
OpenSAR: An Open Source Automated End-to-end SAR
ADC Compiler

Mingjie Liu, Xiyuan Tang, Keren Zhu, Hao Chen, Nan Sun, and David Z. Pan
ECE Department, The University of Texas at Austin, Austin, TX, USA

{jay liu, xitang, keren.zhu, haoc}@utexas.edu, nansun@mail.utexas.edu, dpan@ece.utexas.edu

Abstract—Despite recent developments in automated analog sizing
and analog layout generation, there is doubt whether analog design
automation techniques could scale to system-level designs. On the other
hand, analog designs are considered major roadblocks for open source
hardware with limited available design automation tools. In this work, we
present OpenSAR, the first open source automated end-to-end successive
approximation register (SAR) analog-to-digital converter (ADC) compiler.
OpenSAR only requires system performance specifications as the minimal
input and outputs DRC and LVS clean layouts. Compared with prior
work, we leverage automated placement and routing to generate analog
building blocks, removing the need to design layout templates or
libraries. We optimize the redundant non-binary capacitor digital-to-
analog converter (CDAC) array design for yield considerations with
a template-based layout generator that interleaves capacitor rows and
columns to reduce process gradient mismatch. Post layout simulations
demonstrate that the generated prototype designs achieve state-of-the-
art resolution, speed, and energy efficiency.

I. INTRODUCTION

Analog-to-digital converters (ADCs) are integral building blocks
of modern system-on-chips (SoCs) since they are the interface be-
tween analog front-end sensory to back-end digital signal processing.
Successive approximation register (SAR) ADCs, is an ADC type that
has gained increasing attention due to its great versatility and range
from ultralow-power to ultrahigh-speed designs [1]. The increasing
market demand for Internet of Things (IoT) devices [2] has made
SAR ADCs crucial design components because of their moderate
resolution and high energy efficiency.

However, analog designs still heavily rely on manual efforts.
Traditionally, designers have to select system architecture, circuit
topology, size devices, and layout engineers to draw device placement
and wire routing. This high customization and manual involvement
in analog design has greatly limited the turn-around-time and design
scale, making it challenging to keep up with the pace of expanding
IoT market demands. The highly automated digital design counter-
parts have scaled to billions of transistor count. Thus new analog
design methodologies and development in analog automation tools
are desired to speed up the current manual design flows.

Despite such challenges, there has been a significant amount
of research in analog design automation to speed up the current
manual design flows. Advancements in machine learning and black-
box optimization techniques, such as Bayesian optimization [3]
and reinforcement learning [4], have enabled efficient automated
transistor sizing with high fidelity transistor-level simulations which
characterize circuit performance. Template-based procedural layout
automation tools, such as Berkeley Analog Generator (BAG) [5], have
enabled easy layout adaptation in technology migration and some
flexibility in circuit sizing. Optimization-based layout generation,
such as MAGICAL [6] and ALIGN [7], focus on fully automated
layout generation, where the device placement is determined by
numerically minimizing the wirelength [8] and automatically routed
through algorithms such as maze routing [9]. Although there has been
increasing attention in academia for fully automated analog design

solutions, it is still challenging to scale fully automated transistor
sizing and layout generation methods to system-level designs, and
generate high-quality and reliable solutions.

On the other hand, open source hardware is gaining momentum
in the design ecosystem [10], where hardware designs can be
freely used, altered, or distributed. The recent introduction of open
source process design kits (PDKs) [11] has opened opportunities
for circuit designers to explore open source hardware solutions
without considering non-disclosure agreement (NDA) restrictions.
OpenRAM [12] proposed a end-to-end open source memory com-
piler. The OpenRoad [13] project has further enhanced researchers
to develop synthesizable digital-friendly designs on traditional analog
designs such as OpenSerDes [14]. FaSOCs [15] have been shown
to generate various analog circuit solutions, including PLLs, LDOs,
and temperature sensors, by leveraging digital automatic place and
route (APR) tools. However, SAR ADCs still require analog building
blocks such as sample and hold (S&H) circuits and comparators. Thus
it is difficult for SAR ADCs to be adapted to fully synthesized digital
solutions while still achieving acceptable performance and design
flexibility.

In this work, we present an open source automated end-to-end
SAR ADC compiler. The entire framework requires top-level design
specifications and generates a SAR ADC layout design as output.
We leverage recent developments in automated transistor sizing and
optimization-based layout automation to remove human-in-the-loop,
significantly reducing the design effort. Prior work in automating
SAR ADC designs [16], [17] rely on template- layout generation
requires manual effort in layout template design, greatly restricting
the design flexibility and offering little to no automation in device
sizing. In OpenSAR, the front-end sizing and back-end layout gen-
eration process of placement and routing are fully automated. Our
contributions are summarized as follows:
• We present a fully automated end-to-end SAR ADC compiler

that requires only top-level specifications as the minimal input.
• Our framework is an integral of recent analog automation

developments from device sizing, placement, and routing, which
removes manual effort in both front-end and back-end design of
analog building blocks.

• We develop a template-based non-binary capacitor digital-to-
analog converter (CDAC) array layout generator to ensure its
layout quality.

• Our SAR ADC is based on a redundant non-binary search
algorithm, where the bit redundancy design problem is formally
formulated and optimized for yield.

• Post layout simulations of prototype designs demonstrate state-
of-the-art resolution, speed, and energy efficiency.

• To the best of our knowledge, this work is the first open source1

framework for generating SAR ADC designs and layouts from

1https://github.com/magical-eda/OpenSAR

978-1-6654-4507-8/21/$31.00 ©2021 IEEE

20
21

 IE
EE

/A
CM

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

O
n

Co
m

pu
te

r A
id

ed
 D

es
ig

n
(IC

CA
D)

 |
 9

78
-1

-6
65

4-
45

07
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
CA

D5
19

58
.2

02
1.

