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Abstract—Analog layout synthesis has recently received much
attention to mitigate the increasing cost of manual layout efforts.
To achieve the desired performance and design specifications,
generating layout constraints is critical in fully automated netlist-
to-GDSII analog layout flow. However, there is a big gap between
automatic constraint extraction and constraint management in
analog layout synthesis. This paper introduces the existing con-
straint types for analog layout synthesis and points out the recent
research trends in automating analog constraint extraction.
Specifically, the paper reviews the conventional graph heuristic
methods such as graph similarity and the recent machine learning
approach leveraging graph neural networks. It also discusses
challenges and research opportunities.

I. INTRODUCTION

The demand for analog and mixed-signal (AMS) integrated

circuits (ICs) has increased, stimulated by many emerging ap-

plications, such as 5G networks, neuromorphic computing, and

the Internet of Things. While shortening the turnaround time

of AMS design is desired, AMS circuit design is still mainly

a manual, time-consuming, and error-prone task. As a critical

step in AMS circuit design, layout design in a typical flow

has limited automation involved. Automating layout design

for AMS circuits has become increasingly demanded in the

modern IC industry.

The performance of modern AMS designs is vulnerable

to parasitics, process variations, and layout-dependent effects

because of the sensitivity of AMS circuit architectures. Manual

layout design often applies special layout strategies to mitigate

the sensitivity in performance to achieve robustness [1]. On the

other hand, automatic analog place and route (PNR) algorithms

usually formulate constrained optimization problems to mimic

such manual layout practice. For example, automated PNR

frameworks commonly consider geometrical matching con-

straints (e.g., symmetry, regularity) on modules and nets [2].

However, annotating detailed constraints itself takes effort and

time. To resolve it, researchers have proposed techniques to

automate analog constraint extraction (ACE).

In a typical automated AMS layout synthesis flow, con-

straints are manually annotated. They are treated as inputs to

the downstream automated placement and routing frameworks,

as shown in Figure 1 (a). On the other hand, ACE-enhanced

flow replaces the manual constraint labeling step with an

automated process, as illustrated in Figure 1 (b). An ACE

engine takes unannotated circuit schematic design as inputs

and generates placement and routing constraints. The extracted
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Fig. 1: PNR flow for AMS layout synthesis. (b) Conventional

flow with manual constraint annotation. (b) Fully-automated

flow with ACE.

constraints are then fed to the PNR engines and finally result

in the layout. The whole process of the ACE-enhanced flow

is fully-automated and does not require the involvement of

humans. The development of ACE algorithms enables the

AMS layout synthesis to be fully-automated and accelerate

the design cycle.

PNR constraints for AMS circuits are closely related to

the circuit architecture. For example, symmetry constraints

are often needed for particular circuit substructures, such

as symmetry pairs and current mirrors. Therefore, the ACE

problem is closely related to the knowledge mining on netlist

topology and, to some degree, requires understanding the

circuit architecture. Conventionally, researchers build pattern

libraries and apply heuristic methods to identify essential

substructures from netlists. However, such a method often

needs intensive efforts to develop the pattern library and has

challenges generalizing the knowledge. Therefore, recent re-

search has focused on principal techniques in extracting analog

constraints. Machine learning (ML) especially plays a vital

role in recent developments of ACE algorithms. Leveraging

ML, researchers propose techniques to automatically learn

analog constraints from existing circuits and apply learned

knowledge to new designs. The purpose of this paper is to

summarize the recent research progress in this direction and
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provide insights on the challenges and opportunities on ACE

for future studies.

The rest of this paper is organized as follows. Section II

introduces the background on the ACE problem and reviews

the conventional approaches. Section III presents the recent

ACE approaches with emphasis on the ongoing trend of

phasing into ML-based methods. Section IV highlights the

future research directions with an analysis of challenges and

opportunities. Finally, Section V concludes this paper.

II. BACKGROUND AND CONVENTIONAL APPROACHES

In this section, we first introduce the ACE problem in Sec-

tion II-A. Then we review the conventional approaches II-B.

We also introduce the preliminaries of graph neural net-

works (GNN) II-C

A. Constraint Extraction for AMS Circuits

An ACE framework extracts constraints for the downstream

PNR flow. Therefore, the types of constraints interested in the

ACE problem closely depend on the targeting PNR formu-

lations. The targeting constraints can range from symmetry

and proximity to the current path and thermal constraints [3].

Some of those constraints are straightforwardly implied from

the circuit netlists. For example, current paths can be directly

inferred by tracing the paths of DC currents. On the other

hand, many other constraints require a deeper understanding

of the circuit architectures. Extracting this kind of constraint

is more challenging and is the main focus of research in ACE.

