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Abstract—This paper investigates the local stability and local
convergence of a class of Neural Network (NN) controllers with
error integrals as inputs for reference tracking. It is formally
proved that if the input of the NN controller consists exclusively
of error terms, the control system shows a non-zero steady-
state error for any constant reference except for one specific
point, for both single-layer and multi-layer NN controllers. It
is further proved that adding error integrals to the input of
the (single- and multi-layer) NN controller is one sufficient way
to remove the steady-state error for any constant reference.
Due to the nonlinearity of the NN controllers, the NN control
systems are linearized at the equilibrium points. We provide
proof that if all the eigenvalues of the linearized NN control
system have negative real parts, local asymptotic stability and
local exponential convergence are guaranteed. Two case studies
were explored to verify the theoretical results: a single-layer NN
controller in a one-dimensional system and a four-layer NN con-
troller in a two-dimensional system applied to renewable energy
integration. Simulations demonstrate that when NN controllers
and the corresponding Generalized Proportional-Integral (PI)
controllers have the same eigenvalues, all control systems exhibit
almost the same responses in a small neighborhood of their
respective equilibrium points.

Index Terms—Neural Network Controller, Error Integral,
Steady-State Error, Local Asymptotic Stability, Local Exponen-
tial Convergence, Generalized PI controller.

I. INTRODUCTION

RECENTLY, Dynamic Programming (DP) [1] has been

used extensively in the study of optimal control of
nonlinear systems [2], [3], [4]. As one type of Approxi-
mate Dynamic Programming (ADP), Adaptive Critic Designs
(ACD) have been adopted to approximate the optimal cost
and the optimal control of a system [5], [6], [7], [2]. In [8],
[9], a Neural Network (NN) was trained based on the ADP
principle to control a three-phase Inductor (L) filter-based
Grid-Connected Converter (GCC) system. An ADP-based NN
controller of Inductor-Capacitor-Inductor (LCL) filter-based
three-phase [10] and single-phase [11] GCC systems was
also demonstrated to be able to yield an excellent perfor-
mance compared to conventional Proportional-Integral (PI)
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controllers. In [10], a Recurrent Neural Network (RNN) vec-
tor controller shows a wider stability region for the system
parameter change than Active Damping (AD) or Passive
Damping (PD) vector controllers in LCL-based GCC systems.
[12] implemented a NN vector controller with error integral
inputs in a Permanent-Magnet Synchronous Motor (PMSM) to
overcome the decoupling inaccuracy problem associated with
conventional PI-based vector-control methods.

Even though NN controllers have a huge potential, they are
considered as a black-box technique [13] and their theoretical
foundations are missing. When NN are applied to real-world
problems, many issues arise concerning their stability and
convergence properties. The stability problem, in particular,
is critical in neural control systems [14], [15]. If the system is
unstable, it can cause serious damage and financial loss. This is
the main concern that curbs the application of NN controllers
in real-life systems by control engineers and electric engineers.
In addition, how to guarantee that the training of an NN will
converge, and towards which direction training will be more
effective and faster are still unsolved problems [16]. A formal
analysis of such issues, as the one demonstrated in this paper,
is thus much needed.

This research specifically intends to study the local stability
and local convergence of NN controllers with error integral
terms. The specific contributions of the paper are as follows:
1) proving that adding an error integral to the inputs of the
NN controller is sufficient to remove the steady-state error of
the NN controller for any constant reference; 2) establishing
the condition for NN controllers to guarantee local asymptotic
stability and local exponential convergence, which is that all
eigenvalues of the NN control systems should have negative
real parts; 3) revealing that NN controllers and generalized PI
controllers that share the same eigenvalues generate almost the
same responses in a small enough domain of their respective
equilibrium points; and 4) performing case studies of a one-
dimensional single-layer NN controller and a two-dimensional
four-layer NN controller applied in renewable energy integra-
tion that verify the theoretical results experimentally.

The rest of the paper is structured as follows: Section II
analyses mathematically the local stability and local conver-
gence of the single-layer NN controller of two structures,
one with only error terms and another with error terms
and error integral terms. Likewise, the local stability and
local convergence of multi-layer NN controllers with only
error terms and with error terms and error integral terms
are investigated formally in Section III. A case study for a
one-dimensional single-layer NN controller is demonstrated in
Section IV to verify experimentally the conclusions of Section



IL. Section V investigates a four-layer NN controller in a two-
dimensional system applied to electric power applications to
validate the theoretical conclusions of Section III. Finally, the
paper concludes with summary remarks in Section VI.

II. SINGLE-LAYER NN CONTROLLERS

In this section, the conditions for the local stability and
local convergence of single-layer NN controllers are formally
proved.

A. State-Space Model

Consider the following time-invariant state-space model

&= Az + Bu (1)

where x is the system state vector with x € R", & denotes the
derivative of the state vector x with respect to time ¢, u stands
for the input or control vector with u € R™, and A and B
are the state or system matrix and input matrix, respectively,
with A € R"*™ £ 0 and B € R™*™ # 0.

B. NN Controllers with Only Error Term Inputs

If a single-layer NN controller has only the error term e as
input, the control vector u can be expressed as

u = kq tanh(wpe + b) (2)

where w,, represents the weight matrix for error terms with
wp € R™*™, b is the bias vector of the NN controller with
b € R™, the constant scalar k, stands for an actuator gain
with k, € R, and the error ¢ is defined as

3)

with z,.r (€ R™) representing the reference for the system
state x and e € R".

According to the definition of the error term e in (3), the
following two equations hold.

