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Abstract—Analog layout synthesis has recently received much
attention to mitigate the increasing cost of manual layout efforts.
To achieve the desired performance and design specifications,
generating layout constraints is critical in fully automated netlist-
to-GDSII analog layout flow. However, there is a big gap between
automatic constraint extraction and constraint management in
analog layout synthesis. This paper introduces the existing con-
straint types for analog layout synthesis and points out the recent
research trends in automating analog constraint extraction.
Specifically, the paper reviews the conventional graph heuristic
methods such as graph similarity and the recent machine learning
approach leveraging graph neural networks. It also discusses
challenges and research opportunities.

I. INTRODUCTION

The demand for analog and mixed-signal (AMS) integrated
circuits (ICs) has increased, stimulated by many emerging ap-
plications, such as 5G networks, neuromorphic computing, and
the Internet of Things. While shortening the turnaround time
of AMS design is desired, AMS circuit design is still mainly
a manual, time-consuming, and error-prone task. As a critical
step in AMS circuit design, layout design in a typical flow
has limited automation involved. Automating layout design
for AMS circuits has become increasingly demanded in the
modern IC industry.

The performance of modern AMS designs is vulnerable
to parasitics, process variations, and layout-dependent effects
because of the sensitivity of AMS circuit architectures. Manual
layout design often applies special layout strategies to mitigate
the sensitivity in performance to achieve robustness [1]. On the
other hand, automatic analog place and route (PNR) algorithms
usually formulate constrained optimization problems to mimic
such manual layout practice. For example, automated PNR
frameworks commonly consider geometrical matching con-
straints (e.g., symmetry, regularity) on modules and nets [2].
However, annotating detailed constraints itself takes effort and
time. To resolve it, researchers have proposed techniques to
automate analog constraint extraction (ACE).

In a typical automated AMS layout synthesis flow, con-
straints are manually annotated. They are treated as inputs to
the downstream automated placement and routing frameworks,
as shown in Figure 1 (a). On the other hand, ACE-enhanced
flow replaces the manual constraint labeling step with an
automated process, as illustrated in Figure 1 (b). An ACE
engine takes unannotated circuit schematic design as inputs
and generates placement and routing constraints. The extracted
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Fig. 1: PNR flow for AMS layout synthesis. (b) Conventional
flow with manual constraint annotation. (b) Fully-automated
flow with ACE.

constraints are then fed to the PNR engines and finally result
in the layout. The whole process of the ACE-enhanced flow
is fully-automated and does not require the involvement of
humans. The development of ACE algorithms enables the
AMS layout synthesis to be fully-automated and accelerate
the design cycle.

PNR constraints for AMS circuits are closely related to
the circuit architecture. For example, symmetry constraints
are often needed for particular circuit substructures, such
as symmetry pairs and current mirrors. Therefore, the ACE
problem is closely related to the knowledge mining on netlist
topology and, to some degree, requires understanding the
circuit architecture. Conventionally, researchers build pattern
libraries and apply heuristic methods to identify essential
substructures from netlists. However, such a method often
needs intensive efforts to develop the pattern library and has
challenges generalizing the knowledge. Therefore, recent re-
search has focused on principal techniques in extracting analog
constraints. Machine learning (ML) especially plays a vital
role in recent developments of ACE algorithms. Leveraging
ML, researchers propose techniques to automatically learn
analog constraints from existing circuits and apply learned
knowledge to new designs. The purpose of this paper is to
summarize the recent research progress in this direction and
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provide insights on the challenges and opportunities on ACE
for future studies.

The rest of this paper is organized as follows. Section II
introduces the background on the ACE problem and reviews
the conventional approaches. Section III presents the recent
ACE approaches with emphasis on the ongoing trend of
phasing into ML-based methods. Section IV highlights the
future research directions with an analysis of challenges and
opportunities. Finally, Section V concludes this paper.

II. BACKGROUND AND CONVENTIONAL APPROACHES

In this section, we first introduce the ACE problem in Sec-
tion II-A. Then we review the conventional approaches II-B.
We also introduce the preliminaries of graph neural net-
works (GNN) II-C

A. Constraint Extraction for AMS Circuits

An ACE framework extracts constraints for the downstream
PNR flow. Therefore, the types of constraints interested in the
ACE problem closely depend on the targeting PNR formu-
lations. The targeting constraints can range from symmetry
and proximity to the current path and thermal constraints [3].
Some of those constraints are straightforwardly implied from
the circuit netlists. For example, current paths can be directly
inferred by tracing the paths of DC currents. On the other
hand, many other constraints require a deeper understanding
of the circuit architectures. Extracting this kind of constraint
is more challenging and is the main focus of research in ACE.