The variants of matching constraints are the most targeting

type in existing ACE research. Many analog circuits heavily

rely on differential architectures to function. Therefore, match-

ing between instances, sub-circuits and nets is critical to the

circuit performance, as it avoids or reduces the mismatch on

differential signals. Figure 2 shows examples of matching in

AMS circuits. Pairs of differential devices often need to be

matched (Figure 2 (a)). On the other hand, pairs of sub-circuits

along critical differential signals are under the matching con-

straint (Figure 2 (b)). In the layout implementation, matching

can be translated into several geometric constraints, such as

symmetry, common centroid, and interdigitation, to reduce

layout mismatch. Recent developments of ACE are mainly

focusing on detecting matching constraints.

B. Conventional Approaches

Researchers have proposed simulation-based constraint gen-

eration. Sensitive analysis has been adopted to detect matching

constraints [4]–[6]. Leveraging circuit simulation, the sensitive

analysis identifies the critical components to the performance

and generates constraints based on them. This simulation-

involved approach is capable of automatically identifying high-

quality constraints. However, as simulations are costly in

runtime, such methodology is limited to block-level circuits

and is hard to apply to larger scales. Most existing ACE

algorithms are simulation-free.

An alternative approach is to use varied heuristics to gen-

erate the constraints. The work [7] extracts the symmetry

: Device Matching
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Fig. 2: Examples of matching constraints for AMS circuits. (b)

Device-level instance constraints. (b) System-level sub-circuit

constraints.

constraints based on analyzing the mismatch in circuits. Kole

et al. [8] identify the constraints by finding the symmetrical

connection trees in a circuit graph. Researchers have proposed

to identify the circuit building blocks and generate constraints

based on them [9]–[11]. However, such heuristics take de-

veloping efforts and are challenging to generalize. Several

studies propose matching sub-graphs in-circuit netlists with

existing designs. [12]–[14]. Then this methodology can infer

the constraints on new designs by mining the knowledge

in labeled constraints from the knowledge database. These

methods first convert the circuit netlists into graphs and

then search the sub-graph in the design database. However,

because identifying graph isomorphism exactly is unaffordable

in runtime, the proposed techniques use heuristic algorithms

to compare graphs. The knowledge mining idea bridge the

human design expertise with automated AMS layout synthesis.

However, it requires exact matching between new designs and

patterns in the design knowledge database. Given the high

degree of freedom in AMS circuit design, it is challenging to

build a design pattern database covering the needs for new

designs.

Both the heuristic constraint generation and knowledge

mining methodologies face the challenge of generalization.

Researchers have recently focused on resolving this issue by
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Fig. 3: A ConvGNN layer aggregates the neighboring nodes

embedding.

leveraging approximation graph matching algorithms and al-

ternative classification criteria. Especially, several ML-assisted

techniques have advanced the research in the ACE problem.

C. Graph Neural Network

GNN has been a fast-growing topic in ML research. Unlike

from many applications, such as images and text, where

data can be presented in Euclidean space, graph data are

more challenging to learning tasks. While there are many

different types of GNN, convolutional graph neural network

(ConvGNNs) has been a popular category of GNN architec-

tures [15]. ConvGNNs have also demonstrated effectiveness

in various CAD applications, such as parasitic prediction [16],

layout decomposition [17], analog perforamce prediction [18]

and logic synthesis [19].

ConvGNNs perform convolution on graph structure to ob-

tain new node embedding. For the node v, a graph convolution

operation aggregates the current embedding or feature of v’s

neighboring nodes and perform transform the resulting vector,

as illustrated in Figure 3. A typical graph convolution layer is

shown in the Equation (1),

H l+1 = σ(D̂−
1

2 ÂD̂−
1

2H lW l), (1)

where H(l) is the lth layer output, σ(·) is the activation

function, Â is the sum of adjacent matrix A and identity matrix

I , D̂ is the diagonal matrix of Â and W l is the weight of

lth layer. After graph convolution layers, the node embedding

can be used for downstream prediction tasks, such as graph

classification and node-wise classification.

III. RECENT DEVELOPMENTS

In this section, we review the recent studies on the ACE

problem [20]–[23]. They are targeting the same type of

constraint: the matching constraints. Their algorithms differ

and range from graph matching to supervised graph learning.