€= Tpef — T

“4)
(5)
We can now substitute (2), (4), and (5) into (1), and rewrite

(1) into the closed-loop system with tracking error e as the
system state, as follows:

é = f(e) = A(e — ref) — ko B tanh(wpe + b)

T = Tpef — €

ée=—2

(6)

Theorem 1. For a neural dynamic system (6), e = 0 is not
an equilibrium point except when X,y = —iA_lB tanh(b).
The system will have a non-zero steady-state error for any
constant reference except for Tye; = —éA_lB tanh(b).

Proof: The equilibrium point of (6) is the root of the
function f(e). If we substitute e = 0 into (6), the function

f(e) equals
fle) = —Azx,ef — ko Btanh(b) # 0. 7

Only when z,.; = — ;- A~ Btanh(b), f(e) = 0. Thus, e = 0
is not an equilibrium point of system (6) except for one specific
reference point.

We denote e* to represent the root of f(e), which satisfies
the following equation

fle*) = A(e* — zpes) — ko Btanh(wpe® +0) =0 (8)

Thus e* is the equilibrium point of (6) and e* # 0, which also
means that the system has a non-zero steady-state error. M

Lemma 1. For the Linear Time-Invariant system

=Gz 9
where x € R", constant system matrix G € R"*", if all
eigenvalues of G have negative real parts, the equilibrium
point x = 0 is globally asymptotically stable, and globally
exponential convergence is also guaranteed.

Proof: The analytical solution of (9) for a given initial
state 2(0) has the following form

x(t) = exp(Gt)x(0) (10)

where exp represents the base of the natural logarithm. For
any system matrix G, there exists 7 distinct eigenvalues Aq,
Ao, - -, A\ with algebraic multiplicity of ny, na,- - - ,n,. and ni+
ng + - -+ 4+ n, = n. Thus (10) can be further expressed as

x(t) = XT: i cigti tetit

i=1 j=1

(1)

where constant vector ¢;; € ™, and can be determined by the
initial state 2:(0) and the corresponding eigenvectors of each
eigenvalue.

When all eigenvalues have negative real parts, that is
Re();) <0, tl_i)m x(t) = 0, which means that the equilibrium
point x = 0 is glogbally asymptotically stable and also globally
exponentially convergent ([17], [18], [19], [20]). |

Theorem 2. For a neural dynamic system (6), local asymptotic
stability and local exponential convergence are guaranteed if
the weight matrix w, and bias vector b of the NN controller
satisfy the following condition

Re {eig (A—kanp diag(l—tanhz(wpe* + b))) } <0 12

where eig denotes the eigenvalue operator, Re stands for the
real part, diag represents the diagonal matrix operator, and
e* is the equilibrium point of (6).

Proof: The equilibrium point of (6) can be shifted from

e* to 0 by defining a new variable e,
13)

e, =¢€e—e¢e"

and thus
(14)

e, =€

If we substitute (13) and (14) into (6), the new system equation
will be

€n=f(en) =A(ente* —Tyef)—+kaB tanh(w, (e, +e* Hb) (15)

For (15), the equilibrium point of the system is e,, = 0.



The right-hand side of (15) are nonlinear functions. Under
the definition of Lyapunov stability [18], we can use the first-
order derivative to linearize the system at e,, = 0 and obtain
the following set of linear equations

€n = (%|en:0)en = Ge, (16)
where the system matrix G equals
G = A — k,Bw, diag(1 — tanh®(wpe* + b)) (17

According to Lemma 1, as long as all the eigenvalues of G
have negative real parts, that is Re {eig (G)} < 0, the system’s
global asymptotic stability and global exponential convergence
are guaranteed. However, as the system (16) is linearized at
the equilibrium point, only the local asymptotic stability and
local exponential convergence can be guaranteed.

|

Remark 1. In (12), the reference x,..y does not exist explicitly.
However, the equilibrium point e* are the roots of (6). When
all system parameters (A, B, k,) and the NN weight w,
and bias b are kept unchanged, e* depends on x,.s. So the
eigenvalues of system matrix G are implicit functions of ¢
and thus the reference x,.s affects the stability of the system.

Corollary 2.1. Consider a generalized Proportional (P) con-
troller u = ko K, e with the constant proportional gain matrix
K, and K, € R™*™, which can be regarded as a special case
of the single-layer NN controller with a linear identity function
as the activation function and no bias. Thus the steady-state
error e(o0) and the equilibrium point e* are

e(00) = e* = (A — k,BK,) ' Ax,.; (18)
and the corresponding global stability condition is
Re{eig (A — k,BK,)} <0 (19)

The reference x,.y is not contained in (19) and thus does not
affect the system stability.

C. NN Controllers with Error Integral Inputs

Consider a single-layer NN controller having error e and
error integral s as inputs. The control vector u is expressed as

u = kg tanh(wpe + w;s + b) (20)
where the error integral s is defined as
t
s = / e(r)dr (1)
0

with s € R"™ and w; represents the weight matrix for error
integral terms with w; € R™*™,
If we substitute (4), (5), and (20) into (1), the system

equation will be simplified as
é = A(e — xyes) — ko B tanh(wpe + w;s + b) (22)

From the definition of error integral s in (21), the following
equation can be derived

(23)

Thus combining (22) and (23), a new augmented state-space
model can be obtained

{é = fi(e,s)=A(e—xyef) — ko B tanh(wpe+w;s+b)

$ = fa(e,s)=e 24

Through this conversion, the original n-dimension NN control
system (22) is converted into a 2n-dimensional system (24).

Remark 2. This conversion is not an equivalent transformation.
From (21), (23) can be derived. However, from (23), (21) is not
the only solution. In general, many solutions can be obtained
from (23) and the general solution is

t
s=/ e(t)dr +C (25)
0

where C is one constant vector C' € R".

