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66, 71]. For example, E-eyes [64] andWiFinger [52] are among the first work to distinguish various types of daily
activity and finger gesture based on the multi-class classification, whereas Liu et al. proposed the first generation
vital signs tracking system with commodity WiFi [29]. More recent work has evolved towards constructing a 3D
human pose that consists of a set of joints of the body at an unprecedented level of granularity [20]. However,
existingWiFi-based 3D human pose tracking is limited to only a set of predefined activities as it relies on the pre-
trained model of known activities. It thus cannot work well for free-form activities that were previously unseen
by the system. In reality, there exists a variety of emerging Human-Computer Interaction (HCI) applications
that demand the 3D human pose of free-form activity. For instance, Virtual Reality (VR) applications such as
Fruit Ninja [14] require capturing the free-form movements of two arms of a player in 3D space. Meanwhile,
art creation in VR needs to track the 3D free-form movements of two hands that simulate paintbrushes and
color palettes [13]. Moreover, medical training in Extended Reality (XR) demands free-form motion tracking
to enable trainees to learn about surgical operations by using hands and arms to interact with a 3D virtual
human body [59, 60]. Additionally, the 3D free-form movement tracking can also enhance the control precision
of existing smart home applications, such as continuous and precise thermostat temperature adjustment [38, 57].

Traditional systems in free-form human pose tracking mainly rely on computer vision technique that re-
quires the installation of cameras in the environment or dedicated sensors that are worn/carried by the user. For
example, 2D pose tracking can be achieved by using conventional RGB cameras [7, 17, 35], whereas 3D pose
tracking can be done by leveraging depth or infrared cameras [31, 51, 73], such as Microsoft Kinect [32] or Leap
Motion [58]. However, those systems cannot work in non-line-of-sight (NLoS) or poor lighting conditions and
often involve user privacy concerns. The dedicated sensor-based approaches require a user to wear/carry vari-
ous sensors such as gyroscope, accelerometer, or inertial measurement unit (IMU) at each limb or joint [30, 50].
HTC VIVE [19] and Oculus Rift [34] are two examples of commercial products. These systems, however, can be
inconvenient and cumbersome as they require the user’s explicit involvement and incur the non-negligible cost.
In this work, we propose Winect, a skeleton-based human pose tracking system for free-form activity in

3D space using commodity WiFi devices. Winect does not rely on a set of predefined activities, thus can track
free-form movements of multiple limbs simultaneously to enable novel HCI applications. It leverages the WiFi
signals reflected off the human body for 3D pose tracking and thus works well under a non-line-of-sigh (NLoS)
environment and does not require a user to wear or carry any sensors. Winect is environment-independent and
provides centimeter-level tracking accuracy. It can also track the free-form activity of one or more users in the
3D space by utilizing multiple transceivers. In addition, the system could reuse existing WiFi infrastructure to
facilitate large-scale deployment due to the prevalence of WiFi devices and networks.
The basic idea of Winect is to combine the signal separation and the joint movement modeling to enable

3D free-form activity tracking. In particular, we first develop a limb identification method that leverages the
two-dimensional (2D) angle of arrival (AoA) of the signals reflected off the human body to infer the number
of moving limbs and identify the limbs that are in motion. As the signal reflections from multiple limbs are
linearly mixed at each antenna of the receiver [71], we separate the multi-limb signals based on the blind source
separation (BSS) [1] and the input of the number of moving limbs. Once the signal reflections from each limb are
separated, we can derive the position of each limb over time and infer the trajectory in 3D space with multiple
transmitter-receiver pairs by leveraging phase changes of separated signals.

Next, we decompose the trajectory of each limb (e.g., the arm or leg) to the fine-grained trajectories of the
joints (e.g., the wrist and elbow, or the ankle and knee) for 3D pose tracking. Specifically, we leverage the inherent
relationship between the limb and the joints to construct a model that constrains the positions of corresponding
joints for a given position of the limb. Existing kinematic models of limb joints [6, 11, 42] describe the position
constraints of the joints for a given position of any point of the limb.The movement of the joints in a continuous
and constrained space can be further utilized to optimize the positions of joints with respect to the positions of
the limb over time.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 111. Publication date: August 2021.