However, they are all attempting to resolve the generaliza-

tion issue in the heuristic and knowledge mining-based ACE

algorithms. Liu et al. [20] propose to use graph similarity

as the criterion to judge whether two sub-circuits need to

be matched. The statistics-inspired graph similarity enables a

generalized way to compare two graphs without being limited

to exact matching. Kunal et al. [21] adopt a similar idea and

use graph edit distance (GED) as the graph similarity metric.

Chen et al. [23] extend the graph similarity idea and propose

a universal way to determine the device and circuit matching.

An unsupervised graph learning scheme is proposed to embed

the devices and sub-graphs into the vector domain. On the

other hand, Gao et al. [22] apply ConvGNN to the knowledge

mining methodology. Casting the ACE problem as a super-

vised classification problem, the work predicts the constraints

on annotated netlists by inferring learned knowledge from the

training dataset. In the rest of this section, we present these

studies in detail.

A. S3DET : Subgraph Extraction and Graph Similarity

The framework S3DET [20] is proposed to extract the

system-level circuit symmetry constraints. It assumes the cri-

terion for detecting such matching is (1) the two sub-circuits

must be similar in structure, and (2) the two circuits shall

have similar neighbors. The first assumption is commonly

used in conventional ACE frameworks, while the second is

often not considered. In a typical AMS design, the matching

circuit pairs are often symmetric along with critical signals.

However, similar sub-circuits do not necessarily need symme-

try constraints. For example, the four digital-analog converters

(DACs) in Figure 1 (b) are divided into two symmetry groups

instead of adding a constraint to every pair of the permutation.

The example demonstrates, in addition to the similarity of

internal structure, the similarity of neighbors also matters when

labeling the constraints.

To consider the neighboring topology, S3DET extracts the

sub-circuits neighboring graph and then measures the graph

similarity. It first translates the circuit netlist to a graph. When

judging a pair of sub-circuits, it extracts the sub-graphs near

the two sub-circuits, including the sub-circuits and the nearby

structures. It compares the two sub-graphs and measures their

topological similarity. If the graph similarity is larger than a

threshold, S3DET labels this pair as a symmetry pair.

Since the neighboring topology might be slightly different

for a valid symmetry pair, the ideal graph similarity is pre-

ferred to be approximate and tolerable to a small mismatch.

S3DET uses a statistical method to provide such a graph

similarity metric. It calculates the eigenvalues of the graph

Laplacian and uses Kolmogorov-Smirnov (K-S) tests on the

eigenvalues to score the graph similarity. The K-S statistic of

two distribution functions F1,n(x) and F2,m(x) with sample

size n and m is defined as.

Dn = sup
x

|F1,n(x)− F2,m(x)|. (2)

It quantifies the difference between the two distributions and

provides a tool to measure the difference of graphs. The

proposed method is more computationally efficient than solv-

ing graph isomorphism. It also demonstrates higher accuracy

against the heuristic-based ACE algorithm.
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B. Accelerated Graph Similarity with Graph Neural Network

The work [21], on the other hand, leverages the graph neural

network to assist the computation of graph similarity. Their

framework traverses the netlists and identifies the candidate

symmetry pairs. The symmetry pairs can be devices or sub-

circuits. If a candidate pair are two devices, the proposed

framework compares the parameters and labels as symmetry if

their parameters are identical. On the other hand, if the candi-

date is a pair of sub-circuits, the two sub-circuits are translated

into two graphs. The framework then compares their topology

by evaluating their graph similarity. The graph is bipartite and

consists of the net and instance nodes. The interconnection

from the netlist is represented by the edges between instance

nodes and net nodes. A three-bit label is given to each edge to

distinguish transistors’ different terminal types (drain, source,

and gate). The graph similarity is measured as the graph edit

distance (GED) between two graphs.

However, computing GED is NP-complete and often is not

affordable in practice. The work proposes to leverage a Con-

vGNN to accelerate the process. It first uses an attention-based

aggregation to obtain the graph embedding from ConvGNN

node embedding outputs. Then the two graph embeddings

are fed to another network to predict the GED between the

two graphs. The network is trained in a supervised manner.

This work proposes an alternative way to compute the graph

similarity.

C. Supervised Graph Learning

Different from leveraging graph similarity, Gao et al. [22]

propose to infer device-level symmetry via supervised graph

learning. They label the symmetry constraints in a dataset

and train a ConvGNN model to classify whether two nodes

are symmetrical or not. When inference on unseen circuits,

they translate the netlist into a graph and apply the trained

model. The outputs from the classifier are treated as extracted

symmetry constraints.

