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Abstract—Modern memory systems on cloud servers are vul-
nerable to many security threats including memory integrity
attacks. To protect user data, secure infrastructures like Intel
SGX have deployed cryptographic memory protection mecha-
nisms such as MAC+integrity tree. However, using an integrity
tree can significantly increase the latency of memory data accesses
and thus decrease performance. Although there are many tree
optimizations that have obtained performance improvements, the
overhead of using an integrity tree remains high. This overhead
has become even worse with the recent increase of cloud memory
size, making integrity protection impractical on cloud servers.

We argue that most prior optimization works do not consider
the architecture features of cloud server processors and thus
miss the opportunity for further performance improvement.
Based on this, we propose Parallelized-Compressed-Prefetched-
Tree (PCPT), a tree optimization design tailored for cloud servers.
PCPT consists of three methods including 1) parallelizing the
memory accesses along a tree path to shorten the critical path,
2) compressing data cache lines and storing counters together
with the data to reduce meta data accesses, and 3) prefetching in
a tree-aware manner. We evaluate PCPT using 25 benchmarks
drawn from 3 suites, and we show that PCPT improves the
performance of the state-of-the-art by over 35%.

I. INTRODUCTION

Cloud computing has been one of the most promising

Internet service hosting technologies. However, outsourcing

the processing of data to a third-party platform also increases

security concerns. The cloud is owned and thus fully controlled

by the system provider, which includes the system software

(e.g., the hypervisor) that enables the sharing of a hardware

platform among users, and the hardware itself. If either the

hypervisor or any hardware device is compromised due to

hidden vulnerabilities, the provider will become malicious [10].

Additionally, cloud users may be able to exploit system flaws,

utilizing them to obtain/modify other co-running users’ data.

An essential part of protecting cloud users’ data is to protect

their data integrity, i.e. to guarantee that a user always sees

the data it last wrote. This is important because the memory

system on cloud servers is vulnerable to integrity attacks: the

hypervisor can directly modify a user’s memory data since it has

privileged access permission, and a non-privileged user could

launch Rowhammer attacks to indirectly modify other users’

data [15], [25], [52], [53], [54]. In addition, an attacker with

physical access to the memory system could manipulate the

memory bus and modify the data [18] transferred between CPU

and memory. Given these attack possibilities, it is important to

verify the data integrity when it is loaded from memory devices,

and processor vendors have put out many secure infrastructures

to achieve this (e.g., Intel SGX [11], [21], [30]).

Memory integrity protection mechanisms typically consist

of a MAC+integrity tree structure [13], [16], [37], [38], [43],

[46]: each data block in memory is protected by a Message

Authentication Code (MAC), which is essentially a keyed hash

of the data block. When a data block is loaded from memory,

the MAC is used to detect unauthorized data modifications.

However, an attacker with precise control of the memory bus

might be able to return an old version of data+MAC to the

CPU, and cause a replay attack [18]. To prevent this, a hash

tree (e.g., Bonsai Merkle Tree [37]) is built over the version id

of each data block (which is also used as encryption counter),

and the root node of the tree is stored on the CPU chip. To

verify the freshness of a data block, we need to fetch all the

nodes along a vertical tree path from the bottom up, until

reaching the root node. Unfortunately, these extra memory

accesses for MAC and tree nodes can introduce significant

performance overhead since they ¶ lengthen the critical path

of execution, and · increase the memory bus traffic which

slows down memory accesses on average.

Many prior works have been proposed to reduce the overhead

of integrity trees. Synergy [40] stores MACs in the place

usually reserved for ECCs in ECC memory, and stores ECCs

elsewhere in memory. Later, a small dedicated ECC cache

was proposed [47]. These two designs together can effectively

reduce the overhead of fetching/updating MACs. In addition,

to reduce the tree overhead, Vault [48] uses a fat and variable-

arity tree which can decrease the tree depth; ITESP [47]

builds one separate tree for each application to increase tree

cache utilization; Morphable counters [39] dynamically adjusts

counter size to reduce counter overflow frequency. Although

these optimization works obtain performance improvements, the

overhead caused by tree node accesses remains high, especially

when the cloud server has a large memory size and thus requires

a very deep tree.

Our goal is to further combat the performance barrier to

the adoption of integrity tree in clouds. We argue that most

previous tree optimization works assume a standalone system

and are not tailored for cloud server architectures; thus, they

miss important opportunities for further overhead containment.

In this work, we propose a new tree optimization design named
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Parallelized-Compressed-Prefetched-Tree (PCPT). PCPT con-

sists of performance optimization methods that suit cloud server

processors with large memories.

Specifically, we first notice that most recent cloud server

processors have many memory channels and high-speed

communication paths among memory controllers. However,

currently, nodes in an integrity tree are not organized to leverage

the memory access parallelism introduced by this architecture.

Thus, we propose to reorganize the tree to map the data and

nodes in each vertical tree path to different channels, to fully

utilize the parallelism and reduce the total integrity verification

latency for a memory data block. Second, we observe that

most of the increased memory bus pressure comes from the

accesses to the lowest-level counters (i.e. L0 counters), and that

modern applications’ memory data are highly compressible.

Thus, we propose to lightly compress each memory data cache

line (if possible), and store a copy of its L0 counter together

with the data in the same cache line. Consequently, for a

compressed data cache line, we do not need a separate memory

transaction for fetching its L0 counter. Third, we discover that

an integrity tree negatively impacts hardware prefetchers which

are critical to the performance of cloud processors. We propose

to dynamically adjust prefetchers based on memory bandwidth

utilization and prefetch accuracy to keep their efficacy while

the integrity tree is in operation. We evaluate PCPT using

25 benchmarks drawn from 3 suites, on 512GB and 1TB

memory. The experimental results show that PCPT improves

the performance of the baseline SGX integrity tree by about

55%, and improves the state-of-the-art tree designs [47], [48]

by over 35%. Our contribution is listed as follows:

• We show that the performance overhead of integrity tree

is still high even with prior optimization methods.

• We observe that some cloud server architecture features

can be utilized to further optimize tree performance,

and propose three optimization designs based on this

observation.

• We implement our design in a hardware simulator, and

evaluate its performance against the state-of-the-art.