96
43

49
4

20
21

 IE
EE

/A
CM

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

O
n

Co
m

pu
te

r A
id

ed
 D

es
ig

n
(IC

CA
D)

 |
 9

78
-1

-6
65

4-
45

07
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
CA

D5
19

58
.2

02
1.

96
43

49
4

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 19,2022 at 02:42:43 UTC from IEEE Xplore. Restrictions apply.

top-level specifications.

II. SYNTHESIZED ADCS AND SAR ADCS

In this section, we first review prior work on synthesized ADCs in
Sec. II-A where the back-end design is realized with digital automated
place and route (APR) tools. We then give a basic introduction
on SAR ADCs with an emphasis on the prior attempts of design
automation in Sec. II-B.

A. Synthesized ADCs

Synthesizable ADCs typically only consist of standard digital
logic cells, described entirely in Verilog code, allowing the back-end
process to be fully automated by digital APR tools. Stochastic flash
ADCs [18] introduces a comparator based on only digital NAND
gates. It removes the resistor ladder in traditional flash ADCs and
relies on the random offset of comparators in a large array. However,
this typically results in low power efficiency and resolution. The
work of [19] proposes a time-mode circuit employing a VCO-based
multi-bit quantifier with first-order noise-shaping. The design is then
described in Verilog, and the resulting layout is implemented with
digital APR tools. Similarly, the work of [20] presents a fully syn-
thesized VCO-based ∆Σ modulator from digital standard cells and a
few resistors. Only one-time modifications on the standard cell library
are needed for adding resistor custom cells. Although synthesizable
ADCs can fully automate the back-end layout implementation, the
design procedure still involves careful manual effort, and designs
only using standard logic severely limits the design flexibility.

B. SAR ADC Design Automation

SAR ADC has become the architecture of choice for medium-
speed/medium-resolution requirements, where it managed to achieve
the best efficiency amongst other ADC architectures [21]. It has a
straightforward implementation with the topology shown in Fig. 1.
The analog input Vin is sampled with arrays of capacitors also
implements a charge-redistribution feedback DAC. The comparator
with the logic and DAC performs a binary search algorithm to
approximate the sampled input in N steps, where N is the final
resolution of digital output code Dout.

Vcm
Vrefh
Vrefl

Vrefl
Vrefh
Vcm

Vin Cu2N-1Cu 2Cu
SAR
Logic

Dout

Fig. 1: SAR ADC architecture.

Several works have proposed various methods to automate the
design process. Seo et al. [22] propose a code-reusable design
methodology for synthesizable SAR ADCs. The authors replace
traditional custom-designed analog building blocks with synthesiz-
able digital circuits, including bootstrapped switch and comparator.
The design requires a power gating multi-threshold technology and
manual design of the capacitor standard cell. Huang et al. [23]
proposed a systematic design methodology for designing SAR ADCs,
where the sizing procedure for analog components is automated first
by equation-based methods and then finetuned with spice simulations.

The framework does not include automatic layout generation. Wulff et
al. [16] presents a low-power compiled SAR design in 28-nm FDSOI
technology. It implements a template-based layout method, using a
limited set of circuit blocks with restrictions on the selection of
transistor sizing, and needs the manual definition of routing solutions.
Ding et al. [17] propose a hybrid design automation tool for SAR
ADCs. The automatic sizing procedure is a hybrid approach based
on the equation-based method, and simulation-based finetuning. The
top-level routing requires additional manual scripting. Preparing the
layout templates and the comparator lookup library also requires a
significant amount of manual labor and setup overhead.

III. ANALOG DESIGN AUTOMATION

Analog design usually consists of two stages: front-end and back-
end design. The front-end design stage consists of architecture, circuit
topology design, and device sizing. The back-end design stage mainly
focuses on layout implementation, where devices are placed and
routed to achieve DRC and LVS clean solutions. By convention,
both the front-end and back-end design stages are manual and often
involve iterative optimizations since layout parasitics and effects are
often difficult to predict in the early front-end design stage.

In this section, we introduce recent developments in analog au-
tomation, with automatic device sizing in Sec. III-A and layout
automation in Sec. III-B. Specifically, we emphasize Bayesian op-
timization [3] and MAGICAL [6] that are the main components of
the OpenSAR framework.

A. Automatic Device Sizing

Numerous methods have previously been proposed for automated
transistor sizing. Early works relied on symbolic AC models [24]
and equation-based method [25], where the analog circuit needs
to be modeled first. Recent works focus on directly using results
from high fidelity performance spice simulations and leverage black-
box gradient-free optimization methods, including differential evolu-
tion [26], Bayesian optimization [3], and reinforcement learning [4].

Bayesian optimization is a sequential model-based optimization
algorithm. A probabilistic surrogate model (usually Gaussian process
regression GPR) is updated with the new simulated result during
each optimization iteration. Then the next sample point to query the
black box is decided by optimizing the acquisition function, a loss
function that describes the objective optimality while balancing ex-
ploration and exploitation. We adopt the constrained single objective
formulation for automated transistor sizing problem:

minimize
x

f0(x)

subject to ci(x) ≤ bi, i = 1, . . . ,m,
(1)

where x is the d-dimensional design variable, f0(x) is the selected
cost to minimize (typically power), and ci(x) are m performance
metrics to meet the target of bi. In our context, during Bayesian
optimization, the GPR model predicts a mean µx and variance σ2

x

for any input x. The next sample data is selected by maximizing the
weighted expected improvement, a product of expected improvement
(EI) and probability of feasibility (PoF):

EI(x) = Ef0∼N(µ0,σ0)[max(f∗ − f0, 0)] (2)

PoF (x) =

m∏
i=1

Pr(ci(x) < 0) (3)

Bayesian optimization has received increasing attention due to
its high sample efficiency and flexibility to cover the vast need of
designers, such as extensions to multi-objective [27], and constrained

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 19,2022 at 02:42:43 UTC from IEEE Xplore. Restrictions apply.

optimization [3]. Several works have leveraged additional techniques
to improve scalability [28], parallelism [29] and layout parasitic
considerations [30] for analog sizing. In OpenSAR, we integrate
BoTorch [31], an open source library for Bayesian optimization, as
the optimization kernel for automatic sizing.

