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Local Stability and Convergence Analysis of Neural
Network Controllers with Error Integral Inputs

Xingang Fu, Member, IEEE, Shuhui Li, Senior Member, IEEE, Donald C. Wunsch, Fellow, IEEE,
and Eduardo Alonso

Abstract—This paper investigates the local stability and local
convergence of a class of Neural Network (NN) controllers with
error integrals as inputs for reference tracking. It is formally
proved that if the input of the NN controller consists exclusively
of error terms, the control system shows a non-zero steady-
state error for any constant reference except for one specific
point, for both single-layer and multi-layer NN controllers. It
is further proved that adding error integrals to the input of
the (single- and multi-layer) NN controller is one sufficient way
to remove the steady-state error for any constant reference.
Due to the nonlinearity of the NN controllers, the NN control
systems are linearized at the equilibrium points. We provide
proof that if all the eigenvalues of the linearized NN control
system have negative real parts, local asymptotic stability and
local exponential convergence are guaranteed. Two case studies
were explored to verify the theoretical results: a single-layer NN
controller in a one-dimensional system and a four-layer NN con-
troller in a two-dimensional system applied to renewable energy
integration. Simulations demonstrate that when NN controllers
and the corresponding Generalized Proportional-Integral (PI)
controllers have the same eigenvalues, all control systems exhibit
almost the same responses in a small neighborhood of their
respective equilibrium points.

Index Terms—Neural Network Controller, Error Integral,
Steady-State Error, Local Asymptotic Stability, Local Exponen-
tial Convergence, Generalized PI controller.

I. INTRODUCTION

RRECENTLY, Dynamic Programming (DP) [1] has been
used extensively in the study of optimal control of

nonlinear systems [2], [3], [4]. As one type of Approxi-
mate Dynamic Programming (ADP), Adaptive Critic Designs
(ACD) have been adopted to approximate the optimal cost
and the optimal control of a system [5], [6], [7], [2]. In [8],
[9], a Neural Network (NN) was trained based on the ADP
principle to control a three-phase Inductor (L) filter-based
Grid-Connected Converter (GCC) system. An ADP-based NN
controller of Inductor-Capacitor-Inductor (LCL) filter-based
three-phase [10] and single-phase [11] GCC systems was
also demonstrated to be able to yield an excellent perfor-
mance compared to conventional Proportional-Integral (PI)
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controllers. In [10], a Recurrent Neural Network (RNN) vec-
tor controller shows a wider stability region for the system
parameter change than Active Damping (AD) or Passive
Damping (PD) vector controllers in LCL-based GCC systems.
[12] implemented a NN vector controller with error integral
inputs in a Permanent-Magnet Synchronous Motor (PMSM) to
overcome the decoupling inaccuracy problem associated with
conventional PI-based vector-control methods.

Even though NN controllers have a huge potential, they are
considered as a black-box technique [13] and their theoretical
foundations are missing. When NNs are applied to real-world
problems, many issues arise concerning their stability and
convergence properties. The stability problem, in particular,
is critical in neural control systems [14], [15]. If the system is
unstable, it can cause serious damage and financial loss. This is
the main concern that curbs the application of NN controllers
in real-life systems by control engineers and electric engineers.
In addition, how to guarantee that the training of an NN will
converge, and towards which direction training will be more
effective and faster are still unsolved problems [16]. A formal
analysis of such issues, as the one demonstrated in this paper,
is thus much needed.

This research specifically intends to study the local stability
and local convergence of NN controllers with error integral
terms. The specific contributions of the paper are as follows:
1) proving that adding an error integral to the inputs of the
NN controller is sufficient to remove the steady-state error of
the NN controller for any constant reference; 2) establishing
the condition for NN controllers to guarantee local asymptotic
stability and local exponential convergence, which is that all
eigenvalues of the NN control systems should have negative
real parts; 3) revealing that NN controllers and generalized PI
controllers that share the same eigenvalues generate almost the
same responses in a small enough domain of their respective
equilibrium points; and 4) performing case studies of a one-
dimensional single-layer NN controller and a two-dimensional
four-layer NN controller applied in renewable energy integra-
tion that verify the theoretical results experimentally.

The rest of the paper is structured as follows: Section II
analyses mathematically the local stability and local conver-
gence of the single-layer NN controller of two structures,
one with only error terms and another with error terms
and error integral terms. Likewise, the local stability and
local convergence of multi-layer NN controllers with only
error terms and with error terms and error integral terms
are investigated formally in Section III. A case study for a
one-dimensional single-layer NN controller is demonstrated in
Section IV to verify experimentally the conclusions of Section
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II. Section V investigates a four-layer NN controller in a two-
dimensional system applied to electric power applications to
validate the theoretical conclusions of Section III. Finally, the
paper concludes with summary remarks in Section VI.

II. SINGLE-LAYER NN CONTROLLERS

In this section, the conditions for the local stability and
local convergence of single-layer NN controllers are formally
proved.

A. State-Space Model

Consider the following time-invariant state-space model

ẋ = Ax+Bu (1)

where x is the system state vector with x ∈ Rn, ẋ denotes the
derivative of the state vector x with respect to time t, u stands
for the input or control vector with u ∈ Rm, and A and B
are the state or system matrix and input matrix, respectively,
with A ∈ Rn×n 6= 0 and B ∈ Rn×m 6= 0.

B. NN Controllers with Only Error Term Inputs

If a single-layer NN controller has only the error term e as
input, the control vector u can be expressed as

u = ka tanh(wpe+ b) (2)

where wp represents the weight matrix for error terms with
wp ∈ Rm×n, b is the bias vector of the NN controller with
b ∈ Rm, the constant scalar ka stands for an actuator gain
with ka ∈ R, and the error e is defined as

e = xref − x (3)

with xref (∈ Rn) representing the reference for the system
state x and e ∈ Rn.

According to the definition of the error term e in (3), the
following two equations hold.

x = xref − e (4)
ė = −ẋ (5)

We can now substitute (2), (4), and (5) into (1), and rewrite
(1) into the closed-loop system with tracking error e as the
system state, as follows:

ė = f(e) = A(e− xref )− kaB tanh(wpe+ b) (6)

Theorem 1. For a neural dynamic system (6), e = 0 is not
an equilibrium point except when xref = − 1

ka
A−1B tanh(b).