The variants of matching constraints are the most targeting
type in existing ACE research. Many analog circuits heavily
rely on differential architectures to function. Therefore, match-
ing between instances, sub-circuits and nets is critical to the
circuit performance, as it avoids or reduces the mismatch on
differential signals. Figure 2 shows examples of matching in
AMS circuits. Pairs of differential devices often need to be
matched (Figure 2 (a)). On the other hand, pairs of sub-circuits
along critical differential signals are under the matching con-
straint (Figure 2 (b)). In the layout implementation, matching
can be translated into several geometric constraints, such as
symmetry, common centroid, and interdigitation, to reduce
layout mismatch. Recent developments of ACE are mainly
focusing on detecting matching constraints.

B. Conventional Approaches

Researchers have proposed simulation-based constraint gen-
eration. Sensitive analysis has been adopted to detect matching
constraints [4]-[6]. Leveraging circuit simulation, the sensitive
analysis identifies the critical components to the performance
and generates constraints based on them. This simulation-
involved approach is capable of automatically identifying high-
quality constraints. However, as simulations are costly in
runtime, such methodology is limited to block-level circuits
and is hard to apply to larger scales. Most existing ACE
algorithms are simulation-free.

An alternative approach is to use varied heuristics to gen-
erate the constraints. The work [7] extracts the symmetry
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Fig. 2: Examples of matching constraints for AMS circuits. (b)
Device-level instance constraints. (b) System-level sub-circuit
constraints.

constraints based on analyzing the mismatch in circuits. Kole
et al. [8] identify the constraints by finding the symmetrical
connection trees in a circuit graph. Researchers have proposed
to identify the circuit building blocks and generate constraints
based on them [9]-[11]. However, such heuristics take de-
veloping efforts and are challenging to generalize. Several
studies propose matching sub-graphs in-circuit netlists with
existing designs. [12]-[14]. Then this methodology can infer
the constraints on new designs by mining the knowledge
in labeled constraints from the knowledge database. These
methods first convert the circuit netlists into graphs and
then search the sub-graph in the design database. However,
because identifying graph isomorphism exactly is unaffordable
in runtime, the proposed techniques use heuristic algorithms
to compare graphs. The knowledge mining idea bridge the
human design expertise with automated AMS layout synthesis.
However, it requires exact matching between new designs and
patterns in the design knowledge database. Given the high
degree of freedom in AMS circuit design, it is challenging to
build a design pattern database covering the needs for new
designs.

Both the heuristic constraint generation and knowledge
mining methodologies face the challenge of generalization.
Researchers have recently focused on resolving this issue by
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Fig. 3: A ConvGNN layer aggregates the neighboring nodes
embedding.
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leveraging approximation graph matching algorithms and al-
ternative classification criteria. Especially, several ML-assisted
techniques have advanced the research in the ACE problem.

C. Graph Neural Network

GNN has been a fast-growing topic in ML research. Unlike
from many applications, such as images and text, where
data can be presented in Euclidean space, graph data are
more challenging to learning tasks. While there are many
different types of GNN, convolutional graph neural network
(ConvGNNSs) has been a popular category of GNN architec-
tures [15]. ConvGNNSs have also demonstrated effectiveness
in various CAD applications, such as parasitic prediction [16],
layout decomposition [17], analog perforamce prediction [18]
and logic synthesis [19].

ConvGNNs perform convolution on graph structure to ob-
tain new node embedding. For the node v, a graph convolution
operation aggregates the current embedding or feature of v’s
neighboring nodes and perform transform the resulting vector,
as illustrated in Figure 3. A typical graph convolution layer is
shown in the Equation (1),

H"' = (D2 AD 2 H'W?), (1)

where H is the I'" layer output, o(-) is the activation
function, A is the sum of adjacent matrix A and identity matrix
I, D is the diagonal matrix of A and W is the weight of
I*M layer. After graph convolution layers, the node embedding
can be used for downstream prediction tasks, such as graph
classification and node-wise classification.

