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Abstract

Universal displacements are those displacements that can be maintained, in the absence of body forces, by applying only
boundary tractions for any material in a given class of materials. Therefore, equilibrium equations must be satisfied for
arbitrary elastic moduli for a given anisotropy class. These conditions can be expressed as a set of partial differential equa-
tions for the displacement field that we call universality constraints. The classification of universal displacements in homoge-
neous linear elasticity has been completed for all the eight anisotropy classes. Here, we extend our previous work by
studying universal displacements in inhomogeneous anisotropic linear elasticity assuming that the directions of anisotropy
are known. We show that universality constraints of inhomogeneous linear elasticity include those of homogeneous lin-
ear elasticity. For each class and for its known universal displacements, we find the most general inhomogeneous elastic
moduli that are consistent with the universality constrains. It is known that the larger the symmetry group, the larger the
space of universal displacements. We show that the larger the symmetry group, the more severe the universality con-
straints are on the inhomogeneities of the elastic moduli. In particular, we show that inhomogeneous isotropic and inho-
mogeneous cubic linear elastic solids do not admit universal displacements and we completely characterize the universal
inhomogeneities for the other six anisotropy classes.
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l. Introduction

In nonlinear elasticity, universal deformations are those deformations that are possible for a body made
of any material in a given class of materials in the absence of body forces and by applying only boundary
tractions [1]. Motivated by the works of Rivlin [2—4], Ericksen [5] presented the first systematic analysis
of universal deformations in homogeneous compressible isotropic solids and incompressible isotropic
solids [6]. In the case of compressible isotropic solids, Ericksen [5] proved that universal deformations
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must be homogeneous. Characterizing universal deformations in the incompressible case turned out to
be much more complicated. Ericksen [6] found four families of universal deformations (in addition to
homogeneous deformations that define family 0). In his analysis, Ericksen conjectured that a deforma-
tion with constant principal invariants must be homogeneous, which turned out to be incorrect [7]. This
motivated the discovery of a fifth family of inhomogeneous universal deformations with constant princi-
pal invariants [8,9]. The known five families of universal deformations other than homogeneous defor-
mations are the following (see Truesdell and Noll [10], Tadmor et al. [11, p. 265], and Goriely [12, p.
305] for a visualization and discussion): (1) family 1: bending, stretching, and shearing of a rectangular
block; (2) family 2: straightening, stretching, and shearing of a sector of a cylindrical shell; (3) family 3:
inflation, bending, torsion, extension, and shearing of a sector of an annular wedge; (4) family 4: infla-
tion/inversion of a sector of a spherical shell; and (5) family 5: inflation, bending, extension, and azi-
muthal shearing of an annular wedge. The case of constant principal invariants is still an open problem.
However, the conjecture is that there are no solutions other than family 5 deformations.

The study of universal deformations has been extended to anelasticity by Yavari and Goriely [13] in
the compressible case and by Goodbrake et al. [14] in the incompressible case. In the literature, the study
of universal deformations has been restricted to homogeneous solids. Recently, Yavari [15] extended
Ericksen’s analysis to inhomogeneous isotropic solids. It was observed that the universality constraints
of inhomogeneous solids include those of the corresponding homogeneous solids. It was shown that
inhomogeneous compressible isotropic solids do not admit universal deformations. For incompressible
isotropic solids, the universal inhomogeneities were characterized for each of the six known families of
universal deformations.' Until recently, there were only some limited studies of universal deformations
in anisotropic nonlinear solids [17]. In Yavari and Goriely [18], we systematically studied universal
deformations and universal material preferred directions in homogeneous compressible and incompres-
sible transversely isotropic, orthotropic, and monoclinic solids.? In the case of inhomogeneous anisotro-
pic solids, we recently studied the universal inhomogeneities [16]. This systematic analysis completed
what we referred to as the universal program of nonlinear hyperelasticity.

The analogue of universal deformations in linear elasticity is universal displacements [19-21] and our
goal here is to complete the universal program of linear elasticity. Universal displacements in homoge-
neous anisotropic linear elasticity were studied in [21]. Universal displacements were fully characterized
for all the eight symmetry classes assuming that the directions of anisotropy are known. In this paper,
we extend the analysis of universal displacements to inhomogeneous anisotropic linear elasticity.

This paper is organized as follows. In Section 2, we study universal displacements and inhomogene-
ities in isotropic linear elasticity. In Section 3, the same problem is studied for the remaining seven sym-
metry classes (triclinic, monoclinic, tetragonal, trigonal, orthotropic, transversely isotropic, and cubic).
Conclusions are given in Section 4 section.

