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Abstract—Generating wells for transistors is an essential challenge
in analog circuit layout synthesis. While it is closely related to analog
placement, very little research has explicitly considered well generation
within the placement process. In this work, we propose a new analytical
well-aware analog placer. It uses a generative adversarial network (GAN)
for generating wells and guides the placement process. A global placement
algorithm spreads the modules given the GAN guidance and optimizes
for area and wirelength. Well-aware legalization techniques then legalize
the global placement results and produce the final placement solutions.
By allowing well sharing between transistors and explicitly considering
wells in placement, the proposed framework achieves more than 74%
improvement in the area and more than 26% reduction in half-perimeter
wirelength over existing placement methodologies in experimental results.

1. INTRODUCTION

Layout synthesis automation for analog integrated circuits (IC) is
rapidly evolving in recent years. Automated place and route (PnR),
as one of the mainstream analog layout synthesis paradigms, has
demonstrated success in generating high-quality layouts [1]. However,
as analog layout design methodology is significantly different from
its digital counterpart, various challenges specific to analog IC are
yet to be solved [2].

Generating well in placement is one of the remaining unsolved
problems. The well layer defines the doping area that acts as the
bulks of MOSFETs. For example, a typical P-MOS device needs
to be built on an N-well layer and needs contacts to supply the
bulk voltage (usually VDD). In a typical digital design methodology,
wells are pre-designed within standard cells so that well generation
is not needed in layout automation flow. However, analog design
methodologies often use customized device layouts, and wells are
usually distinctly drawn in manual designs. Manual designs often
share wells between transistors to reduce spacing and the number
of contacts to optimize area and interconnection. Furthermore, well
geometries also impact circuit performance through layout-dependent
effects, such as the well proximity effect (WPE). Therefore, inserting
wells is an additional task to analog layout flow compared to its
digital counterpart.

Existing analog placement techniques seldom consider wells, and
automatic layout frameworks often use individual wells for each
PMOS, e.g., ALIGN [3] and MAGICAL [4], [5]. Ou et al. [6]
consider the wells and the assignments of devices to wells as given
inputs. Their proposed framework optimizes the placement of the
devices given fixed wells. Cohn et al. [7] propose to generate wells
after the placement. After the placement, the well for each device is
generated, and the intersected wells are merged. These two techniques
do not consider the well explicitly in the placement. Nakatake
et al. [8] consider the well merging in a randomized simulated
annealing-based analog placer with sequence pair formulation. It
bounds a sub-sequence in a simple rectangular well if the devices
happen to the same well type. Martins et al. [9] randomly select pairs
of transistors and add a rectangular well around the transistors if they
have the same well type in a simulated annealing-based placement

engine. These two methods benefit the area by sharing some wells but
limit to simple well shapes and randomized optimization processes.
From a high-level overview, the well generation problem decides
which devices shall be in the same well and shapes the wells shall
have. This problem is, in fact, intuitive to the perspective of humans.
Experienced designers often place the layouts in a well-sharing-
friendly manner, and the well generation is naturally inferred from the
placement. Xu et al. [10] leverage the manual design expertise and
propose to use machine learning (ML) for generating the wells. In-
stead of designing rule-based procedures, they learn the manual well
drawing strategies with a generative adversarial network (GAN) and
use the trained model to guide the well generation process. The so-
called We1lGAN framework produces more regular well geometries
and results in more well sharing compared to rule-based algorithms.
However, Wel1GAN generates the wells after the placement which
might be sub-optimal. In this work, we propose adapt machine
learning-based well generation during the core placement engine to
guide the analog placement process.

Furthermore, considering the device to edge spacing is important
as ftransistors are vulnerable to the well proximity effect (WPE).
Several techniques have been proposed to consider WPE in the analog
placement problem. Ou et al. [6] consider the distances from device
to the edges of pre-defined fixed wells and formulate the WPE effects
as a cost in a non-linear programming-based analog placer. Dong et
al. [11] consider the device to well edge distances in layout mitigation
problem. They adjust the distances in an existing layout to reduce
WPE. Martins et al. [9] generate rectangular wells on randomly
selected pairs of transistors, and the well shape is adjusted to optimize
WPE. In this work, we formulate the WPE handling as constraints
and solve them in our placement engine.

