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Abstract
For a given class of materials, universal deformations are those that can be maintained in
the absence of body forces by applying only boundary tractions. Universal deformations
play a crucial role in nonlinear elasticity. To date, their classification has been accomplished
for homogeneous isotropic solids following Ericksen’s seminal work, and homogeneous
anisotropic solids and inhomogeneous isotropic solids in our recent works. In this paper
we study universal deformations for inhomogeneous anisotropic solids defined as materials
whose energy function depends on position. We consider both compressible and incom-
pressible transversely isotropic, orthotropic, and monoclinic solids. We show that the uni-
versality constraints—the constraints that are dictated by the equilibrium equations and the
arbitrariness of the energy function—for inhomogeneous anisotropic solids include those
of inhomogeneous isotropic and homogeneous anisotropic solids. For compressible solids,
universal deformations are homogeneous and the material preferred directions are uniform.
For each of the three classes of anisotropic solids we find the corresponding universal in-
homogeneities—those inhomogeneities that are consistent with the universality constraints.
For incompressible anisotropic solids we find the universal inhomogeneities for each of the
six known families of universal deformations. This work provides a systematic approach to
study analytically functionally-graded fiber-reinforced elastic solids.
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1 Introduction

In elasticity, for a given class of materials, universal deformations are those deformations
that can be maintained in the absence of body forces by applying only boundary tractions
for an arbitrary energy function in that class.1 They are particularly important in nonlinear
elasticity since they exist independently of a particular choice of energy function. Therefore,
they can be used experimentally to study material properties and analytically as a basis for
more complicated deformations or to gain insight into basic properties of materials. The his-
tory of a theory of universal deformations goes back to the seminal work of Ericksen who
showed that for homogeneous compressible isotropic solids, universal deformations are ho-
mogeneous [9]. From that original seed, grew a large body of work addressing the same
problems for materials that have constraints such as incompressibility, may be anisotropic,
may be inhomogenous, may be anelastic, or linear as shown in Fig. 1. The problem of find-
ing universal deformations in the presence of internal constraints is more difficult [32]. For
homogeneous incompressible isotropic solids, in a second seminal paper that was motivated
by the earlier works of Rivlin [29–31], Ericksen [8] found four families of universal de-
formations. He conjectured that a deformation with constant principal invariants has to be
homogeneous. This conjecture turned out to be incorrect [11], and motivated the discovery
of a fifth family of universal deformations [20, 34]. The six known families of universal
deformations are:

• Family 0: Homogeneous deformations
• Family 1: Bending, stretching, and shearing of a rectangular block
• Family 2: Straightening, stretching, and shearing of a sector of a cylindrical shell
• Family 3: Inflation, bending, torsion, extension, and shearing of a sector of an annular

wedge
• Family 4: Inflation/inversion of a sector of a spherical shell
• Family 5: Inflation, bending, extension, and azimuthal shearing of an annular wedge

We should emphasize that for incompressible isotropic solids Ericksen’s problem has
not been solved completely to this day; the case of deformations with constant principal
invariants is still an open problem. However, the conjecture is that there are no other possi-
ble families of universal deformations. In related works, there have been several studies of
universal deformations and universal steady-state temperature fields in nonlinear thermoe-
lasticity (see [6, 7, 26, 33], and references therein).

Based on Ericksen’s seminal work, we embarked a few years ago into what we now
refer to as the universal program: to generalize Ericken’s results to anisotropic and inho-
mogeneous materials for all hyperelastic materials, anelastic materials, and linear mate-
rials (see Fig. 1). Indeed, the analogue of universal deformations in linear elasticity are
universal displacements [18, 38, 45]. In [45], it was shown that universal displacements
explicitly depend on the symmetry class of the material; the larger the symmetry group is
the larger the corresponding space of universal displacements is. More recently, we stud-
ied universal inhomogeneities in anisotropic linear elasticity [43]. There have been re-
cent extensions of Ericksen’s analysis to anelasticity. Yavari and Goriely [41] proved that
in compressible anelasticity universal deformations must be covariantly homogeneous. In
the case of incompressible anelasticity, Goodbrake et al. [15] observed that a key feature
of the analysis is that the extra fields entering the analysis should follow the same sym-
metry as the universal deformations. They also showed that the six known families of

1See Pucci et al. [27] for definitions of controllable, general, universal, and partial solutions in nonlinear
elasticity.
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Fig. 1 The universal program: Finding all the universal deformations and displacements, together with the
associated universal material preferred directions, and universal inhomogeneities, for both compressible and
incompressible solids. These are the different cases considered so far with partial or complete solutions. Here,
nonlinear elasticity refers to hyperleasticity and the existence of a strain-energy density W is assumed that
can either be homogeneous or non-homogenous, isotropic or anisotropic

universal deformations are invariant under certain Lie subgroups of the special Euclidean
group.

Until recently, there was no systematic study of universal deformations in anisotropic
solids. There were early studies restricted to a subset of Family 1 deformations for two
cases of homogeneous anisotropy, and Family 3 deformations for an example of homo-
geneous anisotropy [10] (see also [1, 2]). However, many examples of universal deforma-
tions for anisotropic fiber-reinforced systems were known and widely used [3, 4, 16, 17,
19, 23, 28, 36]. Recently, we studied universal deformations and universal material pre-
ferred directions in homogeneous compressible and incompressible anisotropic solids [42].
More specifically, we considered compressible and incompressible transversely isotropic,
orthotropic, and monoclinic solids. We assumed that the material preferred directions can
vary from point to point. In the case of compressible solids we showed that universal defor-
mations are homogeneous and universal material preferred directions for the three classes of
anisotropic solids must be uniform. In the case of homogeneous incompressible transversely
isotropic, orthotropic, and monoclinic solids, we showed that in addition to the nine univer-
sality constraints for isotropic solids [8], there are extra 25, 74, and 152, respectively, extra
universality constraints that must be satisfied. For each known family of universal defor-
mations we obtained the universal material preferred directions assuming that they have the
symmetry of the corresponding universal deformations (that are encoded in the symmetries
of the right Cauchy-Green strain).2

Motivated by a result in [14], Yavari [40] extended the analysis of universal deforma-
tions to inhomogeneous isotropic solids (with position-dependent strain-energy density),
and showed that in addition to those of homogeneous isotropic solids there are some extra
universality constraints. It was shown that inhomogeneous compressible isotropic solids do
not admit universal deformations. In the case of inhomogeneous incompressible solids the
following results were obtained for each of the six known families of universal deformations.

2Unfortunately, there was a small mistake in calculating the universal material preferred directions for Family
5 deformations. The correct universal material preferred directions are given in (4.83), (5.17), and (6.31), for
transversely isotropic, orthotropic, and monoclinic solids, respectively.
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• For inhomogeneous incompressible isotropic solids it was incorrectly concluded that
Family 0 deformations are not universal. This is discussed in §4.1, and the corrected
statement is given in Footnote 4.

• Family 1 deformations are universal for any energy function of the form W =
W (X,I1, I2), where (X,Y,Z) is a Cartesian coordinate system with coordinate lines nor-
mal to the faces of an undeformed rectangular block. Note that with respect to cylindri-
cal coordinates (r, θ, z) in the deformed configuration, Family 1 deformations have the
form: (r, θ, z) =

Ä√
C1(2X + C4),C2(Y + C5), Z

C1 C2
− C2 C3Y + C6

ä
, where C1, . . . ,C6

are constants.
• Families 2, 3, and 4 deformations are universal for any energy function of the form

W = W (R,I1, I2), where R is the radial coordinate in the undeformed configuration of a
cylindrical shell, an annular wedge, and a spherical shell, for Families 2, 3, and 4, respec-
tively.

• For inhomogeneous incompressible isotropic solids, Family 5 deformations are not uni-
versal.

The remaining problem to be solved to complete Ericksen’s program is to study elastic
materials that are inhomogenous, and anisotropic. Therefore, we study universal deforma-
tions for inhomogeneous anisotropic solids and generalize the results of [40, 42]. We con-
sider both compressible and incompressible transversely isotropic, orthotropic, and mono-
clinic solids. It is shown that the universality constraints—the constraints that are dictated by
the equilibrium equations and the arbitrariness of the energy function—for inhomogeneous
anisotropic solids include those of inhomogeneous isotropic and homogeneous anisotropic
solids as special cases. For compressible solids, universal deformations are homogeneous
and the material preferred directions are uniform. For each of the three classes of anisotropic
solids we find the corresponding universal inhomogeneities—those inhomogeneities (posi-
tion dependence of the energy function) that are compatible with the universality constraints.
For incompressible anisotropic solids we find the universal inhomogeneities for each of the
six known families of universal deformations.

This paper is organized as follows. In §2 we tersely review nonlinear anisotropic elastic-
ity. In §3, we consider inhomogeneous compressible transversely isotropic, orthotropic, and
monoclinic solids. The universal deformations, universal material preferred directions, and
universal inhomogeneities of inhomogeneous incompressible transversely isotropic solids
are analyzed for each of the six known families in §4. Similar analyses for inhomogeneous
incompressible orthotropic and inhomogeneous incompressible monoclinic solids are given
in §5 and §6, respectively. Conclusions are given in §7.

2 Nonlinear Anisotropic Elasticity

Kinematics Consider an elastic body B . In nonlinear anelasticity the body is identified with
a Riemannian manifold (B,G) whose metric G is used in calculating the natural distances
between material points in the body. In nonlinear elasticity (B,G) is flat, and is a subman-
ifold of the Euclidean 3-space. A deformation of the body is a map ϕ : B → S , where S is
the Euclidean ambient space, and g is the Euclidean metric. The material velocity is defined
as

Vt : B → Tϕt (X)S , Vt (X) = V(X, t) = ∂ϕ(X, t)

∂t
. (2.1)
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The spatial velocity is defined as v = V ◦ ϕ−1
t . The deformation gradient—the tangent map

(or derivative) of ϕ—is denoted by F = T ϕ. With respect to local coordinate charts {xa} and
{XA} on S and B , respectively, deformation gradient is defined as

F(X) : TXB → Tϕ(X)S , F a
A(X) = ∂ϕa

∂XA
(X) . (2.2)

The deformation gradient is a linear map that maps vectors in the tangent space at a material
point in the reference configuration to vectors in the tangent space of the same material point
in the current configuration. The transpose of deformation gradient is defined as

FT : TxS → TXB, 〈〈FV,v〉〉g = 〈〈V,FT v〉〉G, ∀V ∈ TXB, v ∈ TxS , (2.3)

where 〈〈, 〉〉G and 〈〈, 〉〉g are the inner products induced by the material and ambient space
metrics, respectively. FT has the following components

(FT (X))Aa = gab(x)Fb
B (X)GAB(X) . (2.4)

The right Cauchy-Green deformation tensor is defined as

C(X) = F(X)T F(X) : TXB → TXB , CA
B = (FT )Aa F a

B . (2.5)

The pulled-back metric is denoted by C� = ϕ∗g, and is defined as

〈〈U,W〉〉ϕ∗g = 〈〈FU,FW〉〉g, ∀U,W ∈ TXB , (2.6)

where � is the flat operator induced by the metric g. C� has components CAB = (gab ◦
ϕ)Fa

AF b
B . The left Cauchy-Green deformation tensor is defined as

B� = ϕ∗(g�) , BAB = (F−1)Aa (F−1)Bb gab . (2.7)

The spatial analogues of C� and B� are denoted by c� and b� (the Finger deformation tensor),
respectively, and are defined as

c� = ϕ∗(G), cab = (
F−1

)A
a

(
F−1

)B
b GAB,

b� = ϕ∗(G�), bab = Fa
A F b

B GAB.
(2.8)

The second-order tensors C and b have the same principal invariants I1, I2, and I3 that are
defined as [25]

I1 = tr b = ba
a = bab gab,

I2 = 1

2

(
I 2

1 − tr b2
) = 1

2

(
I 2

1 − ba
b bb

a

)= 1

2

(
I 2

1 − babbcd gac gbd

)
,

I3 = det b.

(2.9)

Balance laws The referential forms of the mass conservation and the balance of linear and
angular momenta read

∂ρ0

∂t
= 0 , Div P + ρ0B = ρ0A , PFT = FPT , (2.10)
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where ρ0 is the material mass density, B is body force per unit referential volume, A is the
material acceleration, and P is the first Piola-Kirchhoff stress. The spatial forms of conser-
vation of mass and balance of linear and angular momenta read

Lvρ = 0 , divσ + ρb = ρa , σ T = σ , (2.11)

where ρ is the spatial mass density, σ is the Cauchy stress, b = B ◦ ϕ−1
t , a is the spatial

acceleration, and Lvρ is the Lie derivative of the spatial mass density with respect to the
spatial velocity. P and σ are related as Jσab = P aAF b

A. The Jacobian of deformation J =√
I3 relates the material (dV ) and spatial (dv) Riemannian volume forms as dv = JdV , and

is given by

J =
 

det g
det G

det F . (2.12)

Constitutive equations For an inhomogeneous anisotropic hyperelastic solid the energy
function (per unit undeformed volume) has the following functional form

W = Ŵ (X,C�,G, ζ 1, . . . , ζ n) , (2.13)

where W explicitly depends on X (inhomogeneity), and the structural tensors ζ i , i =
1, . . . , n characterize the material symmetry group of the solid. Using structural tensors the
energy function becomes an isotropic function of its arguments. Instead of (2.13) one can
write the energy as a function of an integrity basis for the set of tensors {C�,G, ζ 1, . . . , ζ n}.
Denoting the integrity basis by Ij , j = 1, . . . ,m, one can write W = W (X, I1, . . . , Im). The
second Piola-Kirchhoff stress tensor has the following representation [5, 22, 44]

S = 2
∂Ŵ

∂C�
=

m∑

j=1

2Wj

∂Ij

∂C�
, Wj = Wj (X, I1, . . . , Im) := ∂W

∂Ij

, j = 1, . . . ,m . (2.14)

The relations between the second Piola-Kirchhoff stress, and the first Piola-Kirchhoff and
Cauchy stresses are: SAB = (F−1)AaP

aB = J (F−1)Aa(F−1)Bb σ ab .

Isotropic solids For an inhomogeneous isotropic solid, W = W (X, I1, I2, I3), where I1, I2,
and I3 were defined in (2.9). From (2.14) one writes

S = 2W1 G� + 2W2 (I2 C−1 − I3 C−2) + 2W3 I3 C−1 . (2.15)

The Cauchy stress has the following representation

σab = 2√
I3

[
W1 bab + (I2 W2 + I3 W3)gab − I3 W2 cab

]
, (2.16)

where cab = (F−1)Mm(F−1)N nGMN gam gbn. For an incompressible isotropic solid I3 = 1,
and hence

S = −p C−1 + 2W1 G� − 2W2 C−2 ,

σ = −p g� + 2W1 b� − 2W2 c−1 ,
(2.17)

where p is the Lagrange multiplier associated with the incompressibility constraint J =√
I3 = 1. Equation (2.17)2 in components reads σab = −p gab + 2W1 bab − 2W2 cab .
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Transversely isotropic solids In a transversely isotropic solid at every point there is a sin-
gle material preferred direction, which is normal to the plane of isotropy at that point.
We assume that a unit vector N(X) identifies the material preferred direction at X ∈ B .
The energy function for an inhomogeneous transversely isotropic solid has the form W =
W (X,G,C�,A), where A = N ⊗ N is a structural tensor [5, 21, 36]. The energy function W

depends on five independent invariants that are defined as

I1 = tr C = CA
A , I2 = det C tr C−1 = det(CA

B)(C−1)DD , I3 = detC = det(CA
B)

I4 = N · C · N = NANB CAB , I5 = N · C2 · N = NANB CBM CM
A .