The system will have a non-zero steady-state error for any
constant reference except for xref = − 1

ka
A−1B tanh(b).

Proof: The equilibrium point of (6) is the root of the
function f(e). If we substitute e = 0 into (6), the function
f(e) equals

f(e) = −Axref − kaB tanh(b) 6= 0. (7)

Only when xref = − 1
ka
A−1B tanh(b), f(e) = 0. Thus, e = 0

is not an equilibrium point of system (6) except for one specific
reference point.

We denote e∗ to represent the root of f(e), which satisfies
the following equation

f(e∗) = A(e∗ − xref )− kaB tanh(wpe
∗ + b) = 0 (8)

Thus e∗ is the equilibrium point of (6) and e∗ 6= 0, which also
means that the system has a non-zero steady-state error.

Lemma 1. For the Linear Time-Invariant system

ẋ = Gx (9)

where x ∈ Rn, constant system matrix G ∈ Rn×n, if all
eigenvalues of G have negative real parts, the equilibrium
point x = 0 is globally asymptotically stable, and globally
exponential convergence is also guaranteed.

Proof: The analytical solution of (9) for a given initial
state x(0) has the following form

x(t) = exp(Gt)x(0) (10)

where exp represents the base of the natural logarithm. For
any system matrix G, there exists r distinct eigenvalues λ1,
λ2,· · · ,λr with algebraic multiplicity of n1, n2,· · · ,nr and n1+
n2 + · · ·+ nr = n. Thus (10) can be further expressed as

x(t) =

r∑
i=1

ni∑
j=1

cijt
j−1eλit (11)

where constant vector cij ∈ Rn, and can be determined by the
initial state x(0) and the corresponding eigenvectors of each
eigenvalue.

When all eigenvalues have negative real parts, that is
Re(λi) < 0, lim

t→∞
x(t) = 0, which means that the equilibrium

point x = 0 is globally asymptotically stable and also globally
exponentially convergent ([17], [18], [19], [20]).

Theorem 2. For a neural dynamic system (6), local asymptotic
stability and local exponential convergence are guaranteed if
the weight matrix wp and bias vector b of the NN controller
satisfy the following condition

Re
{
eig
(
A−kaBwp diag(1−tanh2(wpe∗ + b))

)}
< 0 (12)

where eig denotes the eigenvalue operator, Re stands for the
real part, diag represents the diagonal matrix operator, and
e∗ is the equilibrium point of (6).

Proof: The equilibrium point of (6) can be shifted from
e∗ to 0 by defining a new variable en

en = e− e∗ (13)

and thus
ėn = ė (14)

If we substitute (13) and (14) into (6), the new system equation
will be

ėn=f(en) =A(en+e
∗−xref )−kaB tanh(wp(en+e

∗)+b) (15)

For (15), the equilibrium point of the system is en = 0.
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The right-hand side of (15) are nonlinear functions. Under
the definition of Lyapunov stability [18], we can use the first-
order derivative to linearize the system at en = 0 and obtain
the following set of linear equations

ėn = (
∂f

∂en
|en=0)en = Gen (16)

where the system matrix G equals

G = A− kaBwp diag(1− tanh2(wpe
∗ + b)) (17)

According to Lemma 1, as long as all the eigenvalues of G
have negative real parts, that is Re {eig (G)} < 0, the system’s
global asymptotic stability and global exponential convergence
are guaranteed. However, as the system (16) is linearized at
the equilibrium point, only the local asymptotic stability and
local exponential convergence can be guaranteed.

Remark 1. In (12), the reference xref does not exist explicitly.
However, the equilibrium point e∗ are the roots of (6). When
all system parameters (A, B, ka) and the NN weight wp
and bias b are kept unchanged, e∗ depends on xref . So the
eigenvalues of system matrix G are implicit functions of xref
and thus the reference xref affects the stability of the system.

Corollary 2.1. Consider a generalized Proportional (P) con-
troller u = kaKpe with the constant proportional gain matrix
Kp and Kp ∈ Rm×n, which can be regarded as a special case
of the single-layer NN controller with a linear identity function
as the activation function and no bias. Thus the steady-state
error e(∞) and the equilibrium point e∗ are

e(∞) = e∗ = (A− kaBKp)
−1Axref (18)

and the corresponding global stability condition is

Re {eig (A− kaBKp)} < 0 (19)

The reference xref is not contained in (19) and thus does not
affect the system stability.

C. NN Controllers with Error Integral Inputs

Consider a single-layer NN controller having error e and
error integral s as inputs. The control vector u is expressed as

u = ka tanh(wpe+ wis+ b) (20)

where the error integral s is defined as

s =

∫ t

0

e(τ)dτ (21)

with s ∈ Rn and wi represents the weight matrix for error
integral terms with wi ∈ Rm×n.

If we substitute (4), (5), and (20) into (1), the system
equation will be simplified as

ė = A(e− xref )− kaB tanh(wpe+ wis+ b) (22)

From the definition of error integral s in (21), the following
equation can be derived

ṡ = e (23)

Thus combining (22) and (23), a new augmented state-space
model can be obtained{
ė = f1(e, s)=A(e−xref)−kaB tanh(wpe+wis+b)
ṡ = f2(e, s)=e

(24)

Through this conversion, the original n-dimension NN control
system (22) is converted into a 2n-dimensional system (24).

Remark 2. This conversion is not an equivalent transformation.
From (21), (23) can be derived. However, from (23), (21) is not
the only solution. In general, many solutions can be obtained
from (23) and the general solution is

s =

∫ t

0

e(τ)dτ + C (25)

where C is one constant vector C ∈ Rn.

Theorem 3. For a neural dynamic system (24), e = 0 is an
equilibrium point and the system does not have a steady-state
error for any constant reference xref .