≤

≤

≤



5.46
7.24

𝜆 𝑙
2𝜋𝑙+𝜆



HCI Applications

Transmitter

Precise control 
in smart home

Receiver
WiFi CSI data

Movement Separation 

Joint Decomposition

Limb Identification

WiFi Probing Data Processing

Receiver

3D Skeleton Tracking

Extended reality 
medical training

Winect

Virtual reality 
applications

Fitness assistance



111:6 • Ren et al.

CSI Measurements

Limb Trajectory Reconstruction

Joint Position Estimation

3D Human Skeleton

Data Segmentation

Signal Separation

Subcarrier Selection

2D AoA Estimation

Limb Identification

Static Environment
Subtraction

Moving Limb 
Identification

Multi-limb Movement 
Signal Separation

Joint 
Decomposition

Joint 
Decomposition 

Model

Fig. 2. System flow.

next separate the reflected signals for different moving limbs based on a blind source separation (BSS) formula-
tion. With the separated signals for each limb, we can further infer the positions or the trace of the individual
limb by calculating the signal path length change based on the phase changes. Lastly, our system decomposes
the inferred limb traces into fine-grained trajectories of the joints based on the kinematic model of limb joints,
which depicts the inherent relationship between the position of the limb and its corresponding joints.

By utilizing both the multi-limb movement signal separation and the joint decomposition, our system can
achieve multi-limb free-form tracking in 3D space. Such a system can support a wide range of emerging HCI
applications that require the tracking of 3D free-form body movements, for example, in the fitness assistance
system. Moreover, VR applications can utilize free-form movement information for gaming and art creation.
Such information can also be utilized to facilitate the extended reality medical training as well as in smart home
applications, as shown in Figure 1.

3.3 System Flow
The system flow is illustrated in Figure 2, which consists of three major components:Moving Limb Identification,
Multi-limb Movement Signal Separation and Joint Decomposition. Our system first performs CSI measurements
collection, in which a single WiFi transmitter continuously sends out probe packets and multiple WiFi receivers
extract CSI measurements from the received packets.
Winect first employs Moving Limb Identification to pre-process the captured CSI measurements and estimate

the two-dimensional angle of arrival (i.e., the elevation angle and azimuth angle) of the multipath signals under
both the static scenario without limb motion and the dynamic scenario where the limbs are moving. We then
analyze the signal power change according to the derived 2D AoA (i.e., azimuth-elevation) spectrum in 3D
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space. Next, our system identifies the number of moving limbs and the specific limbs that are in motion. This
information is then fed into the multi-limb movement signal separation component.

Next, our system conductsMulti-limb Movement Signal Separation by first segmenting CSI measurements and
selecting the subcarriers with high sensitivity to limb movements. Then, with the number of moving limbs iden-
tified from the previous step, we are able to separate the multi-limb movement signal by solving the formulated
blind source separation (BSS) problem. After that, our system will calculate the limb position based on the path
length change of the separated signals. We then stitch the limb positions from two adjacent segments that belong
to the same limb to reconstruct the trajectory of the limb.
After we obtain the positions and trajectories of each limb, they go through Joint Decomposition component to

further decompose to the joint positions by leveraging a kinematic model of limb joints. It is done by modeling
the relationship between the position of the limb and the corresponding joint in 3D space. Then, the 3D human
skeleton with multiple joints can be inferred. It is worth noticing that by combining both Multi-limb Movement
Signal Separation and Joint Decomposition, our system achieves 3D multi-limb tracking for free-form activity.

3.4 Moving Limb Identification
In this section, we customize the 2D AoA estimation method leveraging an L-shaped antenna array, spatial
diversity in transmitting antenna, and frequency diversity of OFDM subcarriers to enhance the resolution. We
also develop a method to subtract the impact of the static environment for multi-limb identification.