II. BACKGROUND

A. Threat Model

We assume a threat model and security guarantee similar with

popular security infrastructures [13], [32], [48]: we protect the

confidentiality and integrity of a user’s sensitive data from ¶

an untrusted system software (e.g., hypervisor) and co-located

users, and · any attacker with physical access to off-chip

memory devices and the memory bus. The former can be

achieved by hardware-enforced access control policies, as done

in [13], [23]. In this work, we mainly focus on the latter: we

further assume that ¶ the data stored in memory or transferred

on memory bus can be physically obtained by the attacker

(e.g., via cold-boot attack), and · the attacker can manipulate

the memory bus to modify the data transferred from memory

to CPU (e.g., by precisely injecting packets). In addition, the

attacker is not able to physically read/modify the content of

on-chip resources such as registers and caches. Side-channel

attacks are excluded as they can be defended by orthogonal

works [19], [20], [50]. Note that these assumptions are same

with prior memory security techniques [16], [37], [39], [40].

B. Memory Encryption

The goal of memory encryption is to prevent an attacker

from obtaining the memory data plaintexts, i.e. protect the

confidentiality of memory data. The memory controller (MC)

encrypts a data block when it is written to memory, and

decrypts it when it is loaded onto CPU. To guarantee semantic

security while maintaining acceptable performance, counter-

mode encryption is commonly used in secure memory designs:

each data block in memory is associated with a counter, which

is part of the seed of the encryption/decryption cipher. All the

counters are also stored in memory.

C. Memory Integrity Protection

Data integrity guarantees that the CPU always sees the data

it last wrote to memory. One of the most efficient method

to protect memory data integrity is MAC+integrity tree. In

memory, every data block is associated with a MAC, which is

a keyed hash of the data block, to detect data modifications

(typically the data block size is 64B, and the MAC size is 8B).

When a data block is fetched from memory, we recalculate its

MAC using the loaded data; the integrity of this data block is

verified by comparing the stored MAC with the re-calculated

MAC: if an attacker modifies a data block in memory, the

re-calculated MAC will unlikely match the stored MAC.

However, a powerful attacker with precise control of the

memory bus could deploy replay attacks by returning an old

version of data+MAC to CPU. To prevent this, an integrity

tree (tree for short) is needed in which data blocks are the

leaves and each parent node is the hash of the child nodes (e.g.,

Merkle Tree [16]). To verify the freshness of a data block, all

the ancestor nodes of the data block in the tree are fetched

from memory except the root node which is stored on-chip,

and hashes are verified. The depth of the tree directly affects

performance: deeper the tree is, more tree nodes to fetch and

verify for each memory data read. To reduce the overhead of

fetching tree nodes (nodes for short), typically a small separate

cache for tree nodes is used: since nodes in cache are already

integrity-verified, for each memory data read, we only need to

fetch nodes in the tree path from the bottom up until a cache

hit is encountered. Note that most of the high-level nodes are

always cached due to their high locality.

Bonsai Merkle Tree (BMT) [37] and SGX integrity tree

(SIT) [13] are optimizations for Merkle Tree. Instead of building

a tree over the data blocks, BMT and SIT use the memory

encryption counter also as a version id for calculating the MAC,

and thus only build a tree over all the counters, resulting in a

smaller tree. Additionally, SIT uses a different tree organization

to achieve parallel update of nodes in a vertical tree path,

enabling better performance. In SIT (Figure 1), each node

(in cache line level) consists of eight 56-bit counters and one

64-bit hash; the link between a parent and a child node is
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Fig. 1: SGX integrity tree (SIT).

formed by hashing all the counters in the child node and one

in the parent node, and placing the hash in the child node.

D. Prior Performance Optimization Works

Although the MAC+tree mechanism can protect memory

data, it also introduces significant performance overhead,

because of the extra memory accesses for fetching MACs and

tree nodes. There have been many previous works focusing

on reducing these two overheads. Synergy [40] was proposed

to reduce the overhead caused by accessing MACs for ECC

memory. Synergy stores MACs in the ECC field and stores

ECCs elsewhere in memory. Therefore, the MAC can be fetched

along with the corresponding data block instead of generating

an extra memory transaction. When the MAC verification

succeeds, there is no need to fetch the ECC. In the very rare

cases where MAC verification fails, the ECC will be loaded for

auto-correction. However, using Synergy only benefits memory

data reads; for data writes, a separate memory write transaction

is still needed for updating the ECC. To further improve the

write performance, ITESP [47] was later proposed which uses

a small dedicated ECC cache and only updates the ECC in

memory when there is ECC cache eviction. These two designs

together can effectively reduce the overhead of using MACs.

To reduce the tree overhead, the authors of [47] also proposed

to build a separate tree for each co-running application, instead

of using one large tree for the entire memory. This design

can significantly increase the tree access locality and thus

increase the tree cache utilization. In addition, Vault [48] stores

a shared large global counter and several small independent

local counters in each tree node, instead of all independent large

counters; Vault can fit more counters in a tree node and thus

increase the tree arity, resulting in a much shallower tree and

less tree node fetches for each memory data access. At the same

time, Vault uses variable arities to reduce counter overflows.

Further, Morphable counters [39] observes the temporal locality

in counter values and dynamically adjusts the global counter

value. Morphable counters can also reduce counter overflows.

E. Motivation

Although prior works have improved tree performance, the

overhead of using an integrity tree remains high and cannot

scale with the ever increasing memory capacity, especially for

virtual machine (VMs) on a cloud server. The large memory

size (e.g., 1TB) of cloud systems requires a very deep tree and

excessive memory accesses for nodes. These additional memory

accesses can impair user performance from two perspectives:

1) sequentially fetching more nodes for each data block makes

integrity verification slower; 2) more memory accesses for

nodes render higher memory bus pressure, making memory

accesses slower on average. Therefore, we aim at further

reducing the tree overhead from these two perspectives, based

on new observations that were neglected in prior optimization

works. One difference between our work and prior works is

that we take into account the architecture features of real cloud

computing processors, which gives us more opportunities for

optimization.
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Fig. 2: The architecture of AMD EPYC 7002 processors.

III. PCPT DESIGN

In this section, we introduce PCPT, which consists of three

optimization methods to improve the tree performance. We use

SIT, the SGX integrity tree, as the baseline to describe our

optimizations in this section, and will discuss how to apply

these optimizations to other optimized tree architectures (e.g.,

Vault) in Section V. To make it clear, “data block” and “tree

node” (“node” for short) referred to in this section are both in

cache line size.