Theorem 3. For a neural dynamic system (24), e = 0 is an
equilibrium point and the system does not have a steady-state
error for any constant reference Ty.f.

Proof: The equilibrium point of (24) are the roots of the
right side function, that is
fi(e,s) = A(e — zyep) — ko B tanh(wpe+w;s+b) =0
(26)
fale,s) = e=0
From the second equation of (26), e must be 0. Thus the
equilibrium point will be (0, s*), where s* satisfies

Axyer + ko Btanh(w;s* +b) =0 27

The equilibrium point of (24) is (0, s*), which means that
the system error e converges to 0 whereas the error integral
s converges to s* when the time goes to infinity. When there
is an error integral term s feeding into the input of the NN
controller, it is guaranteed that there is no steady-state error
in the system. [ ]

Theorem 4. For a neural dynamic system (24), local asymp-
totic stability and local exponential convergence are guaran-
teed if the weight matrices w, and w; of the NN controller
satisfy the following condition

Re {eig ([ GI“ G012 D} <0 (28)
where G171 and G2 equal
G11 = A — k,Buw, diag(1 — tanh®(w;s* + b)) (29)
G12 = —koBw; diag(1 — tanhQ(wis* +0)) (30)
and s* is is the equilibrium point of (24).

Proof: The equilibrium point of (24) can be shifted from
[0; s*] to [0; O] using the following conversion:

e = e
Sy, = 8—8*

Substituting (31) into (24), the new augmented system equa-
tion will be
é=f1(e, sp)=A(e—ycf) — ko Btanh[wpe+w; (s, +s*)+b]
Sn=fa(e, sn)=¢€

3D

(32)



Under the definition of Lyapunov stability [18] and linearizing
(32) at the equilibrium point [0, 0], the system equation will

become ) o o
€ _ 11 12 €
Ll-la allel e
where G111, G12, Ga21, and Gy are defined as
dfi(e, s,
Gu = %k:o,s":o
= A — k,Bw, diag(1 — tanh®(w;s* + b)) (34)
dfi(e, sn
G2 = %k:o,sn:o
= —k,Bw; diag(1 — tanh?(w;s* + b)) (35)
dfa(e, sn
Ga1 = %k:ms":o =1 (36)
dfa(e, s,
Goo = %k:o,sn:o =0 37

As G11, G192, G21, and Goo are all constants, according to
Lemma 1, if the NN weights w,, and w; satisfy the following
G G2

condition,
Re{eig([ I 0 }>}<0

the system’s global asymptotic stability and global exponential
convergence are guaranteed. However, as the system (33) is
linearized at the equilibrium point, only the local asymptotic
stability and local exponential convergence can be guaranteed.

|

(38)

Remark 3. Although the bias vector b of NN is not contained
in (29) and (30), b affects the location of s* from (27) and
thus affects the convergence region of the equilibrium point.

Corollary 4.1. Consider a generalized PI controller u =
ko(Kpe + K;s), where K, and K; are the constant matrices
representing the proportional gains and the integral gains,
respectively, and K,, K; € R™*". This generalized PI con-
troller can be regarded as a special case of the single-layer
NN controller with a linear identity function as the activation
function and no bias. Thus the equilibrium point of the system
is (0, s*) and s* equals

1

s (BK;) " Azyey (39)

a

To guarantee global stability and exponential convergence, the
following condition needs to be satisfied

Re{eig<[A—kIaBKp —kaoBMD}<O (40)

The reference .y will not affect the stability and convergence
of the control system.

Remark 4. For a single-layer NN controller with only error
terms (2) or with error terms and error integral terms (20),
the reference z,.y will appear in the condition equations (8)
and (27) explicitly or inexplicitly, and thus will affect the
system stability. Hence, the weights and bias vector of the
NN controller together with the reference will determine the
local stability and the local convergence of the system.

III. MULTI-LAYER NN CONTROLLERS

In this section, a multi-layer NN controller with a more
generic function format that expands the single-layer NN
controller in Section II is studied theoretically.

A. NN Controllers with Only Error Term Inputs

If a multi-layer NN controller has only the error term e as
input, we use R(e) to represent the NN controller and the
control vector u can be expressed as

u = R(e) 41)

where R(e) can be any continuous and continuously differen-
tiable functions of e, that is R(e) € C*[R™, R™].

If we substitute (4), (5), and (41) into (1), we can rewrite
(1) into the following equation

é= f(e) = A(e — zref) — BR(e) (42)

Theorem 5. For a neural dynamic system (42), e = 0 is not an
equilibrium point except when x,.; = —A~BR(0). Such a
system will have a non-zero steady-state error for any constant
reference except for x,.y = —A7*BR(0).

Proof: The equilibrium point of (42) is the root of the
function f(e). If we substitute e = 0 into (6), the function

f(e) equals

f(e) = —Az,e; — BR(0) # 0 (43)

The only exception is when z,.; = —A~'BR(0). Thus, e = 0
is not an equilibrium point of the system (42).

Denote e* to represent the root, the following equation will
be satisfied

f(e*) = A(e" —zpey) — BR(e*) =0 (44)

Thus e* is the equilibrium point of (42) and e* # 0, which
also means that the system has a non-zero steady-state error.
|

Theorem 6. For a neural dynamic system (42), local asymp-
totic stability and local exponential convergence are guaran-
teed if the weight matrix and bias vector of the NN satisfy the
following condition

Re {eig (A - Ba};((;) :) } <0

where e* is the equilibrium point of (42).