2. Universal displacements in inhomogeneous isotropic linear elasticity

We first extend the work of Yavari et al. [21] to characterize universal displacements in inhomogeneous
isotropic linear elasticity. In a Cartesian coordinate system {x“}, the elasticity tensor has components
Cabea(X) =A(X)64p0cq + (X) (84e0pa + 84465c), Where 6, denotes Kronecker’s delta, and A and w are the
Lamé constants that explicitly depend on position x. The equilibrium equations in the absence of body
forces read

Tab,p = (A + W)Up, ba + Plha, b + A attp b + 1 (Uap +1up o) =0, a=1,2,3, (2.1)

where o, and u, are the Cauchy stress and displacement components, respectively; o, , denotes the
partial derivatives of o, with respect to x°, and summation over repeated indices is assumed. Equation
(2.1) must hold for arbitrary elastic moduli. In particular, it must hold for uniform elastic moduli. This
implies that

Up.pg =Uqpp =0, or gradedivu=0, Au=0, (22)
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which are the universality constraints of homogeneous isotropic linear elasticity that we derived previ-
ously [21]. Therefore, for inhomogeneous isotropic linear elasticity, universal displacements must be
constant-divergence harmonic vector fields. We define the universal inhomogeneities to be those nonuni-
form elastic moduli that satisfy equation (2.1) for constant-divergence harmonic vector fields. In other
words, the extra universality constraints of inhomogeneous isotropic linear elasticity are

/\,aub,b—i—u’b(ua’b—i—ub,a):O, a=1,2,3. (23)

On R3, constant-divergence vector fields have the following representation [22]:

Ua(X) = Sap, 5(X) + gxa + ka, (2.4)
where S,;,(x) = — Sp,(x), and ¢ and k&, are constants. More specifically, in Cartesian coordinates
X = (x1,x2,x3), S has the following representation:

0 a(x)  B(x)
Sx)=|-ax) 0 ¥y [, (2.5)
—B(x) —y(x) 0
where «, B, and vy are arbitrary functions that must satisfy the following system of PDEs [21]:
Aa’z +AB~3 :0,
A’y’:*’ - AO[, 1= 0, (26)
AB’ 1 + A'y,z - 0

Substituting equation (2.4) into (2.3) leads to

= [3A0(0) 4268 4 ()] + [Sumom (X) 4 Somam (X)), (%) =0, (27)

which must hold for arbitrary ¢, and hence 3A_,(x) + 2p ,(x) =0, that is, 3A (x) + 2, (x) must be uniform.
Therefore, the universality constraints are simplified to read
(Sat, 11+ 82,12+ Sa3, 13 + S12,a2 +S13.3)0 1 =0,
(Sat,12 + Su2,22 + Sa3,23 + Sa1,a1 +823.3) 1 , =0, (2.8)
(Sa1,13 + Su2,23 + 843,33 + S31,a1 +S32.02) 0 3 =0.

For a=1, equation (2.8) reads

2(S12,12 +S13,13)p 1 =0,
(=S12,11 + 812,22 + 813,23 +823,13) 1 , = 0, (2.9)
(812,23 + 813,33 — S13,11 +S32,12)m 3 =0.

Since these conditions must be satisfied for all «, 8, and +y that satisfy equation (2.6), we can choose
a(x) = apx® and B=vy=0 and the above constraints are simplified to read —2app , =0, which implies
that u , =0. For B(x) = box3 and a =y =0, which also satisfy equation (2.6), equation (2.9) is simplified
to read 2b w3=0, which implies that p3=0. Now the constralnt (2.8) for a=2 reads
(= Si2.11+ 823,13 — S22 +S13 »3)u ; =0. For the choice a(x) —cox2 and B =y =0, which satisfy equa-
tion (2.6), this constraint is simplified to read 2¢ w1 =0, which implies that u ; =0. Therefore, u(x) is
constant. Knowing that 3A(x) +2u(x) is also constant one concludes that both Lamé constants must
be uniform, and hence, we have proved the following result

Proposition 2.1. Inhomogeneous compressible isotropic linear elastic solids do not admit universal
displacements.



4 Mathematics and Mechanics of Solids 00(0)

3. Universal displacements and inhomogeneities in anisotropic linear elasticity

Yavari et al. [21] characterized the universal displacements for all the eight anisotropy classes. Here, we
extend that work to inhomogeneous anisotropic linear elasticity. Consider an inhomogeneous body
made of a linear elastic solid at point x. The elasticity tensor C,.;(x) has major symmetries,
Capea(x) = Ceaap(x), and minor symmetries, Cgpea(X) = Cpyea(X) = Cupac(x). The constitutive equations
are written as o4, = Cypeatic, 4, and the equilibrium equations in the absence of body forces in Cartesian
coordinates read

2
Tab 0“u, 0Cqpea O

o = Ca C
oxy, bed G g axb  Oxy

=0, a=1,2,3. (3.1)

For homogeneous solids, this is reduced to Cgppeqtte ap =0. For a given class of linear elastic solids,
equilibrium equations must be satisfied for arbitrary elastic moduli in the given class. Using this idea,
for each of the anisotropy classes—triclinic, monoclinic, tetragonal, trigonal, orthotropic, transversely
isotropic, and cubic [23-26]—Yavari et al. [21] characterized the corresponding universal displacements.
From equation (3.1), one observes that the universality constraints of 1nhomogeneous linear elastic
solids include those of homogeneous isotropic solids as a partlcular case.’ Therefore, for a given aniso-
tropy class and its known universal displacements, the problem is to find the forms of the inhomogene-
ities of the elastic moduli that are consistent with the following extra universality constraints:

0Capca Ou
axt  oxy

=0, a=1,2,3. (3.2)

There is no obvious compact way to solve this problem and we resort to explicit computation by
using the bijection (11,22,33,23,31,12) « (1,2,3,4,5,6) and writing the constitutive equations in
Voigt notation as o, = cepeg, Where Greek indices run from 1 to 6. The advantage of this classic nota-
tion is that the tensorial problem is replaced by a linear algebra problem since the elasticity tensor is
now represented by a symmetric 6 x 6 stiffness matrix as