Proof: The equilibrium point of (24) are the roots of the
right side function, that is{
f1(e, s) = A(e− xref )−kaB tanh(wpe+wis+b)=0
f2(e, s) = e=0

(26)

From the second equation of (26), e must be 0. Thus the
equilibrium point will be (0, s∗), where s∗ satisfies

Axref + kaB tanh(wis
∗ + b) = 0 (27)

The equilibrium point of (24) is (0, s∗), which means that
the system error e converges to 0 whereas the error integral
s converges to s∗ when the time goes to infinity. When there
is an error integral term s feeding into the input of the NN
controller, it is guaranteed that there is no steady-state error
in the system.

Theorem 4. For a neural dynamic system (24), local asymp-
totic stability and local exponential convergence are guaran-
teed if the weight matrices wp and wi of the NN controller
satisfy the following condition

Re

{
eig

([
G11 G12

I 0

])}
< 0 (28)

where G11 and G12 equal

G11 = A− kaBwp diag(1− tanh2(wis
∗ + b)) (29)

G12 = −kaBwi diag(1− tanh2(wis
∗ + b)) (30)

and s∗ is is the equilibrium point of (24).

Proof: The equilibrium point of (24) can be shifted from
[0; s∗] to [0; 0] using the following conversion:{

e = e
sn = s− s∗ (31)

Substituting (31) into (24), the new augmented system equa-
tion will be{

ė=f1(e, sn)=A(e−xref )−kaBtanh[wpe+wi(sn+s
∗)+b]

ṡn=f2(e, sn)=e
(32)
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Under the definition of Lyapunov stability [18] and linearizing
(32) at the equilibrium point [0, 0], the system equation will
become [

ė
ṡn

]
=

[
G11 G12

G21 G22

][
e
sn

]
(33)

where G11, G12, G21, and G22 are defined as

G11 =
∂f1(e, sn)

∂e
|e=0,sn=0

= A− kaBwp diag(1− tanh2(wis
∗ + b)) (34)

G12 =
∂f1(e, sn)

∂sn
|e=0,sn=0

= −kaBwi diag(1− tanh2(wis
∗ + b)) (35)

G21 =
∂f2(e, sn)

∂e
|e=0,sn=0 = I (36)

G22 =
∂f2(e, sn)

∂sn
|e=0,sn=0 = 0 (37)

As G11, G12, G21, and G22 are all constants, according to
Lemma 1, if the NN weights wp and wi satisfy the following
condition,

Re

{
eig

([
G11 G12

I 0

])}
< 0 (38)

the system’s global asymptotic stability and global exponential
convergence are guaranteed. However, as the system (33) is
linearized at the equilibrium point, only the local asymptotic
stability and local exponential convergence can be guaranteed.

Remark 3. Although the bias vector b of NNs is not contained
in (29) and (30), b affects the location of s∗ from (27) and
thus affects the convergence region of the equilibrium point.

Corollary 4.1. Consider a generalized PI controller u =
ka(Kpe+Kis), where Kp and Ki are the constant matrices
representing the proportional gains and the integral gains,
respectively, and Kp,Ki ∈ Rm×n. This generalized PI con-
troller can be regarded as a special case of the single-layer
NN controller with a linear identity function as the activation
function and no bias. Thus the equilibrium point of the system
is (0, s∗) and s∗ equals

s∗ = − 1

ka
(BKi)

−1Axref (39)

To guarantee global stability and exponential convergence, the
following condition needs to be satisfied

Re

{
eig
([

A− kaBKp −kaBKi

I 0

])}
< 0 (40)

The reference xref will not affect the stability and convergence
of the control system.

Remark 4. For a single-layer NN controller with only error
terms (2) or with error terms and error integral terms (20),
the reference xref will appear in the condition equations (8)
and (27) explicitly or inexplicitly, and thus will affect the
system stability. Hence, the weights and bias vector of the
NN controller together with the reference will determine the
local stability and the local convergence of the system.

III. MULTI-LAYER NN CONTROLLERS

In this section, a multi-layer NN controller with a more
generic function format that expands the single-layer NN
controller in Section II is studied theoretically.

A. NN Controllers with Only Error Term Inputs

If a multi-layer NN controller has only the error term e as
input, we use R(e) to represent the NN controller and the
control vector u can be expressed as

u = R(e) (41)

where R(e) can be any continuous and continuously differen-
tiable functions of e, that is R(e) ∈ C1[Rn, Rm].

If we substitute (4), (5), and (41) into (1), we can rewrite
(1) into the following equation

ė = f(e) = A(e− xref )−BR(e) (42)

Theorem 5. For a neural dynamic system (42), e = 0 is not an
equilibrium point except when xref = −A−1BR(0). Such a
system will have a non-zero steady-state error for any constant
reference except for xref = −A−1BR(0).

Proof: The equilibrium point of (42) is the root of the
function f(e). If we substitute e = 0 into (6), the function
f(e) equals

f(e) = −Axref −BR(0) 6= 0 (43)

The only exception is when xref = −A−1BR(0). Thus, e = 0
is not an equilibrium point of the system (42).

Denote e∗ to represent the root, the following equation will
be satisfied

f(e∗) = A(e∗ − xref )−BR(e∗) = 0 (44)

Thus e∗ is the equilibrium point of (42) and e∗ 6= 0, which
also means that the system has a non-zero steady-state error.

Theorem 6. For a neural dynamic system (42), local asymp-
totic stability and local exponential convergence are guaran-
teed if the weight matrix and bias vector of the NN satisfy the
following condition

Re

{
eig

(
A−B∂R(e)

∂e
|e=e∗

)}
< 0 (45)

where e∗ is the equilibrium point of (42).

Proof: Define en = e−e∗ and shift the equilibrium point
of (42) from e∗ to 0. The new system equation will be

ėn = f(en) = A(en + e∗ − xref )−BR(en + e∗) (46)

The right-hand side of (46) is a nonlinear function. Under
the definition of Lyapunov stability [18], we use the first-order
derivative to linearize the system at en = 0 and obtain the
following set of linear equations

ėn = (
∂f

∂en
|en=0)en = Gen (47)



5

where the system matrix G is defined as

G = A−B∂R(en + e∗)

∂en
|en=0 = A−B∂R(e)

∂e
|e=e∗ (48)

According to Lemma 1, as long as all the eigenvalues of G
have negative real parts, that is Re {eig (G)} < 0, the system’s
global asymptotic stability and global exponential convergence
are guaranteed. However, as the system (47) is linearized at
the equilibrium point, only the local asymptotic stability and
local exponential convergence can be guaranteed.
Remark 5. In (45), xref does not exist explicitly. However,
e∗ is the roots of (44) and depends on xref . So, the system
matrix G and its eigenvalues are implicit functions of xref
and thus the reference xref affects the stability of the system.