(45)

Proof: Define e,, = e—e* and shift the equilibrium point
of (42) from e* to 0. The new system equation will be

€n = f(en) = A(en +e" — xref) - BR(en + e*) (46)

The right-hand side of (46) is a nonlinear function. Under
the definition of Lyapunov stability [18], we use the first-order
derivative to linearize the system at e,, = 0 and obtain the
following set of linear equations

of

e =50 @7)

|en:0)en = Gen



where the system matrix G is defined as
OR(en +€*) OR(e) |
Oen, de '
According to Lemma 1, as long as all the eigenvalues of G
have negative real parts, that is Re {eig (G)} < 0, the system’s
global asymptotic stability and global exponential convergence
are guaranteed. However, as the system (47) is linearized at
the equilibrium point, only the local asymptotic stability and
local exponential convergence can be guaranteed. [ |

G=A-B le.—o=A—B (48)

Remark 5. In (45), x,.y does not exist explicitly. However,
e* is the roots of (44) and depends on x,.f. So, the system
matrix G' and its eigenvalues are implicit functions of .y
and thus the reference x,.s affects the stability of the system.

B. NN Controllers with Error Integral Inputs

For a multi-layer NN controller containing error term e and
error integral s as the inputs, we use R(e, s) to represent the
NN controller and the control vector u can be expressed as

u = R(e, s) (49)

where R(e) can be any continuous and continuously differen-
tiable functions of e and s, that is R(e, s) € C*[R"x R™, R™].

Substituting (4), (5), and (49) into (1), the system equation
can be simplified as

é=A(e—xref) — BR(e, s) (50)

From the definition of error integral s in (21), the following
equation can be derived

61y

s=e¢e

Thus combining (50) and (51), a new augmented state-space
model can be obtained

¢ = file,s) =Ale —zyef) — BR(e, s)
$ = fale,s)=e

Through this conversion, the original n-dimension neu-
ral network control system (50) is converted into a 2n-
dimensional system (52).

(52)

Theorem 7. For a neural dynamic system (52), e = 0 is an
equilibrium point and the system does not have a steady-state
error for any constant reference T,.f.

Proof: The equilibrium point of (52) is the roots of the
right side function, that is

{ fi(e,s) A(e — 2ref) — BR(e,s) =0

fale,s) = e=0 (53)
To satisfy the second equation of (53), e must be 0. Thus
the equilibrium point will be (0, s*), where s* satisfies

Azyes + BR(0,5%) = 0 (54)

The equilibrium point of (53) is (0, s*), which means that
the system error e converges to 0 while the error integral s
converges to s* when the time goes to infinity. When there
is an error integral term s feeding into the input of the NN
controllers, it is guaranteed that there is no steady-state error
in the system. ]

Theorem 8. For a neural dynamic system (52), local asymp-
totic stability and local exponential convergence are guaran-
teed if the weight matrix and bias vector of the NN satisfy the
following condition

- G G2

Re{e1g<[ I 0 }>}<0 (55)
where G171 and G123 equal

JR(e, s

an=a-20D) . (56)
e
G =B (57
s

Proof: The equilibrium point of (52) can be shifted from
(0, s*) to (0, 0) using the following conversion:

e = e
S, = S§—5*

Substituting (58) into (52), the new system equation will be

é:fl(easn) = A(efxref) 7BR(6,SH+S*)
Sn = fale,sn) = e

(58)

(59)

Under the definition of Lyapunov stability [18] and linearizing
(59) at the equilibrium point (0, 0), the system equation will

become ) o o
e | 11 12 e
|: 5'n :| n |: G21 G22 :||: Sn :| (60)
in which, G11, G12, G21, and Gog are defined as
dfi(e, s, OR(e, s
Gll = ME:O,S,L:O = A_Bykzo,s:s* (6])
Oe Oe
0f1(e, sn) OR(e, s)
G = ————"|e=0,5,=0 = ~B——F—"|c=0,5=s" 62
12 D5, le=0,5,=0 95 |e=o, (62)
dfa(e, sp
G = B0y o1 (63)
e
dfa(e, sn
Gap = fza(e )| g0 =0 (64)
Sn

As G11, Gi2, Go1, and Gag are all constants, according
to Lemma 1, if the NN weights and bias vector satisfy the

following condition,
: Gi1 Gio
Re {elg <[ I 0 <0
the system’s global asymptotic stability and global exponential
convergence are guaranteed. However, as the system (60) is
linearized at the equilibrium point, only the local asymptotic
stability and local exponential convergence can be guaranteed.
|

Remark 6. In (60), x,.; does not exit explicitly. However, s*
is the equilibrium point of (52) depending on %,.f. So, the
system matrices G111, G12, G21, and G2 and eigenvalues are
implicit functions of x,.s; and thus the reference z,.s affects
the stability of the system.

(65)

Remark 7. Similar to the conclusion in Remark 4, the weights
and the bias vector of the multi-layer NN controller, together
with the reference, will affect the local stability of the system
and thus the local convergence at the equilibrium point.
Therefore, to guarantee the stable operation of the system,



the weights and the bias vector of the NN controller need to
satisfy the stability requirement (45) or (55) for all possible
references.

IV. CASE STUDY I : ONE-DIMENSIONAL SINGLE-LAYER
NN CONTROLLERS

In this section, a single-layer NN controller in a one-
dimensional state-space model is implemented to verify the
theorems in Section II numerically. The performance, under
the same conditions, of a conventional one-dimensional PI
controller is also reported to show that the stability and con-
vergence properties of the single-layer NN controller proved
in Section II and experimentally tested in this section are
comparable to a conventional one-dimensional PI controller
in a small neighborhood of their respective equilibrium points.
Thus, engineers have reassurances of the formal properties of
the NN controllers, which are not black boxes anymore, and a
practical way of checking their performance against ubiquitous
PI controllers.

Consider a one-dimensional system of (1) with A =2, B =
0.5, and k, = 5.