(2.18)
The second Piola-Kirchhoff stress tensor has the following representation

S =
5∑

j=1

2Wj

∂Ij

∂C�
, Wj = Wj (X, I1, . . . , I5) := ∂W

∂Ij

, j = 1, . . . ,5 , (2.19)

where

∂I1

∂C�
= G� ,

∂I2

∂C�
= I2C−1 − I3C−2 ,

∂I3

∂C�
= I3C−1 ,

∂I4

∂C�
= N ⊗ N ,

∂I5

∂C�
= N ⊗ (C · N) + (C · N) ⊗ N .

(2.20)

Thus

S = 2W1 G� + 2W2
(
I2 C−1 − I3 C−2

)+ 2W3 I3 C−1

+ 2W4 (N ⊗ N) + 2W5 [N ⊗ (C · N) + (C · N) ⊗ N] . (2.21)

The Cauchy stress has the representation [10, 12, 13]

σab = 2√
I3

[
W1b

ab + (I2W2 + I3W3)gab − I3W2 cab + W4 nanb + W5 	ab
]

, (2.22)

where na = Fa
ANA, and

	ab = na bbc nc + nb bac nc . (2.23)

In the case of an incompressible transversely isotropic solid (I3 = 1), W = W (X, I1, I2,

I4, I5), and hence

S = − p C−1 + 2W1G� + 2W2
(
I2 C−1 − C−2

)+ 2W4 (N ⊗ N)

+ 2W5 [N ⊗ (C · N) + (C · N) ⊗ N] . (2.24)

Similarly, the Cauchy stress has the following representation [10, 12, 13, 37]

σab = −p gab + 2W1 bab − 2W2 cab + 2W4 na nb + 2W5
(
na bbc nd gcd + nb bac nd gcd

)
.

(2.25)
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Orthotropic solids An orthotropic solid has reflection symmetry with respect to three mu-
tually perpendicular planes at every point. Let three G-orthonormal vectors N1(X), N2(X),
and N3(X) specify the orthotropic axes at a point X in the reference configuration. The
three tensors A1 = N1 ⊗ N1, A2 = N2 ⊗ N2, and A3 = N3 ⊗ N3 are structural tensors. How-
ever, because A1 + A2 + A3 = I, only two of them are independent. The energy function
of an inhomogeneous orthotropic solid has the functional form W = W (X,G,C�,A1,A2)
[5, 21, 36]. It can be rewritten as a function of the following seven independent invari-
ants:

I1 = tr C , I2 = det C tr C−1 , I3 = det C ,

I4 = N1 · C · N1 , I5 = N1 · C2 · N1 ,

I6 = N2 · C · N2 , I7 = N2 · C2 · N2 .

(2.26)

Thus

S =
7∑

j=1

2Wj

∂Ij

∂C�
, Wj = Wj (X, I1, . . . , I7) := ∂W

∂Ij

, j = 1, . . . ,7 . (2.27)

The second Piola-Kirchhoff stress tensor has the following representation

S =2W1 G� + 2W2
(
I2 C−1 − I3 C−2

)+ 2W3 I3 C−1

+ 2W4 (N1 ⊗ N1) + 2W5 [N1 ⊗ (C · N1) + (C · N1) ⊗ N1]

+ 2W6 (N2 ⊗ N2) + 2W7 [N2 ⊗ (C · N2) + (C · N2) ⊗ N2] . (2.28)

Similarly, the Cauchy stress is written as [12, 13, 35, 37]

σab = 2√
I3

î
W1 bab + (I2 W2 + I3 W3)gab − I3 W2 cab

+ W4 na
1 nb

1 + W5
(
na

1 bbc nd
1 gcd + nb

1 bac nd
1 gcd

)

+ W6 na
2 nb

2 + W7
(
na

2 bbc nd
2 gcd + nb

2 bac nd
2 gcd

) ó
, (2.29)

where na
1 = Fa

ANA
1 , and na

2 = Fa
ANA

2 . In the case of an incompressible orthotropic solid
(I3 = 1), W = W (X, I1, I2, I4, I5, I6, I7). Thus, using (2.28), one has

S = −pC−1 + 2W1G� + 2W2
(
I2C−1 − C−2

)

+ 2W4 (N1 ⊗ N1) + 2W5 [N1 ⊗ (C · N1) + (C · N1) ⊗ N1]

+ 2W6 (N2 ⊗ N2) + 2W7 [N2 ⊗ (C · N2) + (C · N2) ⊗ N2] . (2.30)

Similarly, the Cauchy stress tensor is written as

σab = −pgab + 2W1 bab − 2W2 cab + 2W4 na
1 nb

1 + 2W5 	ab
1 + 2W6 na

2 nb
2 + 2W7 	ab

2 , (2.31)

where 	ab
1 = na

1 bbc nd
1 gcd + nb

1 bac nd
1 gcd , and 	ab

2 = na
2 bbc nd

2 gcd + nb
2 bac nd

2 gcd .
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Monoclinic solids A monoclinic solid has three material preferred directions that are speci-
fied by three unit vectors {N1,N2,N3} such that N1 · N2 �= 0 and N3 is normal to the plane of
N1 and N2 [24]. The energy function of a monoclinic solid depends on nine invariants [37],
seven of which are identical to those of orthotropic solids (2.26). The two extra invariants
are

I8 = g N1 · C · N2, I9 = g 2 , (2.32)

where g = N1 · N2. Note that

∂I8

∂C�
= g

2
(N1 ⊗ N2 + N2 ⊗ N1) ,

∂I9

∂C�
= 0 . (2.33)

For orthotropic solids the second Piola-Kirchhoff stress has the following representation

S =2W1 G� + 2W2
(
I2 C−1 − I3 C−2

)+ 2W3 I3C−1

+ 2W4 (N1 ⊗ N1) + 2W5 [N1 ⊗ (C · N1) + (C · N1) ⊗ N1]

+ 2W6 (N2 ⊗ N2) + 2W7 [N2 ⊗ (C · N2) + (C · N2) ⊗ N2]

+ gW8 (N1 ⊗ N2 + N2 ⊗ N1) , (2.34)

where Wi = Wi (X, I1, . . . , I9), i = 1, . . . ,8. Similarly, the Cauchy stress can be written as

σab = 2√
I3

î
W1 bab + (I2 W2 + I3 W3)gab − I3 W2 cab

+ W4 na
1 nb

1 + W5
(
na

1 bbc nd
1 gcd + nb

1 bac nd
1 gcd

)

+ W6 na
2 nb

2 + W7
(
na

2 bbc nd
2 gcd + nb

2 bac nd
2 gcd

)

+ gW8
(
na

1 nb
2 + nb

1 na
2

) ó
. (2.35)

In the case of incompressible monoclinic solids (I3 = 1), W = W (X, I1, I2, I4, I5, I6, I7,

I8, I9). Thus

S = −p C−1 + 2W1 G� + 2W2
(
I2 C−1 − C−2

)

+ 2W4 (N1 ⊗ N1) + 2W5 [N1 ⊗ (C · N1) + (C · N1) ⊗ N1]

+ 2W6 (N2 ⊗ N2) + 2W7 [N2 ⊗ (C · N2) + (C · N2) ⊗ N2]

+ gW8 (N1 ⊗ N2 + N2 ⊗ N1) . (2.36)

Similarly, the Cauchy stress tensor is written as

σab = −p gab +2W1 bab −2I3 W2 cab +2W4 na
1 nb

1 +2W5 	ab
1 +2W6 na

2 nb
2 +2W7 	ab

2 +W8 	ab
3 ,

(2.37)
where 	ab

3 = g
(
na

1 nb
2 + nb

1 na
2

)
.
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3 Compressible Inhomogeneous Anisotropic Solids

3.1 Transversely Isotropic Solids

We first consider an inhomogeneous body made of compressible transversely isotropic
solids. We do not specify the material preferred direction N(X) a priori. In the absence of
body forces, the equilibrium equations in Cartesian coordinates read σab

,b = 0. Substituting
(2.22) into the equilibrium equations one obtains [42]

− I
− 3

2
3 I3,b

[
W1 bab + (I2 W2 + I3 W3)δab − I3 W2 cab + W4 na nb + W5 	ab

]

+ 2I
− 1

2
3

î
(I2,b W2 + I2 W2,b + I3,b W3 + I3 W3,b)δab + W1 bab

,b + W1,b bab

− I3,b W2 cab − I3 W2,b cab − I3 W2 cab
,b

+ W4,b na nb + W4 na
,b nb + W4 na nb

,b + W5,b 	ab + W5 	ab
,b

ó
= 0 . (3.1)

For universal deformations the equilibrium equations hold for an arbitrary energy function
W . Knowing that W is an arbitrary function of its arguments, the coefficient of W1, W2, W3,
W3, and W5 must vanish separately. Thus [42]

W1 : bab
,b = 0 ,

W2 : I2,b δab − I3 cab
,b = 0 ,

W3 : I3,b = 0 ,

W4 : (na nb),b = 0 ,

W5 : 	ab
,b = 0 .

(3.2)

The above constraints simplify (3.1) to read

bab W1,b + (I2 δab − I3 cab)W2,b + I3δ
ab W3,b + na nb W4,b + 	ab W5,b = 0 . (3.3)

Note that I3,b = 0 from (3.2)3 and

W1,b = (F−1)Ab W1,A + W11 I1,b + W12 I2,b + W14 I4,b + W15 I5,b ,

W2,b = (F−1)Ab W2,A + W12 I1,b + W22 I2,b + W24 I4,b + W25 I5,b ,

W3,b = (F−1)Ab W3,A + W13 I1,b + W23 I2,b + W34 I4,b + W35 I5,b ,

W4,b = (F−1)Ab W4,A + W14 I1,b + W24 I2,b + W44 I4,b + W45 I5,b ,

W5,b = (F−1)Ab W5,A + W15 I1,b + W25 I2,b + W45 I4,b + W55 I5,b ,

(3.4)

where

Wi,A = ∂Wi

∂XA
, Wij = ∂2W

∂Ii∂Ij

, i ≤ j . (3.5)

Notice that the first term on the right-hand side of each equation in (3.4) vanishes for homo-
geneous solids [42]. Substituting the above relations into (3.3) the coefficients of W13 and
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W23 read

W13 : I3 I1,b δab = 0 ,

W23 : I3 I2,b δab = 0 . (3.6)

Thus, I1,b = I2,b = 0. Substituting these into (3.4) and using (3.3) the coefficients of W34

and W35 read

W34 : I3 I4,b δab = 0 ,

W35 : I3 I5,b δab = 0 . (3.7)

Hence, I4,b = I5,b = 0. Therefore, we have the following universality constraints

I1, I2, and I3 are constant, (3.8)

bab
,b = cab

,b = 0 , (3.9)

I4, and I5 are constant, (3.10)

(na nb),b = 	ab
,b = 0 . (3.11)

Note that (3.8) and (3.9) are the universality constraints for isotropic solids [9, 41] and
imply that Fa

A|B = 0, i.e., universal deformations are homogeneous. In addition, since
I4,b = I4,A(F−1)Ab = 0, we have I4,A = 0. Similarly, I5,A = 0. The constraints (3.10) and
(3.11) imply that N is a constant unit vector [42].

For inhomogeneous solids one has the following extra five sets of universality constraints:

bab (F−1)Ab W1,A = 0 ,

(
I2 δab − I3 cab

)
(F−1)Ab W2,A = 0 ,

I3 δab (F−1)Ab W3,A = 0 ,

na nb(F−1)Ab W4,A = 0 ,

	ab(F−1)Ab W5,A = 0 .

(3.12)

The first three constraints in (3.12) are identical to those of isotropic solids [40], and imply
that

W1,A = W2,A = W3,A = 0 , A = 1,2,3 . (3.13)

The constraint (3.12)4 implies that nb(F−1)Ab W4,A = W4,A NA = 0. As N is a constant unit
vector we can choose the Cartesian coordinates (X1,X2,X3) in the reference configuration
such that

N = ∂

∂X1
, (3.14)

i.e., NA = δA
1 . Here we have used the notation ∂Xi to denote the unit (tangent) vector along

the ith Cartesian direction as is customary in differential geometry. With this choice of
coordinates the constraint W4,A NA = 0 reads

∂W4

∂X1
= 0 . (3.15)



A. Yavari, A. Goriely

Note that na = Fa
A NA = Fa

A δA
1 = Fa

1.
Equation (3.12)5 is equivalent to

(F−1)Ba 	ab (F−1)Ab W5,A = 0, B = 1,2,3 . (3.16)

Using (2.23) the above constraints can be rewritten as

(
NA CB

D ND + NB CA
D ND

)
W5,A = 0, B = 1,2,3 . (3.17)

Knowing that NA = δA
1 , this last expression can be rewritten as

CB
1 W5,1 + δB

1 CA
1 W5,A = 0, B = 1,2,3 . (3.18)

For B = 2, it implies that C2
1W5,1 = 0, which must hold for arbitrary homogeneous defor-

mations, i.e., for arbitrary constant C2
1. Thus, W5,1 = 0. Now the constraint for B = 3 is

trivially satisfied. For B = 1, C2
1 W5,2 + C3

1 W5,3 = 0, which must be satisfied for arbitrary
constants C2

1, and C3
1. Therefore, W5,2 = W5,3 = 0. Thus, the constraint (3.12)5 implies

that W5,A = 0. In summary, we have the following constraints

W1,A = W2,A = W3,A = W5,A = 0 , A = 1,2,3, & W4,1 = 0 . (3.19)

This implies that

∂W

∂X1
= f1(X) ,

∂W

∂X2
= f2(X, I4) ,

∂W

∂X3
= f3(X, I4) , (3.20)

for some scalar functions fA. Note that ∂f1
∂X2 = ∂f2

∂X1 . Since f1 does not depend on I4, one has

f2(X, I4) = f̄2(X2,X3, I4) + ¯̄f2(X) . (3.21)

Similarly, ∂f1
∂X3 = ∂f3

∂X1 implies that

f3(X, I4) = f̄3(X2,X3, I4) + ¯̄f3(X) . (3.22)

From (3.20)1, one writes

W (X, Ii) =
∫ X1

X1
0

f1(X1,X2,X3)dX1 + h(X2,X3, Ii) , (3.23)

where X1
0 is some fixed value of X1, h is some scalar function, and W (X, Ii) and

h(X2,X3, Ii) are short for W (X, I1, I2, I3, I4, I5) and h(X2,X3, I1, I2, I3, I4, I5), respec-
tively. Taking partial derivative with respect to X2 of both sides one obtains

∂W

∂X2
=

∫ X1

X1
0

∂f1(X1,X2,X3)

∂X2
dX1 + ∂h(X2,X3, Ii)

∂X2
,

=
∫ X1

X1
0

∂f2(X1,X2,X3, I4)

∂X1
dX1 + ∂h(X2,X3, Ii)

∂X2
,

= f2(X1,X2,X3, I4) − f2(X1
0,X

2,X3, I4) + ∂h(X2,X3, Ii)

∂X2
. (3.24)
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From (3.24) and (3.20)2 one concludes that

∂h(X2,X3, Ii)

∂X2
= f2(X1

0,X
2,X3, I4) . (3.25)

Thus

∫ X2

X2
0

∂h(X2,X3, Ii)

∂X2
dX2 =

∫ X2

X2
0

f2(X1
0,X

2,X3, I4)dX2 , (3.26)

where X2
0 is some fixed value of X2. Hence

h(X2,X3, Ii) = h(X2
0,X

3, Ii) +
∫ X2

X2
0

f2(X1
0,X

2,X3, I4)dX2 . (3.27)

Using the above relation in (3.23), one writes

W (X, Ii) = h(X2
0,X

3, Ii) +
∫ X1

X1
0

f1(X1,X2,X3)dX1 +
∫ X2

X2
0

f2(X1
0,X

2,X3, I4)dX2 .