[cn(x) cn(x) cs(x) cu(x) cas(x) cie(x)
CIZEX; szgxg 023EX% 024EX§ CZ5EX§ CZ6EX;
Co= 012(3&) CZ(X) czj(X) Cii(X) Ciz(X) CiZ(X) 53
cis(x)  cas(x) e3s(X) cas(X)  ess(x) ese(X)
| c16(X)  c26(X)  c36(X)  ca(X)  cs6(X)  ces(X) |
In this notation, the equilibrium equations read
- o A
_Cll(X) C]z(X) Cl3<X) Cl4(X> 015(X) 016(X)_ SZ;
20 0 0 2 ][l ) ax) ) asx) o) & 0
0 2 o0 2 o 2| csx) enx) eax) es(x) esp(x) wm - |o
0 362 B a’“i . 36‘ c1a(x) c24(X)  c3(x) caa(x)  cas(x)  cas(x) 2172 + g—fi; 0
a3 dxy  Ox 615(X) 6‘25(X) 35(X) C45(X) 6‘55(X) C‘56(X) %"’%
Lc16(X)  ca6(x)  c36(x)  cas(X)  es6(X) cos(X) | | oy, aw
L Ox; + oxp
(3.4)

3.1. Triclinic linear elastic solids

Triclinic solids are the least symmetric in the sense that the identity and minus identity are the only sym-
metry transformations. Other than positive definiteness, there are no constraints on the elastic moduli.
In other words, triclinic linear elastic solids have 21 independent elastic moduli. Yavari et al. [21] showed
that for triclinic linear elastic solids homogeneous displacements are the only universal displacements.
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For the universal displacements (with 9 free parameters), we would like to determine the most general
inhomogeneous form of the elastic moduli that are consistent with equation (3.2). The universality con-
straints (3.2) (for a = 1) give us the following six independent PDEs:*

dc dc dc
11+ 16+ 15

=0
8x1 8x2 E)X3 ’
36‘12 36‘26 36'25
=0
oy + oy + ox3 ’
0 0 0
c13 n C36 n C35 —o,
8x1 8)62 8)63 (3 5)
dcis n dcae n dcas 0 '
8x1 8)62 8)63 R
dcys  dcse  Ocss
=0
8x1 + axz + 8)63 ’
dcie  Odces  Ocse
=0.
8x1 + 8x2 + GX3
Equation (3.2) (for a =2) gives the following six independent PDEs:
dcig  Ocia  Ocis
=0
8x1 + 8)C2 + 8)63 ’
dcag  Ocpp dcag 0
3X1 8)62 8)63 R
0 0 0
C36 i C23 i C34 —0,
8)61 axz 8)63
(3.6)
0ca6 n 0c24 n dcas 0
o Xy oy
dcsg  O0cas  0cys
=0
ax; + axy + o3 ’
dcee  0cae  Ocag
=0
8x1 + 8)(72 + 8)63 ’
and for a =3 gives the following six independent PDEs:
dcis ey O3
=0
8x1 + 3)62 + 3)(3 ’
dcys  Ocaq 03
=0,
0x; + 0x7 + 0x3
0 0 0
C35 n C34 n 33 —o,
8)61 8)62 3)63
(3.7)
dcys n 0c4s n dczg 0
8x1 8)C2 8)63 R
dcss  Odcgs  0c3s
=0
3)C1 + 8)62 + 8)63 ’
0 0 0
Cs6 i Ca6 i C36 -0

ox 1 ox 2 ox 3
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We first notice that ¢;y, ¢2p, and ¢33 each appears only once in the above PDEs, and hence

and thus

801] N 8015 8016
8x1 - 8x3 B 8)62 ’
dcp  dcaq Dege
3)62 T QX3 B Bxl ’
dcs3  Odczq dess
3)63 - 3)62 B 8x1 ’

Cll(]C],x2,X3) = -

022(x13x29x3): -

C33(X1,X2,X3)= -

oJ

(c15,3 + c16,2)dx; + 11 (x2,x3),
(€243 4 C26.1) dxz + €22(x1,x3),

(€342 + ¢35.1) dxs + ¢33 (x1,x2),

where ¢11(x2, x3), ¢22(x1,x3), and &33(x1, x2) are arbitrary functions.

The elastic moduli ¢y, ¢13, and c,3 each appears twice:

dciz  Odcpe Des
3)61 T 8x2 B 8X3 ’
dci  dcie dcig
o g axs
acis . acse acss
8)61 - 8)C2 B 3)63 ’
8013 . 8015 8014
8x3 - 8)61 B 8)62 ’
dca3 dcze  Oc3q
8x2 - 8x1 B 8X3 ’
dcoz  dcas Deoa
3)63 - 8x1 B sz '

(3.9)

(3.10)

From the above PDEs, c¢j5, ¢13, and ¢p3 are determined as long as the following three integrability

conditions are satisfied:

826'26 826'25 o 826'16 826'14
W3 dvpdxs o dxjoxg
32C36 326’35 . 32015 826‘14
8XQ8)C3 axg N 8)6% 8X18X2 ’
32636 32634 . 82625 826'24
ox 1 0x3 ox? © Oxy0xy g