A. Single-Layer NN Controllers with Only Error Term Inputs

A single-layer NN controller contains only an error term
input and the control action can be expressed as
u = kg tanh(wpe) = 5 tanh(wpe) (66)
Without loss of generality, the bias b is selected as 0.
According to Theorem 1, the system has a steady-state error
e(oo) = e* for a step reference z,.; = 1, where e is the root
of the following equation

f(e") =A(e" — zref) — ko B tanh(wpe® + b)
=2(e* — 1) — 5 x 0.5 tanh(wpe* +0) =0  (67)
To guarantee local asymptotic stability and local exponential
convergence, the NN weight wy, needs to satisfy the condition
specified in Theorem 2. Since we are working with a one-
dimensional system, the condition can be simplified further
as

A = A — k,Bw, diag(1 — tanh®(wpe* + b))

=2 — 5 x 0.5wp[1 — tanh®(wpe* +0)] <0 (68)

Combining (67) and (68), the range of weight w, can be
obtained. Fig.1 shows the range of w, for a step reference
Tref = 1. When wp = 9.8, A = —0.507424234870289 < 0,
which satisfies the stability condition.

A Simulink model as shown in Fig.2 was built to verify the
tracking performance and the steady-state error e(oo). Fig.3
shows the tracking error when the NN weight w, = 9.8 for
a step reference. As we can see in Fig.3, when t = 20s,
e(20s) = —0.184308205223854, which is pretty close to
e(o0) = e* = —0.184308971562349 with e* as the root of
(67) when wp, = 9.8.

o 1
wpo 9.8
~< Kt A - -0.507424234870289
-10
15 L L L L
0 5 10 15 20
Wo

Fig. 1. The eigenvalue A vs. the NN weight wy, for a step reference x,..; =
1

i

One-dimensicnal Single-layer NN Controller

Fig. 2. The Simulink model for the one-dimensional single-layer NN
controller.
1
o
= 0.5
£
w
Time : 20
0 \ Emor e: -0.184308205223854
|
0 5 10 15 20
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Fig. 3. The tracking error e for a step reference z,.y = 1 when wp = 9.8.

B. Adding Error Integral Inputs to Remove The Steady-State
Error

To remove the steady-state error, we consider adding the
error integral input to the single-layer NN controller as follows

u = ko tanh(wpe + w;s) = 5tanh(9.8e + w;s) (69)

According to Theorem 3 and (27), the equilibrium point of
the system is [0; s*]. If w; is selected as 1, then s* =
—1.098612288668110.

The eigenvalues of the NN control system according to
Theorem 4 are Ay = —6.685377840799436 and Ay =
—0.134622159200560, which satisfy the requirements of local
asymptotic stability and local exponential convergence.

A Simulink model as shown in Fig. 4 was built to verify
the tracking performance of the NN controller after adding the
error integral term.

Fig. 5 shows the equilibrium point of the one-dimensional
single-layer NN control system. When ¢ = 100s, e(100s) =
—0.000000214389590, which is pretty close to the theo-
retical equilibrium point e(co) = 0. Also, s(100s) =
—1.098610696140083, which is also very close to theoretical
equilibrium point s(cc) = s* = —1.098612288668110.



Fig. 4. The Simulink model for a one-dimensional single-layer NN controller
and the corresponding conventional one-dimensional PI controller.
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Fig. 5. The equilibrium point of the one-dimensional single-layer NN control
system.

C. Corresponding Conventional One-dimensional PI Con-
troller

The corresponding one-dimensional PI controller was added
to the Simulink model in Fig. 4. To guarantee that the designed
one-dimensional PI controller has the same eigenvalues as the
single-layer NN controller, we compare (40) and (28)-(30) in
Theorem 4, thus set K}, and K; as

K, = wp diag(1 — tanh®(w;s* 4 b)) = 9.8 x 0.36
K; = w; diag(1 — tanh®(w;s* + b)) = 1 x 0.36

(70)
(71)

where s* is the equilibrium point of the NN control system
and s* = —1.098612288668110.

D. Step Response Comparison within A Small Neighborhood
of Equilibrium Points

To investigate the responses of one-dimensional single-layer
NN and conventional one-dimensional PI controllers within
a neighborhood of their respective equilibrium points, initial
values were added to the system state = and the error integral
s. As e = 0 is the equilibrium point of both controllers, = was
set as x(0s) = 0.95 for both control systems, which means
e(0s) =1 — 0.95 = 0.05. According to (39), the equilibrium
point s* for the PI controller is

s = —ki(BKi)_lA:cmf

1
=—£ x(0.5x 0.36) ' x2x1

= —2.222222222222222 (72)

So the starting points of the error integral s
for the one-dimensional  single-layer NN  and
conventional  one-dimensional  controllers were  set
as  s(0s) = —1.098612288668110 + 0.05 and

s(0s) = —2.222222222222222 4 0.05, respectively.

Fig. 6 demonstrates the step response for z,.; = 1 under
both one-dimensional single-layer NN and conventional one-
dimensional PI controllers with starting points from a neigh-
borhood of their respective equilibrium points. Their responses
are almost the same, which is expected and can be explained
by the fact that both control systems have exactly the same
two eigenvalues.

1.01
1
” ———
P 0.99 O ¢ Sll:lgle—la_yer.NN Controller o
T C One Pl
o]
0.98
E
£ 097
)
)
0.96
0.95
0 5 10 15 20 25 30
Time (seconds)
Fig. 6. Step response comparison within a small neighborhood of their

respective equilibrium points.