A. Parallelizing Tree Path Fetching

With the integrity tree, each memory data read requires

multiple reads of the tree nodes. Hence, the latency of fetching

all the nodes for a data block lengthens the critical path of

execution. If a data block and the corresponding nodes can

be fetched in parallel, the latency would be much shorter

than fetching them sequentially. Fortunately, the technology

advancement and new architecture in modern cloud processors

make this possible: most server processors used by cloud

providers (e.g., AWS, Azure) now support at least 4 independent

memory channels, and sometimes 8 [3]. More importantly,

recent cloud server processors tend to place MCs closely to

mitigate the effect of non-uniform memory access (NUMA)

and improve performance [1], [2]. For example, in most AMD

server processors (e.g., EYPC 7002), all the MCs are integrated

in one central die, rather than distributed into each core cluster

near edges, as shown in Figure 2. With this kind of architectures,

MCs can communicate via the intra-die infinity fabric at high

speed. Thus, if a data block and the associated nodes are stored

in different memory channels, they can be fetched in parallel

and verified with efficient communication between MCs. From

our experiments, assuming a system with 32 cores, 512GB
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Fig. 3: Tree-to-memory mapping; (a) how nodes are stored in memory, and (b) a vertical view of how nodes and the corresponding

data are mapped into each memory channel, for the bottom three levels of the tree and the data blocks; NAB indicates the Bth

node in level A.

memory, and a 12-level SIT with a 512KB cache for the tree,

on average over 70% memory data reads only require no more

than 2 additional memory fetches for nodes, and over 80%

require no more than 3. As mentioned in Section II-C, this is

because high-level nodes are mainly cached due to their high

locality. Thus, when there are at least 4 channels, each data

block and the associated lowest 3 nodes in the tree path can

be stored in 4 different channels, and fetched in parallel.

However, current tree organization is unaware of the oppor-

tunities for parallel accesses. Figure 3 (b) shows an example

of a subtree at the tree bottom and the attached data blocks.

Typically, a contiguous memory address space is reserved for

storing the tree [13], as shown in Figure 3 (a). Nodes are

stored left-to-right, level-by-level, starting at the bottom, i.e.

level-order traversal from the bottom up. Which channel a

node (at cache line granularity, as defined before) belongs to

depends on its physical address. Previous works [35], [49] have

reverse-engineered modern MCs’ address mapping algorithms

for DDR4 products: generally, the 9th and some higher least

significant address bits (LSBs) are used to index memory

channels, i.e. every four consecutive cache lines (64B each)

are stored in one memory channel, as shown in Figure 3 (a).

Figure 3 (b) gives a vertical view of the channel mapping. As

we can see, for each level of the tree, from the left most node,

the memory channel for each node is CH0, CH0, CH0, CH0,

CH1, CH1, CH1, CH1, CH2...1. Same organization goes to data

blocks as well (also at cache line granularity). If we randomly

pick a tree path (e.g., the blue or pink path in Figure 3 (b)),

the data block will have a probability of 1/4 to be in the same

channel with the level-0 node (L0 node for short), when there

are 4 channels (1/8 for the 8-channel case). Similarly, each

child node has a probability of 1/4 to be in the same channel

with its parent node.

The reason behind this phenomenon is that according to how

1Here we assume the 9th LSB and 10th LSB are used for indexing channels
(when there are 4 channels). This result may vary with different mapping
algorithms. For example, if the 9th LSB and 9th LSB ⊕ 10th LSB are used,
then the result will be CH0..., CH3..., CH1..., CH2...

nodes and data are organized in memory, there is a uniform

distribution on channel assignments for nodes and data along a

tree path (except for the top nodes), i.e. a child node or a data

block always has a probability of 1/Numchannel to be in the

same channel with its parent node. Using the birthday paradox,

there is a probability of ∼63% and 91% for channel collisions

when accessing a data block with fetching 2 and 3 nodes,

respectively, significantly limiting parallelism opportunities.

Proposed solution. To solve this problem, we propose to ¶

reorganize the tree in memory such that for each tree path, the

nodes in the lowest levels are all mapped to different memory

channels; · rearrange how data blocks are connected to the

tree, so that for each tree path the lowest nodes are all mapped

to different memory channels than the data block.

When there are 4 memory channels, if we want to map the

lowest 3 nodes and the corresponding data block in a tree

path to 4 different channels, then all the 8 data blocks that are

attached to one L0 node have to be in the same channel, since

the corresponding L0/L1/L2 nodes are fixed and occupy the

other three channels. However, as we mentioned, 8 data blocks

that are currently connected to one L0 node are consecutive

and distributed into 2 channels, according to modern mapping

policies. Therefore, we need to choose 8 data blocks that are

in the same channel, but not consecutive, to be attached to one

L0 node. This, however, potentially reduces the cache hit rate

of L0 nodes, due to the impaired locality. Thus, we change

to only guarantee that the lowest 2 nodes and the data block

are in different channels, so there will be 2 available channels

for the 8 data blocks. Hence, 8 consecutive data blocks can

still share one L0 node. For the case where the 9th and 10th

LSBs are used for indexing channels, our reorganizing and

rearranging algorithms are as follows (slight modifications are

needed with different channel indexing bits):

1) Consider the subtree with 1 L1 node, 8 L0 nodes, and

64 data blocks, as shown in the left part of Figure 4. To

guarantee that L0 and L1 nodes are in different channels,

we place all those 8 L0 nodes in one certain channel,

different from the channel for the L1 node, i.e. these L0
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nodes can no longer be stored in consecutive addresses.

At the mean time, we place adjacent 4 L1 nodes in 4

different channels to ensure the symmetry of the mapping.

These can be realized by reordering the nodes in the same

level in memory: the bottom part of Figure 4 shows how

to reorder and store 32 L0 and 4 L1 nodes in memory;

the right part shows the content of each channel after

reordering: each L1 node is now in a different channel

with the attached 8 L0 nodes.

2) We want each 64 data blocks to be in two channels,

distinct from the channels of the 8 parent L0 nodes and

1 grand-parent L1 node, to eliminate channel collisions.