(3.11)
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Thus,
cia(x1,x2,x3) = — |(c26,2 + €25,3) dx1 + C12(x2,x3),
ci3(x1,x2,x3) = — |(c15,1 +c1a,2)dxs + ¢13(x1,x2), (3.12)
c3(x1,x2,x3) = — |(c36,1 + C34,3)dxs 4 C23(x1,x3),
where ¢12(x2, x3), ¢13(x1,x2), and é3(x1, x3) are arbitrary functions.
The remaining PDEs can be rearranged as
dcag  Ocgs Ocag
3)62 N 8x1 BX3 ’
dcas  Odcae 0co4
8)63 N 8x1 8)(?2 ’
dcss - dcys dcss
3)61 N 8)62 8)63 ’
dcss  dcys dese (3:13)
8)63 N 8x1 8XQ ’
dces  Ocae  Ocag
3)61 N 3)62 8X3 ’
8666 . 36‘16 36‘56
3)62 N 8x1 BX3 ’
and
dclg  Ocas  Ocas
=0
8x1 + 8)62 + 8)63 ’
dcse  0cas  Ocas
=0, 3.14
8x1 + axz + 8)63 ( )
0 a a
Cs6 i Ca6 C36 —0.

ox 1 ox 2 ox 3

The elastic moduli c44, cs5, and cg¢ are determined from equation (3.13) as long as the following

integrability conditions are satisfied:

826'45 82034 o 82646 826'24
oy g dxjoxa X3

9

326’45 32035 N 82015 82056
Oy 0x3 ax3 ax? Ox10xy

82(226 82046 . 826'16 82056
ax3 Oy Ox3 ax? Ox10x3

(3.15)
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Thus,

C44(X1,X2,X3) =

(ca6.1 + €24.2)dx3 + Caa(x1,x2),

oJ

css(x1,x2,x3) = — |(cas,2 +¢35,3) dxy + Es5(x1,x2), (3.16)
Cco6(x1,x2,X3) = — |(c16,1 + 56,3 )dx2 + Co6(x1,X3),
where C44(x1,X2), ¢s55(x1,x2), and ég6(x1, x3) are arbitrary functions.
From equation (3.14), one obtains
3046 1 3014 3025 36’3(,
8x2 2 8x1 8x2 BX3 ’
dcys l _Ocig dcps | dese (3.17)
3)63 2 3)61 8XZ 8)C3 ’ '
36'56 . 1 8(214 3625 8636
ox; 2\ dx;  ox, axy /)’
and hence
1 .
ca6(x1,x2,X3) = ) (—c1a1+ 25,2 — €36,3)dX2 + Ca6(x1,x3),
| R
cas(x1,x2,X3) = 5 (—c1a,1 — €252 + €36,3) dx3 + Cas(x1,x2), (3.18)
1( R
056(X1,x2,3€3) = 5 (014,1 —C252 — 036,3)dxl +CS6(X2,X3),

where ¢46(x1,X2), C45(x1,x2), and ¢s6(x1,x3) are arbitrary functions. Substituting equation (3.17) into
equation (3.15), one can show that the integrability conditions (3.15) are identical to (3.11). To make
sense of the results in a compact form, we partition the elasticity matrix into four 3 x 3 submatrices:

[en(x) cnn(x)  en(x) | ca(x) cis(x)  ci6(x) ]

oy [E0 53 2528 20 5

B X X) | e3(X) ca3(X) c33(X) | ca(X)  €35(X)  C36(X
Clx)= B(x) | D(x)| |cia(X) ca(x) c3a(x) | caa(x) cas(x) cas(x) (3.19)

ci5(x)  cas(X)  eas(X) | cas(x)  ess(x) es(x)

_Cl6(X) C26(X) C36(X) 046(X) 056(X) 066(X)

We have shown that the submatrices A and D depend on B. The nine elastic moduli in the submatrix
B are constrained by the three integrability conditions (3.11). More specifically, one has

8202(, 82025 32016 32014

0x3 - Oy 0x3 ax? Oxy0x3

82035 _ 82036 826‘15 826'14 (3 20)
W dxdxy  ad Oxgaxy '
82024 o 82625 82036 826‘34

ax3 COxyxy | g a3
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Therefore, ¢y, ¢35, and c¢p4 are functions of the other six elastic consents in B. We see that homoge-
neous displacements are universal for a large class of inhomogeneous triclinic solids. In summary, we
have proved the following result:

Proposition 3.1. For inhomogeneous triclinic linear elastic solids, all homogeneous displacements are
universal as long as the elastic moduli have the universal inhomogeneities. Of the 21 elastic moduli, 6 of
them (c4, C15, C16, C25, C34, and c3g) are arbitrary functions of (x1,x2,x3). The remaining 15 elastic mod-
uli are determined using these 6 functions and certain linear PDEs.