B. NN Controllers with Error Integral Inputs

For a multi-layer NN controller containing error term e and
error integral s as the inputs, we use R(e, s) to represent the
NN controller and the control vector u can be expressed as

u = R(e, s) (49)

where R(e) can be any continuous and continuously differen-
tiable functions of e and s, that is R(e, s) ∈ C1[Rn×Rn, Rm].

Substituting (4), (5), and (49) into (1), the system equation
can be simplified as

ė = A(e− xref )−BR(e, s) (50)

From the definition of error integral s in (21), the following
equation can be derived

ṡ = e (51)

Thus combining (50) and (51), a new augmented state-space
model can be obtained{

ė = f1(e, s) = A(e− xref )−BR(e, s)
ṡ = f2(e, s) = e

(52)

Through this conversion, the original n-dimension neu-
ral network control system (50) is converted into a 2n-
dimensional system (52).

Theorem 7. For a neural dynamic system (52), e = 0 is an
equilibrium point and the system does not have a steady-state
error for any constant reference xref .

Proof: The equilibrium point of (52) is the roots of the
right side function, that is{

f1(e, s) = A(e− xref )−BR(e, s) = 0
f2(e, s) = e = 0

(53)

To satisfy the second equation of (53), e must be 0. Thus
the equilibrium point will be (0, s∗), where s∗ satisfies

Axref +BR(0, s∗) = 0 (54)

The equilibrium point of (53) is (0, s∗), which means that
the system error e converges to 0 while the error integral s
converges to s∗ when the time goes to infinity. When there
is an error integral term s feeding into the input of the NN
controllers, it is guaranteed that there is no steady-state error
in the system.

Theorem 8. For a neural dynamic system (52), local asymp-
totic stability and local exponential convergence are guaran-
teed if the weight matrix and bias vector of the NN satisfy the
following condition

Re

{
eig

([
G11 G12

I 0

])}
< 0 (55)

where G11 and G12 equal

G11 = A−B∂R(e, s)
∂e

|e=0,s=s∗ (56)

G12 = −B∂R(e, s)
∂s

|e=0,s=s∗ (57)

Proof: The equilibrium point of (52) can be shifted from
(0, s∗) to (0, 0) using the following conversion:{

e = e
sn = s− s∗ (58)

Substituting (58) into (52), the new system equation will be{
ė = f1(e, sn) = A(e− xref )−BR(e, sn + s∗)
ṡn = f2(e, sn) = e

(59)

Under the definition of Lyapunov stability [18] and linearizing
(59) at the equilibrium point (0, 0), the system equation will
become [

ė
ṡn

]
=

[
G11 G12

G21 G22

][
e
sn

]
(60)

in which, G11, G12, G21, and G22 are defined as

G11 =
∂f1(e, sn)

∂e
|e=0,sn=0 = A−B∂R(e, s)

∂e
|e=0,s=s∗ (61)

G12 =
∂f1(e, sn)

∂sn
|e=0,sn=0 = −B∂R(e, s)

∂s
|e=0,s=s∗ (62)

G21 =
∂f2(e, sn)

∂e
|e=0,sn=0 = I (63)

G22 =
∂f2(e, sn)

∂sn
|e=0,sn=0 = 0 (64)

As G11, G12, G21, and G22 are all constants, according
to Lemma 1, if the NN weights and bias vector satisfy the
following condition,

Re

{
eig

([
G11 G12

I 0

])}
< 0 (65)

the system’s global asymptotic stability and global exponential
convergence are guaranteed. However, as the system (60) is
linearized at the equilibrium point, only the local asymptotic
stability and local exponential convergence can be guaranteed.

Remark 6. In (60), xref does not exit explicitly. However, s∗

is the equilibrium point of (52) depending on xref . So, the
system matrices G11, G12, G21, and G22 and eigenvalues are
implicit functions of xref and thus the reference xref affects
the stability of the system.

Remark 7. Similar to the conclusion in Remark 4, the weights
and the bias vector of the multi-layer NN controller, together
with the reference, will affect the local stability of the system
and thus the local convergence at the equilibrium point.
Therefore, to guarantee the stable operation of the system,
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theweightsandthebiasvectoroftheNNcontrollerneedto
satisfythestabilityrequirement(45)or(55)forallpossible
references.

IV.CASESTUDYI:ONE-DIMENSIONALSINGLE-LAYER
NNCONTROLLERS

Inthissection,asingle-layer NNcontrollerinaone-
dimensionalstate-spacemodelisimplementedtoverifythe
theoremsinSectionIInumerically.Theperformance,under
thesameconditions,ofaconventionalone-dimensionalPI
controllerisalsoreportedtoshowthatthestabilityandcon-
vergencepropertiesofthesingle-layerNNcontrollerproved
inSectionIIandexperimentallytestedinthissectionare
comparabletoaconventionalone-dimensionalPIcontroller
inasmallneighborhoodoftheirrespectiveequilibriumpoints.
Thus,engineershavereassurancesoftheformalpropertiesof
theNNcontrollers,whicharenotblackboxesanymore,anda
practicalwayofcheckingtheirperformanceagainstubiquitous
PIcontrollers.

Consideraone-dimensionalsystemof(1)withA=2,B=
0.5,andka=5.

A.Single-LayerNNControllerswithOnlyErrorTermInputs

Asingle-layerNNcontrollercontainsonlyanerrorterm
inputandthecontrolactioncanbeexpressedas

u=katanh(wpe)=5tanh(wpe) (66)

Withoutlossofgenerality,thebiasbisselectedas0.