In this work, we propose a generative-adversarial-network-guided
well-aware analog placement. Following the successes of guiding
analog layout automation with ML techniques [12], [13], we guide
our non-linear programming-based analog placer with the GAN-
guided well generation framework. By iterating between the analog
placer and the well generation, the proposed framework can effec-
tively share wells while optimizing area and wirelength. Our main
contributions are summarized as follows.

1) We propose a new well-aware placement methodology of
guiding the analog global placement with the ML-based well
generation. A ML-guided analog placement paradigm is pre-
sented to seamlessly integrate ML models with optimization-
based placer.

2) We propose to consider wells as fence region constraints and
develop effective global placement techniques to solve them.

3) We formulate WPE as minimum device-well-edge distance
constraints and propose an efficient well legalization algorithm.

4) We develop a well-aware legalization scheme to legalize the
global placement.

5) Experimental results show that our method can significantly
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Fig. 1: The We11GAN inference flow.

reduce area and half-perimeter wirelength by encouraging more
well sharing when mitigating the WPE through enforcing the
WPE distance constraints.

The rest of the paper is organized as follows. Sec. II introduces
the preliminaries and presents the problem formulation. Sec. III
describes the details of the proposed framework. Sec. IV shows the
experimental results. Sec. V concludes the paper.

II. PRELIMINARIES

In this section, we introduce the preliminaries on the machine
learning-guided well generation framework(Sec. II-A) and the well
proximity effect (Sec. II-B). Then, the problem formulation is pre-
sented in Sec. II-C.

A. ML-guided well generation framework

ML-guided well generation generates wells following the guidance
from generative ML models, such generative adversarial networks
(GAN). Figure 1 shows the flow for a ML-guided well generation
framework, We11GAN [10]. Given a placement, it extracts the oxide
diffusion (OD) layer shapes as input features to denote the locations
for the transistors. The OD shapes inside the in-well transistors,
such as PMOS transistors, are encoded as the red channel of the
input image, while OD shapes inside the out-well transistors, such
as NMOS transistors, are extracted into the green channel. The input
images are then fed to a conditional GAN model, resulting in the
well guidance through model inference. The well guidance then
is extracted, rectilinearized, and legalized into rectilinear polygons
representing the generated wells.

In this work, we propose to leverage the such well generation
framework to guide our well-aware placement engine. Instead of
generating wells after the placement, the placement engine iteratively
interacts with the well generation procedures to update the well
guidance.

B. Well Proximity Effect

Well proximity effect (WPE) changes the uniformity of doping
concentration and shifts the threshold voltage (V;r) of the devices
near the well edges. The WPE effect-induced V3, shifts for a finger
of transistor can be decomposed into two directions: the horizontal
and the vertical [6] as shown in Eq. 1.
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where r; is a technology-dependent constant, W (L) is the channel

width (length), and U, U, U® and U7 are the distance from the
channel to the well edges as shown in Fig. 2. The V}; shift is the
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Fig. 2: Parameters for the WPE model.

sum of P, and Pg. The Vi shift in a multiple-finger transistor is
viewed as the average of that in each finger.

In this work, we propose to handle WPE by enforcing hard
constraints on device-to-well edge distances, instead of formulating
as an objective as proposed by [6], [9]. By ensuring the V;4 is below
the tolerance, the circuit performance can be preserved against WPE.
We constrain the minimum vertical distances, UF and U7, based
on the channel width of the finger, and we constrain the minimum
horizontal distances, U and U, based on the channel length.

‘We obtain the required device to well edge distances through the
following experiment. We perform DC simulation on the test circuit
(Fig. 3 (a)) with different layout implementations of the transistor.
We change the vertical (horizontal) device to well edge distances,
keep the horizontal (vertical) distances and length (width) larg, and
record the resulting Vi, deviation from the pre-layout simulation.
Figure 3 (b) shows the V;x deviation for three transistors with the
same channel length but different widths. For the WPE constraints,
we select the minimum distances so that the Vi shift in this
experiment is lower than 1 mV. For the cases that V;; deviation
cannot reach 1 mV, we select the minimum distance at the point
where V}; deviation converges. To find where it converges, we set
UT (UY) to be large and sweep the U B (UR). We compare the
resulting V3 deviation from the previous experiment. We set the
required distance where difference of V;p shift in two experiments is
lower than 0.1 mV. Intuitively, this convergence criterion means the
device to well edge distances has little impact on V.