(3.28)
Taking partial derivative with respect to X3 of the above relation one obtains

∂W

∂X3
= ∂h(X2

0,X
3, Ii)

∂X3
+

∫ X1

X1
0

∂f1(X1,X2,X3)

∂X3
dX1 +

∫ X2

X2
0

∂f2(X1
0,X

2,X3, I4)

∂X3
dX2 ,

= ∂h(X2
0,X

3, Ii)

∂X3
+

∫ X1

X1
0

∂f3(X1,X2,X3, I4)

∂X1
dX1 +

∫ X2

X2
0

∂f3(X1
0,X

2,X3, I4)

∂X2
dX2 ,

= ∂h(X2
0,X

3, Ii)

∂X3
+ f3(X1,X2,X3, I4) − f3(X1

0,X
2
0,X

3, I4) .

(3.29)
Thus using (3.20)3 one concludes that

∂h(X2
0,X

3, Ii)

∂X3
= f3(X1

0,X
2
0,X

3, I4) . (3.30)

Hence

∫ X3

X3
0

∂h(X2
0,X

3, Ii)

∂X3
dX3 =

∫ X3

X3
0

f3(X1
0,X

2
0,X

3, I4)dX3 , (3.31)

where X3
0 is some fixed value of X3. Thus

h(X2
0,X

3, Ii) = h(X2
0,X

3
0, Ii) +

∫ X3

X3
0

f3(X1
0,X

2
0,X

3, I4)dX3 . (3.32)

Substituting the above relation into (3.28) one obtains

W (X, Ii) = h(X2
0,X

3
0, Ii) +

∫ X1

X1
0

f1(X1,X2,X3)dX1 +
∫ X2

X2
0

f2(X1
0,X

2,X3, I4)dX2
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+
∫ X3

X3
0

f3(X1
0,X

2
0,X

3, I4)dX3 . (3.33)

Substituting (3.21) and (3.22) into the above relation one finds that W (X, Ii) = Ŵ (X) +
W (Ii)+ ‹W (X2,X3, I4). Note that the term Ŵ (X) is mechanically inconsequential, and hence
we have proved that the only universal deformations are homogeneous and the only possi-
ble dependence on the position is through I4 and in directions normal to a constant vec-
tor N:

Proposition 3.1 For compressible nonlinear transversely isotropic solids, universal defor-
mations are homogeneous, the universal material preferred direction is at all points a con-
stant unit vector N, and the universal inhomogeneity has the following form

W (X, I1, I2, I3, I4, I5) = W (I1, I2, I3, I4, I5) + ‹W (X2,X3, I4) , (3.34)

where the Cartesian X1-coordinate line is parallel to N.

3.2 Orthotropic Solids

For inhomogeneous compressible orthotropic solids there are two sets of universality con-
straints. The first set of constraints are identical to those of homogeneous compressible
orthotropic solids and read [42]:

I1, I2, and I3 are constant , (3.35)

bab
,b = cab

,b = 0 , (3.36)

I4, and I5 are constant , (3.37)

(na
1 nb

1),b = 	ab
1 ,b = 0 , (3.38)

I6, and I7 are constant , (3.39)

(na
2 nb

2),b = 	ab
2 ,b = 0 . (3.40)

These constraints imply again that universal deformations are homogeneous and the material
preferred directions are uniform. In the reference configuration we choose the Cartesian
coordinates (X1,X2,X3) such that

N1 = ∂

∂X1
, N2 = ∂

∂X2
, N3 = ∂

∂X3
. (3.41)

The second set of universality constraints are:

bab (F−1)Ab W1,A = 0 ,

(
I2 δab − I3 cab

)
(F−1)Ab W2,A = 0 ,

I3 δab (F−1)Ab W3,A = 0 ,

na
1 nb

1(F−1)Ab W4,A = 0 ,

	ab
1 (F−1)Ab W5,A = 0 ,

na
2 nb

2(F−1)Ab W6,A = 0 ,

	ab
2 (F−1)Ab W7,A = 0 .

(3.42)
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The first three constraints are identical to those of isotropic solids [40], and imply that
W1,A = W2,A = W3,A = 0. Similarly to the universality constraints of transversely isotropic
solids, (3.42)4 and (3.42)6 imply that

∂W4

∂XA
NA

1 = ∂W4

∂X1
= 0,

∂W6

∂XA
NA

2 = ∂W6

∂X2
= 0 . (3.43)

The universality constraints (3.42)5 and (3.42)7 imply that

W5,A = W7,A = 0, A = 1,2,3 . (3.44)

This means that

∂W

∂X1
= f1(X, I6) ,

∂W

∂X2
= f2(X, I4) ,

∂W

∂X3
= f3(X, I4, I6) . (3.45)

Note that

∂f1(X, I6)

∂X2
= ∂f2(X, I4)

∂X1
,

∂f1(X, I6)

∂X3
= ∂f3(X, I4, I6)

∂X1
,

∂f2(X, I4)

∂X3
= ∂f3(X, I4, I6)

∂X2
.

(3.46)
Thus

f1(X, I6) = f̄1(X1,X3, I6) + ¯̄f1(X) ,

f2(X, I4) = f̄2(X2,X3, I4) + ¯̄f2(X) . (3.47)

Using (3.45)1, one writes

W (X, Ii) =
∫ X1

X1
0

f1(X1,X2,X3, I6)dX1 + h(X2,X3, Ii) , (3.48)

where h is some scalar function, and X1
0 is some fixed value of X1. Taking partial derivative

with respect to X2 of both sides one obtains

∂W

∂X2
=

∫ X1

X1
0

∂f1(X1,X2,X3, I6)

∂X2
dX1 + ∂h(X2,X3, Ii)

∂X2
,

=
∫ X1

X1
0

∂f2(X1,X2,X3, I4)

∂X1
dX1 + ∂h(X2,X3, Ii)

∂X2
,

= f2(X1,X2,X3, I4) − f2(X1
0,X

2,X3, I4) + ∂h(X2,X3, Ii)

∂X2
. (3.49)

From (3.49) and (3.45)2 one concludes that

∂h(X2,X3, Ii)

∂X2
= f2(X1

0,X
2,X3, I4) . (3.50)

Thus

∫ X2

X2
0

∂h(X2,X3, Ii)

∂X2
dX2 =

∫ X2

X2
0

f2(X1
0,X

2,X3, I4)dX2 , (3.51)



A. Yavari, A. Goriely

where X2
0 is some fixed value of X2. Hence

h(X2,X3, Ii) = h(X2
0,X

3, Ii) +
∫ X2

X2
0

f2(X1
0,X

2,X3, I4)dX2 . (3.52)

Using the above relation in (3.48), one has

W (X, Ii) = h(X2
0,X

3, Ii) +
∫ X1

X1
0

f1(X1,X2,X3, I6)dX1 +
∫ X2

X2
0

f2(X1
0,X

2,X3, I4)dX2 .

(3.53)
Taking partial derivative with respect to X3 of the above relation one obtains

∂W

∂X3
= ∂h(X2

0,X
3, Ii)

∂X3
+

∫ X1

X1
0

∂f1(X1,X2,X3, I6)

∂X3
dX1 +

∫ X2

X2
0

∂f2(X1
0,X

2,X3, I4)

∂X3
dX2 ,

= ∂h(X2
0,X

3, Ii)

∂X3
+

∫ X1

X1
0

∂f3(X1,X2,X3, I4, I6)

∂X1
dX1

+
∫ X2

X2
0

∂f3(X1
0,X

2,X3, I4, I6)

∂X2
dX2 ,

= ∂h(X2
0,X

3, Ii)

∂X3
+ f3(X1,X2,X3, I4, I6) − f3(X1

0,X
2
0,X

3, I4, I6) . (3.54)

Thus using (3.45)3 one concludes that

∂h(X2
0,X

3, Ii)

∂X3
= f3(X1

0,X
2
0,X

3, I4, I6) . (3.55)

Hence

∫ X3

X3
0

∂h(X2
0,X

3, Ii)

∂X3
dX3 =

∫ X3

X3
0

f3(X1
0,X

2
0,X

3, I4, I6)dX3 , (3.56)

where X3
0 is some fixed value of X3. Thus

h(X2
0,X

3, Ii) = h(X2
0,X

3
0, Ii) +

∫ X3

X3
0

f3(X1
0,X

2
0,X

3, I4, I6)dX3 . (3.57)

Using the above relation in (3.53), one obtains

W (X, Ii) = h(X2
0,X

3
0, Ii) +

∫ X1

X1
0

f1(X1,X2,X3, I6)dX1 +
∫ X2

X2
0

f2(X1
0,X

2,X3, I4)dX2

+
∫ X3

X3
0

f3(X1
0,X

2
0,X

3, I4, I6)dX3 . (3.58)



The Universal Program of Nonlinear Hyperelasticity

Substituting (3.47) into (3.58) one finds

W (X, Ii) = Ŵ (X) + W (Ii) +
∫ X1

X1
0

¯̄f1(X1,X3, I6)dX1 +
∫ X2

X2
0

¯̄f2(X2,X3, I4)dX2

+
∫ X3

X3
0

f3(X1
0,X

2
0,X

3, I4, I6)dX3 . (3.59)

Noting that the term Ŵ (X) is mechanically inconsequential, we have proved the following
result.

Proposition 3.2 For compressible nonlinear orthotropic solids universal deformations are
homogeneous, the universal material preferred directions are everywhere the same three
mutually orthogonal constant unit vectors N1,N2, and N3, and the universal inhomogeneity
has the following form

W (X, I1, I2, I3, I4, I5, I6, I7) = W (I1, I2, I3, I4, I5, I6, I7)

+ ‹W (X3, I4, I6) + ÙW (X2,X3, I4) + “W (X1,X3, I6) ,
(3.60)

where the Cartesian coordinate lines are the orthotropy directions.

While the form of this strain-energy density seems involved, it can be written explicitly
in terms of the Cartesian components of C as

W (X,C) = W (C) + ‹W (X3,C11,C22) + ÙW (X2,X3,C11) + “W (X1,X3,C22) . (3.61)

3.3 Monoclinic Solids

Note that orthogonality of the material preferred directions was not assumed when deriving
the constraints (3.35)-(3.40), i.e., these universality constraints hold for monoclinic solids
as well. However, there are the following extra universality constraints [42]:

I8, and I9 are constant , (3.62)

(na
3 nb

3),b = 	ab
3 ,b = 0 . (3.63)

For compressible monoclinic solids the universality constraints (3.35)-(3.40) imply that uni-
versal deformations are homogeneous, and the three unit vectors N1,N2, and N3 are con-
stant. This means that (3.62), (3.63) are trivially satisfied. Let us assume that the angle
between N1 and N2 is θ (0 < θ < π

2 ). In the reference configuration we choose a Cartesian
coordinate system (X1,X2,X3) such that

N3 = ∂

∂X3
. (3.64)

In general, N1 makes and angle α with the X1-axis, and thus

N1 = cosα
∂

∂X1
+ sinα

∂

∂X2
, N2 = cos(α + θ )

∂

∂X1
+ sin(α + θ )

∂

∂X2
. (3.65)
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The second set of universality constraints for inhomogeneous monoclinic solids include
those of orthotropic solids, i.e., Eqs. (3.42). There is one extra universality constrain that
reads:

	ab
3 (F−1)Ab W8,A = 0 . (3.66)

This is equivalent to
(
NB

1 NA
2 + NA

1 NB
2

)
W8,A = 0, and is trivially satisfied for B = 3. For

B = 1,2 it gives us

2 cosα cos(α + θ )W8,1 + sin(2α + θ )W8,2 = 0 ,

sin(2α + θ )W8,1 + 2 sinα sin(α + θ )W8,2 = 0 .
(3.67)

These need to be satisfied for arbitrary α, and θ , and hence

W8,1 = W8,2 = 0 . (3.68)

The first three universality constraints in (3.42), and (3.42)5 and (3.42)7 imply that

W1,A = W2,A = W3,A = W5,A = W7,A = 0, A = 1,2,3 . (3.69)

The constraint (3.42)4 implies that

∂W4

∂XA
NA

1 = cosα
∂W6

∂X1
+ sinα

∂W6

∂X2
= 0 , (3.70)

which must hold for any α, and hence

∂W4

∂X1
= ∂W4

∂X2
= 0 . (3.71)

The constraint (3.42)6 implies that

∂W6

∂XA
NA

2 = cos(α + θ )
∂W6

∂X1
+ sin(α + θ )

∂W6

∂X2
= 0 . (3.72)

This needs to hold for any 0 < θ < π
2 , and hence

∂W6

∂X1
= ∂W6

∂X2
= 0 . (3.73)

From Eqs. (3.68), (3.69), (3.71), and (3.73) one has

∂W

∂X1
= f1(X, I9) ,

∂W

∂X2
= f2(X, I9) ,

∂W

∂X3
= f3(X, I4, I6, I8, I9) . (3.74)

Using (3.74)1, one can write

W (X, Ii) =
∫ X1

X1
0

f1(X1,X2,X3, I9)dX1 + h(X2,X3, Ii) . (3.75)
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Taking partial derivative with respect to X2 of both sides one obtains

∂W

∂X2
=

∫ X1

X1
0

∂f1(X1,X2,X3, I9)

∂X2
dX1 + ∂h(X2,X3, Ii)

∂X2
,

=
∫ X1

X1
0

∂f2(X1,X2,X3, I9)

∂X1
dX1 + ∂h(X2,X3, Ii)

∂X2
,

= f2(X1,X2,X3, I9) − f2(X1
0,X

2,X3, I9) + ∂h(X2,X3, Ii)

∂X2
. (3.76)

From (3.76) and (3.74)2 one concludes that

∂h(X2,X3, Ii)

∂X2
= f2(X1

0,X
2,X3, I9) . (3.77)

Thus

h(X2,X3, Ii) = h(X2
0,X

3, Ii) +
∫ X2

X2
0

f2(X1
0,X

2,X3, I4, I9)dX2 . (3.78)

Using the above relation in (3.75), one writes

W (X, Ii) = h(X2
0,X

3, Ii) +
∫ X1

X1
0

f1(X1,X2,X3, I9)dX1 +
∫ X2

X2
0

f2(X1
0,X

2,X3, I9)dX2 .