B. Analog Layout Automation

In this section, we introduce the recent advancements in analog
layout automation. We first introduce template-based layout gener-
ation in Sec. III-B1 and optimization based layout generation in
Sec. III-B2. We specifically emphasize MAGICAL since it is the
core layout engine used for analog circuit components in OpenSAR.
In OpenSAR, we leverage the best of both methods. The CDAC
array (Sec. IV-B) is generated with a template-based method to
ensure layout quality with yield considerations. The S&H circuit and
comparator (Sec. IV-D) are generated with MAGICAL, removing
the manual effort in template design and allowing the flexibility to
explore different circuit topology and sizing at ease.

1) Template-based Layout Generation: Template-based layout
generators refer to the design method implemented circuit layout by
combining primary devices and structures using module generators.
These module generators usually generate layout structures according
to predefined rules or template layout designs. Berkeley Analog
Generator (BAG) [5] is an open-source framework of template-based
layout generation. This method typically requires designers to specify
device placement and route (such as routing topology, metal layer,
and via cuts) in a parameterized fashion, allowing designers to modify
circuit sizing. Since the designer has complete control over each
device placement and routing, it could produce high-quality layouts
scalable to system-level designs verified post-silicon measurements,
such as SAR ADCs [17], [16], SerDes transceivers [32], and memory
cells [12]. Nonetheless, it requires a significant amount of manual
effort to design general layout templates or PCELLs, where device
layouts are still manually programmed to be placed and routed.

2) Optimization-based Layout Generation: Optimization-based
method [6], [7] formulates the layout placement and routing as an
optimization problem and aims at producing a fully automated layout.
The device placements are determined by numerically minimizing the
wirelength and automatically routed with a maze routing algorithm.
Compared with template-based layout generation, optimization-based
methods generate fully automated layout solutions that do not require
additional effort to design layout templates. However, it further re-
quires constraint recognition, such as device symmetry [33], building
block symmetry [34], and common-centroid matching [35], to ensure
the layout quality.

MAGICAL [6] is an open source layout generator with silicon
proved measurements [36], where only the circuit netlist is required
as the input. The placement is formulated as a minimization problem
as follows:

min
x,y

fWL(x,y),

s.t. OOV L, OASYM = 0,
(4)

where (x,y) denotes the device placement coordinate, fWL is the
weighted sum of wirelength for all nets, and OOV L and OASYM

are the device overlap and symmetry constraints. A gradient-based
non-linear optimization method [8] is used to solve the device global
placement solution and then is legalized to ensure the constraints in
non-overlap and device symmetry are met. The grid-based router [9]
uses a maze routing algorithm while considering net symmetry based
on the pin placement. A robust rip-up and re-routing scheme is
implemented to ensure technology design rules and resolve routing

congestion. The final DRC and LVS clean GDSII layout are generated
as output.

IV. THE OPENSAR FRAMEWORK

In this section, we present the details of OpenSAR framework.
We first introduce the design flow in Sec. IV-A. The template-
based CDAC array layout generator is presented in Sec. IV-B. We
formally formulate yield optimization for optimizing bit redundancy
in Sec. IV-C and solved with integer non-linear programming with
layout constraints based on the CDAC layout generator. The design
for custom analog circuit components contains automatic sizing
and optimization-based layout with MAGICAL is introduced in
Sec. IV-D. The digital SAR control logic is implemented with
commercial digital flow in Sec. IV-E. Finally, the detailed system-
level layout integration is discussed in Sec. IV-F.

A. Framework Overview

OpenSAR leverages a common-mode based charge recovery
switching method [37] as shown in Fig. 1. All CDAC capacitors’
bottom-plates are connected to Vcm during the sampling phase. The
MSB to LSB bits are switched in a differential manner based on
the comparator decision in all binary search-based SAR ADCs. For
example, if the positive capacitor array bit is connected to Vrefh
based on the comparator decision, then the corresponding negative
capacitor array bit should be connected to Vrefl.

The entire design flow for OpenSAR ADC compiler is shown in
Fig. 2. OpenSAR requires minimal designer input, with only design
specifications, technology files, and DRC rules. The minimal input
specification includes the required ADC resolution, speed, number
of redundant bits (Sec. IV-C), clock cycles for sampling (default to
1). The top-level specifications are translated to component design
specifications based on equations. The components are separately
generated first. The CDAC array is first optimized based on the
allowed number of redundancy bits with yield considerations and
layout generated with a template-based layout generator for high
layout quality. The analog components, including bootstrap sampling
switch and comparator, are sized automatically with Bayesian opti-
mization. The designer should provide the analog circuit topology
and simulation testbench for automated device sizing. The analog
component layouts are generated by the optimization-based layout
generation tool MAGICAL without any additional input. The layout
generation process can also be included inside the Bayesian opti-
mization loop to ensure layout quality [38]. Finally, the system-
level layout is integrated. The floorplan and placement step would
adjust the component layout by applying additional layout boundary
constraints to the default MAGICAL placement objective (Sec. IV-D).
The top-level routing includes two steps, where sensitive nets are
routed first and digital last. Component placement spacing in the top-
level placement and CDAC layout could be adjusted for pin access
ability and routability considerations. If the post layout simulated
performance does not satisfy design specifications, the user can
intervene in the design process by adjusting component specifications,
sizing exit criteria, etc.