3.2. Monoclinic linear elastic solids

A monoclinic solid has one plane of material symmetry, which, without loss of generality, is assumed to
be parallel to the x'x?-plane. A monoclinic linear elastic solid has 13 independent elastic moduli and its
elasticity matrix has the following representation:

_611(X) Clz(X) C]3(X) 0 0 Cm(X)
Clz(X) (&)) (X) C23 (X) 0 0 C26 (X)
cx)=|€ 130(") €23 éx) €33 éX) 6440()() 045(2)() Cs:ﬁéx) (3.21)
0 0 0 C45 (X) Cs5 (X) 0
_Cl(,(X) C%(X) 03()(X) 0 0 C66 (X) i

Yavari et al. [21] showed that for a monoclinic linear elastic solid with planes of symmetry parallel to
the x x,-plane, universal displacements are the superposition of homogeneous displacements F - x (F is
a constant matrix) and the one-parameter inhomogeneous displacement field (cxpx3, — cx1x3,0). Now
for these universal displacements (with 10 free parameters), we would like to determine the most general
inhomogeneous form of the elastic moduli that are consistent with equation (3.2). For a =1, equation
(3.2) gives us the following six independent PDEs:

dcyp | O 0
8X1 8XQ -
deiy | ders
8)61 8)(2
dciz  dcse
—+—=0 3.22
8x1 8x2 ’ ( )
dcig | dcee 0
3)61 8x2 R
0cas . dcss o
3)63 - 8)63 N
For a =2, equation (3.2) gives us the following five independent PDEs:
berg | den
8)(?1 3)(?2
dcag  dcn 0
8x1 8x2 -
dcze  0c23
04 2 =, 3.23
E)xl 8)62 ( )
dces e 0
ax) oy
044

aX3
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For a =3, equation (3.2) gives us the following six independent PDEs:

8613 8623 8033 8036

0
8)63 8)63 8)63 8X3 ’
dcygs  Ocaq
24—, 3.24
ox 1 + 3)(2 ( )
dcss  0cas
— 4+ —=0.
8)61 + sz

Thus, from equations (3.22)s, (3.23)s, and (3.24);, one concludes that

ci3=ci3(x1,x2), cn=cux,x), cpn=cnxnLx), c36=cpx,x),

(3.25)
C44 = C44(X1 ,Xz) s, C45= 045(X1,X2), Cs55 = Css(xl,xz)-
From the last two PDEs in equation (3.24), and for an arbitrary c4s(x1, x2), one has
044(x1,x2) = — JC45, 1 (Xl,xz)dxz +@44(X1),
(3.26)
css(x1,x2) = — JC45,2(X1,X2)61'X1 + &ss5(x2),

where ¢44(x1) and éss(x;) are arbitrary functions. Similarly, from equations (3.22); and (3.23)3, and for
an arbitrary c36(x;, x2), one obtains

ci3(x,x) = — JC36,2(X1,X2)€1X1 +¢13(x2),
(3.27)
en(xy,x) = — JC36, 1(x1,x2) dxy + E23(x1),
where ¢13(x,) and ¢,3(x1) are arbitrary functions.
The remaining PDEs are
dcyp | dcye
L T
8x1 + 8)62 ’
dcip  dcie
T, e,
8x2 + 8)(?1
dces  dcre 0
8)(?2 8)(?1 ’ (3 28)
dcin n dcas 0 ’
E)xl 8x2 -
dcyy e
=4 2,
8)C2 + 8x1
dces  0ca6
— + —=0.
0x; + ox,

The form of the above PDEs suggests that c¢;1, ¢12, ¢22, and cgg are functions of ¢y and cy6. First, note
that from equations (3.28), and (3.28)4, one concludes that

82026 N 32616
2 b
x5 ox7

(3.29)
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and hence
c26(x1,X2,X3) = JICM, 11(x1,x2)dxy dxy 4 x2C26 (X1, X3) 4 Ca6 (1, X3), (3.30)
for arbitrary functions ¢¢(x1,x3), and ¢ (x1, x3).
From the first three PDEs in equation (3.28) and for an arbitrary c;4(x1, X2, x3), one obtains
Cll(xl,xz,x3) = — 016,2(X1,X2,X3)dxl +511(X2,X3),
cr2(x1,x2,x3) = — | c16,1(x1, x2,x3) dxa + ¢12(x1,x3) (3.31)

066(X1,x2,x3): -

oJ

c16,1(x1, X2, x3) dxa + Ce6(x1,X3)

where ¢11(x2,x3), ¢12(x1,x3), and ¢g6(x1,x3) are arbitrary functions. Finally, from equation (3.28)s one

concludes that

for an arbitrary function ¢, (x1, x3).

(X1, x2,x3) = — JC26,1(X1,X2,X3)0'X2 + &2 (x1,x3),

(3.32)

Proposition 3.2. For inhomogeneous monoclinic linear elastic solids with planes of symmetry parallel to
the x1xy-plane, the following position-dependence of the elasticity matrix is universal.

[c11(x1,x2,x3)  c1a(x1,x2,x3)  c13(x1,x2) 0 0 c16(x)
ci2(x1,x2,x3)  c(x1,x2,x3)  ca3(x1,x2) 0 0 c26(X)
c13(x1,x2) e(x,x2)  es3(x,x2) 0 0 c36(x1,X2)
C(x)= , 3.33
®) 0 0 0 cas(x1,X2)  cas(x1,x2) 0 (3.33)
0 0 0 cas(x1,x2)  cs5(x1,x2) 0

016(X) 6’26(X) C36(X1,X2) 0 0 066(X)

where  ¢33(x1,x2), c36(x1,X2), cas(x1,x2), and ci6(x1,x2,x3) are arbitrary functions while c13(x1,x3),

c23(x1,X2), caa(x1,X2), c55(x1,X2), C26 (X1, X2, x3), €11 (X1, X2, X3), c12(X1,X2,X3), Co6 (X1, X2, X3), and ca4(x1,x2,x3)
are given in equations (3.27), (3.26), (3.30), (3.31), and (3.32). For such inhomogeneous monoclinic linear
elastic solids, universal displacements are the superposition of homogeneous displacement fields and the one-
parameter inhomogeneous displacement field (cx>x3, — cx1x3,0).