III. RECENT DEVELOPMENTS

In this section, we review the recent studies on the ACE
problem [20]-[23]. They are targeting the same type of
constraint: the matching constraints. Their algorithms differ
and range from graph matching to supervised graph learning.
However, they are all attempting to resolve the generaliza-
tion issue in the heuristic and knowledge mining-based ACE
algorithms. Liu et al. [20] propose to use graph similarity
as the criterion to judge whether two sub-circuits need to
be matched. The statistics-inspired graph similarity enables a
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generalized way to compare two graphs without being limited
to exact matching. Kunal et al. [21] adopt a similar idea and
use graph edit distance (GED) as the graph similarity metric.
Chen et al. [23] extend the graph similarity idea and propose
a universal way to determine the device and circuit matching.
An unsupervised graph learning scheme is proposed to embed
the devices and sub-graphs into the vector domain. On the
other hand, Gao et al. [22] apply ConvGNN to the knowledge
mining methodology. Casting the ACE problem as a super-
vised classification problem, the work predicts the constraints
on annotated netlists by inferring learned knowledge from the
training dataset. In the rest of this section, we present these
studies in detail.

A. S]DET: Subgraph Extraction and Graph Similarity

The framework S2DET [20] is proposed to extract the
system-level circuit symmetry constraints. It assumes the cri-
terion for detecting such matching is (1) the two sub-circuits
must be similar in structure, and (2) the two circuits shall
have similar neighbors. The first assumption is commonly
used in conventional ACE frameworks, while the second is
often not considered. In a typical AMS design, the matching
circuit pairs are often symmetric along with critical signals.
However, similar sub-circuits do not necessarily need symme-
try constraints. For example, the four digital-analog converters
(DACs) in Figure 1 (b) are divided into two symmetry groups
instead of adding a constraint to every pair of the permutation.
The example demonstrates, in addition to the similarity of
internal structure, the similarity of neighbors also matters when
labeling the constraints.

To consider the neighboring topology, S® DET extracts the
sub-circuits neighboring graph and then measures the graph
similarity. It first translates the circuit netlist to a graph. When
judging a pair of sub-circuits, it extracts the sub-graphs near
the two sub-circuits, including the sub-circuits and the nearby
structures. It compares the two sub-graphs and measures their
topological similarity. If the graph similarity is larger than a
threshold, S®DET labels this pair as a symmetry pair.

Since the neighboring topology might be slightly different
for a valid symmetry pair, the ideal graph similarity is pre-
ferred to be approximate and tolerable to a small mismatch.
S3DET uses a statistical method to provide such a graph
similarity metric. It calculates the eigenvalues of the graph
Laplacian and uses Kolmogorov-Smirnov (K-S) tests on the
eigenvalues to score the graph similarity. The K-S statistic of
two distribution functions Fi ,,(x) and Fy ,,(x) with sample
size n and m is defined as.

D,, = sup |Fy p(x) — Fom(x)]. 2)

It quantifies the difference between the two distributions and
provides a tool to measure the difference of graphs. The
proposed method is more computationally efficient than solv-
ing graph isomorphism. It also demonstrates higher accuracy
against the heuristic-based ACE algorithm.
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B. Accelerated Graph Similarity with Graph Neural Network

The work [21], on the other hand, leverages the graph neural
network to assist the computation of graph similarity. Their
framework traverses the netlists and identifies the candidate
symmetry pairs. The symmetry pairs can be devices or sub-
circuits. If a candidate pair are two devices, the proposed
framework compares the parameters and labels as symmetry if
their parameters are identical. On the other hand, if the candi-
date is a pair of sub-circuits, the two sub-circuits are translated
into two graphs. The framework then compares their topology
by evaluating their graph similarity. The graph is bipartite and
consists of the net and instance nodes. The interconnection
from the netlist is represented by the edges between instance
nodes and net nodes. A three-bit label is given to each edge to
distinguish transistors’ different terminal types (drain, source,
and gate). The graph similarity is measured as the graph edit
distance (GED) between two graphs.

However, computing GED is NP-complete and often is not
affordable in practice. The work proposes to leverage a Con-
vGNN to accelerate the process. It first uses an attention-based
aggregation to obtain the graph embedding from ConvGNN
node embedding outputs. Then the two graph embeddings
are fed to another network to predict the GED between the
two graphs. The network is trained in a supervised manner.
This work proposes an alternative way to compute the graph
similarity.

C. Supervised Graph Learning

Different from leveraging graph similarity, Gao et al. [22]
propose to infer device-level symmetry via supervised graph
learning. They label the symmetry constraints in a dataset
and train a ConvGNN model to classify whether two nodes
are symmetrical or not. When inference on unseen circuits,
they translate the netlist into a graph and apply the trained
model. The outputs from the classifier are treated as extracted
symmetry constraints.