Table I compares OpenSAR with prior work on SAR ADC automa-
tion. OpenSAR provides complete end-to-end ADC compilation with
little manual effort in setup requirements. By leveraging optimization-
based layout automation MAGICAL, OpenSAR removes the need to
provide layout templates or design libraries. Designers only need to
provide circuit topology and simulation testbench for analog circuit
components such as bootstrap sampling and comparator, offering
more design flexibility. Bayesian optimization automates the device

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 19,2022 at 02:42:43 UTC from IEEE Xplore. Restrictions apply.

Design
Specifications

Technology
Files

Component Specification Definition

SAR Digital Logic

Logic Synthesis Digital P&R

CDAC Array

Bit Redundancy
Design & Opt.

Template-based
CDAC Layout

Analog Components

Automated Layout:
MAGICAL

Symmetry Constraint Detection

Device Generation

Placement

Routing

Automated Layout:
MAGICAL

Symmetry Constraint Detection

Device Generation

Placement

Routing

System Integration

Update
GPR ModelOptimize

Acquisition
Function

Spice
Simulation

Exit Criteria

Automated Sizing:
Bayesian Optimization

Update
GPR ModelOptimize

Acquisition
Function

Spice
Simulation

Exit Criteria

Automated Sizing:
Bayesian Optimization

Floorplan and Placement

Sensitive Net Routing

Digital Signal Routing

Spacing Adjustments
for Routability

Components Design

DRC Rules

Post Layout Verification

Specification
Satisfied?

Output
GDSII Layout

User Intervention:
Adjust Component

Specifications and/or
Sizing Exit Criteria

Adjust Component
Layout Floorplan

Bounday

Fig. 2: OpenSAR framework design flow.

CDAC
Array

Bootstrap
Sampling Comparator System

Integration

[22] Design NA
–

Standard
Cells

Standard
Cells

NA
–

Layout Template Digital
APR

Digital
APR

Digital
APR

[23] Design NA
– Equation Equation Iterative

Opt.

Layout NA
–

[16] Design NA
–

Layout Template Template Template Script
Routing

[17] Design NA
– Knowledge Library NA

–

Layout Template Template Library Script
Routing

OpenSAR Design Redundancy
Opt.

Bayesian
Opt.

Bayesian
Opt. Manual

Layout Template MAGICAL MAGICAL Automated
P&R

TABLE I: Comparison with prior work.

sizing procedural and further optimizes the system energy efficiency.
Almost all efforts on layout automation of prior work are based on
template-based layouts and script-based routing, restricting the flexi-
bility for device sizing and circuit topology. OpenSAR also considers
yield optimization during the CDAC array design stage by leveraging
bit redundancy. Furthermore, OpenSAR includes top-level floorplan,
where component layouts aspect ratios are automatically adjusted.
The dual-stage top-level automated routing preserves signal integrity
and layout quality while removing manual effort in scripted routing.
OpenSAR is flexible for designers to alter any part of the design
process with custom designs. Different component circuit topologies
can be explored efficiently, and downstream layout placement and
routing can be integrated seamlessly with manually drawn component
layouts.

B. Capacitor Digital-to-Analog Converter Array Generator

The capacitor digital-to-analog converter (CDAC) array layout is
implemented with a template-based layout generation, where the
unit capacitor width, length, and finger number can all be adjusted.
Several prior work [39], [40], [41] go to extremes at dispersing the
placement of capacitors, resulting in high parasitics overhead and
routing complexity.

This work proposes a simpler approach with row and column-
based interleaving for LSB and MSB capacitor dispersion. Figure 3
is an example of the proposed CDAC layout generation. The 7-bit
array design is shown in Fig. 3(a), where non-binary weights are
assigned to different bit indexes. In the shown example, bit R is
the reference unit cap with the bottom plate always connected to
Vcm. The LSB bits from R to 2 are row interleaved, and the MSB
bits from 3 to 6 are column interleaved, as shown in Fig. 3(b).
The two lowest columns interleaved MSBs (3 and 4) consist of a
single column, with 4 equal to the sum of row interleaved LSB
bits. The rest MSBs (5 and 6) must be even multiples of the single
column. The interleave patterns can automatically be generated and
assigned by placing the corresponding contacts in the routing region.
In this way, the generated row and column capacitors are separately
common-centroid and further interleaved to mitigate random process
gradient mismatch effects. The following rules need to be obeyed
when determining the CDAC for bit redundancy design to ensure
layout feasibility,

1) The weights must be non decreasing.
2) The weights of the two lowest row interleaved LSBs (bit R and

0) are 1.
3) The weights of other LSBs must be even.
4) The weight of the lowest column interleaved MSB must not be

larger than the sum of LSBs.
5) The weight of the second-lowest MSB must be exactly equal to

the sum of LSBs.
6) The weights of other MSBs must be even multiples of the sum

of LSBs.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 19,2022 at 02:42:43 UTC from IEEE Xplore. Restrictions apply.

The DAC switches for each bit are also placed and routed beneath
the generated CDAC array. The switch width is automatically deter-
mined through transient simulations, such that the DAC settling time
could be achieved for each cap bit load. Furthermore, the spacing of
the switch can be adjusted. This adjustable width could be further
finetuned in the subsequent system integration step IV-F, such that
during routing, there is enough spacing for pin accessibility.