(3.79)
Taking partial derivative with respect to X3 of the above relation one obtains

∂W

∂X3
= ∂h(X2

0,X
3, Ii)

∂X3
+

∫ X1

X1
0

∂f1(X1,X2,X3, I9)

∂X3
dX1 +

∫ X2

X2
0

∂f2(X1
0,X

2,X3, I9)

∂X3
dX2 ,

= ∂h(X2
0,X

3, Ii)

∂X3
+

∫ X1

X1
0

∂f3(X1,X2,X3, I4, I6, I8, I9)

∂X1
dX1

+
∫ X2

X2
0

∂f3(X1
0,X

2,X3, I4, I6, I8, I9)

∂X2
dX2 ,

= ∂h(X2
0,X

3, Ii)

∂X3
+ f3(X1,X2,X3, I4, I6, I8, I9) − f3(X1

0,X
2
0,X

3, I4, I6, I8, I9) .

(3.80)
Thus using (3.74)3 one concludes that

∂h(X2
0,X

3, Ii)

∂X3
= f3(X1

0,X
2
0,X

3, I4, I6, I8, I9) . (3.81)

Hence

h(X2
0,X

3, Ii) = h(X2
0,X

3
0, Ii) +

∫ X3

X3
0

f3(X1
0,X

2
0,X

3, I4, I6, I8, I9)dX3 . (3.82)
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Table 1 Universal inhomogeneities for compressible transversely isotropic, orthotropic, and monoclinic
solids

Symmetry
class

Energy function Universal energy function

Transversely
isotropic

W (X1,X2,X3, I1, I2, I3, I4, I5) W (I1, I2, I3, I4, I5) + ‹W (X2,X3, I4)

Orthotropic W (X1,X2,X3, I1, I2, I3, I4, I5, I6, I7) W (I1, I2, I3, I4, I5, I6, I7) + ‹W (X3, I4, I6)

+ÙW (X2,X3, I4) + “W (X1,X3, I6)

Monoclinic W (X1,X2,X3, I1, I2, I3, I4, I5, I6, I7, I8, I9) W (I1, I2, I3, I4, I5, I6, I7, I8, I9)

+‹W (X3, I4, I6, I8, I9)

Using the above relation in (3.79), one obtains

W (X, Ii) = h(X2
0,X

3
0, Ii) +

∫ X1

X1
0

f1(X1,X2,X3, I9)dX1 +
∫ X2

X2
0

f2(X1
0,X

2,X3, I9)dX2

+
∫ X3

X3
0

f3(X1
0,X

2
0,X

3, I4, I6, I8, I9)dX3 .

(3.83)
Note that the second and third terms on the right-hand side are mechanically inconsequen-
tial, and hence, we have proved the following result.

Proposition 3.3 For compressible nonlinear monoclinic solids universal deformations are
homogeneous, the universal material preferred directions are everywhere the same three
constant unit vectors N1,N2, and N3, such that N3 is perpendicular to the plane of N1 and
N2, and the universal inhomogeneity has the following form

W (X, I1, I2, I3, I4, I5, I6, I7, I8, I9) =W (I1, I2, I3, I4, I5, I6, I7, I8, I9)

+ ‹W (X3, I4, I6, I8, I9) , (3.84)

where the Cartesian X3-coordinate line is along N3.

Table 1 summarizes our results for inhomogeneous compressible anisotropic solids.

4 Incompressible Inhomogeneous Transversely Isotropic Elastic Solids

For a body made of an incompressible transversely isotropic solid, the equilibrium equations
in the absence of body forces read:

p,b gab = 2
[
W1 bab − W2 cab + W4 na nb + W5 	ab

]
|b . (4.1)

This is equivalent to exactness of the 1-form

ξ = gam

[
W1b

mn − W2 cmn + W4 nmnn + W5 	mn
]
|n dxa = ξadxa, (4.2)
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where

ξa = [
W1 bn

a − W2 cn
a + W4 na nn + W5 	n

a

]
|n

= W1,n bn
a − W2,n cn

a + W4,n na nn + W5,n 	n
a + W1 bn

a |n − W2 cn
a |n + W4 (nan

n)|n

+ W5 	n
a |n . (4.3)

The exactness of ξ implies that dξ = 0 [39], or equivalently, ξa|b = ξb|a , where

ξa|b = W1b
n
a |nb − W2 cn

a |nb + W4 (nan
n)|nb + W5 	n

a |nb

+ W1,nb
n
a |b − W2,n cn

a |b + W4,n (nan
n)|b + W5,n 	n

a |b

+ W1,bb
n
a |n − W2,b cn

a |n + W4,b (nan
n)|n + W5,b 	n

a |n

+ W1|nbb
n
a − W2|nb cn

a + W4|nb nan
n + W5|nb 	n

a . (4.4)

Note that Wi = Wi(X, I1, I2, I4, I5), i = 1,2,4,5, and thus

W1,b = (F−1)An W1,A + W11 I1,b + W12I2,b + W14 I4,b + W15 I5,b ,

W2,b = (F−1)An W2,A + W12 I1,b + W22I2,b + W24 I4,b + W25 I5,b ,

W4,b = (F−1)An W4,A + W14 I1,b + W24I2,b + W44 I4,b + W45 I5,b ,

W5,b = (F−1)An W5,A + W15 I1,b + W25I2,b + W45 I4,b + W55 I5,b .

(4.5)

Note also that

W1|bn = (
W1,b

)
|n = W11 I1|bn + W12 I2|bn + W14 I4|bn + W15 I5|bn + W11,n I1,b + W12,n I2,b

+ W14,n I4,b + W15,n I5,b + [
(F −1)Ab W1,A

]
|n . (4.6)

The last term on the right hand-side is simplified as

[
(F−1)Ab W1,A

]
|n = ∂

∂xn

[
(F−1)Ab W1,A

]− γ m
nb (F−1)Am W1,A

= (F−1)Bn(F−1)Ab,B W1,A + (F−1)Ab

∂

∂xn
W1,A − γ m

nb (F−1)Am W1,A .

(4.7)
Notice that

∂

∂xn
W1,A = (F−1)BnW1,AB + ∂

∂XA

[
W11 I1,n + W12 I2,n + W14 I4,n + W15 I5,n

]

= (F−1)BnW1,AB + W11,A I1,n + W12,A I2,n + W14,A I4,n + W15,A I5,n . (4.8)

Thus

[
(F−1)Ab W1,A

]
|n = [

(F−1)Bn(F−1)Ab,B − γ m
nb (F−1)Am

]
W1,A + (F−1)Ab (F−1)BnW1,AB

+ (F−1)Ab

[
W11 I1,n + W12 I2,n + W14 I4,n + W15 I5,n

]

= [
(F−1)Bn(F−1)Ab,B − γ m

nb (F−1)Am

]
W1,A
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+ 1

2

[
(F −1)Ab (F−1)Bn + (F−1)Bb (F−1)An

]
W1,AB

+ (F−1)Ab

[
W11 I1,n + W12 I2,n + W14 I4,n + W15 I5,n

]
. (4.9)

Let us denote the independent third-order derivatives of the energy function by Wijk =
∂3W

∂Ii∂Ij ∂Ik
, ( i ≤ j ≤ k). Thus

W11,n = (F−1)An W11,A + W111 I1,n + W112 I2,n + W114 I4,n + W115 I5,n ,

W12,n = (F−1)An W12,A + W112 I1,n + W122 I2,n + W124 I4,n + W125 I5,n ,

W14,n = (F−1)An W14,A + W114 I1,n + W124 I2,n + W144 I4,n + W145 I5,n ,

W15,n = (F−1)An W15,A + W115 I1,n + W125 I2,n + W145 I4,n + W155 I5,n .

(4.10)

Hence3

W1|bn = W11 I1|bn + W12 I2|bn + W14 I4|bn + W15 I5|bn

+ W111 I1,nI1,b + W112(I2,n I1,b + I1,n I2,b) + W114(I4,n I1,b + I1,n I4,b)

+ W115(I5,n I1,b + I1,n I5,b) + W122I2,n I2,b + W124(I4,n I2,b + I4,b I2,n)

+ W125(I5,n I2,b + I2,n I5,b) + W144I4,n I4,b + W145(I5,n I4,b + I5,b I4,n + W155I5,n I5,b

+ [
(F −1)Bb (F−1)An,B − γ m

nb (F−1)Am

]
W1,A

+ 1

2

[
(F −1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
W1,AB

+ [
(F −1)An I1,b + (F−1)Ab I1,n

]
W11,A + [

(F −1)An I2,b + (F−1)Ab I2,n

]
W12,A

+ [
(F −1)An I4,b + (F−1)Ab I4,n

]
W14,A + [

(F −1)An I5,b + (F−1)Ab I5,n

]
W15,A .

(4.11)
Similarly,

W2|bn = W12 I1|bn + W22 I2|bn + W24 I4|bn + W25 I5|bn

+ W112 I1,n I1,b + W122(I2,n I1,b + I1,n I2,b) + W222 I2,n I2,b

+ W244I4,n I4,b + W255I5,n I5,b + W124(I4,n I1,b + I4,b I1,n)

+ W125(I5,n I1,b + I1,n I5,b) + W224(I4,n I2,b + I4,b I2,n)

+ W225(I5,n I2,b + I5,b I2,n + W245(I5,n I4,b + I5,b I4,n)

+ [
(F−1)Bb (F−1)An,B − γ m

nb (F−1)Am

]
W2,A

+ 1

2

[
(F −1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
W2,AB

+ [
(F −1)An I1,b + (F−1)Ab I1,n

]
W12,A + [

(F −1)An I2,b + (F−1)Ab I2,n

]
W22,A

+ [
(F −1)An I4,b + (F−1)Ab I4,n

]
W24,A + [

(F −1)An I5,b + (F−1)Ab I5,n

]
W25,A ,

(4.12)

3The factor “ 1
2 ” on the sixth line is missing in Eqs. (4.7)-(4.9) in [40]. However, this typo did not affect any

of the results of that work.
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W4|bn = W14 I1|bn + W24 I2|bn + W44 I4|bn + W45 I5|bn

+ W114 I1,n I1,b + W224 I2,n I2,b + W444 I4,n I4,b + W455 I5,n I5,b

+ W124(I2,n I1,b + I1,n I2,b) + W144(I4,n I1,b + I4,b I1,n)

+ W244(I4,n I2,b + I2,n I4,b) + W145(I5,n I1,b + I5,b I1,n)

+ W245(I5,n I2,b + I2,n I5,b) + W445(I5,n I4,b + I5,b I4,n)

+ [
(F −1)Bb (F−1)An,B − γ m

nb (F−1)Am

]
W4,A

+ 1

2

[
(F −1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
W4,AB

+ [
(F −1)An I1,b + (F−1)Ab I1,n

]
W14,A + [

(F −1)An I2,b + (F−1)Ab I2,n

]
W24,A

+ [
(F −1)An I4,b + (F−1)Ab I4,n

]
W44,A + [

(F −1)An I5,b + (F−1)Ab I5,n

]
W45,A ,

(4.13)
and

W5|bn = W15 I1|bn + W25 I2|bn + W45 I4|bn + W55 I5|bn

+ W115 I1,n I1,b + W225 I2,n I2,b + W445 I4,n I4,b + W555 I5,n I5,b

+ W125(I2,n I1,b + I1,n I2,b) + W145(I4,n I1,b + I4,b I2,1)

+ W155(I5,n I1,b + I1,n I5,b) + W245(I4,n I2,b + I4,b I2,n)

+ W255(I5,n I2,b + I2,n I5,b) + W455(I5,n I4,b + I5,b I4,n)

+ [
(F −1)Bb (F−1)An,B − γ m

nb (F−1)Am

]
W5,A

+ 1

2

[
(F −1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
W5,AB

+ [
(F −1)An I1,b + (F−1)Ab I1,n

]
W15,A + [

(F −1)An I2,b + (F−1)Ab I2,n

]
W25,A

+ [
(F −1)An I4,b + (F−1)Ab I4,n

]
W45,A + [

(F −1)An I5,b + (F−1)Ab I5,n

]
W55,A .

(4.14)
The symmetry ξa|b = ξb|a forces the coefficient of each partial derivative of the energy

function to be symmetric. Following the notation introduced in [42], we define Aκ
ab to be the

matrix of the coefficient of Wκ , where κ is a multi-index. The first nine terms are identical
to those of homogeneous isotropic solids: κ ∈ Kiso = {1,2,11,22,12,111,222,112,122}.
They read

A1
ab = bn

a |bn ,

A2
ab = −cn

a |bn ,

A11
ab = bn

a |n I1,b + (
bn

a I1,n

)
|b ,

A22
ab = −cn

a |n I2,b − (
cn
a I2,n

)
|b ,

A12
ab = (

bn
a I2,n

)
|b + bn

a |n I2,b −
î(

cn
a I1,n

)
|b + cn

a |n I1,b

ó
,

A111
ab = bn

a I1,n I1,b ,

A222
ab = −cn

a I2,n I2,b ,
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A112
ab = bn

a

(
I1,b I2,n + I1,n I2,b

)− cn
a I1,n I1,b ,

A122
ab = bn

a I2,b I2,n − cn
a

(
I1,b I2,n + I1,n I2,b

)
, (4.15)

where bn
a = bmngma , and cn

a = cmngma . It is well known that the symmetry of the above nine
terms admits six families of deformations [8, 20, 34]. For both homogeneous and inhomo-
geneous transversely isotropic solids, we have 25 extra terms:

K = {4,5,44,55,14,15,24,25,45,444,555,114,115,124,125,

144,145,155,224,225,244,245,255,445,455} . (4.16)

These terms read [42]:

A4
ab = (na nn)|nb ,

A5
ab = 	n

a |nb ,

A44
ab = (na nn)|n I4,b + (na nn I4,n)|b ,

A55
ab = 	n

a |n I5,b + (	n
a I5,n)|b ,

A14
ab = bn

a |n I4,b + (bn
a I4,n)|b + (na nn)|n I1,b + (na nnI1,n)|b ,

A15
ab = bn

a |n I5,b + (bn
a I5,n)|b + 	n

a |n I1,b + (	n
a I1,n)|b ,

A24
ab = (na nn)|n I2,b + (na nn I2,n)|b − [

cn
a |n I4,b + (cn

a I4,n)|b
]

,

A25
ab = 	n

a |n I2,b + (	n
a I2,n)|b − [

cn
a |n I5,b + (cn

a I5,n)|b
]