AccordingtoTheorem1,thesystemhasasteady-stateerror
e(∞)=e∗forastepreferencexref=1,wheree

∗istheroot
ofthefollowingequation

f(e∗)=A(e∗−xref)−kaBtanh(wpe
∗+b)

=2(e∗−1)−5×0.5tanh(wpe
∗+0)=0 (67)

Toguaranteelocalasymptoticstabilityandlocalexponential
convergence,theNNweightwpneedstosatisfythecondition
specifiedinTheorem2.Sinceweareworkingwithaone-
dimensionalsystem,theconditioncanbesimplifiedfurther
as

λ=A−kaBwpdiag(1−tanh
2(wpe

∗+b))

=2−5×0.5wp[1−tanh
2(wpe

∗+0)]<0 (68)

Combining(67)and(68),therangeofweightwpcanbe
obtained.Fig.1showstherangeofwpforastepreference
xref=1. Whenwp=9.8,λ=−0.507424234870289<0,
whichsatisfiesthestabilitycondition.

ASimulinkmodelasshowninFig.2wasbuilttoverifythe
trackingperformanceandthesteady-stateerrore(∞).Fig.3
showsthetrackingerrorwhentheNNweightwp=9.8for
astepreference.AswecanseeinFig.3,whent=20s,
e(20s) =−0.184308205223854,whichisprettycloseto
e(∞)=e∗=−0.184308971562349withe∗astherootof
(67)whenwp=9.8
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Fig.1. Theeigenvalueλvs.theNNweightwpforastepreferencexref=
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controller.

Fig.3. Thetrackingerroreforastepreferencexref=1whenwp=9.8.

B.AddingErrorIntegralInputstoRemoveTheSteady-State
Error

Toremovethesteady-stateerror,weconsideraddingthe
errorintegralinputtothesingle-layerNNcontrollerasfollows

u=katanh(wpe+wis)=5tanh(9.8e+wis) (69)

AccordingtoTheorem3and(27),theequilibriumpointof
thesystemis[0;s∗].Ifwiisselectedas1,thens

∗ =
−1.098612288668110.
TheeigenvaluesoftheNNcontrolsystemaccordingto

Theorem4areλ1 = −6.685377840799436andλ2 =
−0.134622159200560,whichsatisfytherequirementsoflocal
asymptoticstabilityandlocalexponentialconvergence.
ASimulinkmodelasshowninFig.4wasbuilttoverify

thetrackingperformanceoftheNNcontrollerafteraddingthe
errorintegralterm.
Fig.5showstheequilibriumpointoftheone-dimensional

single-layerNNcontrolsystem. Whent=100s,e(100s)=
−0.000000214389590, whichisprettyclosetothetheo-
reticalequilibriumpointe(∞) = 0. Also,s(100s) =
−1.098610696140083,whichisalsoveryclosetotheoretical
equilibriumpoints(∞)=s∗=−1.098612288668110.
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Fig.4. TheSimulinkmodelforaone-dimensionalsingle-layerNNcontroller
andthecorrespondingconventionalone-dimensionalPIcontroller.

Fig.5. Theequilibriumpointoftheone-dimensionalsingle-layerNNcontrol
system.

C.Corresponding Conventional One-dimensionalPI Con-
troller

Thecorrespondingone-dimensionalPIcontrollerwasadded
totheSimulinkmodelinFig.4.Toguaranteethatthedesigned
one-dimensionalPIcontrollerhasthesameeigenvaluesasthe
single-layerNNcontroller,wecompare(40)and(28)-(30)in
Theorem4,thussetKpandKias

Kp=wpdiag(1−tanh
2(wis

∗+b))=9.8×0.36 (70)

Ki=widiag(1−tanh
2(wis

∗+b))=1×0.36 (71)

wheres∗istheequilibriumpointoftheNNcontrolsystem
ands∗=−1.098612288668110.

D.StepResponseComparisonwithinASmallNeighborhood
ofEquilibriumPoints

Toinvestigatetheresponsesofone-dimensionalsingle-layer
NNandconventionalone-dimensionalPIcontrollerswithin
aneighborhoodoftheirrespectiveequilibriumpoints,initial
valueswereaddedtothesystemstatexandtheerrorintegral
s.Ase=0istheequilibriumpointofbothcontrollers,xwas
setasx(0s)=0.95forbothcontrolsystems,whichmeans
e(0s)=1−0.95=0.05.Accordingto(39),theequilibrium
points∗forthePIcontrolleris

s∗=−
1

ka
(BKi)

−1Axref

=−
1

5
×(0.5×0.36)−1×2×1

=−2.222222222222222 (72)

So the starting points of the error integral s
for the one-dimensional single-layer NN and
conventional one-dimensional controllers were set
as s(0s) = −1.098612288668110 + 0.05 and
s(0s)=−2.222222222222222+0.05,respectively.
Fig.6demonstratesthestepresponseforxref=1
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under
bothone-dimensionalsingle-layerNNandconventionalone-
dimensionalPIcontrollerswithstartingpointsfromaneigh-
borhoodoftheirrespectiveequilibriumpoints.Theirresponses
arealmostthesame,whichisexpectedandcanbeexplained
bythefactthatbothcontrolsystemshaveexactlythesame
twoeigenvalues.

Fig.6. Stepresponsecomparisonwithinasmallneighborhoodoftheir
respectiveequilibriumpoints.

V. CASESTUDYII:TWO-DIMENSIONALFOUR-LAYER
NNCONTROLLERSINELECTRICPOWERAPPLICATIONS

Inthissection,afour-layer NNcontrollerinatwo-
dimensionalstate-spacemodelforrenewableenergyintegra-
tionwiththeelectricpowergridisinvestigatedtotestthe
proofsinSectionIIInumerically.Further,weaddasimulation
ofthecorrespondinggeneralizedPIcontrollerandsingle-
layerNNcontrollertoshowthattheconvergenceandstability
propertiesprovedinSectionIIIarenot merelyvalid,but
thatallthreecontrolsystems withthesameeigenvalues
areguaranteedtoperformalmostthesamewithinasmall
neighborhoodoftheirrespectiveequilibriumpoints.