When constructing the graph, each device is decomposed

into pins and devices. For example, a PMOS transistor is

represented as one device node and three-pin nodes: the gate,

the drain, and the source. The net between pins is constructed

as a clique of edges. Each node contains a vector of features:

(1) two-dimensional 0-1 vector denoting whether the node

is a pin or device, (2) thirteen-dimensional one-hot vector

denoting the device type, and (3) a real number describing

the distance from this node to the ground. A GraphSage [24]

model is utilized for graph neural network. The loss function

is binary cross-entropy. Experimental results demonstrate the

proposed method outperforms the heuristic symmetry detec-

tion method [10] in predicting accuracy.

The ConvGNN layers aggregate the neighboring informa-

tion into the node embedding and make the feature transfor-

mation operation learnable. Since the symmetry constraints

are primarily determined by similarity, the ConvGNN in some

sense learns a way to determine node-wise similarity. How-

ever, supervised learning enables the ConvGNN to learn how

to discriminate the false alarms utilizing the ground truths in

the training set. For example, supervised learning can possibly

learn it through data if two devices with identical surrounding

structures do not need symmetry constraints. On the other

hand, it is more challenging to be discriminated against

with pre-defined similarity criteria. The proposed supervised

learning methodology, therefore, enables more flexibility in

the ACE problems.

D. Graph Similarity Considering Sizing With Unsupervised

Graph Learning

The work [23] leverages ConvGNN and proposes a univer-

sal method for detecting both the device-level and sub-circuit-

level symmetry constraints. As illustrated in [20], the crite-

rion for symmetry is the similarity between the device/sub-

circuit pairs and their neighbors. The “similarity,” on the

other hand, is twofold. First, the similar indicates the circuit

structures are similar. Second, the similarity is also measured

by the device sizing. In S3DET [20], the proposed method

extracts the neighbors and compares two sub-circuit graphs

by their topological structures. However, this method cannot

be extended to device-level constraint detection and does not

consider the internal device sizing in the sub-circuit. On the

other hand, the work [21] compares the sizing but misses the

neighboring topological structures on the device level. When

extracting sub-circuit-level constraints, the proposed method

only measures the distance between graph structures without

the sizing information.

Chen et al. [23] a new methodology to bridge the gap

between the device-level and sub-circuit-level ACE problem.

As introduced in Sec. II-C, ConvGNNs aggregate neighboring

node features with the convolution operation. After stacking

multiple graph convolutional layers, each node embedding

contains the information from its neighboring sub-graph. In

some sense, this process is similar to the sub-graph ex-

traction scheme proposed in S3DET . In the meantime, the

graph convolution operations also distinguish different graph

topology and node features. The proposed framework in [23]

utilizes this mechanism. For a circuit-under-test, the proposed

framework first convert the netlist into a directed graph, Each

node in the graph contains the device sizing information as

initial node features. Then the graph is fed into a trained gated

graph sequence Neural Network [25] as shown in Equation 3.

h(k)
v = GRU

(
h(k−1)
v ,

∑

u∈Nin (v)

Weuv
h(k−1)
u

)
, (3)

where h
(k)
v symbolizes the feature vector of vertex v at the kth

layer of the GNNs, GRU (·, ·) is the computation function of

a gated recurrent unit, Nin(v) signifies the in-neighbors of

v, and Weuv
is the linear transformation matrix correspond-

ing to the edge euv . When detecting symmetry constraint

device-level pairs, the framework takes the two resulting node

embedding vectors and computes their cosine similarity. The

proposed method first uses mean aggregation on the device

node embedding vectors for sub-circuit-level ACE to obtain

the circuit embedding. Then the same cosine-similarity-based

symmetry criterion can be applied to sub-circuit comparison.
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In other words, the proposed method provides a universal ACE

scheme for both the device-level and sub-circuit-level tasks.

The ConvGNN has several trainable parameters in each

layer. These parameters determine how the node embedding

is transformed. The target is to filter the similar nodes/sub-

circuits from the graph, and the ideal network parameters

ought to make the resulting node embedding vectors dissimilar

to irrelevant nodes. The work uses an unsupervised training

scheme to achieve this target. The learning framework takes

the neighbor nodes as positive examples, as they have similar

neighboring structures, and train the network so that their

resulting node embedding vectors are similar. On the other

hand, the learning framework also takes negative samples and

maximizes their dissimilarity to help filter out the irrelevant

pairs in the inference stage. The resulting loss function can be

represented as follows in Equation 4.

L(zv) =−
∑

u∈Nin (v)

log(σ(zᵀuzv))

−
B∑

i=1

Eũ∼Neg(v) log(1− σ(zᵀũzv)),

(4)

where zv is the output embedding of a node v, σ(x) =
1/(1 + e−x) is the logistic sigmoid function, Neg(v) is the

negative sampling distribution with respect to v, and B is the

total number of negative samples. The negative samples are

randomly selected from the graph.