Bit Index (i)

Bit Weight (w)

Design Variable (d)

R 0 1 2 3 4 5 6

1 1 2 2 4 6 12 121 1 2 2 4 6 12 12

1 1 2 2 4 1 2 21 1 2 2 4 1 2 2

Row Interleaved LSBs Column Interleaved MSBs

Interleave Pattern 1 1 2 2 1 1 2 21 1 2 2 1 1 2 2

Redundancy (r) -- -- 0 2 2 4 4 16-- -- 0 2 2 4 4 16

(a) CDAC design example.

R

0

1

1

2

2

3 4 55 66

R
0
1
2
3
4
5
6

Dummy

Row Interleave LSB

Column Interleave MSB

DAC Switches

Adjustable
Width

Vin

Vrefh

Vrefl

Vcm

Cap
Bits

Row
Interleaved

LSBs

Column
Interleaved

MSBs

(b) CDAC layout example.

Fig. 3: CDAC array automated layout generation.

C. Bit Redundancy Design and Optimization

OpenSAR leverages a redundant non-binary search algorithm [42]
such that mistakes of comparator decisions can be digitally corrected.
This improves the SAR ADC robustness, sampling speed, and toler-
ance to layout mismatch.

The CDAC bit design shown in Fig. 3(a) is an example with
redundancy. The redundancy for bit i is calculated as:

ri = wR +

i−1∑
j=0

wj − wi. (5)

The conventional SAR ADC with binary weighted CDAC array
would have redundancy of 0 for every bit. Assume mismatch in unit
capacitors are independent Gaussian distributions with mean Cu and
standard deviation of σuCu, then the ith bit redundancy ri is the
following Gaussian distribution:

µi = (wR +

i−1∑
j=0

wj − wi) · Cu, (6)

σi = σuCu ·

√√√√w2
R +

i∑
j=0

w2
j . (7)

Thus for the redundancy to able to calibrate an error, ri needs to be
positive. Assuming tolerating ki variance µi − kiσi = 0,

ki =
µi
σi

=
wR +

∑i−1
j=0 wj − wi

σu

√
w2
R +

∑i
j=0 w

2
j

(8)

Based on the above analysis, we formally formulate the bit
redundancy design with the following max-min objective:

max min
i≥2

ki(w). (9)

This objective is to maximize the worst capacitor error tolerance for
any bit. Suppose a target ADC resolution of N bit, with bit 0 to Nr
row interleaved LSBs, bit Nr + 1 to Nr + Nc column interleaved
MSBs, adhering to the layout related rules described in Sec. IV-B:

wi ≤ wi+1, 0 ≤ i ≤ Nr +Nc

wR = w0 = 1

wi = 2di, 1 ≤ i ≤ Nr

w(Nr+1) ≤ wR +

Nr∑
i=0

wi

w(Nr+2) = wR +

Nr∑
i=0

wi

wi = w(Nr+2) · 2di, Nr + 3 ≤ i ≤ Nr +Nc

(10)

Furthermore, the entire design need to cover the N bit requirement,
while not excessive capacitor usage:

2N < wR +

Nr+Nc∑
i=0

wi < 2N + 2Nr (11)

The free design variables are di and need to be integers. Thus the
formulated problem has a non-linear objective with linear integer
constraints, which can be solved with open-sourced (mixed) integer
non-linear programming (MINLP) solvers such as APOPT [43], [44].

D. Analog Circuit Components

The analog circuit components, including bootstrap sampling
switch and comparator, are sized automatically with Bayesian opti-
mization described in Sec. III-A. The designer only needs to input the
circuit topology and simulation testbench. The designer can further
specify when the optimization terminates, such as the maximum num-
ber of simulations or when the design criterion is met. The simulation
objective is usually to minimize power consumption. Performance
constraints of Eq. (1) can be calculated based on equations, such
that the system achieves the desired performance specifications. The
layout is generated by MAGICAL and requires no additional input.
The automatic placement and routing entirely remove any additional
manual efforts. We can add additional constraints to the placement
objective in Eq. (4) to restrict the placement aspect ratio.

1) Bootstrap Sampling Switch: The circuit topology is shown in
Fig. 4(a). Only the sampling switch size M0 need to be adjusted for
different sampling speed and resolution.

2) Strong-arm Latch Comparator: The circuit topology is shown
in Fig. 4(b). All devices are sized automatically to minimize power
consumption. The corresponding performance constraints are input-
referred noise Vnoise and delay td calculated as follows:

Vnoise <
1

4
VLSB =

VDD

4
√

2 · 2N−1
(12)

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 19,2022 at 02:42:43 UTC from IEEE Xplore. Restrictions apply.

VDD

VDDVDD

Vin

Vout
M0

CLKS_B

CLKS_B

CLKS

CLKS

(a) Bootstrap sampling switch.

VDD

CLKC CLKC

CLKC

Vin+ Vin-

Vout+
Vout-

(b) Strong-arm latch.

Fig. 4: Analog circuit components.

td <
1

2FsNcycle
(13)

with VDD the power supply voltage, N bit the targeted resolution,
FS the sampling rate, and Ncycle the number of clock cycles convert
one sample.

E. SAR Digital Logic

The control logic for SAR can be easily synthesized and imple-
mented with digital APR tools. The aspect ratio can be altered with
floorplan scripts. It is also important to plan the pins connecting to
DAC switches carefully to ensure routability in top level routing.

F. System Integration

SAR LOGIC

Comp

CDAC Array (L) CDAC Array (R)

Bootstrap
Sampling (L)

Bootstrap
Sampling (R)

Sensitive Net Routing

(a) Floorplan and sensitive routing.

Adjustable
Width

Digital
Signal

Routing

Router
Blockage

(b) Digital signal routing.