We obtain the minimum horizontal (vertical) distances over dif-
ferent lengths (widths) for the technology through the experiments
above. For each transistor, its minimum U” and UZ (U¥ and UT)
are then set based on its finger channel width (length) in the rest of
this paper.
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Fig. 3: Simulation on WPE-induced V5 shift. (a) The schematic of
the experiment test circuit. (b) The resulting V;p shifts for different
channel widths and device to well edge distances.

C. Problem formulation

The well-aware analog placement problem can be formulated as
follows. Given a set of modules M = {m,...m s} with widths,
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Fig. 4: The overall flow of the framework.

heightsk and well types, a set of nets N = {n1,...ny |}, a set of
self-symmetry constraints 5SS = {ss1,...ss|gg}, a set of symmetry
pair constrains SP = {sp1, ... spsp|}, minimum WPE distances for
transistors and design rules, determine the coordinates of all modules
and generate the wells such that no modules are overlapped, no wells
are overlapped, all modules are correctly placed inside or outside the
wells, minimum device to well edge distances are all satisfied, all the
symmetry constraints are met and no design rule is violated.

III. ALGORITHMS

In this section, we present the algorithm of the proposed frame-
work. Sec. III-A describes the overall flow of the framework, and
the rest of this section explains each component in detail. Sec. III-B
presents the algorithm for the non-linear programming-based (NLP)
global placement engine. Sec. III-C explains the well generation
procedures, including the GAN inference and well legalization.
Finally, Sec. III-D gives the legalization algorithms for legalizing
the placement in awareness of wells.

A. Overall Flow

As shown in Fig. 4, the proposed framework mainly consists of
three components: global placement, well generation, and placement
legalization. The three components interact with each other and
compose the complete well-aware placement flow.

The framework begins with initializing a random and highly
congested placement. Then the GAN-guided well generation engine
produces the initial well guides. The generated wells are considered
as fence regions in the non-linear programming-based (NLP) global
placement engine. The NLP global placement engine optimizes a
non-linear function composed with wirelength, area, fence region,
overlapping, and asymmetry costs. After the optimization converges
or the locations of the modules have significantly changed, the current
global placement iteration terminates. Then wells are re-generated,
fence regions are updated, and another global iteration begins. This
loop continues until the overlapping and asymmetry are both low.
After the loop ends, the placement legalization stage then legalizes the
placements in honor of design rules, WPE constraints, and symmetry.

Each iteration of well generation and global placement updates the
wells, and the wells guide the spreading together with the wirelength
and area. As a result, the global placement spreading process can
optimize wirelength and area while effectively sharing the wells by
following the guidance from the GAN model.

B. Global Placement

The well-aware global placement treats wells as fence regions.
Inspired by several existing studies in analog placement [6], [14],
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[15], we solve the global placement by optimizing a non-linear
programming (NLP) objective function. The non-linear objective
function includes costs of half-perimeter wirelength (HPWL), area
(AREA), violation of fence region (FENCE), overlapping (OVL), and
asymmetry (ASYM). We introduce multipliers on the overlapping and
asymmetry costs to control the module spreading process. In sum-
mary, the NLP global placement can be formulated as a minimization
problem, as stated in Eq. 2.

mipf e ) o ) 40 )
+rovr - @V (@, y) + Aasym - M (2, y),

where o and [ are weighing constants and A denotes the multipliers.
The multipliers are gradually increased over iterations to emphasize
more on solving the hard constraints. In each iteration, we re-generate
the well fence regions based on the current module locations. The
global placement stage ends when the overlapping and asymmetry
are lower than the preset thresholds. The rest of Sec. III-B explains
each cost and gives the details of the algorithm.

‘We use the cost formulations for HPWL, AREA, OVL and ASYM
from the work [15]. We propose a new fence region cost to consider
wells in global placement.

FENCE: The Fence region cost function attracts the modules into
the correct well region and expels the others out. We construct a cost
field using sigmoid functions for each type of well, and the fence
region cost for each cell is inferred from the fields. To be specific,
the attractive cost for each well type is defined as shown in Eq. 3.