When constructing the graph, each device is decomposed
into pins and devices. For example, a PMOS transistor is
represented as one device node and three-pin nodes: the gate,
the drain, and the source. The net between pins is constructed
as a clique of edges. Each node contains a vector of features:
(1) two-dimensional 0-1 vector denoting whether the node
is a pin or device, (2) thirteen-dimensional one-hot vector
denoting the device type, and (3) a real number describing
the distance from this node to the ground. A GraphSage [24]
model is utilized for graph neural network. The loss function
is binary cross-entropy. Experimental results demonstrate the
proposed method outperforms the heuristic symmetry detec-
tion method [10] in predicting accuracy.

The ConvGNN layers aggregate the neighboring informa-
tion into the node embedding and make the feature transfor-
mation operation learnable. Since the symmetry constraints
are primarily determined by similarity, the ConvGNN in some
sense learns a way to determine node-wise similarity. How-
ever, supervised learning enables the ConvGNN to learn how
to discriminate the false alarms utilizing the ground truths in
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the training set. For example, supervised learning can possibly
learn it through data if two devices with identical surrounding
structures do not need symmetry constraints. On the other
hand, it is more challenging to be discriminated against
with pre-defined similarity criteria. The proposed supervised
learning methodology, therefore, enables more flexibility in
the ACE problems.

D. Graph Similarity Considering Sizing With Unsupervised
Graph Learning

The work [23] leverages ConvGNN and proposes a univer-
sal method for detecting both the device-level and sub-circuit-
level symmetry constraints. As illustrated in [20], the crite-
rion for symmetry is the similarity between the device/sub-
circuit pairs and their neighbors. The “similarity,” on the
other hand, is twofold. First, the similar indicates the circuit
structures are similar. Second, the similarity is also measured
by the device sizing. In S*DET [20], the proposed method
extracts the neighbors and compares two sub-circuit graphs
by their topological structures. However, this method cannot
be extended to device-level constraint detection and does not
consider the internal device sizing in the sub-circuit. On the
other hand, the work [21] compares the sizing but misses the
neighboring topological structures on the device level. When
extracting sub-circuit-level constraints, the proposed method
only measures the distance between graph structures without
the sizing information.

Chen et al. [23] a new methodology to bridge the gap
between the device-level and sub-circuit-level ACE problem.
As introduced in Sec. II-C, ConvGNNs aggregate neighboring
node features with the convolution operation. After stacking
multiple graph convolutional layers, each node embedding
contains the information from its neighboring sub-graph. In
some sense, this process is similar to the sub-graph ex-
traction scheme proposed in S?DET. In the meantime, the
graph convolution operations also distinguish different graph
topology and node features. The proposed framework in [23]
utilizes this mechanism. For a circuit-under-test, the proposed
framework first convert the netlist into a directed graph, Each
node in the graph contains the device sizing information as
initial node features. Then the graph is fed into a trained gated
graph sequence Neural Network [25] as shown in Equation 3.

hH = GRU (h Sowe ) o)
wEN, (v)

(k D,

where hg,k) symbolizes the feature vector of vertex v at the k'"
layer of the GNNs, GRU (-, -) is the computation function of
a gated recurrent unit, Ny, (v) signifies the in-neighbors of
v, and W, is the linear transformation matrix correspond-
ing to the edge e,,. When detecting symmetry constraint
device-level pairs, the framework takes the two resulting node
embedding vectors and computes their cosine similarity. The
proposed method first uses mean aggregation on the device
node embedding vectors for sub-circuit-level ACE to obtain
the circuit embedding. Then the same cosine-similarity-based
symmetry criterion can be applied to sub-circuit comparison.
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In other words, the proposed method provides a universal ACE
scheme for both the device-level and sub-circuit-level tasks.

The ConvGNN has several trainable parameters in each
layer. These parameters determine how the node embedding
is transformed. The target is to filter the similar nodes/sub-
circuits from the graph, and the ideal network parameters
ought to make the resulting node embedding vectors dissimilar
to irrelevant nodes. The work uses an unsupervised training
scheme to achieve this target. The learning framework takes
the neighbor nodes as positive examples, as they have similar
neighboring structures, and train the network so that their
resulting node embedding vectors are similar. On the other
hand, the learning framework also takes negative samples and
maximizes their dissimilarity to help filter out the irrelevant
pairs in the inference stage. The resulting loss function can be
represented as follows in Equation 4.

Le)=— 3 log(o(:]2))
UEN i, (v)
B “)
- ZEﬂNNeg(v) log(l - U(zgzv))a

i=1

where z, is the output embedding of a node v, o(x) =
1/(1 4+ e~7) is the logistic sigmoid function, Neg(v) is the
negative sampling distribution with respect to v, and B is the
total number of negative samples. The negative samples are
randomly selected from the graph.