,

A45
ab = (na nn)|n I5,b + (na nn I5,n)|b + 	n

a |n I4,b + (	n
a I4,n)|b ,

(4.17)

and

A444
ab = na nn I4,n I4,b ,

A555
ab = 	n

a I5,n I5,b ,

A114
ab = bn

a

(
I4,n I1,b + I4,b I1,n

)+ na nnI1,n I1,b ,

A115
ab = bn

a

(
I5,n I1,b + I5,b I1,n

)+ 	n
a I1,n I1,b ,

A124
ab = bn

a

(
I4,n I2,b + I4,b I2,n

)− cn
a

(
I4,n I1,b + I4,b I1,n

)+ na nn
(
I2,n I1,b + I2,b I1,n

)
,

A125
ab = bn

a

(
I5,n I2,b + I5,b I2,n

)− cn
a

(
I5,n I1,b + I5,b I1,n

)+ 	n
a

(
I2,n I1,b + I2,b I1,n

)
,

A144
ab = bn

a I4,n I4,b + na nn
(
I4,n I1,b + I4,b I1,n

)
,

A145
ab = bn

a

(
I5,n I4,b + I5,b I4,n

)+ na nn
(
I5,n I1,b + I5,b I1,n

)+ 	n
a

(
I4,n I1,b + I4,b I1,n

)
,

A155
ab = bn

a I5,nI5,b + 	n
a

(
I5,n I1,b + I5,b I1,n

)
,

A224
ab = na nn I2,n I2,b − cn

a

(
I4,n I2,b + I4,b I2,n

)
,

A225
ab = 	n

a I2,n I2,b − cn
a

(
I5,n I2,b + I5,b I2,n

)
,

A244
ab = −cn

a I4,n I4,b + na nn
(
I4,n I2,b + I4,b I2,n

)
,

A245
ab = na nn

(
I5,n I2,b + I5,b I2,n

)+ 	n
a

(
I4,n I2,b + I4,b I2,n

)− cn
a

(
I5,n I4,b + I5,b I4,n

)
,
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A255
ab = 	n

a

(
I5,n I2,b + I5,b I2,n

)− cn
aI5,n I5,b ,

A445
ab = na nn

(
I5,n I4,b + I5,b I4,n

)+ 	n
a I4,n I4,b ,

A455
ab = na nn I5,n I5,b + 	n

a

(
I5,n I4,b + I5,b I4,n

)
. (4.18)

It turns out that the known universal deformations are invariant with respect to certain Lie
subgroups of the special Euclidean group [15]. In [42] we conjectured that for each family of
universal deformations the corresponding universal material preferred direction vector N is
invariant under the same Lie subgroup. For each of the six families of universal deformations
we found the corresponding universal material preferred directions.

For inhomogeneous incompressible transversely isotropic solids, in addition to the uni-
versality constraints (4.15), (4.17), and (4.18), there are the following eighteen extra sets of
universality constraints (each term must be symmetric in (ab) for A = 1,2,3, and B ≥ A):

C 1A
ab = (F−1)An bn

a |b + (F−1)Ab bn
a |n + bn

a

[
(F−1)Bb (F−1)An,B − γ m

nb (F−1)Am

]
,

C 2A
ab = (F−1)An cn

a |b + (F−1)Ab cn
a |n + cn

a

[
(F−1)Bb (F−1)An,B − γ m

nb (F−1)Am

]
,

C 11A
ab = bn

a

[
(F−1)An I1,b + (F−1)Ab I1,n

]
,

C 22A
ab = cn

a

[
(F−1)An I2,b + (F−1)Ab I2,n

]
,

C 12A
ab = bn

a

[
(F−1)An I2,b + (F−1)Ab I2,n

]− cn
a

[
(F−1)An I1,b + (F−1)Ab I1,n

]
,

C 1AB
ab = bn

a

[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
,

C 2AB
ab = cn

a

[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
,

(4.19)

and

C 4A
ab = (F−1)An (nan

n)|b + (F−1)Ab (nan
n)|n

+ na nn
[
(F−1)Bb (F−1)An,B − γ m

nb (F−1)Am

]
,

C 5A
ab = (F−1)An 	n

a |b + (F−1)Ab 	n
a |n + 	n

a

[
(F−1)Bb (F−1)An,B − γ m

nb (F−1)Am

]
,

C 14A
ab = bn

a

[
(F−1)An I4,b + (F−1)Ab I4,n

]+ na nn
[
(F−1)An I1,b + (F−1)Ab I1,n

]
,

C 15A
ab = bn

a

[
(F−1)An I5,b + (F−1)Ab I5,n

]+ 	n
a

[
(F−1)An I1,b + (F−1)Ab I1,n

]
,

C 24A
ab = −cn

a

[
(F−1)An I4,b + (F−1)Ab I4,n

]+ na nn
[
(F−1)An I2,b + (F−1)Ab I2,n

]
,

C 25A
ab = −cn

a

[
(F−1)An I5,b + (F−1)Ab I5,n

]+ 	n
a

[
(F−1)An I2,b + (F−1)Ab I2,n

]
,

C 44A
ab = na nn

[
(F−1)An I4,b + (F−1)Ab I4,n

]
,

C 45A
ab = na nn

[
(F−1)An I5,b + (F−1)Ab I5,n

]+ 	n
a

[
(F−1)An I4,b + (F−1)Ab I4,n

]
,

C 55A
ab = 	n

a

[
(F−1)An I5,b + (F−1)Ab I5,n

]
,

C 4AB
ab = na nn

[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
,

C 5AB
ab = 	n

a

[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
. (4.20)

The set of universality constraints (4.19) are identical to those of inhomogeneous isotropic
solids [40]. For a given family of deformations and material preferred directions that are
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consistent with (4.15), (4.17), and (4.18), the corresponding inhomogeneities that respect
(4.19) and (4.20) are called the universal inhomogeneities. In the following subsections,
for each of the six families of universal deformations the corresponding universal inhomo-
geneities will be determined. This will be done by looking at each term in (4.19) and (4.20)
and examining its symmetries. If a particular term cannot be symmetric, the corresponding
derivative of W has to vanish, giving us a constraint on the form of W .

4.1 Family 0: Homogeneous Deformations

With respect to the Cartesian coordinates {XA} and {xa} in the reference and current
configurations, respectively, a homogeneous deformation has the representation xa(X) =
F a

AXA +ca , where [Fa
A] is a constant matrix and [ca] is a constant vector. The incompress-

ibility constraint is then det[Fa
A] = 1. For a homogeneous deformation the right Cauchy-

Green tensor has the constant components CAB = Fa
AF a

A δab , which implies that C� is
invariant under the action of T (3) ⊂ SE(3)—the group of translations. In [42] it was as-
sumed that N(X) is invariant under T (3) as well, i.e., N is a constant unit vector. We choose
the Cartesian coordinates (X1,X2,X2) such that

N = ∂

∂X1
, (4.21)

i.e., NA = δA
1 . With this assumption the universality constraints (4.17) and (4.18) are sat-

isfied. For homogeneous deformations, the first five sets of universality constraints (4.19)
are trivially satisfied. The last two sets force the deformation to be the identity [40]. This
implies that

W1,AB = W2,AB = 0 , A,B = 1,2,3 . (4.22)

For isotropic solids, the relations W1,AB = (
W1,A

)
,B

= 0, and W2,AB = (
W2,A

)
,B

= 0 imply
that

∂W1

∂X1
= f1(I1, I2),

∂W1

∂X2
= f2(I1, I2),

∂W1

∂X3
= f3(I1, I2) ,

∂W2

∂X1
= g1(I1, I2),

∂W2

∂X2
= g2(I1, I2),

∂W2

∂X3
= g3(I1, I2) .

(4.23)

Note that

∂f1(I1, I2)

∂I2
= ∂g1(I1, I2)

∂I1
,

∂f2(I1, I2)

∂I2
= ∂g2(I1, I2)

∂I1
,

∂f3(I1, I2)

∂I2
= ∂g3(I1, I2)

∂I1
.

(4.24)
From (4.23)1, one concludes that

W1(X, I1, I2) = f0(I1, I2) + f1(I1, I2)X1 + f2(I1, I2)X2 + f3(I1, I2)X3 . (4.25)

Thus

W (X, I1, I2) =
∫

f0(I1, I2)dI1 + X1
∫

f1(I1, I2)dI1 + X2
∫

f2(I1, I2)dI1

+ X3
∫

f3(I1, I2)dI1 + R(X, I2) , (4.26)
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for some function R(X, I2). Hence

W2(X, I1, I2) =
∫

∂f0(I1, I2)

∂I2
dI1 + X1

∫
∂f1(I1, I2)

∂I2
dI1 + X2

∫
∂f2(I1, I2)

∂I2
dI1

+ X3
∫

∂f3(I1, I2)

∂I2
dI1 + ∂R(X, I2)

∂I2

=
∫

∂f0(I1, I2)

∂I2
dI1 + X1

∫
∂g1(I1, I2)

∂I1
dI1 + X2

∫
∂g2(I1, I2)

∂I1
dI1

+ X3
∫

∂g3(I1, I2)

∂I1
dI1 + ∂R(X, I2)

∂I2

=
∫

∂f0(I1, I2)

∂I2
dI1 + g1(I1, I2)X1 + g2(I1, I2)X2 + g3(I1, I2)X3

+ ∂R(X, I2)

∂I2
. (4.27)

Substituting the above identity into (4.23)2 one concludes that

∂

∂X1

∂R(X, I2)

∂I2
= ∂

∂X2

∂R(X, I2)

∂I2
= ∂

∂X3

∂R(X, I2)

∂I2
= 0 . (4.28)

This implies that

∂R(X, I2)

∂I2
= r(I2) , (4.29)

and hence R(X, I2) = R1(X) + R2(I2). Using this in (4.26), up to a mechanically incon-
sequential X-dependent term one concludes that for an incompressible isotropic solid the
energy function is a linear function of the Cartesian coordinates, i.e.,

W (X, I1, I2) = W (I1, I2) + H(I1, I2) · X , (4.30)

for some vector H(I1, I2).4

In the case of inhomogeneous transversely isotropic solids, one still has the constraints
(4.22). The first nine sets of universality constraints (4.20) are trivially satisfied for homoge-
neous deformations and constant N. The last two sets of constraints in (4.20) are nontrivial.
The universality constraints corresponding to Eq. (4.20)10 read

na

[
NA (F−1)Bb + NB (F−1)Ab

]
W4,AB = nb

[
NA (F−1)Ba + NB (F−1)Aa

]
W4,AB .

(4.31)
Knowing that NA = δA

1 , the above constraints are rewritten as
[
na(F−1)Ab − nb(F−1)Aa

]
W4,1A = 0 , a, b = 1,2,3 . (4.32)

This is equivalent to

Fa
MFb

N

[
na(F−1)Ab − nb(F−1)Aa

]
W4,1A = 0 , M,N = 1,2,3 , (4.33)

4In [40] from (4.22) it was incorrectly concluded that W (X, I1, I2) = W (I1, I2). Proposition 4.1 in [40]
should be corrected to read: “For inhomogeneous incompressible nonlinear isotropic solids, Family 0 defor-
mations are universal for any energy function of the form W (X, I1, I2) = W (I1, I2) + H(I1, I2) · X.”
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which is simplified to read

CM1 W4,1N − CN1 W4,1M = 0 , M,N = 1,2,3 . (4.34)

These are three constraints corresponding to (M,N ) = (1,2), (1,3), and (2,3), and read

C11 W4,12 − C21 W4,11 = 0 ,

C11 W4,13 − C31 W4,11 = 0 ,

C21 W4,13 − C31 W4,12 = 0 .

(4.35)

Notice that these need to be satisfied for an arbitrary matrix [CAB] with unit determinant.
This means that W4,11 = W4,12 = W4,13 = 0.

The universality constraints corresponding to Eq. (4.20)11 read

	n
a

[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
W5,AB

= 	n
b

[
(F−1)An (F−1)Ba + (F−1)Bn (F−1)Aa

]
W5,AB , a, b = 1,2,3 . (4.36)

This can be simplified to read

CK
1
[
CM1 W5,KN + CMK W5,1N − CN1 W5,KM − CNK W5,1M

] = 0 , M,N = 1,2,3 .

(4.37)
These are three constraints corresponding to (M,N ) = (1,2), (1,3), and (2,3), and read

(
2C1

1C21 + C2
1C22 + C3

1C23
)
W5,11 − (

2C1
1C11 + C3

1C13
)
W5,12 + C3

1C21W5,13

−C2
1C11W5,22 − C3

1C11W5,23 = 0 ,
(
2C1

1C31 + C2
1C32 + C3

1C33
)
W5,11 + C2

1C31W5,12 − (
2C1

1C11 + C2
1C12

)
W5,13

−C2
1C11W5,23 − C3

1C11W5,33 = 0 ,
(
2C1

1C31 + C2
1C32 + C3

1C33
)
W5,12 − (

2C1
1C21 + C2

1C22 + C3
1C23

)
W5,13

+C2
1C31W5,22 + (

C3
1C31 − C2

1C21
)
W5,23 − C3

1C21W5,33 = 0 . (4.38)

These must be satisfied for an arbitrary matrix [CAB] with unit determinant. If [CAB] is
diagonal, one concludes that W5,12 = W5,13 = 0. Considering simple shear in the X1X2-
plane (C13 = C23 = 0), one concludes that W5,11 = W5,22 = W5,23 = 0. Substituting these in
the above equations, one concludes that W5,33 = 0. Therefore, W4,AB = 0.

In summary, for the universality constraints to hold one must have

(W1,A),B = (W2,A),B = (W4,1),B = (W5,A),B = 0 , A,B = 1,2,3 . (4.39)

Using arguments similar to those used in deriving (4.30), one can show that the above con-
straints imply the following proposition.

Proposition 4.1 For inhomogeneous incompressible nonlinear transversely isotropic solids
with material preferred direction parallel to the X1-axis in a Cartesian coordinate system
(X1,X2,X3), Family 0 deformations are universal for any energy function of the following
form

W (X, I1, I2, I4, I5) = W (I1, I2, I4, I5) + H(I1, I2, I4, I5) · X + ‹W (X2,X3, I4) . (4.40)
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Remark 4.2 Note that the last term of the energy function in (4.40) has a form identical to
that of compressible orthotropic solids (3.34).

4.2 Family 1: Bending, Stretching, and Shearing of a Rectangular Block

Consider a rectangular block and a Cartesian coordinate system (X,Y,Z) with coordinate
planes parallel to the faces of the block. In the current configuration cylindrical coordinates
(r, θ, z) are used. With respect to these coordinates, the Family 1 deformations have the
following representation

r(X,Y,Z) =√
C1(2X + C4) , θ (X,Y,Z) = C2(Y + C5) ,

z(X,Y,Z) = Z

C1 C2
− C2 C3Y + C6 ,

(4.41)

where C1, . . . ,C6 are constants. The right Cauchy-Green strain reads

[CAB] =
⎡

⎢⎣

C1
2X+C4

0 0

0 C2
2

[
C1(2X + C4) + C2

3

] −C3
C1

0 −C3
C1

1
C2

1 C2
2

⎤

⎥⎦ , (4.42)

and is independent of Y and Z, i.e., C� is invariant under the action of T (2) ⊂ SE(3). In
[42] it was assumed that N has the same symmetry, i.e.,

N(X,Y,Z) =
⎡

⎣
N1(X)
N2(X)
N3(X)

⎤

⎦ , (4.43)

where (N1(X))2 + (N2(X))2 + (N3(X))2 = 1. It was shown that the universal material pre-
ferred direction has the following possible forms

N =
⎡

⎣
±1
0
0

⎤

⎦ , N =
⎡

⎣
0

cosψ(X)
± sinψ(X)

⎤

⎦ , (4.44)

where ψ(X) is an arbitrary function. Notice that (4.44)1 corresponds to a uniform distri-
bution of fibers parallel to the X-axis. In the other universal material preferred direction
distribution (4.44)2, for fixed X fibers make an angle ψ(X) with the Y -axis, and are dis-
tributed uniformly in the YZ-plane.