3.3. Tetragonal linear elastic solids

In a tetragonal solid, there are five planes of symmetry such that the normals of four of them are copla-
nar and the fifth one is normal to the other four. We assume that in the Cartesian coordinate system
(x1,x2,x3), the fifth normal is parallel to the x3 axis. There are two planes of symmetry parallel to the
x1x3 and xx3-planes. The other two symmetry planes are related to the ones parallel to the x;x3-plane
by 7r/4 and 37 /4 rotations about the x; axis. Tetragonal solids have 6 independent elastic moduli with
elasticity matrices of the following form:
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Cll(X) C]Q(X) 013(X) 0 0 0
Clz(X) Cll(X) 013(X) 0 0 0
Clx)= Clséx) CnéX) @séX) 644(2)() 8 8 (3.34)
0 0 0 0 C44(X) 0
0 0 0 0 0 cos(x) ]

Yavari et al. [21] showed that in a tetragonal linear elastic solid with the tetragonal axes parallel to
the x3-axis in a Cartesian coordinate system (xj,x,,x3), the universal displacements are a superposition
of homogeneous displacements and the following inhomogeneous displacements:”

uy (x1,x2,x3) = Fruxi + Fioxs + Fi3x3 4+ ¢1x0X3 + ¢ox1x3,
u2(x1,x2,X3) :F21X1 +F22)C2 +F23X3 — C2X2X3 +C3X1X3, (335)
uz(x1,x2,x3) = F31x1 + F3x2 + F33x3 + g(x1,x2),

where ¢; and ¢; are constants, and g = g(x1,x;) is a harmonic function.

Now for these universal displacements (with 12 free parameters and an arbitrary harmonic function),
we would like to determine the most general inhomogeneous form of the elastic moduli that are consis-
tent with equation (3.2). For a = 1, equation (3.2) gives us the following five independent PDEs:

0g dcaq _0
8x1 8X3 N

3611 N 8612 _ 8013 :0’ (336)

0x1 0x; 0x1
%6 _ ¢
8x2

As g(x1,x;) is an arbitrary harmonic function, from the first equation one concludes that dcs4/9x3 = 0.
Thus, c4s = cas(x1,x2), c11 = c11(x2,x3), c12 =c12(x2,x3), c13 =c13(x2,x3), and cg6 = co6(x1,x3). For a=2,
equation (3.2) gives us the following four independent PDEs:

a 0 0 0
cu _ dcr _ deis 9 (3.37)

0xp 0xp 0xy ox

Thus, c11 =c11(x3), c12 =c12(x3), c13 =c13(x3), cas = caa(x1,x2), and ce6 = ce6(x3). For a=3, equation
(3.2) gives us the following four independent PDEs:

0 a 0 0
Ci3 _ 063 _ dem  ocas o (3.38)
ox3 ax3 oxy oxp

HCl’lCG, C13 and c44 are constant, and Cl]1 =C11 (X3), C12 :Clz(X3), Ce6 = C66(x3)» and C33 =1C33 ()C],Xz).
Therefore, we have proved the following result:

Proposition 3.3. For a tetragonal linear elastic solid with the tetragonal axis parallel to the x3-axis in a
Cartesian coordinate system (x1,x,,x3), and with the following inhomogeneous elasticity matrix

[c11(x3)  cia(xs) 13 0 O 0

cia(x3) cii(x3) 13 0 0 0

| <3 ci3 cplx,x) 000 0
Co=| 7 0 0 cw O 0 |° (3.39)

0 0 0 0 C44 0

L 0 0 0 0 0 066(353)_




Yavari and Goriely 13

the universal displacements are the superposition of homogeneous displacement fields and the following
inhomogeneous displacement field.

uﬁ“h(xl,xz,xz) = C1X2X3 + C2X1X3,
(3.40)

inh
uy" (X1, %2,X3) = — X 1X3 + €3X1X3,

U™ (x1,x2,%3) = g(x1,%2),

where ¢y and c; are constants, and g = g(x1,x,) is an arbitrary harmonic function.

3.4. Trigonal linear elastic solids

In a trigonal solid, there are three planes of symmetry whose normals lie in the same plane and are
related by 7/3 rotations. We assume that the trigonal axis is parallel to the x;-axis. A trigonal solid has

6 independent elastic moduli and its elasticity matrix has the following representation:

_011(X> C]z(X) C]3(X) 0 C]5(X) 0
Clz(X) Cll(X) 013(X) 0 —015(X) 0
C(X) - CIS(EX) Cl3(§X) C33(§X) C44(2X) g —0105 (X) (341)
015(X) —6‘15(X) 0 0 C44(X) 0
0 0 0 —cs(x) 0 3 (en(x) —en(x)) |

Yavari et al. [21] showed that universal displacements are a superposition of homogeneous displace-
ments and the following inhomogeneous displacements:

inh
U™ (X1, X2, X3) = @123X1X2X3 + @12X1X2 + A13X1X3 + A23X2X3,

. 1

U (x1,X2,%3) = 5 (@2 +ainxs) (x7 — x3) + b13x1xs — a13x2x3, (3.42)
. 1

Uy ™ (x1,%0,X3) = — a13x7x2 — (@23 + b13)xixs + §a123x§ — ap3(x] —x3).