A. Grid-ConnectedConverter

AGrid-ConnectedConverter(GCC)isakeycomponent
thatphysicallyconnectsrenewableenergyresourcessuchas
windturbinesandsolarpanelstothegrid[21],[22],[23],
[24],[25].Fig.7showstheschematicofanLfilter-based
GCC,inwhichaDC-linkcapacitorisontheleft,andathree-
phasevoltagesource,representingthevoltageatthePointof
CommonCoupling(PCC)oftheACsystem,isontheright.
Inthed-qreferenceframe,thestate-spacemodelofthe

integratedGCCandgridsystem([26])canbeexpressedas

d

dt

id
iq
=
−
Rg
Lg

ωs

−ωs −
Rg
Lg

A

id
iq

idq

+
−1
Lg

0

0 −1
Lg

B

Vd1−Vd
Vq1−Vq

udq

(73)

whereωsistheangularfrequencyofthegridvoltage,and
LgandRgrepresenttheinductanceandresistanceofthegrid
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Fig.7. AGrid-ConnectedConverterforrenewableenergyintegration.

filterrespectively,thesystemstatesareidq=[id;iq],thegrid
PCCvoltagesVdq=[Vd;Vq]arenormallyconstants,Vdq1=
[Vd1;Vq1]aretheconverteroutputvoltagesthatarespecified
bythecurrentcontrolleroutputs,andthecontrolvectoris
udq=Vdq1−Vdq.

TableIspecifiesallsystemparametersinalabexperiment
setup[27].UsingtheparametersfromTableI,Vdq=[Vg;0]=
[20;0]andkpwm= 3/2Vdc2 =30.618621784789724.

TABLEI
THELFILTERBASEDGCCSYSTEMPARAMETERS

Symbol Description Value Unit

Vg testgridvoltage(rms) 20 V

f nominalgridfrequency 60 Hz

ωs nominalgridangularfrequency 120π rad

Vdc DC-linkvoltage 50 V

Lg theinductanceofthegridfilter 25 mH

Rg theresistanceofthegridfilter 0.25 Ω

B.Four-LayerNNController

AstheratiooftheconverteroutputvoltageVdq1tothe
outputsofthecurrentcontrolleristhegainofthePulse-Width-
Modulation(PWM)kpwm[28],thecontrolactionudqisthen
expressedby

udq=R(edq,sdq)=Vdq1−Vdq=kpwmN(edq,sdq,w)−Vdq

tanhtanh

tanhtanh

tanhtanh

tanhtanh

tanhtanh

tanhtanh

tanhtanh

tanhtanh

tanhtanh

tanhtanh

tanhtanh

tanhtanh

tanhtanh

tanhtanh

tanhtanh

tanhtanh

tanhtanh

tanhtanh

l

sd

sq

ed

eq

1/Gain1/Gainee

PreprocessPreprocess//Input Input 

1/Gain1/Gainee

1/Gain1/Gainss

1/Gain1/Gainss

(74)

Thestructureofthefour-layerNNcontroller([10],[11])is
showninFig.8.Thefunctionformatofthefour-layerNN

Fig.8. Thestructureofthefour-layerNNcontroller.

controllercanberepresentedas

N(edq,sdq,w)=

tanh




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
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


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
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
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
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
















(75)

wherew1,w2,andw3representtheweightsfromtheinput
layertothefirsthiddenlayer,fromthefirsttothesecondhid-
denlayerandfromthesecondhiddenlayertotheoutputlayer
respectively.Thebiasesofeachlayerhavebeenincorporated
intow1,w2,andw3tosimplifytheweightupdatingprocess.
Thefour-layerNNcontrollerwastrainedbytheLMBP[29],

[30],[31]andtheFATTalgorithm[32].Forthefour-layerNN
controller,itsweightparametersGaine,Gains,w1,w2,and
w3arelistedinTableII.
Theequilibriumpointofthesystemis(0,s∗dq).According

toTheorem7and(54),s∗dqsatisfiesthefollowingfunction

−
Rg
Lg

ωs

−ωs−
Rg
Lg

A

idqref+
−1
Lg

0

0 −1
Lg

B

[kpwmN0,s
∗
dq,w−Vdq]=0

(76)
Accordingto(56)and(57)inTheorem8,G11andG12can

becalculatedas

G11=A−B
∂R(edq,sdq)

∂edq
|edq=0,sdq=s∗dq

=A−kpwmB
∂N(edq,sdq,w)

∂edq
|edq=0,sdq=s∗dq (77)

G12=−B
∂R(edq,sdq)

∂sdq
|edq=0,sdq=s∗dq

=−kpwmB
∂N(edq,sdq,w)

∂sdq
|edq=0,sdq=s∗dq (78)

ThedetailsofcalculatingG11andG12arelistedinAppendix
A.
Giventhecurrentreferenceidqref=[1;0],thecorrespond-

ingfoureigenvaluescanbecalculatedandarelistedinTable
III.

C.CorrespondingGeneralizedPIController

AgeneralizedPIcontrollerwasdesignedtohavethesame
foureigenvaluesasthoseofthefour-layerNNcontrollerfor
comparison.TableIIIliststhetargetfoureigenvaluesforthe
generalizedPIcontroller.
ToguaranteethedesignedgeneralizedPIcontrollertohave

thesameeigenvaluesasthefour-layerNNcontroller,we
compare(40)and(77)and(78),thussetKpandKias

Kp=
∂N(edq,sdq,w)

∂edq
|edq=0,sdq=s∗dq (79)

Ki=
∂N(edq,sdq,w)

∂sdq
|edq=0,sdq=s∗dq (80)

TableIVliststhevaluesofKpandKi.Unliketheconven-
tionalone-dimensionalPIcontrollerwithascalarproportional
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TABLE II
THE WEIGHT PARAMETERS OF THE FOUR-LAYER NN CONTROLLER

Gaine 0.5

Gains 0.5

w1



0.105118602490750 −0.869195807768507 3.910726574451215 3.829650558215191 0.043137396666237

0.805253127771219 0.116082719739100 5.081202415079452 −1.666910901747036 1.246185328567662

0.142117134906564 0.272375503071100 4.040974596086221 2.048223953909149 0.145066179115310

−0.395272323007882−1.422986921530577 4.255131423501219 5.561432608781822 0.000251202007245