As an example, in Figure 4 (left), the L0 nodes are in

CH2, and the L1 node is in CH3, so we want the 64 data

blocks to be in CH0 and CH1. Previously, these 64 data

blocks are consecutive and thus are distributed evenly

among 4 channels, i.e. 16 in CH0 and 16 in CH1. We

switch the remaining 16 in CH2 and 16 in CH3 with the

next subtree’s 16 in CH0 and 16 in CH1. As in Figure 4

(left), then we have 64 data blocks in CH0 and CH1

for this subtree and 64 in CH2 and CH3 for the next

subtree. From Figure 4 (right), these 64 in CH2 and CH3

are actually the ones the next subtree needs to eliminate

channel collisions.

In the situation of 8 memory channels, for each tree path, the

bottom 3 nodes and the data block can be placed in different

channels simply, without affecting locality. In fact, this tree

reorganization method is not unique. For an arbitrary number

of channels, an example generalization of this method is shown

in Algorithm 1, with CH(X) denoting the channel that X is

mapped into.

B. Curtailing Tree Node Fetches

The design introduced in Section III-A does not decrease

the number of extra memory accesses caused by fetching tree

nodes: every memory data read still expands into multiple

memory reads which significantly increase the pressure on

memory bus. From our experiments with the same setup in

Section III-A, over 56% of these extra memory accesses come

from fetching L0 nodes (as shown in Figure 7). As mentioned

earlier, this is because high-level nodes are mainly cached.

Thus, for verifying the integrity of a memory data block, if we

could obtain the corresponding L0 counter without introducing

an extra memory access, we would significantly reduce the

memory bus pressure and improve performance.

Algorithm 1: Tree Reorganization Method

Input: c (# of channels), a (arity of the tree)

// Step1: Remap L2 nodes (N2∗)
for i = 0; i < #N2; i+= c do

for j = 0; j < c; j++ do
CH(N2i+ j)← j

// Step2: Remap L1 nodes (N1∗)
for i = 0; i < #N1; i+= c ·a do

for j = 0; j < c ·a; j+= a do

{CH(N1i+ j+m)}
a−1
m=0← ( j%3+1)%3

// Step3: Remap L0 nodes (N0∗)
for i = 0; i < #N0; i+= c ·a2 do

for j = 0; j < c ·a2; j+= a2 do

{CH(N0i+ j+m)}
a2−1
m=0 ← ( j%3+2)%3

// Step4: Connect L0 nodes to data blocks

(D∗)
for i = 0; i < #D; i+= c ·a3 do

for j = 0; j < c ·a3; j+= a3 do

Pick a3 D∗ to connect to {N0i+ j+m}
a2−1
m=0 s.t.

CH(N2i+ j),CH(N1i+ j),CH(N0i+ j) /∈ {CH(D∗)}

Proposed solution. To achieve this, we propose to compress

each data block in memory (if possible), and place a copy of the

corresponding L0 counter together with the data block in one

cache line. Compression techniques have been well devised for

cache/memory data and proven to be effective, as the data of

many modern applications such as machine learning are highly

compressible [22], [55]. For example, cache line level data

compression algorithms, such as Base-Delta Compression [34],

are well developed and used in modern computer systems.

Given a 64-byte data cache line, if we can compress the data

to below 57 bytes (compression ratio ≈ 8/7), then we are

able to place at least a copy of the corresponding L0 counter
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Fig. 5: The vertical view of the tree with storing a copy of the

L0 counter in the data cache line.

inside this cache line2, as shown in Figure 5. Note that this

compression should happen before data encryption, because

after encryption the compressibility is very small.

Once a memory data block is compressed and accompanied

with its L0 counter, we do not need a separate memory

transaction to fetch the tree node that contains this counter:

when the data block is fetched from memory, the copy of

the L0 counter stored in the same cache line will be fetched

together with the data. However, there is one problem of this

approach. As explained in Figure 1, to verify the integrity of

an L0 counter, we need to know the value of its seven sibling

counters and their corresponding hash (in the same node). Since

for a compressed data block, we are now obtaining the L0

counter from the data cache line and not fetching the tree

node, we will not be able to get the sibling counters and verify

the integrity of the L0 counter. To address this problem, we

utilize the design proposed in [48]: as shown in Figure 6, we

eliminate the hash in each L0 node, and protect L0 counters by

encrypting them using the parent L1 counter as part of the key,

explained below. If an attacker tries to fabricate either the L1 or

the encrypted L0 counter, it will very likely yield an incorrect

decrypted L0 counter, which will further yield an incorrect data

block that fails the MAC verification. The detailed security

analysis can be found in [48]. Note that although encrypting L0

counters adds latency on the critical path, it can significantly

improve the throughput of memory accesses.

This encryption in [48] is carried by first slicing an L0

node into four 128-bit chunks, and then encrypting each chunk

individually using AES-128: CL0 = E(PL0, (CT RL1||Addr)⊕
K), where CL0 and PL0 are the ciphertext and plaintext of the

L0 chunk, respectively, CT RL1 is the parent L1 counter, Addr

is the address of CT RL1, and K is the on-chip secure key. We

adapt this design in our approach as follows. We use two types

of encryption: 1) for each L0 node in the tree, we still encrypt

it in the same way as in [48]; 2) for a compressed data block,

we first pad its L0 counter with ”0”s to achieve a length of

128 bits, and then encrypt it (in the same way as the chunk

mentioned above) and store the 128-bit ciphertext together with

the data in one cache line. After doing so, there will be two

cases for fetching and decrypting an L0 counter:

2Here we assume a SGX-type counter which is 7 bytes; other counter types
(e.g., split counters) require different compression ratios and will be discussed
in Section V.

Fig. 6: The tree with encrypted L0 nodes; each L0 counter is

now extended to 64 bits since the hash is eliminated.

Case 1: if the corresponding data block is compressed and

the encrypted L0 counter is fetched together with

it, we first decrypt this counter ciphertext using

(CT RL1||Addr)⊕K as the key; then we ignore the

last 64 bits of the plaintext (which are supposed to

be zeros), and use the first 64 bits as the L0 counter;

Case 2: if the corresponding data block is not compressed and

the L0 node in the tree is thus fetched, we decrypt

each slice of this node individually and obtain the

target L0 counter from the corresponding slice.

