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Abstract
Universal displacements are those displacements that can be maintained, in the absence of body forces, by applying only
boundary tractions for any material in a given class of materials. Therefore, equilibrium equations must be satisfied for
arbitrary elastic moduli for a given anisotropy class. These conditions can be expressed as a set of partial differential equa-
tions for the displacement field that we call universality constraints. The classification of universal displacements in homoge-
neous linear elasticity has been completed for all the eight anisotropy classes. Here, we extend our previous work by
studying universal displacements in inhomogeneous anisotropic linear elasticity assuming that the directions of anisotropy
are known. We show that universality constraints of inhomogeneous linear elasticity include those of homogeneous lin-
ear elasticity. For each class and for its known universal displacements, we find the most general inhomogeneous elastic
moduli that are consistent with the universality constrains. It is known that the larger the symmetry group, the larger the
space of universal displacements. We show that the larger the symmetry group, the more severe the universality con-
straints are on the inhomogeneities of the elastic moduli. In particular, we show that inhomogeneous isotropic and inho-
mogeneous cubic linear elastic solids do not admit universal displacements and we completely characterize the universal
inhomogeneities for the other six anisotropy classes.
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1. Introduction

In nonlinear elasticity, universal deformations are those deformations that are possible for a body made
of any material in a given class of materials in the absence of body forces and by applying only boundary
tractions [1]. Motivated by the works of Rivlin [2–4], Ericksen [5] presented the first systematic analysis
of universal deformations in homogeneous compressible isotropic solids and incompressible isotropic
solids [6]. In the case of compressible isotropic solids, Ericksen [5] proved that universal deformations
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must be homogeneous. Characterizing universal deformations in the incompressible case turned out to
be much more complicated. Ericksen [6] found four families of universal deformations (in addition to
homogeneous deformations that define family 0). In his analysis, Ericksen conjectured that a deforma-
tion with constant principal invariants must be homogeneous, which turned out to be incorrect [7]. This
motivated the discovery of a fifth family of inhomogeneous universal deformations with constant princi-
pal invariants [8,9]. The known five families of universal deformations other than homogeneous defor-
mations are the following (see Truesdell and Noll [10], Tadmor et al. [11, p. 265], and Goriely [12, p.
305] for a visualization and discussion): (1) family 1: bending, stretching, and shearing of a rectangular
block; (2) family 2: straightening, stretching, and shearing of a sector of a cylindrical shell; (3) family 3:
inflation, bending, torsion, extension, and shearing of a sector of an annular wedge; (4) family 4: infla-
tion/inversion of a sector of a spherical shell; and (5) family 5: inflation, bending, extension, and azi-
muthal shearing of an annular wedge. The case of constant principal invariants is still an open problem.
However, the conjecture is that there are no solutions other than family 5 deformations.

The study of universal deformations has been extended to anelasticity by Yavari and Goriely [13] in
the compressible case and by Goodbrake et al. [14] in the incompressible case. In the literature, the study
of universal deformations has been restricted to homogeneous solids. Recently, Yavari [15] extended
Ericksen’s analysis to inhomogeneous isotropic solids. It was observed that the universality constraints
of inhomogeneous solids include those of the corresponding homogeneous solids. It was shown that
inhomogeneous compressible isotropic solids do not admit universal deformations. For incompressible
isotropic solids, the universal inhomogeneities were characterized for each of the six known families of
universal deformations.1 Until recently, there were only some limited studies of universal deformations
in anisotropic nonlinear solids [17]. In Yavari and Goriely [18], we systematically studied universal
deformations and universal material preferred directions in homogeneous compressible and incompres-
sible transversely isotropic, orthotropic, and monoclinic solids.2 In the case of inhomogeneous anisotro-
pic solids, we recently studied the universal inhomogeneities [16]. This systematic analysis completed
what we referred to as the universal program of nonlinear hyperelasticity.

The analogue of universal deformations in linear elasticity is universal displacements [19–21] and our
goal here is to complete the universal program of linear elasticity. Universal displacements in homoge-
neous anisotropic linear elasticity were studied in [21]. Universal displacements were fully characterized
for all the eight symmetry classes assuming that the directions of anisotropy are known. In this paper,
we extend the analysis of universal displacements to inhomogeneous anisotropic linear elasticity.

This paper is organized as follows. In Section 2, we study universal displacements and inhomogene-
ities in isotropic linear elasticity. In Section 3, the same problem is studied for the remaining seven sym-
metry classes (triclinic, monoclinic, tetragonal, trigonal, orthotropic, transversely isotropic, and cubic).
Conclusions are given in Section 4 section.

2. Universal displacements in inhomogeneous isotropic linear elasticity

We first extend the work of Yavari et al. [21] to characterize universal displacements in inhomogeneous
isotropic linear elasticity. In a Cartesian coordinate system fxag, the elasticity tensor has components
Cabcd(x)= l(x)dabdcd +m(x)(dacdbd + daddbc), where dab denotes Kronecker’s delta, and l and m are the
Lamé constants that explicitly depend on position x. The equilibrium equations in the absence of body
forces read

sab, b = l+mð Þub, ba+mua, bb+ l, aub, b +m, b ua, b+ ub, að Þ= 0 , a= 1, 2, 3 , ð2:1Þ

where sab and ua are the Cauchy stress and displacement components, respectively; sab, b denotes the
partial derivatives of sab with respect to xb, and summation over repeated indices is assumed. Equation
(2.1) must hold for arbitrary elastic moduli. In particular, it must hold for uniform elastic moduli. This
implies that

ub, ba= ua, bb= 0 , or grad 8 div u= 0, Du= 0 , ð2:2Þ
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which are the universality constraints of homogeneous isotropic linear elasticity that we derived previ-
ously [21]. Therefore, for inhomogeneous isotropic linear elasticity, universal displacements must be
constant-divergence harmonic vector fields. We define the universal inhomogeneities to be those nonuni-
form elastic moduli that satisfy equation (2.1) for constant-divergence harmonic vector fields. In other
words, the extra universality constraints of inhomogeneous isotropic linear elasticity are

l, aub, b +m, b ua, b+ ub, að Þ= 0 , a= 1, 2, 3 : ð2:3Þ

On R
3, constant-divergence vector fields have the following representation [22]:

ua xð Þ= Sab, b xð Þ+ c

3
xa+ ka, ð2:4Þ

where Sab(x)= � Sba(x), and c and ka are constants. More specifically, in Cartesian coordinates
x= (x1, x2, x3), S has the following representation:

S xð Þ=
0 a xð Þ b xð Þ

�a xð Þ 0 g xð Þ
�b xð Þ �g xð Þ 0

24 35, ð2:5Þ

where a, b, and g are arbitrary functions that must satisfy the following system of PDEs [21]:

Da, 2+Db, 3 = 0,
Dg, 3 � Da, 1= 0,
Db, 1 +Dg, 2 = 0:

8<: ð2:6Þ

Substituting equation (2.4) into (2.3) leads to

c

3
3l, a xð Þ+ 2m, a xð Þ
� �

+ Sam, bm xð Þ+ Sbm, am xð Þ½ �m, b xð Þ= 0 , ð2:7Þ

which must hold for arbitrary c, and hence 3l, a(x)+ 2m, a(x)= 0, that is, 3l(x)+ 2m(x)must be uniform.
Therefore, the universality constraints are simplified to read

Sa1, 11+ Sa2, 12+ Sa3, 13+ S12, a2 + S13, a3ð Þm, 1= 0 ,

Sa1, 12+ Sa2, 22+ Sa3, 23+ S21, a1 + S23, a3ð Þm, 2= 0 ,

Sa1, 13+ Sa2, 23+ Sa3, 33+ S31, a1 + S32, a2ð Þm, 3= 0 :

ð2:8Þ

For a= 1, equation (2.8) reads

2 S12, 12+ S13, 13ð Þm, 1= 0 ,

�S12, 11+ S12, 22+ S13, 23+ S23, 13ð Þm, 2= 0 ,

S12, 23+ S13, 33 � S13, 11+ S32, 12ð Þm, 3= 0 :

ð2:9Þ

Since these conditions must be satisfied for all a, b, and g that satisfy equation (2.6), we can choose
a(x)= a0x

2 and b= g= 0 and the above constraints are simplified to read �2a0m, 2= 0, which implies
that m, 2= 0. For b(x)= b0x

2
3 and a= g= 0, which also satisfy equation (2.6), equation (2.9) is simplified

to read 2b0m, 3= 0, which implies that m, 3= 0. Now the constraint (2.8) for a= 2 reads
(� S12, 11+ S23, 13 � S12, 22+ S13, 23)m, 1= 0. For the choice a(x)= c0x

2
2 and b= g= 0, which satisfy equa-

tion (2.6), this constraint is simplified to read 2c0m, 1= 0, which implies that m, 1= 0. Therefore, m(x) is
constant. Knowing that 3l(x)+ 2m(x) is also constant, one concludes that both Lamé constants must
be uniform, and hence, we have proved the following result:

Proposition 2.1. Inhomogeneous compressible isotropic linear elastic solids do not admit universal
displacements.
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3. Universal displacements and inhomogeneities in anisotropic linear elasticity

Yavari et al. [21] characterized the universal displacements for all the eight anisotropy classes. Here, we
extend that work to inhomogeneous anisotropic linear elasticity. Consider an inhomogeneous body
made of a linear elastic solid at point x. The elasticity tensor Cabcd(x) has major symmetries,
Cabcd(x)=Ccdab(x), and minor symmetries, Cabcd(x)=Cbacd(x)=Cabdc(x). The constitutive equations
are written as sab=Cabcd uc, d , and the equilibrium equations in the absence of body forces in Cartesian
coordinates read

sab

∂xb
=Cabcd

∂2uc

∂xd∂xb
+

∂Cabcd

∂xb
∂uc

∂xd
= 0, a= 1, 2, 3 : ð3:1Þ

For homogeneous solids, this is reduced to Cabcd uc, db= 0. For a given class of linear elastic solids,
equilibrium equations must be satisfied for arbitrary elastic moduli in the given class. Using this idea,
for each of the anisotropy classes—triclinic, monoclinic, tetragonal, trigonal, orthotropic, transversely
isotropic, and cubic [23–26]—Yavari et al. [21] characterized the corresponding universal displacements.
From equation (3.1), one observes that the universality constraints of inhomogeneous linear elastic
solids include those of homogeneous isotropic solids as a particular case.3 Therefore, for a given aniso-
tropy class and its known universal displacements, the problem is to find the forms of the inhomogene-
ities of the elastic moduli that are consistent with the following extra universality constraints:

∂Cabcd

∂xb
∂uc

∂xd
= 0 , a= 1, 2, 3 : ð3:2Þ

There is no obvious compact way to solve this problem and we resort to explicit computation by
using the bijection (11, 22, 33, 23, 31, 12) $ (1, 2, 3, 4, 5, 6) and writing the constitutive equations in
Voigt notation as sa = cabeb, where Greek indices run from 1 to 6. The advantage of this classic nota-
tion is that the tensorial problem is replaced by a linear algebra problem since the elasticity tensor is
now represented by a symmetric 6× 6 stiffness matrix as

C xð Þ=

c11 xð Þ c12 xð Þ c13 xð Þ c14 xð Þ c15 xð Þ c16 xð Þ
c12 xð Þ c22 xð Þ c23 xð Þ c24 xð Þ c25 xð Þ c26 xð Þ
c13 xð Þ c23 xð Þ c33 xð Þ c34 xð Þ c35 xð Þ c36 xð Þ
c14 xð Þ c24 xð Þ c34 xð Þ c44 xð Þ c45 xð Þ c46 xð Þ
c15 xð Þ c25 xð Þ c35 xð Þ c45 xð Þ c55 xð Þ c56 xð Þ
c16 xð Þ c26 xð Þ c36 xð Þ c46 xð Þ c56 xð Þ c66 xð Þ