−0.277224746255928 0.699935881635053 1.636989905274748 2.678881970530615 −0.109536124233592

0.376127545234790 1.285716734931245 −2.973060687194107 8.095548964772654 0.028991336931277



w2



1.440539114493213 −0.272530718390058 0.527886890221929 1.371222680616433 2.255139286184510 1.394844625523901 0.344937425499452

3.378981724654836 0.198608148623109 3.459270721071458 −1.9110270294298070.224751908404989−1.002210347176314−0.475383054734012

−0.359022430219653 1.217655164464906 3.145578151429633 1.863120732645271 3.708974043074285−0.096082441939513 1.566135015097376

4.031099888420788 −2.685187585928909−2.749868864734965 2.748659888667571 2.439552173754654 5.660170953027147 0.925728746264457

−0.622152942608992 0.732064874764135 4.212370496471141 −4.0812165587839561.547382976445135−6.456534076312040−0.817547511050558

1.522500050952956 −1.036035004009775 1.703072013081991 0.534432723278869 0.630762934216796 1.093038633050528 0.074249030990423


w3

[
−1.711155394435648 −0.447196877031189 −2.614508912856286 −5.956955188009836 0.958589844957509 1.641209174573893 −2.440547421725287

1.317977684822903 1.038607717509133 2.191677954355899 −0.515283801531746 0.973061014722440 3.038069686362197 −1.386654203297988

]

TABLE III
EIGENVALUES

Control method λ

Four-layer NN -802.233078413318 +1100.64099842807i -802.233078413318 - 1100.64099842807i -147.10811464909 + 54.0774179743671i -147.10811464909 - 54.0774179743671i

Single-layer NN -802.233078413318 +1100.64099842807i -802.233078413318 - 1100.64099842807i -147.10811464909 + 54.0774179743671i -147.10811464909 - 54.0774179743671i

Generalized PI -802.233078413318 +1100.64099842807i -802.233078413318 - 1100.64099842807i -147.10811464909 + 54.0774179743671i -147.10811464909 - 54.0774179743671i

gain and a scalar integral gain, the generalized PI controller
shown in Table IV has cross-coupling terms and are in a
more generalized gain matrix format, which has better and
stronger performance than the conventional one-dimensional
PI controller.

TABLE IV
THE PARAMETERS OF THE CORRESPONDING GENERALIZED PI

CONTROLLER

Kp

[
−0.344022164281883 0.727142679990575

−0.754209007295918 −1.18991558063817

]

Ki

[
−2.3221654488264 196.559123343741

−153.905082611539 −54.8126346765554

]

D. Corresponding Single-layer NN Controller

For the single-layer NN controller design, the bias vector
b was selected as zeros to simplify the design process. We
compare (40) and (29) - (30), and thus weights wp and wi
can be calculated from the following two equations

wp diag(1− tanh2(wis
∗ + b)) =Kp (81)

wi diag(1− tanh2(wis
∗ + b)) =Ki (82)

where s∗ is the equilibrium point of the single-layer NN
controller system, and tanh(wis

∗ + b) can be obtained from
(27) as

tanh(wis
∗ + b) =

1

kpwm
B−1Aidq ref (83)

since the B of the GCC system is one 2× 2 square matrix.

Thus weights wp and wi equal

wp = [diag(1− (
1

kpwm
B−1Aidq ref )

2)]−1Kp (84)

wi = [diag(1− (
1

kpwm
B−1Aidq ref )

2)]−1Ki (85)

Table V lists the values of wp and wi for the single-layer
NN controller.

TABLE V
THE PARAMETERS OF THE CORRESPONDING SINGLE-LAYER NN

CONTROLLER

wp

[
−0.589146302572011 0.803249086937196

−1.291601222678247 −1.314458124906575

]

wi

[
−3.97676466861468 217.131988947592

−263.566187826589 −60.5496004678695

]

E. Equilibrium Point Comparison

A Simulink model as shown in Fig. 9 was built to simulate
all three controllers.

TABLE VI
THE EQUILIBRIUM POINTS

Control method e∗dq s∗dq

Four-layer NN 0 0 0.000570367398365 0.000995539550846
Single-layer NN 0 0 0.000827793898875 0.003291399362787
Generalized PI 0 0 0.000394111939873 0.003538453922689

Table VI lists the equilibrium points for all three control
methods. As all three control methods have the error integral
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Fig.9. TheSimulinkmodelforthreecontrollerswiththesamefoureigenvalues:four-layerNNcontroller,single-layerNNcontroller,andgeneralizedPI
controller.

inputs,theequilibriumpointsfortheedqareallzeros,which
meansthatthesteady-stateerroredq(∞)=0.Fortheerror
integralsdq,theyallconvergetotheirrespectiveequilibrium
pointsaseachcontrolmethodhasdifferentweightsorparam-
eters.
Fig.10showsthetrackingerroredqofthefour-layerNN

controllerforastepresponseidqref=[1;0].Attimet=
0.1s,edq=[−1.886e−7;6.882e−08]
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Fig.10. Thetrackingerroredqofthefour-layerNNcontrollerforstep
responseidqref=[1;0].

Fig.11showsthetrackingerrorintegralsdqofthefour-layer
NNcontrollerforastepresponseofidqref=[1;0].Attime
t=0.1s,sdq=[0.000570368236706;0.000995538938232],
whichhas8significantbitsthesameastheequilibriumpoint
[0.000570367398365;0.000995539550846]inTableVI.

F.StepResponseComparisonwithinASmallNeighborhood
ofEquilibriumPoints

Toevaluateandcomparethesteady-statebehaviorsofall
threecontrolmethodsclosetotheirequilibriumpointss∗dq,
insteadofstartingfromsdq(0s)=[0;0]
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Fig.11. Theerrorintegralsdqofthefour-layerNNcontrollerforstep
responseidqref=[1;0].

sdqweresetassdq(0s)=s
∗
dq−[0.001;0].Thestartingpoints

ofsdqarelistedinTableVII.