This work transfers ConvGNN into an automatically learned

heuristic for computing the similarity between graph nodes.

The experiment results demonstrate it improves accuracy and

computational efficiency compared to the proposed graph

similarity scheme in S3DET .

IV. CHALLENGES AND OPPORTUNITIES

The existing ACE methods have sophisticatedly studied

the symmetry constraint detection problem. Especially with

dedicated similarity-based criteria, the state-of-the-art frame-

work has demonstrated high accuracy in the task. However,

there are challenges and opportunities in extending the success

in symmetry detection into generalized ACE problems. This

section discusses several unsolved open questions towards

a universal paradigm for extracting AMS PNR constraints

leveraging ML techniques.

Learning Data for Supervised Training: The possible

solution to extracting other constraint types is following the

supervised learning scheme similar to the work [22]. By pro-

viding the ML model with examples of those constraints, the

ML model can potentially learn how to detect them from the

netlist. However, there are several challenges to this method-

ology. First, annotating data take manual effort. The training

data are likely to consist of netlists and labeled constraints on

the instances. On the other hand, supervised learning usually

requires a large dataset. How to collect such a dataset is

an unanswered question in the field. Second, the AMS PNR

constraints are not always very defined. For example, different

from symmetry routing, which is generally appreciated, many

manual routing strategies are design-dependent and ambigu-

ous [26]. Different designers and different technologies can

have a significant impact on how constraints shall be labeled.

In the absence of universal ground truth, learning the analog

layout constraints through supervised training is challenging.

Third, different circuit architectures also have different layout

considerations. AMS circuit designs are strongly tied to their

functionalities. The layout effects on circuit performance are

therefore design-dependent. It is questionable to argue that a

common AMS constraint dataset is suitable for each circuit

type inference.

One possible solution to some of these challenges is to

leverage few-shot learning. Few-shot learning is a fast-growing

ML research area that attempts to achieve good accuracy with

a small amount of training data [27]. For example, the ML

model can be trained on a large general constraint dataset and

then be fine-tuned on a specific small dataset to achieve higher

accuracy for a particular constraint type or circuit architecture.

A similar approach has been seen in analog performance

prediction [28].

Limitation on Graph Neural Network: While GNN has

demonstrated success in the field, there are still several chal-

lenges for the GNN algorithm applying to circuits. First, the

capability of GNN on learning the circuit structures is not

well unveiled. Researchers have noticed that the mechanism

of some GNN variants is similar to filters on the graph spectral

domain [29]. A study also proposes a GNN variant for graph

structural learning, demonstrating equivalent representation

power as the Weisfeiler-Lehman graph isomorphism test [30].

As the circuit’s functionality is strongly determined by its

connection topology, it is an unanswered question whether the

exiting GNN models can capture the knowledge from circuit

structures.

Second, most existing GNN variants are not position-aware.

ConvGNN performs convolution operations on neighboring

nodes. Therefore, the learned knowledge has a strong locality

and sometimes loss the capture of the global view. For ex-

ample, conventional ConvGNN can hardly distinguish locally

isomorphic sub-structures [31]. In Figure 4, the nodes v1
and v2 are on the two branches in the graph. They have

the same neighboring structures, and a conventional 2-layer

ConvGNN cannot distinguish them since their 2-hop neighbors

are identical. As a result, the final node embedding of v1
and v2 are unavoidable identical. However, it is problematic

when applying to many applications that require capturing the

position information.

Interaction with Layout Synthesis Tools: Interaction be-

tween ACE and automated AMS layout synthesis tools is also

an opportunity in the field. After producing the initial analog

constraint set, the ACE framework can probably get feedback

from the PNR flow to fine-tune the constraints. It is precious

when the detection scheme is not perfect. There has been

related work integrating simulation in the PNR flow to ensure

the performance is satisfying [32]. Enabling a synergistic

framework to integrate the ACE and layout synthesis tool is

an opportunity in the field.
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Fig. 4: An example of a locally isomorphic graph. Nodes v1
and v2 are non-distinguishable for a conventional 2-layer

ConvGNN.

V. CONCLUSION

The paper presents an overview of automatic constraint

extraction for analog and mixed-signal circuit layout synthesis.

We review the conventional approaches and survey the latest

advancements leveraging the machine learning techniques that

address those open questions. We also present our perspectives

on the challenges and opportunities in the field.
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