3.4.1 Preliminary of 2D AoA Estimation. Traditional AoA estimation focuses on inferring the angle of arrival of
the received signal in one dimensional with linear antenna array [24, 27]. It is however insufficient to identify
the direction of the incoming signal in 3D space. In this work, we extend the traditional 1D AoA estimation to
2D AoA estimation so as to facilitate activity tracking in 3D space. In particular, we derive both the azimuth and
elevation angles of the signal by leveraging an L-shaped antenna array at the receiver [16]. As shown in Figure 3,
we assume the L-shaped antenna array has 𝑀 antennas separated by 𝑑 (i.e., a half wavelength) at the receiver.
It is worth noticing that the L-shaped array antenna coordinate system (i.e., 𝑋𝐴-𝑌𝐴-𝑍𝐴 coordinates) is different
from the tracking coordinate system (i.e., 𝑋 -𝑌 -𝑍 coordinates) in this work. Then, we can formulate the 2D AoA
estimation based on the MUSIC algorithm [47] and the L-shaped antenna array at the receiver.

3.4.2 Improved 2D AoA Estimation. As commodity WiFi devices are only equipped with a limited number of
antennas (e.g., Intel 5300 card has up to only 3 antennas), this greatly limits the resolution of AoA estimation. To
further improve the 2D AoA estimation, we propose to leverage both spatial diversity in transmitting antennas
and frequency diversity of OFDM subcarriers of theWiFi channel on both two subarrays of the L-shaped antenna
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Fig. 5. Limb identification result.

Figure 4(a1), a user is standing along the𝑌𝐴 axis and perpendicularly faces to the𝑋𝐴-𝑌𝐴-𝑍𝐴 coordinates in a static
environment. The propagation paths are all static paths including the LoS path, signal reflections from the static
environment (including the static human body).The corresponding azimuth-elevation power spectrum is shown
in Figure 4(b1) where the x-axis represents the azimuth angle, the y-axis represents the elevation angle and the
color represents the power. Since there are no movements from the user, the power spectrum only contains the
signal reflections from the static environments and the LoS propagation.

Then, when the user is moving two limbs (e.g., the left arm and right arm) as demonstrated in Figure 4(a2),
two additional dynamic paths are introduced by the motions of the left and right arm. Figure 4(b2) is the cor-
responding power spectrum that contains signal reflections from both arms, the static environments and the
LoS propagation. Then, we perform static environment subtraction where the normalized azimuth-elevation
spectrum under the dynamic scenario is subtracted by the normalized spectrum of the static environment. The
result is shown in Figure 4(b3). After the subtraction, we can obtain the azimuth-elevation spectrum that con-
taining the signal propagation mainly affected by the moving limbs. As we can easily observe in Figure 4(b3)
and Figure 4(a3), there are two major signal reflection components that represent the left arm and the right arm,
respectively.
Next, we detect the peak values in the resulting azimuth-elevation spectrum to identify all the limbs that

are in motion. Intuitively, the number of peaks is corresponding to the number of moving limbs while we can
further infer the specific limb based on the peak position in the azimuth-elevation spectrum. Here, we conduct
the identification process using multiple random CSI packets (e.g., 100 packets) to mitigate the random error
introduced by a single packet. In particular, Winect uses a non-parametric clustering method: Density-based
spatial clustering of applications with noise (DBSCAN) algorithm [10] to cluster the peaks without prior knowl-
edge of the peak number. The limb identification result is shown in Figure 5. We can observe that there are two
clusters in total therefore two moving limbs are detected. Then, we can easily calculate the average position of
each cluster and pinpoint the limb according to the average peak position in the azimuth-elevation spectrum.
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Fig. 9. Phase changes of separated signals.

results are shown in Figure 8(c) and (d), in which the points are the time series samples in the complex plane and
the colored lines are the smoothed version by using a Savitzky-Golay filter. In Figure 8(c), it is easy to observe
that the separated signals of the first arm rotate clockwise in the complex plane which indicates the first limb
moves away from the transmitter-receiver pair. Meanwhile, we can observe that the second arm moves towards
the transmitter-receiver pair as shown in Figure 8(d).
After that, our system will calculate the path length change based on the signal rotation in the complex plane.