In [40] it was shown that the constraints (4.19) imply that

∂W1

∂Y
= ∂W1

∂Z
= ∂W2

∂Y
= ∂W2

∂Z
= 0 . (4.45)
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The above relations hold for inhomogeneous transversely isotropic solids as well. For the
universal material preferred direction (4.44)1, one can show that5

C 4A
[ab] = 0, for (A,a, b) = (2,1,2) ⇒ C2

1 = 0 ,

C 4A
[ab] = 0, for (A,a, b) = (3,1,2) ⇒ C3

1 C2 C3 = 0 ,

C 5A
[ab] = 0, for (A,a, b) = (2,1,2) ⇒ [C1(C4 + 2X)]

3
2 C4 = 0 ,

C 5A
[ab] = 0, for (A,a, b) = (3,1,2) ⇒ C2 C3 [C1(C4 + 2X)]

5
2 = 0 .

(4.46)

These constraints cannot be satisfied, and hence

∂W4

∂Y
= ∂W4

∂Z
= ∂W5

∂Y
= ∂W5

∂Z
= 0 . (4.47)

Similarly, for the universal material preferred direction (4.44)2 one has the following con-
straints:

• C 4A
[ab] = 0, for (A,a, b) = (2,1,2) requires that

C2

√
C1(C4 + 2X) cosψ

[
2(C4 + 2X)ψ ′ sinψ − 3 cosψ

] = 0 . (4.48)

• C 4A
[ab] = 0, for (A,a, b) = (3,1,2) implies that

C2

√
C1(C4 + 2X)

[
C1C

2
2C3 cos2 ψ + (C4 + 2X)ψ ′ cos 2ψ + sin 2ψ

] = 0 . (4.49)

• C 5A
[ab] = 0, for (A,a, b) = (2,1,2) requires that

C2

√
C1(C4 + 2X)

¶
2(C4 + 2X)ψ ′ [C1C

2
2 sin 2ψ

(
C1C4 + 2C1X + C2

3

)+ C3 cos 2ψ
]

− 2C1 C2
2 cos2 ψ

[
5C1(C4 + 2X) + 3C2

3

]+ 3C3 sin 2ψ
©

= 0 .

(4.50)
• C 5A

[ab] = 0, for (A,a, b) = (3,1,2) requires that

(C4 + 2X)2ψ ′ cos 2ψ
[
C2

1 C4
2

(
C1(C4 + 2X) + C2

3

)+ 1
]

+ (C4 + 2X)
¶
C3

1C
6
2C3 cos 2ψ

(
C1 C4 + 2C1X + C2

3

)

+ sin 2ψ
[
2C3

1 C4
2 (C4 + 2X) + 1

]

+ C1 C2
2 C3

[
C2

1 C4
2

(
C1 C4 + 2C1X + C2

3

)− 2
]©= 0 . (4.51)

None of the above constraints can be satisfied, and hence, (4.47) holds for this case as well.
From (4.45) and (4.47) one concludes that up to a mechanically inconsequential function
of (X,Y,Z), the energy function must have the form W = W (X,I1, I2, I4, I5). For energy
functions of this form, in (4.19) and (4.20) one only needs to check the symmetry of the
terms with A = 1, and A = B = 1. All those terms are symmetric.

5All the symbolic computations in this paper were performed using Mathematica Version 12.3.0.0, Wolfram
Research, Champaign, IL.
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Proposition 4.3 For inhomogeneous incompressible nonlinear transversely isotropic solids
with any of the universal material preferred directions given in (4.44), Family 1 deformations
are universal for any energy function of the form W = W (X,I1, I2, I4, I5).

4.3 Family 2: Straightening, Stretching, and Shearing of a Sector of a Cylindrical
Shell

Consider a sector of a cylindrical shell that is parametrized by cylindrical coordinates
(R,�,Z). In the deformed configuration Cartesian coordinates (x, y, z) are used. Family
2 deformations have the following representation

x(R,�,Z) = 1

2
C1 C2

2 R2 + C4 , y(R,�,Z) = �

C1 C2
+ C5 ,

z(R,�,Z) = C3

C1 C2
� + 1

C2
Z + C6 , (4.52)

and hence

[CAB] =

⎡

⎢⎢⎣

C2
1 C4

2R
2 0 0

0
C2

3+1

C2
1 C2

2

C3
C1 C2

2

0 C3
C1 C2

2

1
C2

2

⎤

⎥⎥⎦ . (4.53)

It is seen that the right Cauchy-Green strain is independent of � and Z. In [42] it was
assumed that N has the same symmetry, i.e.,

N(R,�,Z) =
⎡

⎣
N1(R)
N2(R)
N3(R)

⎤

⎦ , (4.54)

such that (N1(R))2 +R2(N2(R))2 + (N3(R))2 = 1. It was shown that there are two solutions
for the universal material preferred direction:

N =
⎡

⎣
±1
0
0

⎤

⎦ , N =
⎡

⎣
0

1
R

cosχ (R)
± sinχ (R)

⎤

⎦ , (4.55)

where χ (R) is an arbitrary function. In the case of (4.55)1 fibers are distributed radially.
In the solution (4.55)2, if cosψ(R) �= 0,±1 fibers are distributed helically, if cosψ(R) = 0
they are distributed parallel to the axis of the shell, and if cosψ(R) = ±1 they are concentric
circles in the (R,�)-plane.

In [40] it was shown that the constraints (4.19) imply that

∂W1

∂�
= ∂W1

∂Z
= ∂W2

∂�
= ∂W2

∂Z
= 0 . (4.56)



A. Yavari, A. Goriely

The above relations hold for inhomogeneous transversely isotropic solids as well. For the
universal material preferred direction (4.55)1, one can show that

C 4A
[ab] = 0, for (A,a, b) = (2,1,2) ⇒ C2

1 C3
2 = 0 ,

C 4A
[ab] = 0, for (A,a, b) = (3,1,2) ⇒ C1 C3

2 C3 = 0 ,

C 5A
[ab] = 0, for (A,a, b) = (2,1,2) ⇒ C4

1 C7
2 R2 = 0 ,

C 5A
[ab] = 0, for (A,a, b) = (3,1,2) ⇒ C3

1 C7
2 C3 R2 = 0 .

(4.57)

These constraints cannot be satisfied, and thus

∂W4

∂�
= ∂W4

∂Z
= ∂W5

∂�
= ∂W5

∂Z
= 0 . (4.58)

Similarly, for the universal material preferred direction (4.55)2 one has the following con-
straints:

• C 4A
[ab] = 0, for (A,a, b) = (2,1,2) requires that

cosχ (R)
[
R χ ′(R) sinχ (R) + cosχ (R)

]= 0 . (4.59)

• C 4A
[ab] = 0, for (A,a, b) = (3,1,2) implies that

sin 2χ (R) − 2R χ ′(R) cos 2χ (R) = 0 . (4.60)

• C 5A
[ab] = 0, for (A,a, b) = (2,1,2) requires that

R χ ′(R)
[(

1 + C2
3

)
sin 2χ (R) − C1C3R cos 2χ (R)

]

+ cosχ (R)
[
3C1C3R sinχ (R) + 4

(
1 + C2

3

)
cosχ (R)

]= 0 . (4.61)

• C 5A
[ab] = 0, for (A,a, b) = (3,1,2) requires that

−R
(
1 + C2

1R
2 + C2

3

)
χ ′(R) cos 2χ (R) + (

3 + C2
1R

2 + 3C2
3

)
sin 2χ (R) + 2C1 C3R = 0 .

(4.62)

None of the above constraints can be satisfied,6 and thus, (4.58) holds for this case as well.
From (4.56) and (4.58) one concludes that up to a mechanically inconsequential function
of (R,�,Z), the energy function must have the form W = W (R,I1, I2, I4, I5). For energy
functions of this form, in (4.19) and (4.20) one only needs to check the symmetry of the
terms with A = 1, and A = B = 1. All those terms are symmetric.

Proposition 4.4 For inhomogeneous incompressible nonlinear transversely isotropic solids
with any of the universal material preferred directions given in (4.55), Family 2 deformations
are universal for any energy function of the form W = W (R,I1, I2, I4, I5).

6Note that we are finding the universal inhomogeneities for an arbitrary universal material preferred direction
in (4.55)2, and hence, cosχ(R) �= 0, in general, i.e., (4.59) cannot be satisfied.
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4.4 Family 3: Inflation, Bending, Torsion, Extension, and Shearing of a Sector of an
Annular Wedge

Family 3 deformations, with respect to the cylindrical coordinates (R,�,Z) and (r, θ, z) in
the reference and current configurations, respectively, have the following representation

r(R,�,Z) =
 

R2

C1 C4 − C2 C3
+ C5 , θ (R,�,Z) = C1� + C2Z + C6 ,

z(R,�,Z) = C3� + C4Z + C7 , (4.63)

and hence

[CAB] =

⎡

⎢⎢⎣

R2

K(KC5+R2)
0 0

0 C2
3 + C2

1

î
R2

K
+ C5

ó
C1C2

î
R2

K
+ C5

ó
+ C3C4

0 C1C2

î
R2

K
+ C5

ó
+ C3C4 C2

4 + C2
2

î
R2

K
+ C5

ó

⎤

⎥⎥⎦ , (4.64)

where K = C1C4 −C2C3. Notice that C� is independent of � and Z. In [42] it was assumed
that N has the same symmetry, i.e.,

N(R,�,Z) =
⎡

⎣
N1(R)
N2(R)
N3(R)

⎤

⎦ , (4.65)

where (N1(R))2 + R2(N2(R))2 + (N3(R))2 = 1. It was shown that there are two solutions
for the universal material preferred direction:

N =
⎡

⎣
±1
0
0

⎤

⎦ , N =
⎡

⎣
0

1
R

cosψ(R)
± sinψ(R)

⎤

⎦ , (4.66)

where ψ(R) is an arbitrary function.
In [40] it was shown that for this family of deformations constraints (4.19) imply that

∂W1

∂�
= ∂W1

∂Z
= ∂W2

∂�
= ∂W2

∂Z
= 0 . (4.67)

The above relations hold for inhomogeneous transversely isotropic solids as well. For the
universal material preferred direction (4.66)1, one can show that

C 4A
[ab] = 0, for (A,a, b) = (2,1,2) ⇒ C4

(−2C2 C3 C5 + 2C1 C4 C5 + R2
) = 0 ,

C 4A
[ab] = 0, for (A,a, b) = (3,1,2) ⇒ C3

(−2C2 C3 C5 + 2C1 C4 C5 + R2
) = 0 ,

C 5A
[ab] = 0, for (A,a, b) = (2,1,2) ⇒ C4

(−4C2 C3 C5 + 4C1 C4 C5 + R2
) = 0 ,

C 5A
[ab] = 0, for (A,a, b) = (3,1,2) ⇒ C3

(−4C2 C3 C5 + 4C1 C4 C5 + R2
) = 0 .

(4.68)

These constraints cannot be satisfied, and hence

∂W4

∂�
= ∂W4

∂Z
= ∂W5

∂�
= ∂W5

∂Z
= 0 . (4.69)
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Similarly, for the universal material preferred direction (4.66)2 C 4A
[ab] = 0, for (A,a, b) =

(2,1,2) requires that:

(
C1 C4 C5 − C2 C3 C5 + R2

)¶
2C3

1 C2
4 C5 − 4C2

1 C2 C3 C4 C5 + C2
1 C2 C2

4 C5R sin 2ψ(R)

−C2
1 C4R

2 + cos 2ψ(R)
[
2C3

1 C2
4 C5 − C2

1 C4
(
4C2 C3 C5 + R2

)+ 2C1C
2
2C

2
3C5

+C2
2C4R

4
]+ 2C1 C2

2 C2
3 C5 − 2C1 C2

2 C3 C4 C5 R sin 2ψ(R)

−2Rψ ′(R)(C2 C3 − C1 C4)
(−C1 C4 C5 + C2 C3 C5 − R2

)

× [C2 R cos 2ψ(R) − C1 sin 2ψ(R)]

−3C1 C2 C4 R3 sin 2ψ(R) + C3
2 C2

3 C5 R sin 2ψ(R) + C2
2 C3 R3 sin 2ψ(R)

−C2
2 C4 R4

©
= 0 . (4.70)

The constraints C 4A
[ab] = 0, for (A,a, b) = (3,1,2), C 5A

[ab] = 0, for (A,a, b) = (2,1,2), and
C 5A

[ab] = 0, for (A,a, b) = (3,1,2) require vanishing of some lengthy expressions that we do
not report here. None of these four constraints can be satisfied, and thus, (4.69) holds for this
case as well. Similar to Family 2 deformations, from (4.67) and (4.69) one concludes that
up to a mechanically inconsequential function of (R,�,Z), the energy function must have
the form W = W (R,I1, I2, I4, I5). For energy functions of this form, in (4.19) and (4.20)
one only needs to check the symmetry of the terms with A = 1, and A = B = 1. All those
terms are symmetric.

Proposition 4.5 For inhomogeneous incompressible nonlinear transversely isotropic solids
with any of the universal material preferred directions given in (4.66), Family 3 deformations
are universal for any energy function of the form W = W (R,I1, I2, I4, I5).

Physically, this universal inhomogeneity and directions can be understood as follows:
A particular case consists of a single homogeneous cylindrical tube with helical preferred
directions. Now, consider a series of encased homogeneous cylindrical tubes in the reference
configuration, each with its own helical material preferred directions as describe in [16]. The
solution from Proposition 4.5 is a continuous version of this problem where the variation in
helical fibers and material properties only depends on R.