JEENCE Z Z (Fs((z5 — X&) - 7) - Fs(—(z5 — X&) -7)
m; EW; ppeW;
fol(ys —YR) - y) - fo(—(ys —Yi) 7)),
1

fs(-'r) :m

3
where z; and y; denote the x and y coordinates of module m; of the
well type 7, X1, X, V! and Y;* define the bounding box of a well
polygon py, and ~ is a parameter to control the steepness of the cost.
The four sigmoid functions constructs a field across the layout to
attract the cells into the regions of wells. Fig. 5 shows an example
of a cost field with two well polygons. Large -~ is mainly used in
early iterations to give a more global view (see Fig. 5 (a)). After the
placement is less congested in late iterations, we use a smaller ~ to
represent the wells more accurately (see Fig. 5 (b)). We update ~ each
global placement iteration to control the steepness of the cost. - is
determined linearly based on the overlapping ratio. The overlapping
ratio is the ratio of overlapping module area over the total module
area. - is trimmed with the max and min allowed values, and they
are selected to be 1.2 and 0.2 in the experiments.
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The attractive cost can also be modified to expel the modules out
of the well. We use 1 — FFENCE to compose the expelling force for
the other modules. However, we only apply the expelling cost in late
iterations. Intuitively, this trick is intended to avoid converging too
fast before exploring a more extensive search space. To be specific,
we do not use expelling cost if the overlapping ratio is above 0.3.

We optimize the overall NLP cost function with the ADAM
optimizer [16]. Each optimization iteration can terminate in two
ways: the optimization converges, or the placement has significantly
changed from the previous iteration. The second stop criterion intends
to update the well fence regions to follow the placement process
closely. We measure the L1 distance of the module locations between
the current and those of the last iteration. The criterion is triggered
if the distance is above a preset value. In other words, it is triggered
when

(2, y) — (2", y7)]lL > 4,

where (2", y*) denotes the module coordinates from the last iteration
and § is a constant.

The multipliers are updated using the subgradient method [17].
However, if the second criterion terminates the previous iteration, we
do not update the multipliers. Intuitively, the non-linear optimization
has not converged at the moment, and we therefore postpone the
updates of multipliers.

C. Well Generation

The well generation subroutine provides well guidance to the
global placement and generates the wells for the final layouts. It
generates the wells leveraging the ML-guided well generation and
legalizes them for design rules, contacts, and WPE constraints.
Algorithm 1 shows the flow of the well generation process. We first
extract the OD shapes into images for each well type and generate the
rectilinear polygons using the We11GAN framework (Line 4-9). Then
we assign each module of the well type to its closest well based on
the Manhattan distance of center points (Line 10). Each well shape is
expanded to handle minimum device to well edge distance constraint
for the modules assigned (Line 12). A set of contacts are created
to provide bulk voltage for each well (Line 12). Finally, we apply
patches to the well polygons for more regular shapes and remove
design rule violations (Line 14). The rest of this section describes
the details of these procedures.

1) Generate Rectilinear Wells: We generate the rectilinear well
polygons using the ML-guided well generation as introduced in
Sec. II-A. However, we add special handling on the out-well OD
image G. Since the GAN model is trained with legal manual layouts,
it is crucial to align the inference inputs with the same scope of
its training data. However, highly overlapped in-well and out-well
OD shapes empirically are likely to results in unreasonable outputs.
Therefore, we keep the out-well OD channel empty if the ratio of
the overlapped area over the total module area is above a constant
€. The constant ¢ is selected to be 0.3 in the experiments. After the
placement has reasonably spread out, out-well shapes are considered
to give more accurate well guidance.

2) Legalize minimum WPE distance: We enforce the minimum
device to well edges distances by legalizing the polygon geometries.
For each module assigned and inside to the polygon, we first obtain
the required horizontal and vertical distance based on its finger
channel length and finger channel width as described in Sec. II-B. We
expand the bounding boxes of the modules by the required distances
and merge them with the polygon.

7B-2

Algorithm 1 Well Generation and Legalization

Require: A placement L and a set of well types W.
Ensure: A list of polygon set P of wells and a set of contacts C'.