Note that the limb movement signal has a form of 𝑚𝑖 (𝑓 , 𝑡) = 𝑒 𝑗2𝜋 𝑑𝑖 (𝑡 )
𝜆 . Thus, as shown in Figure 9(a), the

phase change caused by the first moving arm is 3.25 radians, which can be translated to a path length change of
2.9cm. Similarly, Figure 9(b) shows the second moving arm induces a phase change of 3.51 radians which can be
translated to a path length change of 3.2cm.

3.6 Joint Decomposition
3.6.1 Limb Position Estimation and Trajectory Reconstruction. After multi-limb movement signal separation, we
are able to infer the movement direction and path length change of the limb from a single transmitter-receiver
pair. However, it can only estimate the limb position and reconstruct the trajectory of the limb in 1D. In order to
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Fig. 16. Illustration of the experimental setup.

1.1 meters to the transmitter and equipped with the L-shaped antenna array which forms the L-shaped array
antenna coordinate system (i.e., 𝑋𝐴-𝑌𝐴-𝑍𝐴 coordinates) discussed in Section 3.4 for moving limb identification.

Model Setting. In order to construct the joint decomposition model, we ask volunteers to conduct free-form
daily life activities in terms of Table 1 and Algorithm 1. In order to cover the range of motions for different
joints as much as possible and build a dense point cloud, each volunteer performs various activities for at least
20 minutes and we collect more than 24,000 points using CSI measurements to build the point cloud for the
limbs. Kinect 2.0 synchronously records joint positions to build the point cloud for joints. The point clouds are
dense enough to reconstruct trajectories for most free-form daily life activities. After that, we build the joint
decomposition model using all the point clouds data.
In particular, we leverage the ResNet with 18 layers including 17 convolutional layers and one fully-connected

layer. After each convolutional layer, we add a batch normalization layer. We also utilize Rectified Linear Unit
(ReLU) activation functions after each batch normalization layer to add non-linearity to the model. To prevent
the model from overfitting, we set the dropout rate as 0.1.
Data Collection. In total, there are 6 volunteers (3 males and 3 females) of various heights who participate in

the experiment. To evaluate the system performance, each participant is asked to conduct one-limb and multi-
limb free-form daily life movements in the range of motions specified in Table 1 at least for 20 minutes. We
segment the movements into a series of 8-second pieces and thus each 8-second piece is considered as a free-
form activity. Therefore, there are over 900 activities in total. Note that the data are collected on different days
and in different environments.
WiPose. WiPose [20] is the state-of-the-art deep learning model for 3D human pose construction for a set

of predefined activities using commodity WiFi. WiPose combines four-layer Convolutional Neural Networks
(CNNs) and three-layer Long Short Term Memory networks (LSTMs). Then it takes the initial skeletal structure
and the learned features from LSTM as input for the forward kinematics layer. In this paper, we reproduce
the deep learning model proposed in WiPose for comparison. We compare WiPose with our system with the
predefined activities that were evaluated in WiPose paper including lifting left/right hand for 90/180 degrees,
lifting left/right leg for 45 degrees, lifting both hands for 90/180 degrees, lifting left/right hand and left/right leg
for 45 degrees and lifting both hands and left/right leg for 45 degrees. Each volunteer is asked to conduct each
activity for two minutes. We also compare WiPose with our work for free-form activities in our evaluation.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 111. Publication date: August 2021.



111:20 • Ren et al.

Table 2. Joint localization errors (unit:cm).

Joints LElbow LWrist RElbow RWrist LKnee LAnkle RKnee RAnkle Overall
WiPose-predefined 4.9 6.1 5.2 5.8 3.5 4.0 2.1 2.5 4.3
WiPose-free-form 13.7 24.6 13.2 20.6 12.0 14.5 13.4 15.9 16.0

WiPose 9.3 15.4 9.2 13.2 7.8 9.3 7.8 9.2 10.1
Winect 4.2 5.1 4.8 4.9 4.1 4.4 4.3 4.7 4.6
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Fig. 17. Overall tracking error.
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Fig. 18. Performance comparison for free-form activities
only, and predefined activities only.

Metrics. To evaluate the performance of our system on multi-limb tracking, we utilize the joint localization
error, which is defined as the Euclidean distance between the predicted joint location and the ground truth.