26666664

37777775 : ð3:3Þ

In this notation, the equilibrium equations read

∂
∂x1

0 0 0 ∂
∂x3

∂
∂x2

0 ∂
∂x2

0 ∂
∂x3

0 ∂
∂x1

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0

264
375

c11 xð Þ c12 xð Þ c13 xð Þ c14 xð Þ c15 xð Þ c16 xð Þ
c12 xð Þ c22 xð Þ c23 xð Þ c24 xð Þ c25 xð Þ c26 xð Þ
c13 xð Þ c23 xð Þ c33 xð Þ c34 xð Þ c35 xð Þ c36 xð Þ
c14 xð Þ c24 xð Þ c34 xð Þ c44 xð Þ c45 xð Þ c46 xð Þ
c15 xð Þ c25 xð Þ c35 xð Þ c45 xð Þ c55 xð Þ c56 xð Þ
c16 xð Þ c26 xð Þ c36 xð Þ c46 xð Þ c56 xð Þ c66 xð Þ

26666664

37777775

∂u1
∂x1
∂u2
∂x2
∂u3
∂x3

∂u2
∂x3

+ ∂u3
∂x2

∂u1
∂x3

+ ∂u3
∂x1

∂u1
∂x2

+ ∂u2
∂x1

2666666664

3777777775
=

0

0

0

24 35:

ð3:4Þ

3.1. Triclinic linear elastic solids

Triclinic solids are the least symmetric in the sense that the identity and minus identity are the only sym-
metry transformations. Other than positive definiteness, there are no constraints on the elastic moduli.
In other words, triclinic linear elastic solids have 21 independent elastic moduli. Yavari et al. [21] showed
that for triclinic linear elastic solids homogeneous displacements are the only universal displacements.
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For the universal displacements (with 9 free parameters), we would like to determine the most general
inhomogeneous form of the elastic moduli that are consistent with equation (3.2). The universality con-
straints (3.2) (for a= 1) give us the following six independent PDEs:4

∂c11

∂x1
+

∂c16

∂x2
+

∂c15

∂x3
= 0 ,

∂c12

∂x1
+

∂c26

∂x2
+

∂c25

∂x3
= 0 ,

∂c13

∂x1
+

∂c36

∂x2
+

∂c35

∂x3
= 0 ,

∂c14

∂x1
+

∂c46

∂x2
+

∂c45

∂x3
= 0 ,

∂c15

∂x1
+

∂c56

∂x2
+

∂c55

∂x3
= 0 ,

∂c16

∂x1
+

∂c66

∂x2
+

∂c56

∂x3
= 0 :

ð3:5Þ

Equation (3.2) (for a= 2) gives the following six independent PDEs:

∂c16

∂x1
+

∂c12

∂x2
+

∂c14

∂x3
= 0 ,

∂c26

∂x1
+

∂c22

∂x2
+

∂c24

∂x3
= 0 ,

∂c36

∂x1
+

∂c23

∂x2
+

∂c34

∂x3
= 0 ,

∂c46

∂x1
+

∂c24

∂x2
+

∂c44

∂x3
= 0 ,

∂c56

∂x1
+

∂c25

∂x2
+

∂c45

∂x3
= 0 ,

∂c66

∂x1
+

∂c26

∂x2
+

∂c46

∂x3
= 0 ,

ð3:6Þ

and for a= 3 gives the following six independent PDEs:

∂c15

∂x1
+

∂c14

∂x2
+

∂c13

∂x3
= 0 ,

∂c25

∂x1
+

∂c24

∂x2
+

∂c23

∂x3
= 0 ,

∂c35

∂x1
+

∂c34

∂x2
+

∂c33

∂x3
= 0 ,

∂c45

∂x1
+

∂c44

∂x2
+

∂c34

∂x3
= 0 ,

∂c55

∂x1
+

∂c45

∂x2
+

∂c35

∂x3
= 0 ,

∂c56

∂x1
+

∂c46

∂x2
+

∂c36

∂x3
= 0 :

ð3:7Þ
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We first notice that c11, c22, and c33 each appears only once in the above PDEs, and hence

∂c11

∂x1
= � ∂c15

∂x3
� ∂c16

∂x2
,

∂c22

∂x2
= � ∂c24

∂x3
� ∂c26

∂x1
,

∂c33

∂x3
= � ∂c34

∂x2
� ∂c35

∂x1
,

ð3:8Þ

and thus

c11 x1, x2, x3ð Þ= �
ð
c15, 3 + c16, 2ð Þdx1 + ĉ11 x2, x3ð Þ ,

c22 x1, x2, x3ð Þ= �
ð
c24, 3 + c26, 1ð Þdx2+ ĉ22 x1, x3ð Þ ,

c33 x1, x2, x3ð Þ= �
ð
c34, 2 + c35, 1ð Þdx3+ ĉ33 x1, x2ð Þ ,

ð3:9Þ

where ĉ11(x2, x3), ĉ22(x1, x3), and ĉ33(x1, x2) are arbitrary functions.
The elastic moduli c12, c13, and c23 each appears twice:

∂c12

∂x1
= � ∂c26

∂x2
� ∂c25

∂x3
,

∂c12

∂x2
= � ∂c16

∂x1
� ∂c14

∂x3
,

∂c13

∂x1
= � ∂c36

∂x2
� ∂c35

∂x3
,

∂c13

∂x3
= � ∂c15

∂x1
� ∂c14

∂x2
,

∂c23

∂x2
= � ∂c36

∂x1
� ∂c34

∂x3
,

∂c23

∂x3
= � ∂c25

∂x1
� ∂c24

∂x2
:

ð3:10Þ

From the above PDEs, c12, c13, and c23 are determined as long as the following three integrability
conditions are satisfied:

∂2c26

∂x22
+

∂2c25

∂x2∂x3
=

∂2c16

∂x21
+

∂2c14

∂x1∂x3
,

∂2c36

∂x2∂x3
+

∂2c35

∂x23
=

∂2c15

∂x21
+

∂2c14

∂x1∂x2
,

∂2c36

∂x1∂x3
+

∂2c34

∂x23
=

∂2c25

∂x1∂x2
+

∂2c24

∂x22
:

ð3:11Þ
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Thus,

c12 x1, x2, x3ð Þ= �
ð
c26, 2 + c25, 3ð Þdx1+ ĉ12 x2, x3ð Þ ,

c13 x1, x2, x3ð Þ= �
ð
c15, 1 + c14, 2ð Þdx3 + ĉ13 x1, x2ð Þ ,

c23 x1, x2, x3ð Þ= �
ð
c36, 1 + c34, 3ð Þdx2 + ĉ23 x1, x3ð Þ ,

ð3:12Þ

where ĉ12(x2, x3), ĉ13(x1, x2), and ĉ23(x1, x3) are arbitrary functions.
The remaining PDEs can be rearranged as

∂c44

∂x2
= � ∂c45

∂x1
� ∂c34

∂x3
,

∂c44

∂x3
= � ∂c46

∂x1
� ∂c24

∂x2
,

∂c55

∂x1
= � ∂c45

∂x2
� ∂c35

∂x3
,

∂c55

∂x3
= � ∂c15

∂x1
� ∂c56

∂x2
,

∂c66

∂x1
= � ∂c26

∂x2
� ∂c46

∂x3
,

∂c66

∂x2
= � ∂c16

∂x1
� ∂c56

∂x3
,

ð3:13Þ

and

∂c14

∂x1
+

∂c46

∂x2
+

∂c45

∂x3
= 0 ,

∂c56

∂x1
+

∂c25

∂x2
+

∂c45

∂x3
= 0 ,

∂c56

∂x1
+

∂c46

∂x2
+

∂c36

∂x3
= 0 :

ð3:14Þ

The elastic moduli c44, c55, and c66 are determined from equation (3.13) as long as the following
integrability conditions are satisfied:

∂2c45

∂x1∂x3
+

∂2c34

∂x23
=

∂2c46

∂x1∂x2
+

∂2c24

∂x22
,

∂2c45

∂x2∂x3
+

∂2c35

∂x23
=

∂2c15

∂x21
+

∂2c56

∂x1∂x2
,

∂2c26

∂x22
+

∂2c46

∂x2∂x3
=

∂2c16

∂x21
+

∂2c56

∂x1∂x3
:

ð3:15Þ
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Thus,

c44 x1, x2, x3ð Þ= �
ð
c46, 1 + c24, 2ð Þdx3 + ĉ44 x1, x2ð Þ ,

c55 x1, x2, x3ð Þ= �
ð
c45, 2 + c35, 3ð Þdx1+ ĉ55 x1, x2ð Þ ,

c66 x1, x2, x3ð Þ= �
ð
c16, 1 + c56, 3ð Þdx2 + ĉ66 x1, x3ð Þ ,

ð3:16Þ

where ĉ44(x1, x2), ĉ55(x1, x2), and ĉ66(x1, x3) are arbitrary functions.
From equation (3.14), one obtains

∂c46

∂x2
=

1

2
� ∂c14

∂x1
+

∂c25

∂x2
� ∂c36

∂x3

� �
,

∂c45

∂x3
=

1

2
� ∂c14

∂x1
� ∂c25

∂x2
+

∂c36

∂x3

� �
,

∂c56

∂x1
=

1

2

∂c14

∂x1
� ∂c25

∂x2
� ∂c36

∂x3

� �
,

ð3:17Þ

and hence

c46 x1, x2, x3ð Þ= 1

2

ð
�c14, 1 + c25, 2 � c36, 3ð Þdx2 + ĉ46 x1, x3ð Þ ,

c45 x1, x2, x3ð Þ= 1

2

ð
�c14, 1 � c25, 2 + c36, 3ð Þdx3 + ĉ45 x1, x2ð Þ ,

c56 x1, x2, x3ð Þ= 1

2

ð
c14, 1 � c25, 2 � c36, 3ð Þdx1+ ĉ56 x2, x3ð Þ ,

ð3:18Þ

where ĉ46(x1, x2), ĉ45(x1, x2), and ĉ56(x1, x3) are arbitrary functions. Substituting equation (3.17) into
equation (3.15), one can show that the integrability conditions (3.15) are identical to (3.11). To make
sense of the results in a compact form, we partition the elasticity matrix into four 3× 3 submatrices:

C xð Þ=
A xð Þ B xð Þ
B xð Þ D xð Þ

" #
=

c11 xð Þ c12 xð Þ c13 xð Þ c14 xð Þ c15 xð Þ c16 xð Þ
c12 xð Þ c22 xð Þ c23 xð Þ c24 xð Þ c25 xð Þ c26 xð Þ
c13 xð Þ c23 xð Þ c33 xð Þ c34 xð Þ c35 xð Þ c36 xð Þ
c14 xð Þ c24 xð Þ c34 xð Þ c44 xð Þ c45 xð Þ c46 xð Þ
c15 xð Þ c25 xð Þ c35 xð Þ c45 xð Þ c55 xð Þ c56 xð Þ
c16 xð Þ c26 xð Þ c36 xð Þ c46 xð Þ c56 xð Þ c66 xð Þ

26666664

37777775 : ð3:19Þ

We have shown that the submatrices A and D depend on B. The nine elastic moduli in the submatrix
B are constrained by the three integrability conditions (3.11). More specifically, one has

∂2c26

∂x22
= � ∂2c25

∂x2∂x3
+

∂2c16

∂x21
+

∂2c14

∂x1∂x3
,

∂2c35

∂x23
= � ∂2c36

∂x2∂x3
+

∂2c15

∂x21
+

∂2c14

∂x1∂x2
,

∂2c24

∂x22
= � ∂2c25

∂x1∂x2
+

∂2c36

∂x1∂x3
+

∂2c34

∂x23
:

ð3:20Þ
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Therefore, c26, c35, and c24 are functions of the other six elastic consents in B. We see that homoge-
neous displacements are universal for a large class of inhomogeneous triclinic solids. In summary, we
have proved the following result:

Proposition 3.1. For inhomogeneous triclinic linear elastic solids, all homogeneous displacements are
universal as long as the elastic moduli have the universal inhomogeneities. Of the 21 elastic moduli, 6 of
them (c14, c15, c16, c25, c34, and c36) are arbitrary functions of (x1, x2, x3). The remaining 15 elastic mod-
uli are determined using these 6 functions and certain linear PDEs.