I P+0;,C+ 0

2: Overlapping ratio r + ComputeOverlappingRatio(L);

3: for each w; € W do
In-well OD shapes R + ExtractInWellOD(L,w;);
Out-well OD shapes G «+ 0;
if r < e then

G + ExtractOutWellOD(L,w;)

Rectilinear well polygons P; + WellGAN(R, G);
Assign modules to their cloest well M + FindClosest(F;);
10: for each p; ; € P; do
11: pi.j + LegalizeW PE(p; j, M;);
12 Pijscij + GenerateContact(p; ;); C + C U ¢y, J;
13: pi.j + Patch(pi;);
14: P.append(p:);
15: return P, C,

b=l = A A

3) Contact Generation: Contacts are used to connect the wells to
external voltage and provide potential to transistor bulks.

In this work, we follow manual layout design practice to insert
as many contacts as possible as long as they do not introduce area
overhead. To be specific, we cast the problem as follows. Given a set
of contact templates 7", where each template has weight, width and
height, and the minimum spacing between contact and other layout
edges, find a maximum weight set of contacts with the lowest cost
available. The cost is defined as the sum of two areas: (1) the area
overhead introduced to the well, and (2) the area overlaps of the
contact with other modules in the placement.

We first generate contact candidates by sweeping the locations
of available templates and prune those overlapping with in-well
modules. We calculate the cost for each candidate and their pair-wise
exclusive relationship. If there is no or only one zero-cost candidate,
we return the one with the lowest cost. Otherwise, we choose
the maximum weight independent set of the zero-cost candidates.
The candidate selection problem can be formulated as a variant of
the maximum weight independent set problem on trapezoid graphs,
where the spacing needs also be considered besides the rectangle
geometries. The problem can be solved in O(r?) time complexity
using the algorithm from [18]. Empirically, zero-cost candidates exist
for most of the time. We merge the contact geometry expanded by
the required spacing with the well polygon if needed.

In the end of well generation stage, we resolve the remaining
spacing design rule violations by patching the polygon geometries.

D. Placement Legalization

The placement legalization stage legalizes the placement to enforce
non-overlapping, spacing, and symmetry constraints to placement.
In this work, we extend the legalization algorithm proposed in the
work [14] to consider wells. It is mainly composed of two subrou-
tines: the constraint graph construction and the linear-programming-
based (LP) legalization. The constraint graph construction captures
the positional relationship of the modules and wells. There are
two types of constraint graphs in this work: the redundant and the
irredundant. On the other hand, the LP legalization takes a constraint
graph, treats positional relations as constraints, and compacts the
placement. The LP legalization can have an objective of either area
and wirelength.
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Algorithm 2 Placement Legalization

Require: A global placement L.
Ensure: A legalized placement . with well generated.
I: Clear current wells L.well + ;
2: A redundant constraint graph Gy + RCG(L);
Extra spacing S + 0;
L + AreaDrivenCompaction(L,Go, S);
L.well + WellGeneration(L);
while True do
A horizontal irredundant constraint graph G1! « ICG(L);
if AreaDrivenCompaction(L,G¥,S) is infeasible then
Continue;
10: An irredundant vertical constraint graph GY + ICG(L):
11: if AreaDrivenCompaction(L,GY ,S) is feasible then
12: L + AreaDrivenCompaction(L,GY , S); break;
13: S + 5+ GridStep;
14: An Irredundant constraint graph Gy + ICG(L);
15 L + WireLengthDrivenCompaction(L,G1);
16: return L;

e d e w

Algorithm 2 illustrates the core steps in the placement legalization.
Given a global placement result, we first legalize the placement
in the absence of the wells (Line 1-4). In this step, we use the
irredundant constraint graph to preserve more positional relations
from the global placement to avoid significantly deviating from the
global placement well guidance. Then we generate the wells and
legalize them using the algorithms presented in Sec. III-C (Line 5).
After generating legal wells, we perform area-driven LP legalization
in awareness of the wells (Line 6-14). As the well shapes might
be complicated and contradict the symmetry constraints, we repeat
the LP legalization and iteratively add extra spacing between the
modules until we find a feasible solution. Empirically, the proposed
framework rarely need multiple iterations. But this fixing loop is
frequently triggered if the global placement is not well-aware. After
obtaining a legal placement, the HPWL-driven compaction is used to
fine-tune the placement (Line 17-18). The rest of this section explains
the details in the constraint graph construction (Sec. I1I-D1) and the
LP-based compaction (Sec. III-D2).