V. CASE STUDY II: TWO-DIMENSIONAL FOUR-LAYER
NN CONTROLLERS IN ELECTRIC POWER APPLICATIONS

In this section, a four-layer NN controller in a two-
dimensional state-space model for renewable energy integra-
tion with the electric power grid is investigated to test the
proofs in Section III numerically. Further, we add a simulation
of the corresponding generalized PI controller and single-
layer NN controller to show that the convergence and stability
properties proved in Section III are not merely valid, but
that all three control systems with the same eigenvalues
are guaranteed to perform almost the same within a small
neighborhood of their respective equilibrium points.

A. Grid-Connected Converter

A Grid-Connected Converter (GCC) is a key component
that physically connects renewable energy resources such as
wind turbines and solar panels to the grid [21], [22], [23],
[24], [25]. Fig. 7 shows the schematic of an L filter-based
GCC, in which a DC-link capacitor is on the left, and a three-
phase voltage source, representing the voltage at the Point of
Common Coupling (PCC) of the AC system, is on the right.

In the d-g reference frame, the state-space model of the
integrated GCC and grid system ([26]) can be expressed as

. R . 1
dlig|_[—z, ws |[ia], |72, O |[Va—Va
—| %= . 73
dt[%] l—ws —E—j q o _LLg Vo = Vg )
. Py | — —
A idg B Udg

where w, is the angular frequency of the grid voltage, and
Ly and R, represent the inductance and resistance of the grid
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Fig. 7. A Grid-Connected Converter for renewable energy integration.

Grid

filter respectively, the system states are iqq = [i4; 4], the grid
PCC voltages V4 = [Va; V4] are normally constants, Vg1 =
[Va1; V1] are the converter output voltages that are specified
by the current controller outputs, and the control vector is
qu = qu] - qu.

Table I specifies all system parameters in a lab experiment
setup [27]. Using the parameters from Table I, Vg = [V;;0] =
[20;0] and kpym, = 1/3/2% = 30.618621784789724.

TABLE I
THE L FILTER BASED GCC SYSTEM PARAMETERS

Symbol  Description Value  Unit
Vg test grid voltage (rms) 20 \'

f nominal grid frequency 60 Hz
Ws nominal grid angular frequency 120w rad
Vie DC-link voltage 50 \Y%
Lg the inductance of the grid filter 25 mH
Ry the resistance of the grid filter 0.25 Q

B. Four-Layer NN Controller

As the ratio of the converter output voltage Vgqq to the
outputs of the current controller is the gain of the Pulse-Width-
Modulation (PWM) kpwrm[28], the control action ugq is then
expressed by

ugq=R(edq,5dq) = Vag1—Vig=kpwmN (€dq,Sd4q,w)Vag (74)

The structure of the four-layer NN controller ([10], [11]) is
shown in Fig. 8. The function format of the four-layer NN

K B 2
W

P
G o
v, b,
}/’f:‘?' {-‘\ X
EFAX T
SRS

Fig. 8. The structure of the four-layer NN controller.

controller can be represented as

e.d_q b
tanh [Gazne l

N (edq, Saq, w) =

Bdg
Gaing

tanh | wy

tanh|ws (75)

tanh |ws _1

-1

where w;, wy, and wsy represent the weights from the input
layer to the first hidden layer, from the first to the second hid-
den layer and from the second hidden layer to the output layer
respectively. The biases of each layer have been incorporated
into wy, wa, and wy to simplify the weight updating process.

The four-layer NN controller was trained by the LMBP [29],
[301, [31] and the FATT algorithm [32]. For the four-layer NN
controller, its weight parameters Gaine, Gaing, wy, ws, and
ws are listed in Table II.

The equilibrium point of the system is (0, sgq). According
to Theorem 7 and (54), st";q satisfies the following function

Ry 1
ws |. - 0 .
ng ;glqu_ref +fé’9 1 l[kpme(O,sdq,w)—qu]——U
—Wg —E L,

A B
(76)

According to (56) and (57) in Theorem 8, G1; and G2 can
be calculated as

BR(edq, qu)

G]l = A — B 86dq |8dq:03‘gdq=séq
ON (edq, Sdg, w)
=A-— kpmeT|edq=0ssdq=‘g§q (77)
BR(edq, qu)
G2 = —Bqulgdq=D,.sdq=s§q
ON (edq, 8dq, W
= ey N a0 W) )

ad Sdq

The details of calculating G111 and G2 are listed in Appendix
A.

Given the current reference i4q_pe; = [1;0], the correspond-
ing four eigenvalues can be calculated and are listed in Table
I11.

C. Corresponding Generalized PI Controller

A generalized PI controller was designed to have the same
four eigenvalues as those of the four-layer NN controller for
comparison. Table III lists the target four eigenvalues for the
generalized PI controller.

To guarantee the designed generalized PI controller to have
the same eigenvalues as the four-layer NN controller, we
compare (40) and (77) and (78), thus set K, and K as

_ ON (edq, 5dq, w)

Kp - 86@.; |edq=0,sdq=s§q {?9)
ON (edq, Sdaq,w)
K; = ;S—dqq|edq=o,s,,q=s;q (80)

Table IV lists the values of K, and K;. Unlike the conven-
tional one-dimensional PI controller with a scalar proportional