4.2 Overall Performance
We first evaluate the overall performance of our system with the activities including both free-from and prede-
fined activities that are described in the experimental setup. Figure 17 shows the cumulative distribution function
(CDF) of tracking errors for both our system and WiPose. We can observe that the median tacking error of our
system and WiPose is 3.9cm and 9.2cm, respectively. Further, we observe that the 80 percentile tracking error
is at around 7cm for our system, while it is more than 15cm for WiPose. The results demonstrate that our sys-
tem has high tracking accuracy, whereas WiPose has worse performance primarily due to the activities under
evaluation include free-form activities that WiPose cannot work well.
Moreover, Table 2 shows the average joint localization error for each joint as well as the overall result for all

8 joints. The range of joint localization error of our system is from 4.1cm to 5.1cm, whereas it is from 7.8cm to
15.4cm for WiPose. The overall localization error of our system is 4.6cm, while it is 10.1cm for WiPose. These
results show that our system outperforms WiPose as our system is designed to work with free-form activities
whereas WiPose is limited to a set of predefined activities.

We further compare the performance of our proposed system with WiPsoe under the free-form activity
only (i.e., WiPose-free-form) and under the predefined activity only (i.e., WiPose-predefined), respectively. For
WiPose, free-form activities are not seen during the training phase, whereas WiPose has seen and trained each
predefined activity during the training phase. Figure 18 shows that our system has almost the same performance
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(a) One-limb free-form activity. (b) Two-limb free-form activity. (c) Three-limb free-form activity.

Fig. 19. Examples of constructed 3D human skeleton for multi-limb free-form activities.

as that of WiPose-predefined. In particular, both have a median and 80 percentile localization error at around
3.9cm and 7.0cm, respectively. This shows that our system without specific training of predefined activities can
work as well as the WiPose that with the training of the predefined activities. More, our system performs much
better for the free-form activity as WiPose-free-form degrades significantly from 4.0cm to 14.7cm for median
error and from 7.0cm to 20cm for 80 percentile error.

Similar results can be observed from Table 2, which illustrates the tracking error for each joint. From Table 2,
we can see the average joint localization error of WiPose-predefined is 4.3cm. The joint localization errors of
WiPose-predefined range from 2.1cm to 6.1cm. Such a performance of WiPose-predefined is similar to that of
our system. However, WiPose-free-form has large joint localization errors, which range from 12cm to 20.6cm.
The reason is that when target activities are free-form and thus most of the target activities are not seen during
the training for WiPose. Our system can accurately track free-form activities accurately since we leverage both
movement signal separation and joint decomposition model. The above results demonstrate that our proposed
system achieves comparable performance withWiPose-predefined and is able to simultaneously track free-form
activities of multiple limbs with high accuracy.

To intuitively observe the performance of Winect, Figure 19 shows examples of constructed 3D skeletons of
free-form activities. We color the initial skeleton with blue, the predicted skeleton with red, and the ground
truth with green. Figure 19(a), (b) and (c) illustrate examples for one-limb, two-limb and three-limb free-form
activities. We can observe that 3D skeletons constructed by Winect are almost the same as the ground truths.

4.3 Impact of Different Number of Moving Limbs
Next, we study the impact of the different number of moving limbs by performing activities with one limb (i.e.,
one arm or one leg), two limbs (i.e., one arm and one leg, or two arms), and three limbs (i.e., two arms and one
leg), respectively. Figure 20 illustrates the average localization errors for the different numbers of moving limbs
which are 3.7cm, 4.6cm, and 6.7cm for one limb, two limbs, and three limbs, respectively. When the number
of moving limbs decreases, the localization error will also decrease. This is because fewer moving limbs result
in less complex reflection signals. Thus, it is easier to separate signals. Also, we can observe that our system
can maintain relatively small errors even when three limbs are moving simultaneously. In practice, people only
move one or two limbs at the same time in most cases. Hence, we can conclude that our system can track the
activities of multiple limbs simultaneously with high accuracy.
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Fig. 20. System performance for different numbers of mov-
ing limbs.
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Fig. 21. System performance under both NLoS and LoS sce-
narios.
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Fig. 22. System performance across different environments.
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Fig. 23. System performance under ambient interferences.