1) Constraint Graph Construction: Constraint graphs capture the
positional relations between modules and wells from the current
placement. In this work, constraint graphs are later translated into
linear constraints on positional relations of movable objects for the
LP-based legalization.

A constraint graph either describes the horizontal relations or the
vertical. An edge in horizontal constraint graphs from node n; and n;
implies that n; is placed to the left of ;. Similarly, a edge (ni,n;) in
a vertical constraint graph indicates that n; is below n;. We use two
methods to construct constraint graphs depending on the need: the
redundant and the redundant.

The redundant constraint graph construction is used right after the
global placement. As the global placement result still consists of
minor overlapping and asymmetry, we first resolve the two hard
constraints without considering the wells. In this step, we keep
the redundant constraint edges to preserve the overall positional
relationship between modules amid the legalization. Fig. 6 (a) shows
an example of redundant constraint graph construction. For each pair
of modules n; and n;, we add at least one constraint edge to the
horizontal and vertical constraint graphs. The edge we add falls into
four cases. Case 1: If n; and n; are overlapped, we add either
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Fig. 6: Examples of constraint graph construction. (a) Redundant
constraint graph. (b) Irredundant constraint graph construction for
well-aware legalization.

a horizontal or a vertical edge. A horizontal edge is added when
the vertical overlapping distance is shorter and vice versa. The edge
(nq1,n2) in Fig. 6 (a) shows an example. Case 2: If n; and n; are
disjointed and either = > z:g or z:;-‘ > z}, we add a vertical edge.
The edge (n1,n3) in Fig. 6 (a) shows an example. Case 3: If n; and
n; are disjointed and either y > y;- or y;-’” > y!, we add a horizontal
edge. The edge (n3,n4) in Fig. 6 (a) shows an example. Case 4: If
n; and n; are not belonging to any of the cases above, we add both
the horizontal and the vertical edge. The edge (n1,n4) in Fig. 6 (a)
shows an example.

The irredundant constraint graph construction, on the other hand,
targets to have the minimal constraint edges presented so that
the LP-based compaction can explore larger solution space. The
irredundant constraint graph construction also needs to consider the
wells. Fig. 6 (b) shows an example of irredundant constraint graph
construction. In this example, modules 1 and 2 are assigned to
the well, while modules 3 and 4 need to be moved out of the
well. We ignore the in-well modules in irredundant constraint graph
construction. The in-well modules are moved together with the well in
the LP-based compaction. Their positional relationship is indirectly
inferred without the need to present an edge in constraint graphs.
The procedures for constructing an irredundant constraint graph are
presented as follows. We first split the well polygon into rectangles
by applying horizontal or vertical slicing. Horizontal slicing is used
when generating the horizontal constraint graph and vice versa. We
then construct the constraint graph based on the plane sweep line
algorithm from [19]. The horizontal edges between overlapped nodes
are exempted if their vertical overlapping distance is shorter than the
horizontal. The exempted positional relations are to be later handled
by the vertical constraint graph. For example, the edges (ns,n3) and
(rn5,m4) are not added to the horizontal constraint graph in Fig. 6 (b).

2) LP-based Legalization: After obtaining the constraint graphs,
the LP-based legalization then legalizes and compacts the layout.
The LP-based legalization works on one dimension each time. At
each compaction step, we solve a linear programming problem to
compact the layout to honor the constraints while optimizing either
area or HPWL. After compacting both the horizontal and vertical
direction, a legal placement is found.

In the first pair of LP problems (Line 4 in Algorithm 2), the same
LP formulations are used as proposed by [14]. The LP constraint
honors the symmetry constraints as well as resolving the overlapping
between modules. The objective is set to optimize for either area or
HPWL. Due to the page limit, we omit the details.

In the later well-aware legalization (Line 8, 12, 13 and 18 in
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TABLE I: Comparison of area(um?), half-perimeter wirelength
(HPWL(pm)) and runtime (RT(s)).