TABLEVII
STARTINGPOINTSOFsdq

Controlmethod sdq(0s)=s
∗
dq−[0.001;0]

Four-layerNN0.000570367398365-0.0010.000995539550846

Single-layerNN0.000827793898875-0.0010.003291399362787

GeneralizedPI0.000394111939873-0.0010.003538453922689

Fig.12showsthestepresponsesunderthiscondition,which
arealmostthesamewithinasmallneighborhoodoftheir
equilibriumpoints,andverifythefactthattheyallhavethe
samefoureigenvalues.

Thus,itisexpectedthatwhenthesizeoftheneighborhood
aroundtheequilibriumpointsissmallenough,allthreecontrol
methodswilldemonstrateidenticalresponsesbecausetheyall
havethesamefoureigenvalues.
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Fig.12. Stepresponsecomparisonwithstartingpointsfromaneighborhood
oftheirrespectiveequilibriumpointss∗dq.

VI.CONCLUSION

Thispaper(SectionsIIandIII)mathematicallyprovesthat
if(single-andmulti-)NNcontrollersonlyhaveerrorterms
asinputs,thecorrespondingcontrolsystemshowsanon-zero
steady-stateerrorforanyconstantreference,exceptforone
specificreferencepoint,andthataddinganerrorintegralterm
totheinputsoftheNNcontrollerissufficienttoeliminatethe
steady-stateerrorforanyconstantreference.

Moreimportantly,weprovideasimplewayofusingeigen-
valuesoftheNNcontrolsystemtoevaluatelocalstability
andlocalconvergenceforreferencetracking.TheNNcon-
trollershavealmostthesameresponsesasthecorresponding
generalizedPIcontrollerswiththesameeigenvaluesinasmall
neighborhoodoftheirrespectiveequilibriumpoints,asshown
experimentallyinSectionsIVandV.

Wetrustthattheformalanalysisoftheconditionsunder
whichthestabilityandconvergencepropertiesofNNcon-
trollersareguaranteed,alongwiththeaccompanyingconfir-
matoryempiricalresultswillhelpengineersunderstandthe
functioningofNNcontrollersandpavethewayfortheir
applicationsinreal-lifescenarios.

Weplantocarryoutatheoreticalcomparisonofthe
responsesbetweenNNcontrollersandcorrespondingPIcon-
trollersglobally,thatiswithstartingpointsanywherefaraway
fromtheirequilibriumpoints,inournextwork.Wealsoplan
toincludetheerrorderivativetermsintheNNcontrollerand
investigatetheirimpactonthecontrolsysteminthefuture.

APPENDIXA
DERIVATIONOFG11ANDG12FORTHEFOUR-LAYERNN

CONTROLLER

Tosimplifythederivationprocess,defineoe,os,o1,o2,and
o3asfollows:

oe=tanh(edq/Gaine)|edq=0=tanh([0;0]/Gaine) (86)

os=tanh(sdq/Gains)|sdq=s∗dq=tanh(s
∗
dq/Gains) (87)

o1=tanh(w1[oe;os;−1]) (88)

o2=tanh(w2[o1;−1]) (89)

o3=N(edq,sdq,w)=tanh(w3[o2;−1]) (90)

Then

∂N(edq,sdq,w)

∂edq
|edq=0,sdq=s∗dq=

∂o3
∂o2

∂o2
∂o1

∂o1
∂oe

∂oe
∂edq
|edq=0,sdq=s∗dq

=[diag(1−o23)w3(:,1:6)][diag(1−o
2
2)w2(:,1:6)]

∗[diag(1−o21)w1(:,1:2)][diag((1−o
2
e)/Gaine)](91)

∂N(edq,sdq,w)

∂sdq
|edq=0,sdq=s∗dq=

∂o3
∂o2

∂o2
∂o1

∂o1
∂os

∂os
∂sdq
|edq=0,sdq=s∗dq

=[diag(1−o23)w3(:,1:6)][diag(1−o
2
2)w2(:,1:6)]

∗[diag(1−o21)w1(:,3:4)][diag((1−o
2
s)/Gains)](92)

Substitute(91)and(92)into(77)and(78).ThusG11andG12
canbeobtained.

APPENDIXB
THELISTOFSYMBOLS

TableVIIIsummarizesthesymbolsutilizedinthispaper.

TABLEVIII
THELISTOFSYMBOLSANDTHEIRDESCRIPTIONS.

Symbols Description

A thestateorsystemmatrixinthestate-spacemodel;
A∈Rn×n

B theinput matrixinthestate-space model;B ∈
Rn×m

G thelineartime-invariantsystemmatrix;G∈Rn×n

x,xref thesystemstatesandthereferencesforsystemstates
x;x,xref∈R

n

e thetrackingerror;e∈Rn

s thetrackingerrorintegral;s∈Rn

e∗ theequilibriumpointofthestateerrore

s∗ theequilibriumpointofthestateerrorintegrals

u theinput/controlvectorinthestate-spacemodel;u∈
Rm

idq,idqref thed-qcurrentsandthereferencesford-qcurrents

edq thetrackingerrorinthed-qdomain

sdq thetrackingerrorintegralinthed-qdomain

e∗dq theequilibriumpointofthestateerroredq

s∗dq theequilibriumpointofthestateerrorintegralsdq

udq thecontrolactioninthed-qdomain

ka theactuatorgain;ka∈R

kpwm thegainofthePulse-Width-Modulation

wp,wi,b weightsforerrortermsanderrorintegralterms,and
thebiasofthesingle-layerNNcontroller;wp,wi∈
Rm×nandb∈Rm

R(e) thefunctionrepresentationofmulti-layerNNcon-
trollerswithonlyerrorterms;R(e)∈C1[Rn,Rm]

R(e,s) thefunctionrepresentationofmulti-layerNNcon-
trollerswitherrortermsanderrorintegralterms;
R(e,s)∈C1[Rn×Rn,Rm]

N(edq,sdq,w) thefunctionrepresentationofthefour-layer NN
controller

w1,w2,w3 weightsofthefour-layerNNcontroller

Gaine,Gains scalingfactorsforerrortermsanderrorintegral
termsintheinputlayerofthefour-layerNNcon-
troller

Kp,Ki proportionalandintegralgainsofthegeneralizedPI
controller
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