Storing a 128-bit counter ciphertext with data requires a

higher data compression ratio (4/3); however, we will show in

Section V that it still leads to good performance as this ratio is

not difficult to achieve for many applications. Note that since

AES does not suffer from known-plaintext attack, this padding

is secure: for manipulating the L0 counter and performing a

replay attack, the attacker needs to first brute force K which

requires 2128 searches and is not realizable. We do not encrypt

an L0 counter without padding since the input size of AES

block cipher is at least 128 bits.
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Fig. 7: The breakdown of tree node fetches.

Caching policy. When a loaded memory data block is com-

pressed, after the loaded data is integrity-verified and decrypted,

the data will be decompressed (by the MC) and stored in the

data cache, and the loaded L0 counter will be discarded: we

can choose to store this counter in the tree cache; however, the

tree cache is accessed/modified with cache line size (tree node

size) granularity. To store one counter (which is 1/8 of a cache

line) in the tree cache, we will need additional metadata to

track the status of each counter in a cache line, making the tree

cache structure very complicated. Discarding the L0 counter

will not degrade performance: next time when the same data

block is loaded from memory, it is very likely that this data

block is still compressed and no extra memory transaction is

needed for obtaining the L0 counter. Although we will need
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to decrypt this L0 counter using higher-level counters, those

counters are usually cached, as explained earlier.

Counter consistency. The main challenge of storing a copy

of the L0 counter with the data block is to maintain the data

consistency between this copy and the one stored in the tree

node. Our solution is to always update these two copies of

counter together. An L0 counter is only updated when the

corresponding data block is being written back to memory.

Thus, for a memory data write, we first fetch the tree node that

contains the associated L0 counter if it is not cached. Then

we update and re-encrypt the tree node, as while as updating,

padding, and re-encrypting this L0 counter individually. We

store the L0 counter ciphertext together with the data block if

the data block is compressible.

There is one natural question about this design: since we do

not cache the L0 counter if the data is compressed, then it is

very likely that when a data block (that was compressed) is

being written to memory, its L0 counter is not in the tree cache

and needs an extra memory transaction for fetching it. We

argue that this will not significantly degrade performance for

two reasons: ¶ the data write operation is not on the critical

path; · the probability that the L0 counter is not cached when

a data block is being written back is high no matter we cache

the L0 counter (when it is loaded) or not: tree cache is usually

very small. Thus, when a data block is relatively “old” in the

data cache, and being evicted, its L0 counter has a very high

probability to be already evicted from the tree cache. We will

quantitatively prove this argument in Figure 11.

When loading a data block from memory, the MC needs to

know whether its L0 counter is stored with the data block or not,

to generate tree node accesses. To achieve this, we use one bit

to record the compression status of each data block in memory.

This metadata is stored together with the secure metadata

for enclaves/secure VMs: to protect a process/VM from the

untrusted OS/hypervisor, modern secure infrastructures usually

maintain an access control table (e.g., RMP in AMD SEV-

SNP [23]). This table records the access permission and other

related metadata of each secure page, and cannot be corrupted

by the OS/hypervisor. Thus, we store the compression status

of each data block in a secure page also in this table, resulting

in 64-bit metadata for a 4KB page. However, we may need

to fetch/update the metadata every time when a data block is

loaded from/written to memory. This can introduce overhead

because 1) fetching metadata will increase the memory bus

pressure, and 2) the memory accesses for fetching data and

counters will be sequentialized, since counters are not fetched

until the compression status is known. In fact, this is not a

severe problem because recent secure infrastructures start to use

a small dedicated cache for the access control table [23]. As the

metadata size is very small (1/256 of the data size), this cache

hit rate is very high. Thus, as later shown in the experiments,

our design can still significantly improve performance.

C. Adaptive Tree-aware Prefetching

The increase in memory bus traffic caused by nodes fetching

would also impose a negative impact on hardware prefetchers

PRF
accuracy
> 90%?

BW
Utilization

>85%?

BW
Utilization

> 50%?

Prefetch data + all nodes

Prefetch nodes

BW
Utilization

> 50%?
No prefetch

Y

N
Y

N

Y N

Y

N
N

Y

PRF
accuracy
> 70%?

Prefetch data+ all nodes

No prefetch

Fig. 8: Adaptive prefetching algorithm based on the memory

bandwidth utilization (normalized to the peak utilization), and

the prefetch accuracy.

that are widely used in cloud server processors to increase data

cache hit rate [6]. However, previous works on tree optimization

ignore the importance of prefetchers and assume a baseline

without any prefetch.

Actually, researchers have proposed hardware prefetcher

designs with high accuracy and at low cost [26], [31], [42].

Those prefetchers work efficiently in insecure memory where

there is no protection on data privacy and integrity. However,

for secure memory, those designs may have new problems. In

secure memory where there is a tree involved, when a data

block is being prefetched, its associated nodes should also be

prefetched to verify the integrity of the data, otherwise, the

prefetched data cannot be accessed securely. Thus, one problem

will occur when using previous hardware prefetchers in secure

memory: in secure memory, each prefetch likely triggers a

sequence of memory reads for both data and its associated

nodes, and thus generates heavier memory bus traffic than in

insecure memory, coupled with the fact that the bus traffic is

already heavier in secure memory due to node accesses.

In previous works [7], [9], [45], it has been proposed to

use memory bandwidth utilization as a feedback signal to

adjust the prefetcher’s behavior. The overall ideas of these

designs are similar: when the bandwidth utilization is low,

increase the prefetch coverage; when it’s high, increase the

prefetch accuracy. These designs ensure that the prefetcher

will not overwhelm the memory bus and hurt the performance,

by adjusting “what to prefetch” according to the bandwidth

utilization. However, they do not consider the case of secure

memory. In secure memory, “what to prefetch” is not only

about deciding which data block to prefetch, but also which

node to prefetch. Our key insight is that nodes and data should

have different priorities during the prefetch decision: after a

prefetch request is generated (based on the data access pattern),

instead of prefetching the data and all its associated nodes,

prefetching nodes only is more beneficial when constrained,

as nodes (especially higher-level nodes) are shared by many

data blocks and are thus more likely to be useful.

Proposed solution. We therefore propose a new algorithm

to adjust general hardware prefetchers’ behavior in secure

memory, based on the memory bandwidth utilization and
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TABLE I: Evaluated secure/insecure memory designs.