For the above universal displacements (with 14 free parameters), we would like to find the most gen-
eral inhomogeneous form of the elastic moduli that are consistent with equation (3.2). For a=1,2, 3,
equation (3.2) gives us the following PDE:s:

dci1 Ocip dcis

=0,
8XZ 8)62 8)62

36‘13 36‘13 36'33

0 343
ax; ax, ox3 ’ ( )

dcgq  Ocaq 0
8x1 - 8)(72 N

Thus, c11 = c11(x1,x3), c12 = c12(x1,x3), c15 = c15(x1,X3), €13 = c13(x3), €33 = c33(x1,X2), and cay = c44(x3).
Substituting these back into (3.2) one obtains the following PDEs:

dcis  des

Bxl a 8)63 7

dciz Ocas

S _ e g 3.44
8)63 an, ( )
dcip derp

8)61 - 8x1
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Thus, Cl1 :Cll(X3), C12 :Clz(X3), and C33 = C33 (xl,xz), and C13,C15, and c44 are constant. In summary,
we have proved the following result:

Proposition 3.4. For inhomogeneous trigonal linear elastic solids whose trigonal axes are parallel to the
x3 axis and have the following inhomogeneous elastic moduli

CH(X3)
c12(x3)
Ci13
0
C15
0

Clz(xs)
ci1(x3)
C13
0
—Ci15

0

C13 0
C13 0
633()(?1,)62) 0
0 Ca4
0 0
0 —C15

C15
—Ci1s5
0
0

C44
0

0
0
0

—Ci5
0

5 (c110x) = c12(x3)) |

(3.45)

the universal displacements are the superposition of homogeneous displacements and the following inho-
mogeneous displacement fields:

inh
U™ (1, X2, X3) = @123X1X2X3 + A12X1X2 + A13X1X3 + A23X2X3,

. 1
U™ (xy, xa,x3) = 5 (@ + ai3xs) (x7 — x3) + b13x1x3 — a13xoxs3, (3.46)

. 1
U™ (x1, %2, x3) = — aix3xixy — (a3 + biz)xixy + gamx% —ap3(x] —x3).

3.5. Orthotropic linear elastic solids

In an orthotropic solid, there are three mutually orthogonal symmetry planes. We choose Cartesian
coordinates (xi, xp, x3) such that the coordinate planes are parallel to the symmetry planes. An orthotro-
pic solid has 9 independent elastic moduli, and its elasticity matrix has the following representation:

_Cll(X) C12(X) C13(X) 0 0 0
Clz(X) sz(X) 023(X) 0 0 0
C(x)= Cwéx) CzséX) 633(§X) 644(2X) (o) 8 (3.47)
0 0 0 0 C55(X) 0
L 0 0 0 0 0 Cﬁﬁ(x)_

Yavari et al. [21] showed that in an orthotropic linear elastic solid whose planes of symmetry are nor-
mal to the coordinate axes in a Cartesian coordinate system (xi, x,x3), the universal displacements are
the superposition of homogeneous displacement fields and the 3-parameter inhomogeneous displace-
ment field ((11X2X3, arxixs, 613)61)62).

For the above universal displacements (with 12 free parameters), the universality constraints (3.2)
force the elastic moduli to have the following inhomogeneous forms:

cii=cii(x2,x3), cn=cn(x1,x3), c;3=c3(x,x), (3.48)
cas=ca(x1), 55 =cs5(x2), Co6 = Co6(X3) 5 (3.49)
6122012(x3), 6’132013(362), 02326’23(?61)- (3~50)

Therefore, we have proved the following result:

Proposition 3.5. For orthotropic linear elastic solids with planes of symmetry normal to the coordinate
axes in a Cartesian coordinate system (x1,x,x3), and with the following inhomogeneous elastic moduli
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[c11(x2,x3)  cra(x3) c13(x2) 0 0 0
Clz(x3) sz(xl,x3) 6‘23(361) 0 0 0
_ c13(x2) c23(x1) c33(x1,x2) 0 0 0
Ckx)= 0 0 0 culx) 0 o | (3.51)
0 0 0 0 css(x2) 0
L 0 0 0 0 0 C66(x3)_

universal displacements are the superposition of homogeneous displacement fields and the 3-parameter
inhomogeneous displacement field (a1x,x3, arx1x3, azx1x;).