Fig. 5: Top level layout integration

The top-level layout is integrated with automatic floorplan, place-
ment, and routing. The floorplan for SAR architecture is shown in
Fig. 5(a), which allows the critical signal to pass symmetrically
in the center of the layout directly. After generating the CDAC
array layout, other components’ layout floorplan boundaries, such
as bootstrap sampling and SAR logic, can be adjusted accordingly.
We do not manipulate the floorplan of the comparator since it is
found that extreme aspect ratio results in large routing parasitics
and degrades the performance. The building blocks are automatically
placed symmetrically along the center axis according to the floorplan.

The automated routing is performed with the maze router in
MAGICAL in [9]. The pin locations could be calculated based on the

component placement. The pin connections are defined in a separate
file, which only specifies the pin names that need to be connected.
The routing consists of two separate stages. In the first stage, the
sensitive analog nets, including clock signals for sampling, CDAC
bottom-plate connections etc., are routed. The router automatically
recognizes and satisfies net symmetry constraints based on the pin
locations. In the second stage, the digital signal nets connecting SAR
logic to CDAC switches are routed. During this stage, we create a
blockage to the router as shown in Fig. 5(b) so that the strong digital
aggressors would not couple to the sensitive analog nets. The spacing
of DAC switches and component placement can be automatically
adjusted for better pin accessibility and routing congestion.

V. EXPERIMENTAL RESULTS

In this section, we present two prototype designs based on the
OpenSAR framework. Both designs are generated in TSMC 40nm
technology. All experiments are conducted on a Linux workstation
with an 8-core Intel 3.0GHz CPU with 64GB memory. All results
are based on post-layout R+C+CC extraction with Mentor PEX and
spectre simulation with Cadence.

A. SAR ADC Designs

The first design is a 10bit resolution SAR ADC at 100MS/s. The
supply voltage is set to 1.2V so that the SAR logic can function at
maximum speed. The design has 1-bit redundancy. For each sample
conversion, two cycles are used for sampling, with a total of 13 clock
cycles per conversion.

The second design is a 12bit resolution SAR ADC at 1MS/s. Since
it targets a lower speed but high resolution, the supply voltage is
set to 0.7V to lower the power consumption of SAR logic circuits.
The design has 2-bit redundancies for better yield considering its
high resolution. For each sample conversion, two cycles are used for
sampling, with a total of 16 clock cycles per conversion.

Both of the designs are generated from the OpenSAR framework.
The comparator is automatically sized, placed, and routed. During the
sizing, we set the Bayesian optimization to stop after 200 iterations.
Since the bootstrap switch only has one device to size, a simple
variable linear sweep can obtain the sizing; thus, it is performed
manually. The SAR logic is synthesized, placed, and routed with
Cadence tools. The generated SAR ADC layouts are DRC and LVS
clean.

B. Runtime

The runtime for generating the two designs is shown in Table II.
The layout generation time for the DAC switch is included in CDAC
array. The design of the bootstrap switch is a linear sweep done
manually with runtime not counted. It can be observed that the
layout generation process is extremely fast. The majority of the time
for design is spent on spice simulations for sizing the comparator.
Nonetheless, the entire SAR ADC can be generated end-to-end in
about 2 hours.

C. Simulated Performance

The post-layout simulation is conducted with extracted R+C+CC
layout parasitics and transient noise. The obtained simulated spectra
of transient simulations are shown in Fig. 6. It also presents detailed
performance results, including SNDR, SFDR, etc. The spice level
R+C+CC extracted simulations are extremely time-consuming. As a
reference, for the 12bit design, it took more than four weeks to obtain
the 4096-point FFT simulated spectrum.

The simulated power consumption breakdown is shown in Fig. 7.
For the 10bit 100MS/s design, 71.5% of the power is consumed by

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 19,2022 at 02:42:43 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Runtime Breakdown

10bit 12bit
Design Layout Design Layout

DAC Switch 6m33.6s - 7m51.7s -
CDAC Array 6.4s 11.7s 42.0s 39.1s

Bootstrap Switch - 6.9s - 8.4s
Comparator 1h45m47.3s 4.7s 1h52m32.7s 6.1s
SAR Logic 15.5s 2m56.1s 20.8s 2m49.3s

Top Floorplan - 26.2s - 1m4.2s
Top Routing - 1m40.3s - 3m15.6s

Total 1h52m42.8s 4m59.7s 2h1m27.2s 8m2.7s

(a) 10bit 100MS/s design.

(b) 12bit 1MS/s design.

Fig. 6: Simulated spectrum.

SAR logic. The power consumption could be further improved if we
leverage dynamic logic instead of CMOS standard logic; however, we
would then be unable to use digital APR tools. In the 12bit 1MS/s
design, 47.6% of the power is consumed by the comparator. This
demonstrates that OpenSAR is successful at optimizing the system
performance at both ends of the design specifications. For high-speed
designs, timing is more challenging to achieve; thus, digital logic
power would dominate. For high-resolution designs, thermal noise
is the limiting factor; thus, the comparator consumes more power to
tradeoff for less noise.

Overall, the 10bit 100MS/s design achieves an SNDR of 56.3dB,
consuming 754.8µW of power. The 12bit 1MS/s design achieves an
SNDR of 68.8dB consuming 9.6µW . We calculated both the Schreier

and Walden Figure of Merit (FOM):

FOMS = SNDR+ 10log10

fs
2P

(14)

FOMW =
P

fs · 2ENOB
(15)

where SNDR is the signal-to-noise-distortion ratio, fs is the sam-
pling frequency, ENOB is the effective number of bits, and P
is the power consumption. The results are shown in Table III and
compares with prior work on SAR ADC automation. It can be seen
that OpenSAR achieves state-of-the-art results in terms of resolution,
speed, and FOM.

16.8

540

54

144

Bootstrap Sampling SAR Logic CDAC Array Comparator

(a) 10bit 100MS/s design.
0.065

3.38

1.573

4.55

Bootstrap Sampling SAR Logic CDAC Array Comparator

(b) 12bit 1MS/s design.