Design Tree structure Tree Optimiz. MAC MAC Optimiz.
Tree path parallelization Curtailed tree fetch Adaptive prefetch Synergy [40] ECC cache [47]

Insecure baseline 7 7 7 7 7 7 7

Secure baseline SIT [13] 7 7 7 64bit 3 3

Vault O Vault [48] 7 7 7 64bit 3 3

ST O Separated SIT [47] 7 7 7 64bit 3 3

PT SIT 3 7 7 64bit 3 3

CPT SIT 3 3 7 64bit 3 3

PCPT SIT 3 3 3 64bit 3 3

Vault O+PCPT Vault 3 3 3 64bit 3 3

ST O+PCPT Separated SIT 3 3 3 64bit 3 3

the prefetch accuracy: our algorithm is decoupled from the

internal prefetcher design which decides how to predict the data

address for the next prefetch, it’s only about after the prefetcher

generates the prefetch request, whether and how should this be

served by the MCs. We assume that the bandwidth utilization

can be tracked by simple counters near the MCs as in [9], and

the prefetch accuracy in each epoch is recorded as in [27].

Our algorithm is sketched in Figure 8. There are two

scenarios where we always fetch the target data block and

all the associated nodes for each prefetch request. The first

scenario is when the prefetch accuracy is very high (e.g.,

> 90%) because correct prefetch of data and its nodes would

very likely benefit the performance. The second scenario is

when the bandwidth utilization is relatively low (e.g., < 50%

of peak utilization) and the prefetch accuracy is still good

(e.g., > 70%) because the pressure on the memory bus is

low. However, if the bus is quite busy (e.g., > 85% of peak

utilization) but prefetch accuracy is not very high, the prefetch

requests are rejected by the MCs.

There is one situation where we only prefetch nodes. From

the experiments, when using Best Offset Prefetcher [31], there

are over 50% memory data prefetches that require to fetch at

least one node for integrity verification. In these cases, when the

prediction is wrong and the prefetched data block is useless, the

prefetched nodes might still be useful since they are shared by

multiple data blocks. Thus, when we have to partially give up

some prefetch accesses due to the limited memory bandwidth,

we still want to prefetch these nodes to shorten the verification

path for future data blocks.

The thresholds in Figure 8 are empirical results. When

implementing this design into processors, these numbers can

be left configurable for the system software.

IV. METHODOLOGY

We evaluate our techniques on 25 benchmarks including

15 from SPEC 2017 [5], 6 from GAP [41], and 4 machine

learning workloads (ML) [36]. The chosen 15 SPEC workloads

cover the ones that have high/medium/low percentage of

memory operations to give a comprehensive evaluation. We

implement our design in USIMM [12], a trace-driven cycle

accurate memory simulator. To simulate the cloud computing

system which is typically virtualized, we collect the full-system

trace of each VM: we modify QEMU [8], an open-source

emulator and virtualizer, to collect the entire trace of a VM

during binary translation. For each simulation, we first run 1

billion instructions to warm up the cache, and then run 10

billion instructions for collecting the statistic data. For energy

consumption evaluation, we use Micron power calculator [4]

to estimate the power of each memory chip.

For the baseline, we implement a small cache dedicated for

the tree, as done in most prior optimization works [40], [48].

The size of the tree cache is set to be 16KB×Num_core. For

memory prefetch, we use Best Offset Prefetcher (BOP) [31],

which is one of the most effective hardware prefetchers. In

addition, we use a variant of Base-Delta-Immediate Compres-

sion (BDI) [34] in PCPT: for a compressed data block, we

encode the compressed data length into the first four bits of

this cache line. Most of our evaluations are done in systems

with 32 cores, 4 channels, and 512GB memory; however, we

do test PCPT with different configurations in Section V-B. For

the evaluation, we first test the performance of the systems in

which n VMs run concurrently, where n is the number of CPU

cores. In this case, we reserve one core for each VM; each

runs the same single-threaded benchmark (from SPEC) at a

time. Then we test the systems in which multiple cores are

assigned to each VM, and each runs the same multi-threaded

benchmark (from GAP or ML). Detailed simulation parameters

are shown in Table II.

V. RESULTS

In Section V-A and Section V-B, we use two baselines to

evaluate our design. As shown in Table I, the first baseline is the

TABLE II: Simulation Parameters

ROB/width 128-entry/8-wide

Number of cores (Num core) 32/64

L1 cache, private 32KB, 64B line,

8-way associative

LLC, shared 4MB per core [3], 64B line

16-way associative

Hardware prefetcher BOP

Compression algorithm/latency Optimized BDI/2 cycles

Counter encryption/decryption latency 50 cycles

Tree cache 16KB × Num core

RMP cache 8KB × Num core

DDR4 memory channels 4/8

Memory size 512GB/1TB

Bus speed 3200MHZ

DIMMs per channel 2, according to [3]
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tree node fetches (CPT), and CPT with the adaptive prefetching algorithm (PCPT), all normalized to the insecure baseline,

assuming 32 cores, 4 memory channels, and 512GB memory.
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Fig. 11: (a) The total number of node fetches, (b) the probability

that the corresponding L0 counter is not cached when writing

data to memory, and (c) the cache hit rate of L1 and higher-level

nodes, in CPT; all the results are normalized to PT.

insecure baseline, in which there is no protection on memory

confidentiality and integrity. The second baseline is the secure

baseline in which we implement Counter-Mode AES (AES-

CTR) for memory encryption, and the MAC+tree structure for

memory integrity. We use a simple 12-level SIT (SGX Integrity

Tree) which covers up to 1TB memory. We also implement

Synergy+ECC cache [40], [47] in the secure baseline which

can together mitigate the overhead caused by MAC accesses,

as introduced in Section II-C. In Section V-C, we evaluate

PCPT with optimized tree structures instead of SIT to show

how using PCPT can further improve the performance of prior

optimization designs. Table I provides the details regarding the

configurations we evaluate.

A. Performance and Energy Evaluation

Figure 9 shows the execution time for different benchmark

suites when our proposed optimizations are applied step by

step. All the results are normalized to the insecure baseline.

As we can see, the secure baseline, which only optimizes the

performance of MAC accesses, still suffers very high overhead

on certain benchmarks (up to 4 times). In comparison, PCPT

adds three optimizations on the tree performance, and thus

achieves much smaller overhead.