TABLE I
THE WEIGHT PARAMETERS OF THE FOUR-LAYER NN CONTROLLER

Gaine 0.5
Gaing 0.5
0.105118602490750 —0.869195807768507 3.910726574451215 3.829650558215191 0.043137396666237
0.805253127771219 0.116082719739100 5.081202415079452 —1.666910901747036 1.246185328567662
0.142117134906564 0.272375503071100 4.040974596086221 2.048223953909149 0.145066179115310
w1 —0.395272323007882—1.422986921530577 4.255131423501219 5.561432608781822 0.000251202007245
—0.277224746255928 0.699935881635053 1.636989905274748 2.678881970530615 —0.109536124233592
0.376127545234790 1.285716734931245 —2.973060687194107 8.095548964772654 0.028991336931277
[ 1.440539114493213 —0.272530718390058 0.527886890221929 1.371222680616433 2.255139286184510 1.394844625523901 0.344937425499452 |
3.378981724654836 0.198608148623109 3.459270721071458 —1.9110270294298070.224751908404989 —1.002210347176314 —0.475383054734012
—0.359022430219653 1.217655164464906 3.145578151429633 1.863120732645271 3.708974043074285 —0.096082441939513 1.566135015097376
w2 4.031099888420788 —2.685187585928909 —2.749868864734965 2.748659888667571 2.439552173754654 5.660170953027147 0.925728746264457
—0.622152942608992 0.732064874764135 4.212370496471141 —4.0812165587839561.547382976445135 —6.456534076312040 —0.817547511050558
L 1.522500050952956 —1.036035004009775 1.703072013081991 0.534432723278869 0.630762934216796 1.093038633050528 0.074249030990423 |
—1.711155394435648 —0.447196877031189 —2.614508912856286 —5.956955188009836 0.958589844957509 1.641209174573893 —2.440547421725287
ws 1.317977684822903 1.038607717509133 2.191677954355899 —0.515283801531746 0.973061014722440 3.038069686362197 —1.386654203297988

TABLE III
EIGENVALUES

Control method

A

Four-layer NN | -802.233078413318 +1100.64099842807i

-802.233078413318 - 1100.64099842807i

-147.10811464909 + 54.0774179743671i | -147.10811464909 - 54.07741797436711

Single-layer NN | -802.233078413318 +1100.64099842807i

-802.233078413318 - 1100.64099842807i

-147.10811464909 + 54.0774179743671i | -147.10811464909 - 54.0774179743671i

Generalized PI

-802.233078413318 +1100.64099842807i

-802.233078413318 - 1100.64099842807i

-147.10811464909 + 54.0774179743671i | -147.10811464909 - 54.0774179743671i

gain and a scalar integral gain, the generalized PI controller
shown in Table IV has cross-coupling terms and are in a
more generalized gain matrix format, which has better and
stronger performance than the conventional one-dimensional
PI controller.

TABLE IV
THE PARAMETERS OF THE CORRESPONDING GENERALIZED PI
CONTROLLER
K [ —0.344022164281883  0.727142679990575
P | —0.754209007295918  —1.18991558063817 |
K, [ —2.3221654488264 196.559123343741 |
! | —153.905082611539  —54.8126346765554 |

D. Corresponding Single-layer NN Controller

For the single-layer NN controller design, the bias vector
b was selected as zeros to simplify the design process. We
compare (40) and (29) - (30), and thus weights w,, and w;
can be calculated from the following two equations

w, diag(1 — tanh?(w;s* 4 b)) =K,
w; diag(1 — tanh? (w;s* + b)) =K;

81)
(82)
where s* is the equilibrium point of the single-layer NN

controller system, and tanh(w;s* + b) can be obtained from
27) as

1
tanh(w;s* 4+ b) = ——B ™' Aigq ey

pwm

(83)

since the B of the GCC system is one 2 X 2 square matrix.

Thus weights w,, and w; equal

. 1 .. _
w, = [diag(l — (+——B " Aigy rer)?)] 'K, (84)
pwm
1
w; = [diag(l — (+——B 1 Aigg res)?)] 1K (85)
pwm

Table V lists the values of w, and w; for the single-layer
NN controller.

TABLE V
THE PARAMETERS OF THE CORRESPONDING SINGLE-LAYER NN
CONTROLLER
[ —0.589146302572011  0.803249086937196
w
P | —1.291601222678247 —1.314458124906575 |
[ —3.97676466861468  217.131988947592 |
W
! | —263.566187826589 —60.5496004678695 |

E. Equilibrium Point Comparison

A Simulink model as shown in Fig. 9 was built to simulate
all three controllers.

TABLE VI
THE EQUILIBRIUM POINTS

Control method| eg,
Four-layer NN | 0 |0
Single-layer NN| 0 |0
Generalized PI| 0 |0

544
0.000570367398365(0.000995539550846
0.000827793898875|0.003291399362787
0.000394111939873|0.003538453922689

Table VI lists the equilibrium points for all three control
methods. As all three control methods have the error integral
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Fig. 9. The Simulink model for three controllers with the same four eigenvalues: four-layer NN controller, single-layer NN controller, and generalized PI

controller.

inputs, the equilibrium points for the egq are all zeros, which
means that the steady-state error egq(oco) = 0. For the error
integral sqq, they all converge to their respective equilibrium
points as each control method has different weights or param-
eters.

Fig.10 shows the tracking error eqq of the four-layer NN
controller for a step response iqq reyf = [1;0]. At time t =
0.1s, eqq = [—1.886€e — 7; 6.882e — 08], which is already very
close to the equilibrium point [0;0].

o

T

3] Time: 0.1
o e, 6.882e-08

Time: 0.1
€ -1.886e-07

0.08 0.1

0.04 0.06
Time (seconds)

0 0.02

Fig. 10. The tracking error e4, of the four-layer NN controller for step
response igq res = [1;0].