4.5 Family 4: Inflation/Inversion of a Sector of a Spherical Shell

Family 4 deformations with respect to the spherical coordinates (R,�,�) and (r, θ,φ) in
the reference and current configurations, respectively, have the following representation

r(R,�,�) = (±R3 + C3
1 ) , θ (R,�,�) = ±�, φ(R,�,�) = �. (4.71)

Thus

[CAB] =

⎡

⎢⎢⎣

R4
Ä
C3

1 ±R3
ä4/3 0 0

0
(
C3

1 ± R3
)2/3

0

0 0
(
C3

1 ± R3
)2/3

sin2 �

⎤

⎥⎥⎦ , (4.72)
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which can be written as [15]

C�(X) = R4

(
C3

1 ± R3
)4/3 R̂ ⊗ R̂ +

(
C3

1 ± R3
)2/3

R2
(1 − R̂ ⊗ R̂) , (4.73)

where 1 is the identity tensor, and R̂ = X
|X| . This implies that at a given point X, C� is

invariant under all those rotations that fix X. Yavari and Goriely [42] assumed that N(X) has
the same symmetry, i.e., it is invariant under all those rotations that fix X. Thus, N(X) is
parallel to X, and knowing that it is a unit vector one concludes that

N(X) = ± X
|X| = ±R̂ . (4.74)

This means that the universal material preferred direction is radial, i.e., with respect to the
spherical coordinates

N(X) =
⎡

⎣
±1
0
0

⎤

⎦ . (4.75)

In [40] it was shown that for this family of deformations constraints (4.19) imply that

∂W1

∂�
= ∂W1

∂�
= ∂W2

∂�
= ∂W2

∂�
= 0 . (4.76)

The above relations hold for inhomogeneous transversely isotropic solids as well. For the
universal material preferred direction (4.75), one can show that

C 4A
[ab] = 0, for (A,a, b) = (2,1,2) ⇒ 4C3

1 R − R4 = 0 ,

C 4A
[ab] = 0, for (A,a, b) = (3,1,3) ⇒ 4C3

1 R − R4 = 0 ,

C 5A
[ab] = 0, for (A,a, b) = (2,1,2) ⇒ −8C3

1 R5 + R8 = 0 ,

C 5A
[ab] = 0, for (A,a, b) = (3,1,3) ⇒ −8C3

1 R5 + R8 = 0 . (4.77)

These constraints cannot be satisfied, and hence

∂W4

∂�
= ∂W4

∂�
= ∂W5

∂�
= ∂W5

∂�
= 0 . (4.78)

From (4.76) and (4.78) one concludes that up to a mechanically inconsequential function of
(R,�,�), the energy function must have the form W = W (R,I1, I2, I4, I5). For any energy
function of this form, in (4.19) and (4.20) one only needs to check the symmetry of the terms
with A = 1, and A = B = 1. All those terms are symmetric.

Proposition 4.6 For inhomogeneous incompressible nonlinear transversely isotropic solids
with the universal material preferred directions given in (4.75), Family 4 deformations are
universal for any energy function of the form W = W (R,I1, I2, I4, I5).

Again, this result can be understood physically as the continuous limit of a finite number
of encased homogeneous spherical shells with different material properties.
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4.6 Family 5: Inflation, Bending, Extension, and Azimuthal Shearing of an Annular
Wedge

Family 5 deformations with respect to the cylindrical coordinates (R,�,Z) and (r, θ, z) in
the reference and current configurations, respectively, have the following representation

r(R,�,Z) = C1R , θ (R,�,Z) = C2 logR + C3� + C4 , z(R,�,Z) = 1

C2
1 C3

Z + C5 .

(4.79)
Thus

[CAB] =
⎡

⎣
C2

1

(
C2

2 + 1
)

C2
1 C2 C3R 0

C2
1 C2 C3R C2

1 C2
3R

2 0
0 0 1

C4
1 C2

3

⎤

⎦ , (4.80)

which only depends on R. Yavari and Goriely [42] assumed that N has the same symmetry,
i.e.,

N(R,�,Z) =
⎡

⎣
N1(R)
N2(R)
N3(R)

⎤

⎦ , (4.81)

where (N1(R))2 + (N2(R))2 + (N3(R))2 = 1. They obtained the following two solutions for
universal material preferred directions

N =
⎡

⎣
0

1
R

cosη

± sinη

⎤

⎦ , N =
⎡

⎣
cos ξ

± 1
R

sin ξ

0

⎤

⎦ , (4.82)

for arbitrary constants η, and ξ . Unfortunately, there was a mistake in checking the uni-
versality constraints for solution (4.82)1: This solution satisfies all the universality con-
straints other than the symmetry of the coefficient of W4 for (a, b) = (1,3), which gives
C2 cosη sinη = 0. Note that sinη = 0 in (4.82)1 corresponds to cos ξ = 0 in (4.82)2. This
means that the correct set of universal material preferred directions for Family 5 are:

N =
⎡

⎣
0
0

±1

⎤

⎦ , N =
⎡

⎣
cos ξ

± 1
R

sin ξ

0

⎤

⎦ , (4.83)

for an arbitrary constant ξ .
In [40] it was shown that the for Family 5 deformations constraints (4.19) imply that

∂W1

∂R
= ∂W1

∂�
= ∂W1

∂Z
= ∂W2

∂R
= ∂W2

∂�
= ∂W2

∂Z
= 0 . (4.84)

The above relations hold for inhomogeneous transversely isotropic solids as well.
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For the universal material preferred direction (4.83)1, all the terms in (4.20)(1−9) are sym-
metric. In the last two sets of equations the following four terms are not symmetric:

C 4AB
[ab] �= 0, for (A,B,a, b) = (1,3,1,3) ,

C 4AB
[ab] �= 0, for (A,B,a, b) = (2,3,1,3) ,

C 5AB
[ab] �= 0, for (A,B,a, b) = (1,3,1,3) ,

C 5AB
[ab] �= 0, for (A,B,a, b) = (2,3,1,3) .

(4.85)

This implies that

∂2W4

∂R ∂Z
= ∂2W4

∂�∂Z
= ∂2W5

∂R ∂Z
= ∂W5

∂�∂Z
= 0 . (4.86)

From (4.84) and (4.86) one concludes that W (X, I1, I2, I4, I5) = W (I1, I2, I4, I5) +
‹W (R,�, I4, I5) + ÙW (Z,I4, I5). For an energy function of this form, in (4.19) and (4.20)
one only needs to check the symmetry of the terms with A = 1, and A = B = 1. It turns out
that all those terms are symmetric.

For the universal material preferred direction (4.83)2, one can show that

C 4A
[ab] = 0, for (A,a, b) = (1,1,2) ⇒ C1 cos ξ [C2 cos ξ + C3 sin ξ ] = 0 ,

C 4A
[ab] = 0, for (A,a, b) = (2,1,2) ⇒ C1

[(
1 + C2

2

)
cos2 ξ − C2

3 sin2 ξ
]= 0 ,

C 4A
[ab] = 0, for (A,a, b) = (3,2,3) ⇒

C3
1 C3

[(−1 + C2
2

)
cos2 ξ + C3 sin ξ (2C2 cos ξ + C3 sin ξ )

] = 0 ,

C 5A
[ab] = 0, for (A,a, b) = (1,1,2) ⇒

C3
1

¶
2C2

[
1 + C2

2 + C2
3 + (

1 + C2
2

)
cos 2ξ

]+ C3
(
1 + 3C2

2 + C2
3

)
sin 2ξ

©
= 0 ,

C 5A
[ab] = 0, for (A,a, b) = (2,1,2) ⇒

C3
1

¶î(
1 + C2

2

)2 + C4
3

ó
cos 2ξ + (

1 + C2
2 − C2

3

) (
1 + C2

2 + C2
3 + C2C3 sin 2ξ

)©

= 0 ,

C 5A
[ab] = 0, for (A,a, b) = (3,2,3) ⇒

C6
1 C3

¶
2C2

[
1 + C2

2 + C2
3 + (

1 + C2
2

)
cos 2ξ

]+ C3
(
1 + 3C2

2 + C2
3

)
sin 2ξ

©
= 0 .

(4.87)
None of the above constraints can be satisfied,7 and hence

∂W4

∂R
= ∂W4

∂�
= ∂W4

∂Z
= ∂W5

∂R
= ∂W5

∂�
= ∂W5

∂Z
= 0 . (4.88)

From (4.84) and (4.88) one concludes that the energy function must be homogeneous. This
means that Family 5 deformations are not universal for inhomogeneous incompressible
transversely isotropic solids with the universal material preferred directions (4.83)2.

7Note that we are finding the universal inhomogeneities of the energy function for an arbitrary member of
this class. That means that cos ξ �= 0, in general, i.e., (4.87)1 cannot be satisfied.
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Proposition 4.7 For inhomogeneous incompressible nonlinear transversely isotropic solids
with the universal material preferred directions given in (4.83)1, Family 5 deformations
are universal for any energy function of the form W (X, I1, I2, I4, I5) = W (I1, I2, I4, I5) +
‹W (R,�, I4, I5)+ ÙW (Z,I4, I5). Family 5 deformations are not universal for inhomogeneous
incompressible transversely isotropic solids with the universal material preferred directions
(4.83)2.

Table 2 summarizes our results for inhomogeneous incompressible transversely isotropic
solids.

5 Incompressible Orthotropic Elastic Solids

For inhomogeneous orthotropic solids

ξa = gam

[
W1b

mn − W2 cmn + W4 nm
1 nn

1 + W5 	mn
1 + W6 nm

2 nn
2 + W7 	mn

2

]
|n . (5.1)

In order to satisfy the symmetry ξa|b = ξb|a for an arbitrary energy function the coefficient of
each partial derivative of W must be symmetric. There are five groups of terms. The first four
were derived in [42]. In order for this work to be self contained, all the five groups are re-
ported below. The first four groups of terms that must be symmetric for both incompressible
and compressible orthotropic solids are:

i) Nine terms that need to be symmetric for isotropic solids as well:

Kiso = {1,2,11,22,12,111,222,112,122} . (5.2)

ii) 25 terms associated to N1:

Ki = {4,5,44,55,14,15,24,25,45,444,555,114,115,124,125,

144,145,155,224,225,244,245,255,445,455} . (5.3)

iii) 25 terms associated to N2:

Kii = {6,7,66,77,16,17,26,27,67,666,777,116,117,126,127,

166,167,177,226,227,266,267,277,667,677} . (5.4)

iv) 24 terms corresponding to coupling of N1 and N2:

Kiii = {46,47,56,57,146,147,156,157,246,247,256,257,446,447,

456,457,556,557,466,467,566,567,477,577} . (5.5)

v) 33 terms that correspond to the inhomogeneity of the energy function. 18 of these are
identical to those of isotropic (4.19) and transversely isotropic solids (4.20).

In [42] it was noticed that Ki and Kii universality constraints have forms identical to
those of K universality constraints (4.16). This implies that (N1,N2,N3) is universal for
orthotropic solids if i) N1, N2, and N3 are universal for transversely isotropic solids, and ii)
the three pairs (N1,N2), (N2,N3), and (N3,N1) satisfy the Kiii universality constraints. We
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follow the notation introduced in [42], and let (n, m) = (n1,n2), and (l ab, k ab) = (	ab
1 , 	ab

2 ).
The coefficients of the derivatives of the energy function associated to the set Kiii are:

A46
ab = [na I6,n nn]|b + I6,b[na nn]|n + [ma I4,n mn]|b + I4,b[ma mn]|n ,

A47
ab = [na I7,n nn]|b + I7,b[na nn]|n + (k n

a I4,n)|b + k n
a |nI4,b ,

A56
ab = (l n

a I6,n)|b + l n
a |n I6,b + (ma I5,n mn)|b + (ma mn)|nI5,b ,

A57
ab = (l n

a I7,n)|b + l n
a |n I7,b + (k n

a I5,n)|b + k n
a |n I5,b , (5.6)

and

A146
ab = bn

a

(
I4,b I6,n + I4,n I6,b

)
,

A147
ab = bn

a

(
I4,b I7,n + I4,n I7,b

)
,

A156
ab = bn

a

(
I5,b I6,n + I5,n I6,b

)
,

A157
ab = bn

a

(
I5,b I7,n + I5,n I7,b

)
,

A246
ab = cn

a

(
I4,b I6,n + I4,n I6,b

)
,

A247
ab = cn

a

(
I4,b I7,n + I4,n I7,b

)
,

A256
ab = cn

a

(
I5,b I6,n + I5,n I6,b

)
,

A257
ab = cn

a

(
I5,b I7,n + I5,n I7,b

)
,

A446
ab = na nn

(
I4,b I6,n + I4,n I6,b

)
,

A447
ab = na nn

(
I4,b I7,n + I4,n I7,b

)
,

A456
ab = na nn

(
I5,b I6,n + I5,n I6,b

)+ l n
a

(
I4,b I6,n + I4,n I6,b

)
,

A457
ab = na nn

(
I5,b I7,n + I5,n I7,b

)+ l n
a

(
I4,b I7,n + I4,n I7,b

)
,

A466
ab = ma mn

(
I4,b I6,n + I4,n I6,b

)
,

A467
ab = ma mn

(
I4,b I7,n + I4,n I7,b

)+ k n
a

(
I4,b I6,n + I4,n I6,b

)
,

A477
ab = k n

a

(
I4,b I7,n + I4,n I7,b

)
,

A556
ab = l n

a

(
I5,b I6,n + I5,n I6,b

)
,

A557
ab = l n

a

(
I5,b I7,n + I5,n I7,b

)
,

A566
ab = ma mn

(
I5,b I6,n + I5,n I6,b

)
,

A567
ab = ma mn

(
I5,b I7,n + I5,n I7,b

)+ k n
a

(
I5,b I6,n + I5,n I6,b

)
,

A577
ab = k n

a

(
I5,b I7,n + I5,n I7,b

)
. (5.7)

For inhomogeneous incompressible orthotropic solids, in addition to the universality con-
straints (4.19), and (4.20) there are the following 15 extra sets of universality constraints
(each term must be symmetric in (ab) for A = 1,2,3, and B ≥ A):

C 6A
ab = (F−1)An (ma mn)|b + (F−1)Ab (ma mn)|n + ma mn

[
(F−1)Bb (F−1)An,B
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− γ m
nb (F−1)Am

]
,

C 7A
ab = (F−1)An k n

a |b + (F−1)Ab k n
a |n + k n

a

[
(F−1)Bb (F−1)An,B − γ m

nb (F−1)Am

]
,

C 16A
ab = bn

a

[
(F−1)An I6,b + (F−1)Ab I6,n

]+ ma mn
[
(F−1)An I1,b + (F−1)Ab I1,n

]
,

C 17A
ab = bn

a

[
(F−1)An I7,b + (F−1)Ab I7,n

]+ k n
a

[
(F−1)An I1,b + (F−1)Ab I1,n

]
,

C 26A
ab = −cn

a

[
(F−1)An I6,b + (F−1)Ab I6,n

]+ ma mn
[
(F−1)An I2,b + (F−1)Ab I2,n

]
,

C 27A
ab = −cn

a

[
(F−1)An I7,b + (F−1)Ab I7,n

]+ k n
a

[
(F−1)An I2,b + (F−1)Ab I2,n

]
,

C 46A
ab = na nn

[
(F−1)An I6,b + (F−1)Ab I6,n

]+ ma mn
[
(F−1)An I4,b + (F−1)Ab I4,n

]
,

C 47A
ab = na nn

[
(F−1)An I7,b + (F−1)Ab I7,n

]+ k n
a

[
(F−1)An I4,b + (F−1)Ab I4,n

]
,

C 56A
ab = 	n

a

[
(F−1)An I6,b + (F−1)Ab I6,n

]+ ma mn
[
(F−1)An I5,b + (F−1)Ab I5,n

]
,

C 57A
ab = 	n

a

[
(F−1)An I7,b + (F−1)Ab I7,n

]+ k n
a

[
(F−1)An I5,b + (F−1)Ab I5,n

]
,

C 66A
ab = ma mn

[
(F−1)An I6,b + (F−1)Ab I6,n

]
,

C 67A
ab = k n

a

[
(F−1)An I6,b + (F−1)Ab I6,n

]+ ma mn
[
(F−1)An I7,b + (F−1)Ab I7,n

]
,

C 77A
ab = k n

a

[
(F−1)An I7,b + (F−1)Ab I7,n

]
,

C 6AB
ab = ma mn

[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
,

C 7AB
ab = k n

a

[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
. (5.8)

5.1 Family 0

In [42] it was shown that for homogeneous orthotropic solids homogeneous deformations
are universal for any three constant unit vectors (N1,N2,N3) that are mutually orthogonal.
In the reference configuration we choose the Cartesian coordinates (X1,X2,X3) such that

N1 = ∂

∂X1
, N2 = ∂

∂X2
, N3 = ∂

∂X3
. (5.9)

The universality constraints still imply (4.39). For homogeneous deformations and constant
(N1,N2,N3), only the last two sets of universality constraints in (5.8) are nontrivial, and
imply that

(W6,2),B = (W7,A),B = 0 , A,B = 1,2,3 . (5.10)

Using a fairly lengthy but standard argument (similar to those of §3.2) one can show that the
constraints (4.39) and (5.10) imply the following result.