First, as shown in the first and second bars from the left in

Figure 9, compared to the secure baseline, the execution time

for secure baseline + parallelizing tree path accesses (PT) is

reduced from 1.95 to 1.77 for SPEC, 1.99 to 1.85 for GAP,

1.41 to 1.29 for ML, and 3.21 to 2.74 for the 5 most memory-

intensive benchmarks (among all 25 benchmarks, referred by

Top5), on average. The primary reason of this improvement

is the shortened latency of load instructions. Figure 10 shows

the execution latency of load instructions that miss in the data

cache. For the insecure baseline (shown by the left bars), as

long as the target data block is fetched and returned from

memory to CPU, the instruction is ready to retire. In contrast,

with integrity verification, since we also need to fetch all the

associated tree nodes, this latency becomes much longer. As we

can see, compared to the secure baseline (shown by the middle

bars), where some of the node fetches happen sequentially,

parallelizing tree path accesses (shown by the right bars) can

effectively reduce the latency of load instructions. As shown
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Fig. 12: The percentage of useless prefetch accesses, in PCPT

with/without the proposed adaptive prefetching algorithm,

counting both the node accesses and the data accesses.

in Figure 9, this reduction is important especially for memory

intensive applications (e.g., cactu), as with the tree, the much

longer latency for load instructions can cause the CPU pipeline

to be stalled more easily, which is significant overhead. Note

that this design does not benefit omnetpp much, because

the tree cache utilization of this benchmark is much lower

than other benchmarks: in omnetpp, about 40% memory data

reads need the access to L4 and higher nodes. Thus, only

parallelizing the lowest 2 or 3 nodes does not help very much.

Second, curtailing tree node fetches can further reduce the

execution time from 1.77 to 1.50 for SPEC, 1.85 to 1.51 for

GAP, 1.29 to 1.15 for ML, and 2.74 to 2.15 for Top5, as shown

in the second and third bars from the left in Figure 9. Figure 11

(a) shows the total number of node fetches in PT + curtailed

tree fetches (CPT), normalized to the results in PT. We can see

that on average, CPT reduces about 50% of the node fetches

in PT. Most of this reduction comes from the reduction of L0

node fetches. However, since in CPT, we do not cache the L0

counter for a compressed data block, the cache hit rate of the

higher-level nodes (L1 to root) in CPT becomes much higher

than the hit rate in PT, as shown in Figure 11 (c). Thus, CPT

also has less L1 and higher-level node fetches than PT does,

which can further benefit the performance. This is why CPT

achieves better performance improvement compared to prior

works that also improve performance by reducing metadata

accesses, such as Synergy. In addition, as shown in Figure 11

(b), not caching L0 counter for compressed data blocks will not

increase the probability that the L0 counter needs to be fetched

when the corresponding data block is written to memory; the

difference between PT and CPT is less than 1%.

The third and fourth bars from the left in Figure 9 show

the performance difference of using BOP with and without the

proposed adaptive algorithm: comparing with using the native

BOP, after adding the proposed algorithm, the execution time

can be further reduced to 1.42 for SPEC, 1.44 for GAP, 1.15
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Fig. 13: (a) The normalized memory energy and (b) the average

system energy delay product, with the same setup of Figure 9.
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Fig. 14: The average execution time of the secure baseline and

PCPT for various number of cores and memory channels, all

normalized to the insecure baseline.

for ML, and 2.01 for Top5. Figure 12 shows the percentage of

prefetch accesses that are not useful. As we can see, native BOP

is very aggressive and can generate about 40% useless prefetch

accesses which can significantly increase the memory bus

pressure. In contrast, with the adaptive prefetching algorithm,

the useless portion can be reduced to about 25% on average.

Figure 13 shows memory energy results and system energy

delay product (EDP). Compared to the secure baseline, PCPT

reduces the energy consumption from 2.43 to 1.59, and system

EDP from 4.21 to 2.04, on average. This improvement mainly

comes from the reduction on the number of tree node fetches

and useless prefetch accesses.

B. Performance Evaluation with Other Setups

In this section, we evaluate PCPT in systems with 32-

core/8-channel/512GB-memory and 64-core/8-channel/1TB-

memory, as shown in Figure 14. Compared to the 32-core/4-

channel/512GB-memory system, in the 32-core/8-channel

system, PCPT has less performance improvement over the

secure baseline. This is because with 8 channels, there is a lower

probability for channel collisions in a tree path, and useless

prefetches have less effect on the performance with a higher

memory bandwidth. In addition, both the secure baseline and

PCPT have higher overhead in the 64-core system, compared

to the 32-core/4-channel system. We believe this is due to a

lower tree cache utilization, as explained in [47]. However,

PCPT remains good improvement over the secure baseline.

C. PCPT with Prior Tree Optimization Designs

In previous sections, we only evaluate PCPT with assuming

the baseline tree to be SIT. In fact, recently researchers have

proposed many optimized tree designs based on SIT. Vault

proposed in 2018 [48] is a tree architecture that has much

better performance compared to SIT. We slightly modify and

implement PCPT over a 8-level Vault to evaluate PCPT with

Vault: ¶ Vault has a much higher arity (e.g., 64 for L0), and

thus we need to correspondingly modify the reorganizing details

in Figure 4; however, we cannot avoid hurting the locality of

L0 nodes due to the higher arity); · each L0 counter in Vault

have 71 bits (64-bit global counter and 7-bit local counter).

Hence, we pad an L0 counter with 57 ”0”s and still use AES-

128 to encrypt it before placing it in the data cache line. As

shown in Figure 15, using PCPT can improve the performance

of optimized Vault (Vault O) from 1.66 to 1.41 on average.

The configuration details of Vault O are shown in Table I.
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Fig. 15: The normalized execution time of optimized Vault

(Vault O) and Vault O+PCPT.
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Fig. 16: The normalized execution time of optimized Separated

Tree (ST O) and ST O+PCPT.

In [47], the authors proposed to build one separate tree

for each process and isolate trees in cache. This design has

been proved to significantly increase the tree cache utilization

and thus reduce the overhead. PCPT can be directly applied

on top of this design to further improve the performance:

this separated tree design (ST) mainly focuses on reducing

the overhead of high-level node accesses, and PCPT mainly

focuses on reducing low-level node access overhead. From

Figure 16, with optimized ST (ST O) and PCPT together, the

average overhead of using a MAC+tree structure is only 1.30.