CKTS [ Individual wells | [10] | This work
| Area HPWL RT | Area HFWL RT | Area HPWL KT |
OTAl 360.2 72.3 L3 | 3180 68.7 32 | 2903 6.3 3.6
OTA2 7562 2347 48 | 7507 2031 7.9 | 5990 2052 106
OTA3 10554 5866 480 | 1325.6 5395 432 | 9656 6513 341
OTA4 32552 8370 3.7 | 33136 7199.6  40.1 | 30337 866 42.6
COMP1 175.1 8.8 20 1444 95.1 6.6 822 618 35
COMP2 192.2 93.1 30 1942 1050 5.6 87 81 3.6
BOOTSTRAP | 177.9 64.5 P 130.8 83.4 5.0 V.5 63.2 48
RDAC 3615 2002 124 | 3704 2870 302 | 1443 137 237
Norm. | 182 126 064 174 146 133 ] LO0O L0

Algorithm 2), we treat each module and rectangle split from the
well polygon as a movable object. The positional relations of out-
well modules and wells are enforced similar to the previous stage by
following the redundant constraint graphs. In addition, we restrict
all the in-well modules to move together with the well. As the
overlapping and spacing of in-well modules have been resolved in
the earlier legalization steps, the legal placement is achieved without
altering the relative positions for in-well modules. We add additional
well movement constraints to the previous LP formulation. The well
movement constraints restrict that the split well rectangles and the
in-well modules move in the same distance and direction as follows.

Well Movement constraint: For each well polygon F;, we add a
set of constrains as shown in Eq. 4

0 *
T; — T =T5,Yn; € By,

(C))

where n; denotes a module inside P; or a rectangle split from F;,
z; denotes the x or y coordinate of n;, ¥ is a variable to represent
the x or y movement of the entire well P;, and =} denotes the x
or y coordinate of n; before solving the LP problem. By integrating
this constraint and the variable z_ for each well polygon into the LP
formulation from [14], the LP compaction can work together with
the constraint graph construction to legalize the final layout.

IV. EXPERIMENTAL RESULTS

The proposed framework is implemented in C++ and Python. All
experiments are conducted on a Linux workstation with an Intel Core
19-7900X 3.0 GHz CPUz and one NVIDIA TITAN Xp GPU. We use
ten threads in the CPU for the placement framework and GPU for
neural network inference. We obtained the training data and source
codes from [10]. We re-trained the model and used the same model
in all experiments.

‘We conduct experiments on four operational transconductance am-
plifier (OTA) with different architectures (OTA1, OTA2, OTA3, and
OTA4), two comparators with the same topology but with different
sizing (COMP1 and COMP2), a bootstrap switch (BOOTSTRAP),
and a resistor digital-to-analog converter unit (RDAC). All PMOS
transistors have VDD bulk voltage within these designs, and all
NMOS transistors have VSS voltage. In other words, there is only
one well type for the designs, and all PMOS are assigned to this
type. We further verify the framework for multiple well types cases
in a separate experiment discussed later in this section. All the
benchmark circuits are under TSMC 40nm technology. The required
WPE distances are obtained as described in Sec. II-B. We verify the
placement design rules with Mentor Calibre nmDRC.

To evaluate the effectiveness of our proposed framework, we
compare area, wirelength, and runtime with two baselines. The first
baseline uses individual wells, denoted as “individual wells” later
in this section. In this baseline, we close the well-awareness in the
framework. We increase the area of each PMOS transistor before the

T
L

(a)

(b)

1.00 | Fig. 7: Generated COMP layouts. The wells are in crimson. (a) This

work. (b) “Wel1GAN after placement”.

placement so that its shape is equivalent to having an individual well
added. The “individual well” approach is widely adopted in existing
analog layout synthesis frameworks, such as MAGICAL [5]. The
second baseline is to generate wells after placement using GAN-
based well generation, denoted as “We 11GAN after placements”. To
comply with WPE distance and contact insertion requirements, we
perform the same legalization methods from this work after the well
generation in “Well1GAN after placements”. It enforces the same
WPE distance requirement on this baseline.