3.2. Monoclinic linear elastic solids

A monoclinic solid has one plane of material symmetry, which, without loss of generality, is assumed to
be parallel to the x1x2-plane. A monoclinic linear elastic solid has 13 independent elastic moduli and its
elasticity matrix has the following representation:

C xð Þ=

c11 xð Þ c12 xð Þ c13 xð Þ 0 0 c16 xð Þ
c12 xð Þ c22 xð Þ c23 xð Þ 0 0 c26 xð Þ
c13 xð Þ c23 xð Þ c33 xð Þ 0 0 c36 xð Þ

0 0 0 c44 xð Þ c45 xð Þ 0

0 0 0 c45 xð Þ c55 xð Þ 0

c16 xð Þ c26 xð Þ c36 xð Þ 0 0 c66 xð Þ

26666664

37777775: ð3:21Þ

Yavari et al. [21] showed that for a monoclinic linear elastic solid with planes of symmetry parallel to
the x1x2-plane, universal displacements are the superposition of homogeneous displacements F � x (F is
a constant matrix) and the one-parameter inhomogeneous displacement field (cx2x3, � cx1x3, 0). Now
for these universal displacements (with 10 free parameters), we would like to determine the most general
inhomogeneous form of the elastic moduli that are consistent with equation (3.2). For a= 1, equation
(3.2) gives us the following six independent PDEs:

∂c11

∂x1
+

∂c16

∂x2
= 0 ,

∂c12

∂x1
+

∂c26

∂x2
= 0 ,

∂c13

∂x1
+

∂c36

∂x2
= 0 ,

∂c16

∂x1
+

∂c66

∂x2
= 0 ,

∂c45

∂x3
=

∂c55

∂x3
= 0 :

ð3:22Þ

For a= 2, equation (3.2) gives us the following five independent PDEs:

∂c16

∂x1
+

∂c12

∂x2
= 0 ,

∂c26

∂x1
+

∂c22

∂x2
= 0 ,

∂c36

∂x1
+

∂c23

∂x2
= 0 ,

∂c66

∂x1
+

∂c26

∂x2
= 0 ,

∂c44

∂x3
= 0 :

ð3:23Þ
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For a= 3, equation (3.2) gives us the following six independent PDEs:

∂c13

∂x3
=

∂c23

∂x3
=

∂c33

∂x3
=

∂c36

∂x3
= 0 ,

∂c45

∂x1
+

∂c44

∂x2
= 0 ,

∂c55

∂x1
+

∂c45

∂x2
= 0 :

ð3:24Þ

Thus, from equations (3.22)5, (3.23)5, and (3.24)1, one concludes that

c13= c13 x1, x2ð Þ , c23= c23 x1, x2ð Þ , c33= c33 x1, x2ð Þ , c36= c36 x1, x2ð Þ ,
c44= c44 x1, x2ð Þ , c45= c45 x1, x2ð Þ , c55= c55 x1, x2ð Þ:

ð3:25Þ

From the last two PDEs in equation (3.24), and for an arbitrary c45(x1, x2), one has

c44 x1, x2ð Þ= �
ð
c45, 1 x1, x2ð Þdx2 + ĉ44 x1ð Þ ,

c55 x1, x2ð Þ= �
ð
c45, 2 x1, x2ð Þdx1 + ĉ55 x2ð Þ,

ð3:26Þ

where ĉ44(x1) and ĉ55(x2) are arbitrary functions. Similarly, from equations (3.22)3 and (3.23)3, and for
an arbitrary c36(x1, x2), one obtains

c13 x1, x2ð Þ= �
ð
c36, 2 x1, x2ð Þdx1+ ĉ13 x2ð Þ ,

c23 x1, x2ð Þ= �
ð
c36, 1 x1, x2ð Þdx2 + ĉ23 x1ð Þ ,

ð3:27Þ

where ĉ13(x2) and ĉ23(x1) are arbitrary functions.
The remaining PDEs are

∂c11

∂x1
+

∂c16

∂x2
= 0 ,

∂c12

∂x2
+

∂c16

∂x1
= 0 ,

∂c66

∂x2
+

∂c16

∂x1
= 0 ,

∂c12

∂x1
+

∂c26

∂x2
= 0 ,

∂c22

∂x2
+

∂c26

∂x1
= 0 ,

∂c66

∂x1
+

∂c26

∂x2
= 0 :

ð3:28Þ

The form of the above PDEs suggests that c11, c12, c22, and c66 are functions of c16 and c26. First, note
that from equations (3.28)2 and (3.28)4, one concludes that

∂2c26

∂x22
=

∂2c16

∂x21
, ð3:29Þ
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and hence

c26 x1, x2, x3ð Þ=
ðð
c16, 11 x1, x2ð Þdx2dx2 + x2bc26 x1, x3ð Þ+ec26 x1, x3ð Þ, ð3:30Þ

for arbitrary functions bc26(x1, x3), and ec26(x1, x3).
From the first three PDEs in equation (3.28) and for an arbitrary c16(x1, x2, x3), one obtains

c11 x1, x2, x3ð Þ= �
ð
c16, 2 x1, x2, x3ð Þdx1+ ĉ11 x2, x3ð Þ ,

c12 x1, x2, x3ð Þ= �
ð
c16, 1 x1, x2, x3ð Þdx2+ ĉ12 x1, x3ð Þ ,

c66 x1, x2, x3ð Þ= �
ð
c16, 1 x1, x2, x3ð Þdx2+ ĉ66 x1, x3ð Þ ,

ð3:31Þ

where ĉ11(x2, x3), ĉ12(x1, x3), and ĉ66(x1, x3) are arbitrary functions. Finally, from equation (3.28)5 one
concludes that

c22 x1, x2, x3ð Þ= �
ð
c26, 1 x1, x2, x3ð Þdx2 + ĉ22 x1, x3ð Þ , ð3:32Þ

for an arbitrary function ĉ22(x1, x3).

