement learning, we could not
only solve problems human experts cannot handle, but also
obtain insights, which help us understand these problems and
their solutions.

Optimality. When we tackle optimization problems with
reinforcement learning algorithms, there is no theoretical
guarantee that optimal results are achieved. We do not even
know the gap between the obtained solutions and the optimal
ones. Hence, we are unaware of the solution quality compared
with the optimal solution.

B. Opportunities

Learning capacity. With deep learning, we can enlarge the
model capacity and extract better representations from large
amounts of data, which can then be used in downstream tasks.
For example, we can train on a large corpus of chip netlists,
derive expressive embeddings for these chips, and use these

504

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 19,2022 at 02:34:52 UTC from |IEEE Xplore. Restrictions apply.

representations to guide decision-making in various optimiza-
tion tasks, such as placement, block shaping, pin assignment,
and routing. In addition, RL can help with tackling function
approximation problems in high dimensions. Analytical solu-
tions such as linear regression or Gaussian processes suffer
from the curse of dimensionality, whereas deep RL has more
modeling capacity with the high dimensional feature spaces. In
[19], RL demonstrates strong results for tuning large number
of circuit design variables.

Prior knowledge. When using reinforcement learning to
solve a specific problem, we can integrate the prior knowledge
to reduce the complexity of the problem. For example, the
AlphaGo [25] learns from extensive training from human
and computer play, which consists of the knowledge from
human players. On the contrary, it is also possible to achieve
better results without prior knowledge. The AlphaGo Zero [2]
surpasses all the old versions of AlphaGo with playing games
against itself.

When we apply RL algorithms, we can integrate our prior
knowledge regarding the related problems. This prior knowl-
edge will guide the RL agent to explore the environment. We
can also discard the knowledge and allow the RL agent to
discover the whole design space. In this way, we may mitigate
the issue induced by our prejudice and bias.

Active community. Many researchers are active in the
machine learning community. Reinforcement learning has
received more and more attention in terms of both its un-
derlying theory and its practical applications. The abundance
of open-sourced algorithms allows peers to contribute faster
development of the field. Furthermore, a successful application
in one area is easily reflected in the areas with similar problem
formulation.

VII. CONCLUSION

In this paper, we analyze why and how RL algorithms
are applied in the field of EDA. We also demonstrate its
potential by presenting three successful case studies in macro
placement, transistor sizing, and logic synthesis. We further
discuss what challenges and opportunities arise from deploy-
ing such algorithms in EDA problems. We believe reinforce-
ment learning, combined with other Al and analytical/heuristic
algorithms can reshape and even revolutionize the field of
electronic design automation.

ACKNOWLEDGEMENT

This work is supported in part by NSF under grants
1704758, 1718570, and 2112665.

REFERENCES

[1] K. Shao, Z. Tang, Y. Zhu, N. Li, and D. Zhao, “A survey of deep rein-
forcement learning in video games,” arXiv preprint arXiv:1912.10944,
2019.

[2] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., “Mastering chess
and shogi by self-play with a general reinforcement learning algorithm,”
arXiv preprint arXiv:1712.01815, 2017.

[3] H.Ren, S. Godil, B. Khailany, R. Kirby, H. Liao, S. Nath, J. Raiman, and
R. Roy, “Optimizing vlsi implementation with reinforcement learning,”
in 2021 International Conference On Computer-Aided Design (ICCAD),
IEEE/ACM, 2021.

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

505

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 19,2022 at 02:34:52 UTC from |IEEE Xplore. Restrictions apply.

TA-3

M. Rapp, H. Amrouch, Y. Lin, B. Yu, D. Z. Pan, M. Wolf, and J. Henkel,
“Mlcad: A survey of research in machine learning for cad keynote
paper,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, pp. 1-1, 2021.