This work transfers ConvGNN into an automatically learned
heuristic for computing the similarity between graph nodes.
The experiment results demonstrate it improves accuracy and
computational efficiency compared to the proposed graph
similarity scheme in S®DET.

IV. CHALLENGES AND OPPORTUNITIES

The existing ACE methods have sophisticatedly studied
the symmetry constraint detection problem. Especially with
dedicated similarity-based criteria, the state-of-the-art frame-
work has demonstrated high accuracy in the task. However,
there are challenges and opportunities in extending the success
in symmetry detection into generalized ACE problems. This
section discusses several unsolved open questions towards
a universal paradigm for extracting AMS PNR constraints
leveraging ML techniques.

Learning Data for Supervised Training: The possible
solution to extracting other constraint types is following the
supervised learning scheme similar to the work [22]. By pro-
viding the ML model with examples of those constraints, the
ML model can potentially learn how to detect them from the
netlist. However, there are several challenges to this method-
ology. First, annotating data take manual effort. The training
data are likely to consist of netlists and labeled constraints on
the instances. On the other hand, supervised learning usually
requires a large dataset. How to collect such a dataset is
an unanswered question in the field. Second, the AMS PNR
constraints are not always very defined. For example, different
from symmetry routing, which is generally appreciated, many

2B-2

manual routing strategies are design-dependent and ambigu-
ous [26]. Different designers and different technologies can
have a significant impact on how constraints shall be labeled.
In the absence of universal ground truth, learning the analog
layout constraints through supervised training is challenging.
Third, different circuit architectures also have different layout
considerations. AMS circuit designs are strongly tied to their
functionalities. The layout effects on circuit performance are
therefore design-dependent. It is questionable to argue that a
common AMS constraint dataset is suitable for each circuit
type inference.

One possible solution to some of these challenges is to
leverage few-shot learning. Few-shot learning is a fast-growing
ML research area that attempts to achieve good accuracy with
a small amount of training data [27]. For example, the ML
model can be trained on a large general constraint dataset and
then be fine-tuned on a specific small dataset to achieve higher
accuracy for a particular constraint type or circuit architecture.
A similar approach has been seen in analog performance
prediction [28].

Limitation on Graph Neural Network: While GNN has
demonstrated success in the field, there are still several chal-
lenges for the GNN algorithm applying to circuits. First, the
capability of GNN on learning the circuit structures is not
well unveiled. Researchers have noticed that the mechanism
of some GNN variants is similar to filters on the graph spectral
domain [29]. A study also proposes a GNN variant for graph
structural learning, demonstrating equivalent representation
power as the Weisfeiler-Lehman graph isomorphism test [30].
As the circuit’s functionality is strongly determined by its
connection topology, it is an unanswered question whether the
exiting GNN models can capture the knowledge from circuit
structures.

Second, most existing GNN variants are not position-aware.
ConvGNN performs convolution operations on neighboring
nodes. Therefore, the learned knowledge has a strong locality
and sometimes loss the capture of the global view. For ex-
ample, conventional ConvGNN can hardly distinguish locally
isomorphic sub-structures [31]. In Figure 4, the nodes v
and vy are on the two branches in the graph. They have
the same neighboring structures, and a conventional 2-layer
ConvGNN cannot distinguish them since their 2-hop neighbors
are identical. As a result, the final node embedding of v
and v are unavoidable identical. However, it is problematic
when applying to many applications that require capturing the
position information.

Interaction with Layout Synthesis Tools: Interaction be-
tween ACE and automated AMS layout synthesis tools is also
an opportunity in the field. After producing the initial analog
constraint set, the ACE framework can probably get feedback
from the PNR flow to fine-tune the constraints. It is precious
when the detection scheme is not perfect. There has been
related work integrating simulation in the PNR flow to ensure
the performance is satisfying [32]. Enabling a synergistic
framework to integrate the ACE and layout synthesis tool is
an opportunity in the field.
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Fig. 4: An example of a locally isomorphic graph. Nodes v1
and v, are non-distinguishable for a conventional 2-layer
ConvGNN.

V. CONCLUSION

The paper presents an overview of automatic constraint
extraction for analog and mixed-signal circuit layout synthesis.
We review the conventional approaches and survey the latest
advancements leveraging the machine learning techniques that
address those open questions. We also present our perspectives
on the challenges and opportunities in the field.
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