Proposition 3.2. For inhomogeneous monoclinic linear elastic solids with planes of symmetry parallel to
the x1x2-plane, the following position-dependence of the elasticity matrix is universal:

C(x)=

c11 x1, x2, x3ð Þ c12 x1, x2, x3ð Þ c13 x1, x2ð Þ 0 0 c16 xð Þ
c12 x1, x2, x3ð Þ c22 x1, x2, x3ð Þ c23 x1, x2ð Þ 0 0 c26 xð Þ
c13 x1, x2ð Þ c23 x1, x2ð Þ c33 x1, x2ð Þ 0 0 c36 x1, x2ð Þ

0 0 0 c44 x1, x2ð Þ c45 x1, x2ð Þ 0

0 0 0 c45 x1, x2ð Þ c55 x1, x2ð Þ 0

c16 xð Þ c26 xð Þ c36 x1, x2ð Þ 0 0 c66 xð Þ

26666664

37777775 , ð3:33Þ

where c33(x1, x2), c36(x1, x2), c45(x1, x2), and c16(x1, x2, x3) are arbitrary functions while c13(x1, x2),
c23(x1, x2), c44(x1, x2), c55(x1, x2), c26(x1, x2, x3), c11(x1, x2, x3), c12(x1, x2, x3), c66(x1, x2, x3), and c44(x1, x2, x3)
are given in equations (3.27), (3.26), (3.30), (3.31), and (3.32). For such inhomogeneous monoclinic linear
elastic solids, universal displacements are the superposition of homogeneous displacement fields and the one-
parameter inhomogeneous displacement field (cx2x3, � cx1x3, 0).

3.3. Tetragonal linear elastic solids

In a tetragonal solid, there are five planes of symmetry such that the normals of four of them are copla-
nar and the fifth one is normal to the other four. We assume that in the Cartesian coordinate system
(x1, x2, x3), the fifth normal is parallel to the x3 axis. There are two planes of symmetry parallel to the
x1x3 and x2x3-planes. The other two symmetry planes are related to the ones parallel to the x1x3-plane
by p=4 and 3p=4 rotations about the x3 axis. Tetragonal solids have 6 independent elastic moduli with
elasticity matrices of the following form:
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C xð Þ=

c11 xð Þ c12 xð Þ c13 xð Þ 0 0 0

c12 xð Þ c11 xð Þ c13 xð Þ 0 0 0

c13 xð Þ c13 xð Þ c33 xð Þ 0 0 0

0 0 0 c44 xð Þ 0 0

0 0 0 0 c44 xð Þ 0

0 0 0 0 0 c66 xð Þ

26666664

37777775: ð3:34Þ

Yavari et al. [21] showed that in a tetragonal linear elastic solid with the tetragonal axes parallel to
the x3-axis in a Cartesian coordinate system (x1, x2, x3), the universal displacements are a superposition
of homogeneous displacements and the following inhomogeneous displacements:5

u1 x1, x2, x3ð Þ=F11x1 +F12x2+F13x3+ c1x2x3 + c2x1x3,

u2 x1, x2, x3ð Þ=F21x1 +F22x2+F23x3 � c2x2x3+ c3x1x3,

u3 x1, x2, x3ð Þ=F31x1 +F32x2+F33x3+ g x1, x2ð Þ ,
ð3:35Þ

where c1 and c2 are constants, and g= g(x1, x2) is a harmonic function.
Now for these universal displacements (with 12 free parameters and an arbitrary harmonic function),

we would like to determine the most general inhomogeneous form of the elastic moduli that are consis-
tent with equation (3.2). For a= 1, equation (3.2) gives us the following five independent PDEs:

∂g

∂x1

∂c44

∂x3
= 0 ,

∂c11

∂x1
=

∂c12

∂x1
=

∂c13

∂x1
= 0 ,

∂c66

∂x2
= 0 :

ð3:36Þ

As g(x1, x2) is an arbitrary harmonic function, from the first equation one concludes that ∂c44=∂x3= 0.
Thus, c44= c44(x1, x2), c11= c11(x2, x3), c12= c12(x2, x3), c13= c13(x2, x3), and c66= c66(x1, x3). For a= 2,
equation (3.2) gives us the following four independent PDEs:

∂c11

∂x2
=

∂c12

∂x2
=

∂c13

∂x2
=

∂c66

∂x1
= 0 : ð3:37Þ

Thus, c11= c11(x3), c12= c12(x3), c13= c13(x3), c44= c44(x1, x2), and c66= c66(x3). For a= 3, equation
(3.2) gives us the following four independent PDEs:

∂c13

∂x3
=

∂c33

∂x3
=

∂c44

∂x1
=

∂c44

∂x2
= 0 : ð3:38Þ

Hence, c13 and c44 are constant, and c11= c11(x3), c12= c12(x3), c66= c66(x3), and c33= c33(x1, x2).
Therefore, we have proved the following result:

Proposition 3.3. For a tetragonal linear elastic solid with the tetragonal axis parallel to the x3-axis in a
Cartesian coordinate system (x1, x2, x3), and with the following inhomogeneous elasticity matrix

C xð Þ=

c11 x3ð Þ c12 x3ð Þ c13 0 0 0

c12 x3ð Þ c11 x3ð Þ c13 0 0 0

c13 c13 c33 x1, x2ð Þ 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66 x3ð Þ

26666664

37777775 , ð3:39Þ
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the universal displacements are the superposition of homogeneous displacement fields and the following
inhomogeneous displacement field:

uinh1 x1, x2, x3ð Þ= c1x2x3 + c2x1x3,

uinh2 x1, x2, x3ð Þ= � c2x1x3 + c3x1x3,

uinh3 x1, x2, x3ð Þ= g x1, x2ð Þ,
ð3:40Þ

where c1 and c2 are constants, and g= g(x1, x2) is an arbitrary harmonic function.