The configuration details of ST O are also in Table I.

VI. DISCUSSION

A. Side Channel Attacks

Side channel attacks are very potent. Although PCPT mainly

focuses on memory integrity and excludes side channels from

our threat model, we do not want to introduce additional side

channels by this design. In this section, we discuss side channel

attacks related to PCPT and explain why they will not cause

severe security problems.

First, one may argue that data compression in general can

introduce side channels, as shown in [24]. However, this

compression-based side-channel attack has a prerequisite that

the attacker is able to obtain the exact compression ratio of

a cache line. This can be easily achieved by using a variant

of PRIME+PROBE [29]. However, in PCPT this prerequisite

is very difficult (if not impossible) to achieve for two reasons.

First, we do not use variable-size cache lines in PCPT: even

after applying data compression, a cache line in PCPT is

still always the same length; the compression is only done to

make space for a counter. Thus, the attacker cannot figure out

the compression ratio of a data block by directly observing

the cache line size anymore. Second, an attacker with precise

control of the memory bus might be able learn if an L0 counter

fetch is created after a data fetch, and thus learn if this data

block is compressed. However, this only tells the attacker

whether the compression ratio of this data block is larger than

4/3 or not, which is much less information than the attacker

needs in [24]. There has not been any work showing that this

information can be utilized to build a practical side channel

attack. If an attack is discovered in the future, the compression

can be performed with an element of randomness.

Second, prior research [44] has found that general hardware

prefetchers can introduce powerful side channels. This is

because the prediction result of the prefetcher is related to

users’ memory access patterns (which might be related to

users’ secrets). PCPT does not modify how prefetch addresses

are generated. We only limit (but not increase) the prefetches

based on the memory bus utilization and prefetch accuracy.

Hence, we do not introduce additional side channel leakages,

but rather, reduce potential leakages. The thresholds on bus

utilization and prefetch accuracy in PCPT are only observable

to the hardware logic in memory controller, and thus cannot

be used by the untrusted OS/hypervisor or other users to

leak information. However, since the prefetch decision affects

memory bus utilization, a “smart” attacker could carefully

design some algorithms to learn the memory bus utilization and

further obtain the prefetch accuracy, which might be related to

the victim’s secrets. In fact, side channel leakages caused by the

sharing of memory bus do not only exist in our design, modern

secure infrastructures (e.g., SGX) all suffer from this problem.

This is a significant and general challenge on designing secure

infrastructures, and we have to rely on orthogonal defenses

and more future works to defend them.

B. Related Works

We have already discussed most of the integrity protection

techniques including MT, BMT, Vault, Synergy, Morphable

counters, and ITESP. In addition, the work from Lehman

et al. [28] analyzes the integrity metadata access patterns.

Graphene [33] and BlockHammer [17] were proposed for

defending Rowhammer attacks. Osiris [51], Anubis [56], and

PLP [14] focus on integrity trees for persistent memory systems.
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VIII. CONCLUSION

In this work, we first give a comprehensive summary of

the state-of-the-art integrity tree designs, and identify critical

performance problems of directly using them in cloud systems

with large memories. Then, we give an important insight that

some cloud server architecture features can be considered in the

tree design for further performance improvement. Based on this

insight, we propose a new design, PCPT, which consists of three

tree optimizations tailored for cloud server architectures and

critical hardware configurations. We implement and evaluate

PCPT in USIMM, and the results show that PCPT can improve

the performance of the state-of-the-art by over 35%.

11



REFERENCES

[1] [Online]. Available: https://www.amd.com/en/processors/epyc-7002-
series

[2] [Online]. Available: https://www.amd.com/en/processors/epyc-7003-
series

[3] “The 2nd generation AMD EPYC processor redefines data center
economics.” [Online]. Available: https://www.amd.com/system/files/
documents/TIRIAS-White-Paper-AMD-Infinity-Architecture.pdf

[4] “Micron system power calculator.” [Online]. Available: http://www.
micron.com/products/support/power-calc

[5] “SPEC CPU 2017.” [Online]. Available: https://www.spec.org/cpu2017

[6] “Workload tuning guide for AMD EPYC™ 7002 series processor
based servers.” [Online]. Available: https://developer.amd.com/wp-
content/resources/56745 0.80.pdf

[7] A. R. Alameldeen and D. A. Wood, “Interactions between compression
and prefetching in chip multiprocessors,” in 2007 IEEE 13th International

Symposium on High Performance Computer Architecture (HPCA), 2007.

[8] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proceedings

of the Annual Conference on USENIX Annual Technical Conference,
2005, p. 41.

[9] R. Bera, A. V. Nori, O. Mutlu, and S. Subramoney, “Dspatch: Dual
spatial pattern prefetcher,” in Proceedings of the 52nd Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), 2019, pp. 531–
544.

[10] R. Buhren, C. Werling, and J.-P. Seifert, “Insecure until proven updated:
Analyzing AMD SEV’s remote attestation,” in Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communications Security

(CCS), 2019, pp. 1087–1099.

[11] S. Chakrabarti, M. Hoekstra, D. Kuvaiskii, and M. Vij, “Scaling
Intel® software guard extensions applications with Intel® SGX card,”
in Proceedings of the 8th International Workshop on Hardware and

Architectural Support for Security and Privacy (HASP), 2019.

[12] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi,
A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti, “Usimm: the utah
simulated memory module,” University of Utah, Tech. Rep, pp. 1–24,
2012.

[13] V. Costan and S. Devadas, “Intel sgx explained,” Cryptology ePrint
Archive, Report 2016/086, 2016.

[14] A. Freij, S. Yuan, H. Zhou, and Y. Solihin, “Persist level parallelism:
Streamlining integrity tree updates for secure persistent memory,” in 2020

53rd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), 2020, pp. 14–27.

[15] P. Frigo, E. Vannacc, H. Hassan, V. v. der Veen, O. Mutlu, C. Giuffrida,
H. Bos, and K. Razavi, “Trrespass: Exploiting the many sides of target
row refresh,” in 2020 IEEE Symposium on Security and Privacy (SP),
2020, pp. 747–762.

[16] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas, “Caches
and hash trees for efficient memory integrity verification,” in Proceedings

of the 9th International Symposium on High-Performance Computer

Architecture (HPCA), 2003, p. 295.
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