G. Huang, J. Hu, Y. He, J. Liu, M. Ma, Z. Shen, J. Wu, Y. Xu, H. Zhang,
K. Zhong, X. Ning, Y. Ma, H. Yang, B. Yu, H. Yang, and Y. Wang,
“Machine learning for electronic design automation: A survey,” ACM
Trans. Des. Autom. Electron. Syst., vol. 26, June 2021.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: A Bradford Book, 2018.

C. Audet and M. Kokkolaras, “Blackbox and derivative-free optimiza-
tion: theory, algorithms and applications,” 2016.

N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, “Reinforce-
ment learning for combinatorial optimization: A survey,” Computers &
Operations Research, p. 105400, 2021.

C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “RePlAce: Advancing
solution quality and routability validation in global placement,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 38, no. 9, pp. 1717-1730, 2019.

A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou,
N. Kumar, M. Norouzi, S. Bengio, and J. Dean, “Device placement
optimization with reinforcement learning,” in Proceedings of the 34th
International Conference on Machine Learning (D. Precup and Y. W.
Teh, eds.), vol. 70 of Proceedings of Machine Learning Research,
pp. 2430-2439, PMLR, 06-11 Aug 2017.

A. Mirhoseini, A. Goldie, H. Pham, B. Steiner, Q. V. Le, and J. Dean,
“A Hierarchical Model for Device Placement,” International Conference
on Learning Representations, 2018.

R. Addanki, S. Bojja Venkatakrishnan, S. Gupta, H. Mao, and M. Al-
izadeh, “Learning Generalizable Device Placement Algorithms for
Distributed Machine Learning,” in Advances in Neural Information
Processing Systems, 2019.

Y. Zhou, S. Roy, A. Abdolrashidi, D. Wong, P. C. Ma, Q. Xu,
H. Liu, M. P. Phothilimtha, S. Wang, A. Goldie, A. Mirhoseini, and
J. Laudon, “Transferable graph optimizers for ML compilers,” CoRR,
vol. abs/2010.12438, 2020.

A. Goldie and A. Mirhoseini, “Placement optimization with deep
reinforcement learning,” in Proceedings of the 2020 International Sym-
posium on Physical Design, ISPD "20, (New York, NY, USA), p. 3-7,
Association for Computing Machinery, 2020.

A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang,
Y.-J. Lee, E. Johnson, O. Pathak, A. Nazi, et al., “A Graph Placement
Methodology for Fast Chip Design,” Nature, vol. 594, no. 7862,
pp. 207-212, 2021.

Z. Jiang, E. Songhori, S. Wang, A. Goldie, A. Mirhoseini, J. Jiang, Y.-J.
Lee, and D. Z. Pan, “Delving into macro placement with reinforcement
learning,” in 2021 ACM/IEEE 3rd Workshop on Machine Learning for
CAD (MLCAD,), pp. 1-3, IEEE, 2021.

Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z.
Pan, “DREAMPIlace: Deep learning toolkit-enabled gpu acceleration for
modern vlsi placement,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 40, no. 4, pp. 748-761, 2021.
J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

A. F. Budak, P. Bhansali, B. Liu, N. Sun, D. Z. Pan, and C. V. Kashyap,
“DNN-Opt an 1l inspired optimization for analog circuit sizing using
deep neural networks,” in Proceedings of the 58th ACM/EDAC/IEEE
Design Automation Conference, DAC °21, 2021.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning.,” in ICLR, 2016.

V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” in SIAM Journal
on Control and Optimization, MIT Press, 2000.

K. Zhu, M. Liu, H. Chen, Z. Zhao, and D. Z. Pan, “Exploring
logic optimizations with reinforcement learning and graph convolutional
network,” in 2020 ACM/IEEE Workshop on Machine Learning for CAD
(MLCAD), 2020.

A. Mishchenko, “ABC: A system for sequential synthesis and verifica-
tion.”

R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in Advances in neural information processing systems, pp. 1057-1063,
2000.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, 1. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484489, 2016.