3.4. Trigonal linear elastic solids

In a trigonal solid, there are three planes of symmetry whose normals lie in the same plane and are
related by p=3 rotations. We assume that the trigonal axis is parallel to the x3-axis. A trigonal solid has
6 independent elastic moduli and its elasticity matrix has the following representation:

C xð Þ=

c11 xð Þ c12 xð Þ c13 xð Þ 0 c15 xð Þ 0

c12 xð Þ c11 xð Þ c13 xð Þ 0 �c15 xð Þ 0

c13 xð Þ c13 xð Þ c33 xð Þ 0 0 0

0 0 0 c44 xð Þ 0 �c15 xð Þ
c15 xð Þ �c15 xð Þ 0 0 c44 xð Þ 0

0 0 0 �c15 xð Þ 0 1
2
c11 xð Þ � c12 xð Þð Þ

26666664

37777775: ð3:41Þ

Yavari et al. [21] showed that universal displacements are a superposition of homogeneous displace-
ments and the following inhomogeneous displacements:

uinh1 x1, x2, x3ð Þ= a123x1x2x3+ a12x1x2 + a13x1x3 + a23x2x3,

uinh2 x1, x2, x3ð Þ= 1

2
a12+ a123x3ð Þ x21 � x22

� �
+ b13x1x3 � a13x2x3,

uinh3 x1, x2, x3ð Þ= � a123x
2
1x2 � a23+ b13ð Þx1x2 +

1

3
a123x

3
2 � a13 x21 � x22

� �
:

ð3:42Þ

For the above universal displacements (with 14 free parameters), we would like to find the most gen-
eral inhomogeneous form of the elastic moduli that are consistent with equation (3.2). For a= 1, 2, 3,
equation (3.2) gives us the following PDEs:

∂c11

∂x2
=

∂c12

∂x2
=

∂c15

∂x2
= 0 ,

∂c13

∂x1
=

∂c13

∂x2
=

∂c33

∂x3
= 0 ,

∂c44

∂x1
=

∂c44

∂x2
= 0 :

ð3:43Þ

Thus, c11= c11(x1, x3), c12= c12(x1, x3), c15= c15(x1, x3), c13= c13(x3), c33= c33(x1, x2), and c44= c44(x3).
Substituting these back into (3.2) one obtains the following PDEs:

∂c15

∂x1
=

∂c15

∂x3
= 0 ,

∂c13

∂x3
=

∂c44

∂x3
= 0 ,

∂c11

∂x1
=

∂c12

∂x1
= 0 :

ð3:44Þ
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Thus, c11= c11(x3), c12= c12(x3), and c33= c33(x1, x2), and c13, c15, and c44 are constant. In summary,
we have proved the following result:

Proposition 3.4. For inhomogeneous trigonal linear elastic solids whose trigonal axes are parallel to the
x3 axis and have the following inhomogeneous elastic moduli

C xð Þ=

c11 x3ð Þ c12 x3ð Þ c13 0 c15 0

c12 x3ð Þ c11 x3ð Þ c13 0 �c15 0

c13 c13 c33 x1, x2ð Þ 0 0 0

0 0 0 c44 0 �c15
c15 �c15 0 0 c44 0

0 0 0 �c15 0 1
2
c11 x3ð Þ � c12 x3ð Þð Þ

26666664

37777775 , ð3:45Þ

the universal displacements are the superposition of homogeneous displacements and the following inho-
mogeneous displacement fields:

uinh1 x1, x2, x3ð Þ= a123x1x2x3+ a12x1x2 + a13x1x3 + a23x2x3,

uinh2 x1, x2, x3ð Þ= 1

2
a12+ a123x3ð Þ x21 � x22

� �
+ b13x1x3 � a13x2x3,

uinh3 x1, x2, x3ð Þ= � a123x
2
1x2 � a23+ b13ð Þx1x2 +

1

3
a123x

3
2 � a13 x21 � x22

� �
:

ð3:46Þ

3.5. Orthotropic linear elastic solids

In an orthotropic solid, there are three mutually orthogonal symmetry planes. We choose Cartesian
coordinates (x1, x2, x3) such that the coordinate planes are parallel to the symmetry planes. An orthotro-
pic solid has 9 independent elastic moduli, and its elasticity matrix has the following representation:

C xð Þ=

c11 xð Þ c12 xð Þ c13 xð Þ 0 0 0

c12 xð Þ c22 xð Þ c23 xð Þ 0 0 0

c13 xð Þ c23 xð Þ c33 xð Þ 0 0 0

0 0 0 c44 xð Þ 0 0

0 0 0 0 c55 xð Þ 0

0 0 0 0 0 c66 xð Þ

26666664

37777775: ð3:47Þ

Yavari et al. [21] showed that in an orthotropic linear elastic solid whose planes of symmetry are nor-
mal to the coordinate axes in a Cartesian coordinate system (x1, x2, x3), the universal displacements are
the superposition of homogeneous displacement fields and the 3-parameter inhomogeneous displace-
ment field (a1x2x3, a2x1x3, a3x1x2).

For the above universal displacements (with 12 free parameters), the universality constraints (3.2)
force the elastic moduli to have the following inhomogeneous forms:

c11= c11 x2, x3ð Þ, c22= c22 x1, x3ð Þ , c33= c33 x1, x2ð Þ , ð3:48Þ

c44= c44 x1ð Þ , c55= c55 x2ð Þ, c66= c66 x3ð Þ , ð3:49Þ

c12= c12 x3ð Þ , c13= c13 x2ð Þ , c23= c23 x1ð Þ : ð3:50Þ

Therefore, we have proved the following result:

Proposition 3.5. For orthotropic linear elastic solids with planes of symmetry normal to the coordinate
axes in a Cartesian coordinate system (x1, x2, x3), and with the following inhomogeneous elastic moduli
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C xð Þ=

c11 x2, x3ð Þ c12 x3ð Þ c13 x2ð Þ 0 0 0

c12 x3ð Þ c22 x1, x3ð Þ c23 x1ð Þ 0 0 0

c13 x2ð Þ c23 x1ð Þ c33 x1, x2ð Þ 0 0 0

0 0 0 c44 x1ð Þ 0 0

0 0 0 0 c55 x2ð Þ 0

0 0 0 0 0 c66 x3ð Þ

26666664

37777775 , ð3:51Þ

universal displacements are the superposition of homogeneous displacement fields and the 3-parameter
inhomogeneous displacement field (a1x2x3, a2x1x3, a3x1x2).