4.4 Impact of Non-Line-of-Sight
We then discuss the impact of non-line-of-sight (NLoS) by placing a wooden screen between the person and each
pair of transceivers in both the bedroom and the living room. Figure 21 presents the performance comparison
under the NLoS and LoS scenarios in both two environments. Results show that the NLoS scenario slightly
degrades the system performance. However, the average localization errors of NLoS are less than 6cm for both
the bedroom and the living room. The results demonstrate that the proposed system could work in the NLoS
scenario with relatively weak WiFi signals. This allows us to deploy the proposed system to a wider range of
applications than computer vision-based systems.

4.5 Impact of Different Environments
Users could build the joint decomposition model of the system in one environment and apply it to a different
environment. Hence, we study the impact of different environments on system performance. Specifically, we col-
lect CSI data and build the joint decomposition model in the 1𝑠𝑡 environment (i.e., bedroom) and test the model
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Fig. 24. System performance under different packet rates.
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Fig. 25. System performance under different distances.

in the 2𝑛𝑑 environment (i.e., living room). For simplicity, we denote this scenario as E1/E2. Similarly, we also
evaluate the E2/E1 scenario. Figure 22 shows the average error across different environments. The overall cross-
environment error is 5.3cm which is close to the overall same environment error which is 4.6cm. The reason is
that we perform the static environment signal removal during the signal separation. In addition, the joint decom-
position model does not rely on the background environment. The results clearly demonstrate that our system
is environment-independent. This allows us to easily deploy the proposed system in various environments.

4.6 Robustness to Ambient Interference
In all of the evaluations described so far, we conduct experiments in static environments. A more realistic situa-
tion might be when a user is performing an activity, other people are walking or performing randommovements
nearby that can be considered as interferences. To study the robustness of our system to these ambient inter-
ferences, we vary the distance between the user and the interferences from 3.5m to 6m at a step size of 0.5m
and evaluate the performance of Winect. As shown in Figure 23, when the distance between the user and the
interferences is increased from 3.5m to 6m, the average localization error is reduced from 8.6cm to 4.7cm.This is
because the farther the distance between the user and the interference is, the less disturbance the signal suffers.
The results show that our system is robust to ambient interferences to a certain degree.

4.7 Impact of Packet Rate
We utilize a packet rate of 1000 packets per second in most of the experiments. However, the packet rate can be
much lower in practice. To evaluate the impact of packet rate on the system performance, we down-sample the
CSI data to 500 pkts/s and 250 pkts/s, respectively. Also, the corresponding segment length of CSI is decreased to
50 and 25, respectively. The results are shown in Figure 24. We can find that a higher packet rate leads to higher
accuracy. Also, we can observe that the decrease of the packet rate has little impact on the performance of our
system. For example, when the packet rate is only 250 pkts/s, the average error is still less than 5.8cm.Therefore,
the minimum packet rate we recommend in our system is 250 pkts/s.

4.8 Impact of Different Distances
Next, we study the impact of the distance between the transmitter and receivers on the performance of the
proposed system. As the height of the room (i.e., 𝑍 -axis) remains constant, we change the distance between
the transmitter and the receiver in 𝑋𝑌 -plane. The sensing area in the 𝑋𝑌 -plane is a square and the user always
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stands in the center of the area. We set the distance between the transmitter and the receiver as 2m, 2.5m, 3m
and 3.5m on both the𝑋 -axis and 𝑌 -axis. Figure 25 shows that when the distance is reduced from 3.5m to 2m, the
error also reduces from 5.4cm to 4.6cm. This is because a shorter transmission distance leads to higher received
signal strength. Thus, we could deploy receivers closer to the transmitter to have a better system performance.
In a nutshell, the results indicate that our system works well in a typical room with a variety of distances.

4.9 Impact of Multiple Users
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Fig. 26. System performance for multiple users.