Fig.11 shows the tracking error integral sqq of the four-layer
NN controller for a step response of iqq rey = [1;0]. At time
t = 0.1s, sqq = [0.000570368236706; 0.000995538938232],
which has 8 significant bits the same as the equilibrium point
[0.000570367398365;0.000995539550846] in Table VL

F. Step Response Comparison within A Small Neighborhood
of Equilibrium Points

To evaluate and compare the steady-state behaviors of all
three control methods close to their equilibrium points s3,,
instead of starting from sqq(0s) = [0; 0], the staring points for

x10%*
10
8 /_ Time: 0.1
3 / Sq: 0.000995538938232
T 6 :
g, \, Time: 0.1
- V 542 0.000570368236706
g 2
& I\/
0 —, ||
-2 Sa |
0 0.02 0.04 0.06 0.08 0.1
Time (seconds)
Fig. 11. The error integral sq4q of the four-layer NN controller for step

response igq res = [150].
Sdq Were set as sgq(0s) = sj, — [0.001; 0]. The starting points
of 544 are listed in Table VII.

TABLE VII
STARTING POINTS OF Sg4

Control method 5dq(0s) = s, — [0.001;0]

Four-layer NN [0.000570367398365 - 0.001|0.000995539550846
Single-layer NN|0.000827793898875 - 0.001|0.003291399362787
Generalized PI |0.000394111939873 - 0.001|0.003538453922689

Fig. 12 shows the step responses under this condition, which
are almost the same within a small neighborhood of their
equilibrium points, and verify the fact that they all have the
same four eigenvalues.

Thus, it is expected that when the size of the neighborhood
around the equilibrium points is small enough, all three control
methods will demonstrate identical responses because they all
have the same four eigenvalues.
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VI. CONCLUSION

This paper (Sections II and III) mathematically proves that
if (single- and multi-) NN controllers only have error terms
as inputs, the corresponding control system shows a non-zero
steady-state error for any constant reference, except for one
specific reference point, and that adding an error integral term
to the inputs of the NN controller is sufficient to eliminate the
steady-state error for any constant reference.

More importantly, we provide a simple way of using eigen-
values of the NN control system to evaluate local stability
and local convergence for reference tracking. The NN con-
trollers have almost the same responses as the corresponding
generalized PI controllers with the same eigenvalues in a small
neighborhood of their respective equilibrium points, as shown
experimentally in Sections IV and V.

We trust that the formal analysis of the conditions under
which the stability and convergence properties of NN con-
trollers are guaranteed, along with the accompanying confir-
matory empirical results will help engineers understand the
functioning of NN controllers and pave the way for their
applications in real-life scenarios.

We plan to carry out a theoretical comparison of the
responses between NN controllers and corresponding PI con-
trollers globally, that is with starting points anywhere far away
from their equilibrium points, in our next work. We also plan
to include the error derivative terms in the NN controller and
investigate their impact on the control system in the future.

APPENDIX A
DERIVATION OF G1; AND G2 FOR THE FOUR-LAYER NN
CONTROLLER

To simplify the derivation process, define o, 0., 01, 02, and
og as follows:

0. = tanh(eqq/Gaine)le,,—o0=tanh([0;0]/Gain.) (86)
0s = tanh(saq/Gaine)|sy,—s3, =tanh(sg,/Gaing)  (87)
01 = tanh(wy [og; 055 —1]) (88)
03 = tanh(ws[o1; —1]) (89)
03 = N (edq, Sdq, w) = tanh(wsoz; —1]) (90)

11

Then
ON (edq,8dq,w) Jo3 005 001 Do,
qu|9dqzoﬁdqzséq:m|8dq=oﬁdq=séq
= [diag(1 — 02)ws(:, 1 : 6)][diag(1 — 02)wa(:,1 : 6)]
* [diag(1 — o?)w1(:, 1 : 2)][diag((1 — 02)/Gain,)] (91)
ON (edq,8dq,w) Jo3 003 001 Do,
T|edq=03dq=s§q:m|edq=0,sdq=s§q
= [diag(1 — 02)ws(:, 1 : 6)][diag(1 — 02)wa(:,1 : 6)]
* [diag(1 — o?)w1(:, 3 : 4)][diag((1 — 02)/Gain,)] (92)
Substitute (91) and (92) into (77) and (78). Thus G11 and G2
can be obtained.

APPENDIX B
THE LIST OF SYMBOLS

Table VIII summarizes the symbols utilized in this paper.

TABLE VIII

THE LIST OF SYMBOLS AND THEIR DESCRIPTIONS.

Symbols Description
A the state or system matrix in the state-space model;
A e Rm*n
B the input matrix in the state-space model; B &
Rnxm
G the linear time-invariant system matrix; G € R™*™
T, Tpef the system states and the references for system states
T ®, 25 € R?
e the tracking error; e € R™
s the tracking error integral; s € R™
e* the equilibrium point of the state error e
s* the equilibrium point of the state error integral s
u the input/control vector in the state-space model; u €
Rm
idg, ldg_ref the d-q currents and the references for d-g currents
€dgq the tracking error in the d-g domain
Sdgq the tracking error integral in the d-g domain
€y - the equilibrium point of the state error eqq
534 the equilibrium point of the state error integral 544
Udg the control action in the d-g domain
ka the actuator gain; ko, € R
kpwm the gain of the Pulse-Width-Modulation
Wp, Wi, b weights for error terms and error integral terms, and
the bias of the single-layer NN controller; wy,w; €
R™*™ and b € R™
R(e) the function representation of multi-layer NN con-
trollers with only error terms; R(e) € C'[R™, R™]
R(e, s) the function representation of multi-layer NN con-

trollers with error terms and error integral terms;
R(e,s) € C'[R™ x R™, R™]

N(Edqs qusw)

w1, w2, w3
Gaine, Gaing

the function representation of the four-layer NN
controller

weights of the four-layer NN controller

scaling factors for error terms and error integral
terms in the input layer of the four-layer NN con-
troller

KP! Ki

proportional and integral gains of the generalized PI
controller
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