3.6. Transversely isotropic linear elastic solids

For a transversely isotropic solid, there is an axis of symmetry such that the isotropy planes are planes
normal to it. We choose Cartesian coordinates (x1, x;, x3) such that the axis of transverse isotropy is par-
allel to the xs-axis. A transversely isotropic solid has 5 independent elastic moduli, and its elasticity
matrix has the following representation:

-Cll(X) Clz(X) 013(X) 0 0 0
Clg(X) C11 (X) C13(X) 0 0 0
. C]3(X) C]3(X) C33 (X) 0 0 0
Cx)=|"" 0 0 cu(x) 0 0 (3.52)
0 0 0 0 C44(X) 0
0 0 0 0 0 J(en(x) —en(x) ]
Yavari et al. [21] showed that universal deformations have the following form:
uy(x1,x2,X3) = C1X1 + caxp + cxax3 + x3h1 (X1, %2) + ki (X1, x2),
Uy (x1,%2,X%3) = — X1 + €1x2 — ex1x3 + X302 (x1,x2) + ko (x1, x2), (3.53)

u3(x1,x2,x3) = c3x3 + U3 (1, x2),
where £(x; + ix) = hy (X1, x2) + ik (x1,x2) and n(x; + ix;) = ks (1, X2) + ik (x1,x2)® are holomorphic, and
i3(x1, x2) is harmonic. For the above universal displacements (with 4 free parameters and 5 harmonic
functions), the constraints (3.2) force the elastic moduli to have the following inhomogeneous forms:

cii=cix3), cnp=cnls), c3=cx,x2), ci3,ca4 are constant. (3.54)

Therefore, we have proved the following result:

Proposition 3.6. In a transversely isotropic linear elastic solid with the isotropy plane parallel to the
x1xp-plane that has the following inhomogeneous elastic moduli

c”(x3) Clz(xa) C13 0 0 0
Clz(X3) 011(X3) C13 0 0 0
| e ci3 en(x,x) 00 0
C(x)= 0 0 0 e 0 0 , (3.55)
0 0 0 0 C44 0
L 0 0 0 0 0 %(011(X3) —C12(X3))_

the universal displacements have the following form:



6 Mathematics and Mechanics of Solids 00(0)

uy (X1, X2,X3) = c1x1 + €ax2 + exox3 + x3h1 (X1, x2) + ki (x1,X2),
uz(xl,xg,x3) = — CX1 + C1 X2 — CX1X3 —|—X3h2(x1,xQ) + kz(xl,XZ), (356)
uz(x1,x2,x3) = c3x3 + 3 (X1, X2),

where E(xp + ix1) = ho(x1, x2) +ihy (x1,x2) and n(x; + ixy) = ky (x1, x2) + iky (x1,x2) are holomorphic, and
13 (x1, x2) is harmonic.

3.7. Cubic linear elastic solids

At every point, a cubic solid has nine planes of symmetry whose normals are parallel to the edges and
face diagonals of a cube. We choose a Cartesian coordinate system (x1, x, x3) whose coordinate lines are
parallel to the edges of the cube. A cubic solid has 3 independent elastic moduli and its matrix of elastic
moduli reads

_Cll(X) Clz(X) Clz(X) 0 0 0
C12(X) C11(X) Clz(X) 0 0 0
. Clz(X) Clz(X) Cll(X) 0 0 0
CHx=1" 0 0  culx) 0 0 (3.57)
0 0 0 0 C44(X) 0
L 0 0 0 0 0 C44<X) i
Yavari et al. [21] showed that for cubic solids, universal displacements have the following form:
ur (x1,%2,33) = =x1 (X3 —x3) + c1x1x3 + bixixa + dixi + g1 (x2,x3),
Uy (x1,x2,X3) = =X (x% - x%) + a1x1x3 — c1x2x3 + daxy + g2 (X1, x3), (3.58)

X3 (x% — xf) — a1 x1x3 — b1X2)C3 +d3)€3 +g3(x1,x2),

NIQINIQINIR

u3(x1:x2ax3) =

where g1, g2, and g3 are arbitrary harmonic functions. For the above universal displacements (with seven
free parameters and three arbitrary harmonic functions) the universality constraints (3.2) force the three
elastic moduli to be uniform. Therefore, we have proved the following result:

Proposition 3.7. Inhomogeneous compressible cubic linear elastic solids do not admit universal
displacements.

4. Conclusion

We studied universal displacements and inhomogeneities in linear elasticity for the eight symmetry
classes (triclinic, monoclinic, tetragonal, trigonal, orthotropic, transversely isotropic, cubic, and isotro-
pic) assuming that material preferred directions are known. We showed that equilibrium equations in
the absence of body forces and for arbitrary position-dependent elastic moduli impose restrictions on
both the displacement field and the inhomogeneities of the elastic moduli in the form of a system of
PDEs, which we call universality constraints. We observed that the universality constraints of inhomo-
geneous solids include those of homogeneous solids. For each symmetry class and its known universal
displacements, we characterized the corresponding universal inhomogeneities. It is known that the
larger the symmetry group, the larger the space of universal displacements [21]. We showed that the
larger the symmetry group, the smaller the space of universal inhomogeneities. In particular, it was
shown that inhomogeneous isotropic and inhomogeneous cubic solids do not admit universal displace-
ments. For the other six symmetry classes, there are enough freedom to allow the existence of universal
displacements and we classified all the universal inhomogeneities of the other six symmetry classes. This
work therefore completes the universal program of linear elasticity.
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Notes

1. There was a mistake in the case of family 0 deformations that was corrected in [16].

2. There was a mistake in the case of family 5 deformations that was corrected in [16].

3. This is the case in nonlinear elasticity as well [15,16].

4. All the symbolic computations in this paper were performed using Mathematica Version 13.0.0.0, Wolfram Research,

Champaign, IL.
. There is a typo in equation (3.22), in [21]: —cpx1x3 should read —cyx5x3.
6. Note that there is a typo in [21], Proposition 3.6.
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