Fig. 7: Simulated power consumption in µW .

VI. CONCLUSION

In this work, we present OpenSAR, an open source automated
end-to-end SAR ADC compiler. The framework requires only system
specifications as the minimal input, while highly flexible and allows
designers to explore different building block circuit topologies, sizing,
and layout solutions at ease. We leverage recent developments in
analog design automation, automating both the device sizing and
layout generation process. The design of a redundant non-binary
weighted CDAC array is optimized for yield considerations. Post
layout simulations demonstrate that generated prototype designs
achieve state-of-the-art resolution, speed, and energy efficiency.

ACKNOWLEDGEMENT

This work is supported in part by the NSF under Grant
No.1704758, and the DARPA ERI IDEA program.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 19,2022 at 02:42:43 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Performance Comparison with Prior Work on SAR ADC Automation

Huang† [23] Seo† [22] Wulff† [16] Ding† [17] OpenSAR∗

Auto-Design Yes Yes (Digital) No Yes Yes
Auto-Layout No Yes Yes Yes Yes
Resolution 12 10 12 11 9 8 12 10 12

Technology (nm) 180 90 180 28 28 FDSOI 40 40
ENOB 10.1 8.4 10.2 9.1 7.4 7.8 7.6 9.9 9.1 11.1

SNDR (dB) 62.7 52.1 63.3 56.8 46.4 48.8 47.4 61.1 56.3 68.8
BW(MHz) 0.3 25 0.05 25 1 10 16 0.5 50 0.5

FOMS (dB) 152.2 159.7 155.3 164.8 166.8 166.8 156.7 165.8 166.8 176.0
FOMW (fJ/c.step) 500 26.7 265.5 14.1 2.7 3.5 30.7 18.1 10.8 4.3

∗Simulated results with layout R+C+CC parasitic extraction. †Tapeout measurement.

(a) 10bit 100MS/s design. (b) 12bit 1MS/s design.

Fig. 8: OpenSAR generated layouts.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 19,2022 at 02:42:43 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] B. Murmann, “The race for the extra decibel: A brief review of current
adc performance trajectories,” IEEE Solid-State Circuits Magazine, vol. 7,
no. 3, pp. 58–66, 2015.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi et al., “Internet of things:
A survey on enabling technologies, protocols, and applications,” IEEE
Communications Surveys Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[3] W. Lyu, P. Xue, F. Yang et al., “An efficient bayesian optimization ap-
proach for automated optimization of analog circuits,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 65, no. 6, pp. 1954–1967,
2018.

[4] H. Wang, K. Wang, J. Yang et al., “Gcn-rl circuit designer: Transferable
transistor sizing with graph neural networks and reinforcement learning,”
in 2020 57th ACM/IEEE Design Automation Conference (DAC), 2020, pp.
1–6.

[5] J. Crossley, A. Puggelli, H. Le et al., “Bag: A designer-oriented in-
tegrated framework for the development of ams circuit generators,” in
2013 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2013, pp. 74–81.

[6] B. Xu, K. Zhu, M. Liu et al., “Magical: Toward fully automated analog
ic layout leveraging human and machine intelligence: Invited paper,” in
2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2019, pp. 1–8.

[7] K. Kunal, M. Madhusudan, A. K. Sharma et al., “Align – open-source
analog layout automation from the ground up,” in 2019 56th ACM/IEEE
Design Automation Conference (DAC), 2019, pp. 1–4.

[8] K. Zhu, H. Chen, M. Liu et al., “Effective analog/mixed-signal circuit
placement considering system signal flow,” in 2020 IEEE/ACM Interna-
tional Conference On Computer Aided Design (ICCAD), 2020, pp. 1–9.

[9] H. Chen, K. Zhu, M. Liu et al., “Toward silicon-proven detailed routing
for analog and mixed-signal circuits,” in 2020 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), 2020, pp. 1–8.

[10] T. Ansell and M. Saligane, “The missing pieces of open design enable-
ment: A recent history of google efforts,” in 2020 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), 2020, pp. 1–8.

[11] “SkyWater.” [Online]. Available: https://github.com/google/skywater-pdk
[12] M. R. Guthaus, J. E. Stine, S. Ataei et al., “Openram: An open-source

memory compiler,” in 2016 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2016, pp. 1–6.

[13] T. Ajayi, V. A. Chhabria, M. Fogaça et al., “Invited: Toward an open-
source digital flow: First learnings from the openroad project,” in 2019
56th ACM/IEEE Design Automation Conference (DAC), 2019, pp. 1–4.

[14] G. Kumar, B. Chatterjee, and S. Sen, “OpenSerDes: an open source
process-portable all-digital serial link,” in 2021 Design, Automation Test
in Europe Conference Exhibition (DATE), 2021.

[15] T. Ajayi, S. Kamineni, Y. K. Cherivirala et al., “An open-source frame-
work for autonomous soc design with analog block generation,” in 2020
IFIP/IEEE 28th International Conference on Very Large Scale Integration
(VLSI-SOC), 2020, pp. 141–146.

[16] C. Wulff and T. Ytterdal, “A compiled 9-bit 20-ms/s 3.5-fj/conv.step sar
adc in 28-nm fdsoi for bluetooth low energy receivers,” IEEE Journal of
Solid-State Circuits, vol. 52, no. 7, pp. 1915–1926, 2017.

[17] M. Ding, P. Harpe, G. Chen et al., “A hybrid design automation tool for
sar adcs in iot,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 26, no. 12, pp. 2853–2862, 2018.

[18] S. Weaver, B. Hershberg, and U. Moon, “Digitally synthesized stochastic
flash adc using only standard digital cells,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 61, no. 1, pp. 84–91, 2014.