In practice, there can be multiple users perform activities at the same time. Therefore, we evaluate the impact
of multiple users by asking two users to move their limbs simultaneously. Figure 26 shows the average errors for
both user1 and user2. In particular, for user1, the errors of the arm and leg are 4.8cm and 4.7cm, respectively. For
user2, the errors of the arm and leg are 4.6cm and 4.3cm, respectively. We find that the errors slightly increase
compared with the single-user scenario. This is because the increment of the number of users will increase the
complexity of the reflected signal. Also, the tracking accuracy of legs is higher since the reflection area of the
legs is larger and reflected signals are stronger. Because a typical room only allows two people to perform the
activity without overlapping, we no longer increase the number of users. The results show that our system is
able to accurately track the activities of multiple users simultaneously.

4.10 Performance of Limb Identification
One important step in our system is to identify the moving limbs.Therefore, we should evaluate the performance
of identifications of which limb is moving and the number of moving limbs. We randomly select multiple (e.g.,
100 in this work) CSI data to conduct the one-time identification. Figure 27(a) shows that our system achieves
an overall accuracy of 98.5% for one-time identification of moving limbs. As shown in Figure 27(b), the overall
accuracy of one-time identification of the number of moving limbs is over 98.6%. we can refine the results by
applying multiple identifications with the majority rule. Figure 28(a) and (b) show that identifications of limbs
and the numbers both achieve the accuracy close to 1 using three-time identification with the majority rule.
Note a single identification only need 100 CSI packets which take 0.1s. We allow 50% overlap, thus a three-time
identification with the majority rule only needs 0.2s. It usually takes a few seconds to perform one daily activity
which is enough for limb identification. This evaluation demonstrates that our system can accurately identify
multiple moving limbs and the total number of moving limbs.
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Fig. 28. Performance of multiple identifications with majority rule.

5 DISCUSSION
Although Winect can track 3D free-form activities with high accuracy in different scenarios, it still has some
limitations.

Tracking in crowded environments. In our experimental setup, each commodity WiFi device only has
three antennas. Due to the limited number of antennas, our system can only track a small number of people
simultaneously. However, there aremany crowded environmentswith a large number of people, such as a theater
and a bus station. Such crowded environments include complex scenes, such as occlusion, overlapping, and a
large number of limbs. Our system thus is difficult to track each person in crowded environments with a limited
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number of antennas and WiFi devices. A potential solution is to improve the spatial resolution of the system by
employing a general-purpose antenna extension [67] on the WiFi devices. Also, we may deploy more devices
at different locations and directions to capture each person from different angles so as to track in crowded
environments.
Human positions and orientations. As our system is environment-independent, the user can choose any

position or orientation to perform free-form activities. This is because the signal separation and joint decom-
position model of Winect are not affected by positions or orientations. In our evaluation, however, the user is
asked to face the AoA sensor (i.e., the WiFi device used for deriving 2D AoA). This is because we only used
one sensor to derive 2D AoA for the moving limb identification. If we deploy three AoA sensors in orthogonal
directions, the user is free to change to any orientations. Still, our system might not work well when the user is
walking while performing activities. The reason is that the signal reflection separation could be too complicated
to resolve under the walking scenario. In order to achieve the tracking of poses for walking users, we could
utilize the region proposal network [43] to generate possible person regions each time for pose estimation.
Captioning human activity. Our current system can only track free-form activities by estimating 3D skele-

tons.The proposed system cannot caption human activities (i.e., create a textual description of people’s activities)
as it is not designed to understand the contents of activities. However, captioning activity has found many ap-
plications such as human-computer interaction, smart home, and surveillance. In future work, we may combine
the estimated human skeleton and the deep neural network to caption human activities and even interactions
with objects or other people.

6 CONCLUSION
This paper presents Winect, which is capable of tracking 3D human poses for free-form activities. The proposed
system does not rely on a set of predefined activities and can track free-form motions of multiple limbs simul-
taneously by reusing existing commodity WiFi devices. Our system enables 3D skeleton pose estimation by
separating the entangled signals from different limbs and then modeling the relationships between the move-
ments of the limb and the corresponding joints. Extensive experiments show that Winect can track 3D human
pose with an average error of 4.6cm for various free-form activities and works well under various environments
or scenarios including the none-line-of-sight (NLoS) scenarios.
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