3.6. Transversely isotropic linear elastic solids

For a transversely isotropic solid, there is an axis of symmetry such that the isotropy planes are planes
normal to it. We choose Cartesian coordinates (x1, x2, x3) such that the axis of transverse isotropy is par-
allel to the x3-axis. A transversely isotropic solid has 5 independent elastic moduli, and its elasticity
matrix has the following representation:

C xð Þ=

c11 xð Þ c12 xð Þ c13 xð Þ 0 0 0

c12 xð Þ c11 xð Þ c13 xð Þ 0 0 0

c13 xð Þ c13 xð Þ c33 xð Þ 0 0 0

0 0 0 c44 xð Þ 0 0

0 0 0 0 c44 xð Þ 0

0 0 0 0 0 1
2
c11 xð Þ � c12 xð Þð Þ

26666664

37777775 : ð3:52Þ

Yavari et al. [21] showed that universal deformations have the following form:

u1 x1, x2, x3ð Þ= c1x1+ c2x2+ cx2x3 + x3h1 x1, x2ð Þ+ k1 x1, x2ð Þ,
u2 x1, x2, x3ð Þ= � c2x1 + c1x2 � cx1x3 + x3h2 x1, x2ð Þ+ k2 x1, x2ð Þ,
u3 x1, x2, x3ð Þ= c3x3+ û3 x1, x2ð Þ,

ð3:53Þ

where j(x2+ ix1)= h2(x1, x2)+ ih1(x1, x2) and h x2+ ix1ð Þ= k2(x1, x2)+ ik1(x1, x2)
6 are holomorphic, and

û3(x1, x2) is harmonic. For the above universal displacements (with 4 free parameters and 5 harmonic
functions), the constraints (3.2) force the elastic moduli to have the following inhomogeneous forms:

c11= c11(x3) , c12= c12(x3) , c33= c33(x1, x2) , c13, c44 are constant : ð3:54Þ

Therefore, we have proved the following result:

Proposition 3.6. In a transversely isotropic linear elastic solid with the isotropy plane parallel to the
x1x2-plane that has the following inhomogeneous elastic moduli

C xð Þ=

c11 x3ð Þ c12 x3ð Þ c13 0 0 0

c12 x3ð Þ c11 x3ð Þ c13 0 0 0

c13 c13 c33 x1, x2ð Þ 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 1
2
c11 x3ð Þ � c12 x3ð Þð Þ

26666664

37777775 , ð3:55Þ

the universal displacements have the following form:
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u1 x1, x2, x3ð Þ= c1x1+ c2x2+ cx2x3 + x3h1 x1, x2ð Þ+ k1 x1, x2ð Þ,
u2 x1, x2, x3ð Þ= � c2x1 + c1x2 � cx1x3 + x3h2 x1, x2ð Þ+ k2 x1, x2ð Þ,
u3 x1, x2, x3ð Þ= c3x3+ û3 x1, x2ð Þ,

ð3:56Þ

where j(x2+ ix1)= h2(x1, x2)+ ih1(x1, x2) and h(x2+ ix1)= k2(x1, x2)+ ik1(x1, x2) are holomorphic, and
û3(x1, x2) is harmonic.

3.7. Cubic linear elastic solids

At every point, a cubic solid has nine planes of symmetry whose normals are parallel to the edges and
face diagonals of a cube. We choose a Cartesian coordinate system (x1, x2, x3) whose coordinate lines are
parallel to the edges of the cube. A cubic solid has 3 independent elastic moduli and its matrix of elastic
moduli reads

C xð Þ=

c11 xð Þ c12 xð Þ c12 xð Þ 0 0 0

c12 xð Þ c11 xð Þ c12 xð Þ 0 0 0

c12 xð Þ c12 xð Þ c11 xð Þ 0 0 0

0 0 0 c44 xð Þ 0 0

0 0 0 0 c44 xð Þ 0

0 0 0 0 0 c44 xð Þ

26666664

37777775: ð3:57Þ

Yavari et al. [21] showed that for cubic solids, universal displacements have the following form:

u1 x1, x2, x3ð Þ= a

2
x1 x23 � x22
� �

+ c1x1x3 + b1x1x2+ d1x1+ g1 x2, x3ð Þ,

u2 x1, x2, x3ð Þ= a

2
x2 x21 � x23
� �

+ a1x1x2 � c1x2x3 + d2x2 + g2 x1, x3ð Þ,

u3 x1, x2, x3ð Þ= a

2
x3 x22 � x21
� �

� a1x1x3 � b1x2x3+ d3x3+ g3 x1, x2ð Þ,

ð3:58Þ

where g1, g2, and g3 are arbitrary harmonic functions. For the above universal displacements (with seven
free parameters and three arbitrary harmonic functions) the universality constraints (3.2) force the three
elastic moduli to be uniform. Therefore, we have proved the following result:

Proposition 3.7. Inhomogeneous compressible cubic linear elastic solids do not admit universal
displacements.

4. Conclusion

We studied universal displacements and inhomogeneities in linear elasticity for the eight symmetry
classes (triclinic, monoclinic, tetragonal, trigonal, orthotropic, transversely isotropic, cubic, and isotro-
pic) assuming that material preferred directions are known. We showed that equilibrium equations in
the absence of body forces and for arbitrary position-dependent elastic moduli impose restrictions on
both the displacement field and the inhomogeneities of the elastic moduli in the form of a system of
PDEs, which we call universality constraints. We observed that the universality constraints of inhomo-
geneous solids include those of homogeneous solids. For each symmetry class and its known universal
displacements, we characterized the corresponding universal inhomogeneities. It is known that the
larger the symmetry group, the larger the space of universal displacements [21]. We showed that the
larger the symmetry group, the smaller the space of universal inhomogeneities. In particular, it was
shown that inhomogeneous isotropic and inhomogeneous cubic solids do not admit universal displace-
ments. For the other six symmetry classes, there are enough freedom to allow the existence of universal
displacements and we classified all the universal inhomogeneities of the other six symmetry classes. This
work therefore completes the universal program of linear elasticity.
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Notes

1. There was a mistake in the case of family 0 deformations that was corrected in [16].
2. There was a mistake in the case of family 5 deformations that was corrected in [16].
3. This is the case in nonlinear elasticity as well [15,16].
4. All the symbolic computations in this paper were performed using Mathematica Version 13.0.0.0, Wolfram Research,

Champaign, IL.
5. There is a typo in equation (3.22)2 in [21]: �c2x1x3 should read �c2x2x3.

6. Note that there is a typo in [21], Proposition 3.6.
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