[19] V. Unnikrishnan and M. Vesterbacka, “Time-mode analog-to-digital con-
version using standard cells,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 61, no. 12, pp. 3348–3357, 2014.

[20] S. Li, B. Xu, D. Z. Pan et al., “A 60-fj/step 11-enob vco-based ctdsm
synthesized from digital standard cell library,” in 2019 IEEE Custom
Integrated Circuits Conference (CICC), 2019, pp. 1–4.

[21] P. Harpe, H. Li, and Y. Shen, “Low-power sar adcs: trends, examples
and future,” in ESSCIRC 2019 - IEEE 45th European Solid State Circuits
Conference (ESSCIRC), 2019, pp. 25–28.

[22] M. Seo, Y. Roh, D. Chang et al., “A reusable code-based sar adc design
with cdac compiler and synthesizable analog building blocks,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 12,
pp. 1904–1908, 2018.

[23] C. Huang, J. Lin, Y. Shyu et al., “A systematic design methodology of
asynchronous sar adcs,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 24, no. 5, pp. 1835–1848, 2016.

[24] G. Gielen, H. Walscharts, and W. Sansen, “Analog circuit design optimiza-
tion based on symbolic simulation and simulated annealing,” in ESSCIRC
’89: Proceedings of the 15th European Solid-State Circuits Conference,
1989, pp. 252–255.

[25] M. d. Hershenson, S. P. Boyd, and T. H. Lee, “Optimal design of a cmos
op-amp via geometric programming,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 20, no. 1, pp. 1–21,
2001.

[26] Bo Liu, F. V. Fernandez, and G. Gielen, “Fuzzy selection based differential
evolution algorithm for analog cell sizing capturing imprecise human
intentions,” in IEEE Congress on Evolutionary Computation, 2009, pp.
622–629.

[27] W. Lyu, F. Yang, C. Yan et al., “Multi-objective bayesian optimization
for analog/rf circuit synthesis,” in 2018 55th ACM/ESDA/IEEE Design
Automation Conference (DAC), 2018, pp. 1–6.

[28] S. Zhang, W. Lyu, F. Yang et al., “Bayesian optimization approach for ana-
log circuit synthesis using neural network,” in 2019 Design, Automation
Test in Europe Conference Exhibition (DATE), 2019, pp. 1463–1468.

[29] S. Zhang, F. Yang, D. Zhou et al., “An efficient asynchronous batch
bayesian optimization approach for analog circuit synthesis,” in 2020 57th
ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6.

[30] M. Liu, W. Turner, G. Kokai et al., “Parasitic-aware analog circuit sizing
with graph neural networks and bayesian optimization,” in 2021 Design,
Automation Test in Europe Conference Exhibition (DATE), 2021.

[31] M. Balandat, B. Karrer, D. R. Jiang et al., “BoTorch: A Framework for
Efficient Monte-Carlo Bayesian Optimization,” in Advances in Neural
Information Processing Systems 33, 2020.

[32] S. Han, S. Jeong, C. Kim et al., “Gui-enhanced layout generation of ffe sst
txs for fast high-speed serial link design,” in 2020 57th ACM/IEEE Design
Automation Conference (DAC), 2020, pp. 1–6.

[33] M. Eick, M. Strasser, K. Lu et al., “Comprehensive generation of hierar-
chical placement rules for analog integrated circuits,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 30,
no. 2, pp. 180–193, 2011.

[34] M. Liu, W. Li, K. Zhu et al., “S3DET: Detecting system symmetry
constraints for analog circuits with graph similarity,” in 2020 25th Asia
and South Pacific Design Automation Conference (ASP-DAC), 2020, pp.
193–198.

[35] A. Sharma, M. Madhusudan, S. Burns et al., “Common-centroid layouts
for analog circuits: Advantages and limitations,” in 2021 Design, Automa-
tion Test in Europe Conference Exhibition (DATE), 2021.

[36] H. Chen, M. Liu, X. Tang et al., “Magical 1.0: An open-source fully-
automated ams layout synthesis framework verified with a 40-nm 1GS/s
∆Σ adc,” in 2021 IEEE Custom Integrated Circuits Conference (CICC),
2021.

[37] Y. Zhu, C. Chan, U. Chio et al., “A 10-bit 100-ms/s reference-free sar adc
in 90 nm cmos,” IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp.
1111–1121, 2010.

[38] M. Liu, K. Zhu, X. Tang et al., “Closing the design loop: Bayesian
optimization assisted hierarchical analog layout synthesis,” in 2020 57th
ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6.

[39] C. Lin, J. Lin, Y. Chiu et al., “Common-centroid capacitor placement con-
sidering systematic and random mismatches in analog integrated circuits,”
in 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC),
2011, pp. 528–533.

[40] M. P. Lin, Y. He, V. W. Hsiao et al., “Common-centroid capacitor lay-
out generation considering device matching and parasitic minimization,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 32, no. 7, pp. 991–1002, 2013.

[41] Y. X. Ding, F. Burcea, H. Habal et al., “Pastel: Parasitic matching-
driven placement and routing of capacitor arrays with generalized ratios
in charge-redistribution sar-adcs,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, no. 7, pp. 1372–1385,
2020.

[42] T. Ogawa, H. Kobayashi, M. Hotta et al., “Sar adc algorithm with redun-
dancy,” in APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits
and Systems, 2008, pp. 268–271.

[43] “APOPT.” [Online]. Available: https://apopt.com/
[44] L. Beal, D. Hill, R. Martin et al., “Gekko optimization suite,” Processes,

vol. 6, no. 8, p. 106, 2018.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 19,2022 at 02:42:43 UTC from IEEE Xplore. Restrictions apply.