We compare this work with two baselines on area, half-perimeter
wirelength (HPWL) and runtime. Table I shows the results on eight
benchmark circuits. On the average of ratios, this work reduces area
(HPWL) by 82% (26%) over “individual wells” and 74% (46%) over
“WellGAN after placements”. The runtime is comparable. Fig. 7 and
Fig. 8 show the generated layouts of COMP2 and OTA4 from this
work and “We 11GAN after placements”. From the results, we observe
that the area reduction is more effective for smaller designs. The
reason is that larger analog designs often include large transistors,
capacitors, and resistors and well areas become less significant in
percentage. We also observe that the “Wel1GAN after placements”
baseline results in lower HPWL on OTA2, OTA3, and OTA4 over the
proposed framework, despite significant area overhead. We notice that
as white space in wells becomes less critical in larger layouts, splitting
wells sometimes results in lower HPWL but higher area. Fig. 8 (c)
shows an alternative OTA2 placement from the proposed framework
to verify our understanding. It is obtained by lower the ratio of area
cost over HPWL cost in the non-linear global placement engine, and
it has an area of 3031.6 pm? and HPWL of 695.8 um.. We also
notice that the area of the baseline “WellGAN after placements”
sometimes is even worse than the “Individual wells”. The primary
reason behind this is that the placement sometimes places PMOS
and NMOS transistors interleaving with each other, and hence the
legalized results are likely to fail in sharing the wells. Fig. 7 (b)
shows an example of this issue. As it is not well-aware, the baseline
placement places two NMOS transistors at the center surrounded by
PMOS transistors. After legalizing the wells, the wells and transistors
overlap, and the legalization subroutine increases the spacing between
devices until a legal solution is found. As a result, the layout in
Fig. 7 (b) assigns the individual well to each PMOS transistor and
creates area overhead. It also increases the runtime due to iteratively
legalization efforts.

We then verify the function of considering multiple-well types.
Although all benchmark circuits only have one well type in this
section, giving different bulk voltage and using particular transistor
types (such as deep N-well devices) requires separating the wells
into several groups. We manually add two additional well types
to OTA4 to verify our proposed framework. Fig. 8 (d) shows the
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(a) (b)

I
() (d)
Fig. 8: Generated OTA4 layouts. The wells are in crimson. (a) This

work. (b) “WellGAN after placement”. (c) This work with lower
area-to-HPWL cost ratio. (d) This work with two additional well

types.

TABLE II: Comparsion of threshold voltage (mV") on COMP.

I [ MI_ | Mz | M3 | M& | M5 | Me | M7 | M&
fiematic | 435.0 | 435.0 | 5665 | 3665 | 558.6 | 5586 | 5635 | 3635
o] 4502 | 4511 | 5733 | 5739 | -561.9 | -562.4 | 380.1 | 570.0
This Work | 4418 | 442.1 | 5629 | 563.0 | -561.8 | -361.8 | 550.4 | 559.5

resulting placement. In addition to the original PMOS well (“Well
2” in the figure), we add two NMOS transistors and four other
NMOS transistors to two new well types, respectively. The resulting
layout clearly shows two separate wells for the two types, as “Well
1”7 and “Well 3” in the figure. The area, HPWL, and runtime for
this experiment are 3023.3 pm?, 1070.5 wm, and 42.2 seconds,
respectively.

We then verify the effectiveness of our framework on mitigating
the WPE effect. We compare two different implementations of wells
on the same placement of COMP. The first is to generate the
wells directly from WellGAN. The second is to use our framework,
where the WPE distance constraints are satisfied. We perform a
post-layout simulation to obtain the threshold voltages for each
PMOS device. Table II shows the results. COMP2 have eight PMOS
transistors and they compose four symmetry pairs, i.e., (M1, M2),
(M3, M4),(M5,M6) and (M7, M8) . From the table, we can
observe that the Vi, deviations from the schematic reduce with our
proposed method. Furthermore, our proposed framework effectively
keeps Vin for the two transistors in a symmetry pair close. On the
other hand, there are significantly V3, difference in (M7, M 8) for the
baseline. Therefore, the proposed methodology of constraining min-
imum WPE distance benefits the robustness of circuit performance.

V. CONCLUSION

This work proposes a new generative adversarial network-guided
well-aware analog placement framework. Our methods leverage the

7B-2

state-of-the-art machine learning techniques in the well generation to
consider the wells in placement. Experimental results demonstrate the
proposed framework provides notable benefits in area and wirelength
by encouraging sharing wells in analog circuits.
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