Proposition 5.1 For inhomogeneous incompressible nonlinear orthotropic solids, Family 0
deformations are universal for any energy function of the following form

W (X, I1, I2, I4, I5, I6, I7) = W (I1, I2, I4, I5, I6, I7) + H(I1, I2, I4, I5, I6, I7) · X

+ ‹W (X3, I4, I6) + ÙW (X2,X3, I4) + “W (X1,X3, I6) , (5.11)

where (N1,N2,N3) are constant unit vectors given in (5.9).
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Remark 5.2 Note that the last three terms of the energy function in (5.11) have identical
forms to that of compressible orthotropic solids (3.60).

5.2 Family 1

In [42] it was shown that for Family 1 universal deformations the universal material preferred
directions are

N1 =
⎡

⎣
±1
0
0

⎤

⎦ , N2 =
⎡

⎣
0

cosψ(X)
± sinψ(X)

⎤

⎦ , N3 =
⎡

⎣
0

sinψ(X)
∓ cosψ(X)

⎤

⎦ , (5.12)

where ψ(X) is an arbitrary function. The constraints (4.45) and (4.47) hold for orthotropic
solids as well. Similarly, from (5.8)1−2 one concludes that

∂W6

∂Y
= ∂W6

∂Z
= ∂W7

∂Y
= ∂W7

∂Z
= 0 . (5.13)

All the other universality constraints are satisfied. Therefore, we have the following result.

Proposition 5.3 For inhomogeneous incompressible nonlinear orthotropic solids with any
of the universal material preferred directions given in (5.12), Family 1 deformations are
universal for any energy function of the form W = W (X,I1, I2, I4, I5, I6, I7).

5.3 Families 2 and 3

In [42] it was shown that for Families 2 and 3 the following family of material preferred
directions are universal.

N1 =
⎡

⎣
±1
0
0

⎤

⎦ , N2 =
⎡

⎣
0

cosχ (R)
R± sinχ (R)

⎤

⎦ , N3 =
⎡

⎣
0

sinχ (R)
R∓ cosχ (R)

⎤

⎦ , (5.14)

where χ (R) is an arbitrary function. The constraints (4.56) and (4.58) still hold. Similarly,
from (5.8)1−2 one concludes that

∂W6

∂�
= ∂W6

∂Z
= ∂W7

∂�
= ∂W7

∂Z
= 0 . (5.15)

All the other universality constraints are satisfied. Thus, we have the following result.

Proposition 5.4 For inhomogeneous incompressible nonlinear orthotropic solids with any
of the universal material preferred directions given in (5.14), Family 2 and 3 deformations
are universal for any energy function of the form W = W (R,I1, I2, I4, I5, I6, I7).

Yavari and Goriely [42] showed that for homogeneous incompressible orthotropic solids
Family 4 deformations are not universal. This is the case for inhomogeneous incompressible
orthotropic solids as well.
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5.4 Family 5

In [42] the following universal material preferred directions were reported.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1 =
⎡

⎢⎣
0

0

±1

⎤

⎥⎦ , N2 =
⎡

⎢⎣
cos ξ

± 1
R

sin ξ

0

⎤

⎥⎦ , N3 =
⎡

⎢⎣
sin ξ

∓ 1
R

cos ξ

0

⎤

⎥⎦ ,

N1 =
⎡

⎢⎣
±1

0

0

⎤

⎥⎦ , N2 =
⎡

⎢⎣
0

1
R

cosη

± sinη

⎤

⎥⎦ , N3 =
⎡

⎢⎣
0

1
R

sinη

∓ cosη

⎤

⎥⎦ .

(5.16)

As was mentioned in §4.6, there was a mistake in one of the families of universal material
preferred directions. In (5.16)2 either cosη = 0, or sinη = 0, which are already included
in (5.16)1. Therefore, the correct families of universal material preferred directions are (we
have relabelled them so that N3 is parallel to the Z-axis):

N1 =
⎡

⎣
cos ξ

± 1
R

sin ξ

0

⎤

⎦ , N2 =
⎡

⎣
sin ξ

∓ 1
R

cos ξ

0

⎤

⎦ , N3 =
⎡

⎣
0
0

±1

⎤

⎦ , (5.17)

where ξ is an arbitrary constant.
In [40] it was shown that the for Family 5 deformations constraints (4.19) imply that

∂W1

∂R
= ∂W1

∂�
= ∂W1

∂Z
= ∂W2

∂R
= ∂W2

∂�
= ∂W2

∂Z
= 0 . (5.18)

The above relations hold for inhomogeneous orthotropic isotropic solids as well. If we check
the universality constraints for the pair (N1,N2) given in (5.17), from §4.6 we know that
W4,A = W5,A = W6,A = W7,A = 0, and hence the energy function must be uniform:

Proposition 5.5 For inhomogeneous incompressible nonlinear orthotropic solids Family 5
deformations are not universal.

Table 3 summarizes our results for inhomogeneous incompressible orthotropic solids.

6 Incompressible Monoclinic Elastic Solids

In the case of monoclinic solids

ξa = gam

ï
W1b

mn − W2 cmn + W4 nm
1 nn

1 + W5 	mn
1 + W6 nm

2 nn
2 + W7 	mn

2 + 1

2
W8 	mn

3

ò

|n
.

(6.1)
The universality constraint ξa|b = ξb|a forces the coefficient of each partial derivative of W

to be symmetric. Yavari and Goriely [42] showed that for monoclinic solids there are an
extra 78 terms corresponding to the following set:

Kiv = {8,18,19,28,29,48,49,58,59,68,69,78,79,88,89,

118,119,128,129,148,149,158,159,168,169,178,179,188,189,199,228,229,
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x
a

(X
)=

F
a
A

X
A

+
c
a

A
ny

th
re

e
m

ut
ua

lly
or

th
og
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al

co
ns

ta
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un
it

ve
ct
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s

(N̂
1
,
N̂

2
,
N̂

3
)

W
=

W
(I

1
,
I 2

,
I 4

,
I 5

,
I 6

,
I 7

)+
H

(I
1
,
I 2

,
I 4

,
I 5

,
I 6

,
I 7

)·
X

+
‹ W

(X
3
,
I 4

,
I 6

)+
Ù W

(X
2
,
X

3
,
I 4

)+
“ W

(X
1
,
X

3
,
I 6

)

1

⎧ ⎪ ⎨ ⎪ ⎩

r
(X

,
Y
,
Z

)=
√ C

1
(2

X
+

C
4
)

θ
(X

,
Y
,
Z

)=
C

2
(Y

+
C

5
)

z
(X

,
Y
,
Z

)=
Z

C
1
C

2
−

C
2
C

3
Y

+
C

6

N̂
1

=
⎡ ⎢ ⎣

±1 0 0

⎤ ⎥ ⎦
,

N̂
2

=
⎡ ⎢ ⎣

0

co
sψ

(X
)

±s
in

ψ
(X

)⎤ ⎥ ⎦
,

N̂
3

=
⎡ ⎢ ⎣

0

si
n
ψ

(X
)

∓c
os

ψ
(X

)⎤ ⎥ ⎦
W

=
W

(X
,
I 1

,
I 2

,
I 4

,
I 5

,
I 6

,
I 7

)

2

⎧ ⎪ ⎨ ⎪ ⎩

x
(R

,
�

,
Z

)=
1 2
C

1
C

2 2
R

2
+

C
4

y
(R

,
�

,
Z

)=
�

C
1
C

2
+

C
5

z
(R

,
�

,
Z

)=
C

3
C

1
C

2
�

+
1 C
2
Z

+
C

6

N̂
1

=
⎡ ⎢ ⎣

±1 0 0

⎤ ⎥ ⎦
,

N̂
2

=
⎡ ⎢ ⎣

0

co
sχ

(R
)

±s
in

χ
(R

)⎤ ⎥ ⎦
,

N̂
3

=
⎡ ⎢ ⎣

0

si
n
χ

(R
)

∓c
os

χ
(R

)⎤ ⎥ ⎦
W

=
W

(R
,
I 1

,
I 2

,
I 4

,
I 5

,
I 6

,
I 7

)

3

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

r
(R

,
�

,
Z

)=
…

R
2

C
1
C

4
−C

2
C

3
+

C
5

θ
(R

,
�

,
Z

)=
C

1
�

+
C

2
Z

+
C

6
z
(R

,
�

,
Z

)=
C

3
�

+
C

4
Z

+
C

7

N̂
1

=
⎡ ⎢ ⎣

±1 0 0

⎤ ⎥ ⎦
,

N̂
2

=
⎡ ⎢ ⎣

0

co
sχ

(R
)

±s
in

χ
(R

)⎤ ⎥ ⎦
,

N̂
3

=
⎡ ⎢ ⎣

0
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n
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(R
)
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χ
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)⎤ ⎥ ⎦
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=
W
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,
I 1

,
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,
I 4

,
I 5

,
I 6

,
I 7

)
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248,249,258,259,268,269,278,279,288,289,299,448,449,458,459,468,469,

478,479,488,489,499,558,559,568,569,578,579,588,589,599,668,669,

678,679,688,689,699,778,779,788,789,799,888,889,999} . (6.2)

We follow the notation in [42] and write (n, m) =
(n1,n2), and (l ab, k ab, qab) = (	ab

1 , 	ab
2 , 	ab

3 ). The terms corresponding to the set Kiv are:

A8
ab = qn

a |nb ,

A18
ab = qn

a |n I1,b + (qn
a I1,n)|b + (bn

a I8,n)|b + bn
a |n I8,b ,

A19
ab = (bn

aI9,n)|b + bn
a |n I9,b ,

A28
ab = qn

a |n I2,b + (qn
a I2,n)|b − (cn

aI8,n)|b − cn
a |n I8,b ,

A29
ab = −(cn

a I9,n)|b − cn
a |n I9,b ,

A48
ab = qn

a |n I4,b + (qn
a I4,n)|b + (na nn I8,n)|b + (na nn)|n I8,b ,

A49
ab = (na nn I9,n)|b + (na nn)|n I9,b ,

A58
ab = qn

a |n I5,b + (qn
a I5,n)|b + (l n

a I8,n)|b + l n
a |n I8,b ,

A59
ab = (l n

a I9,n)|b + l n
a |n I9,b ,

A68
ab = qn

a |n I6,b + (qn
a I6,n)|b + (ma mn I8,n)|b + (ma mn)|n I8,b ,

A69
ab = (ma mn I9,n)|b + (ma mn)|n I9,b ,

A78
ab = qn

a |n I7,b + (qn
a I7,n)|b + (k n

a I8,n)|b + k n
a |n I8,b ,

A79
ab = (k n

a I9,n)|b + k n
a |n I9,b ,

A88
ab = qn

a |n I8,b + (qn
a I8,n)|b ,

A89
ab = qn

a |n I9,b + (qn
a I9,n)|b , (6.3)

A118
ab = bn

a

(
I1,b I8,n + I1,n I8,b

)
,

A119
ab = bn

a

(
I1,b I9,n + I1,n I9,b

)
,

A128
ab = bn

a

(
I2,b I8,n + I2,n I8,b

)− cn
a

(
I1,b I8,n + I1,n I8,b

)
,

A129
ab = bn

a

(
I2,b I9,n + I2,n I9,b

)− cn
a

(
I1,b I9,n + I1,n I9,b

)
,

A148
ab = bn

a

(
I4,b I8,n + I4,n I8,b

)+ na nn
(
I1,b I8,n + I1,n I8,b

)
,

A149
ab = bn

a

(
I4,b I9,n + I4,n I9,b

)+ na nn
(
I1,b I9,n + I1,n I9,b

)
,

A158
ab = bn

a

(
I5,b I8,n + I5,n I8,b

)+ l n
a

(
I1,b I8,n + I1,n I8,b

)
,

A159
ab = bn

a

(
I5,b I9,n + I5,n I9,b

)+ l n
a

(
I1,b I9,n + I1,n I9,b

)
,

A168
ab = bn

a

(
I6,b I8,n + I6,n I8,b

)+ ma mn
(
I1,b I8,n + I1,n I8,b

)
,

A169
ab = bn

a

(
I6,b I9,n + I6,n I9,b

)+ ma mn
(
I1,b I9,n + I1,n I9,b

)
,

A178
ab = bn

a

(
I7,b I8,n + I7,n I8,b

)+ k n
a

(
I1,b I8,n + I1,n I8,b

)
,
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A179
ab = bn

a

(
I7,b I9,n + I7,n I9,b

)+ k n
a

(
I1,b I9,n + I1,n I9,b

)
,

A188
ab = bn

a I8,bI8,n + qn
a

(
I1,b I8,n + I1,n I8,b

)
,

A189
ab = bn

a

(
I8,b I9,n + I8,n I9,b

)+ qn
a

(
I1,b I9,n + I1,n I9,b

)
,

A199
ab = bn

a I9,b I9,n , (6.4)

A228
ab = −cn

a

(
I2,b I8,n + I2,n I8,b

)
,

A229
ab = −cn

a

(
I2,b I9,n + I2,n I9,b

)
,

A248
ab = −cn

a

(
I4,b I8,n + I4,n I8,b

)+ na nn
(
I2,b I8,n + I2,n I8,b

)
,

A249
ab = −cn

a

(
I4,b I9,n + I4,n I9,b

)+ na nn
(
I2,b I9,n + I2,n I9b

)
,

A258
ab = −cn

a

(
I5,b I8,n + I5,n I8,b

)+ l n
a

(
I2,b I8,n + I2,n I8,b

)
,

A259
ab = −cn

a

(
I5,b I9,n + I5,n I9,b

)+ l n
a

(
I2,b I9,n + I2,n I9,b

)
,

A268
ab = −cn

a

(
I6,b I8,n + I6,n I8,b

)+ ma mn
(
I2,b I8,n + I2,n I8,b

)
,

A269
ab = −cn

a

(
I6,b I9,n + I6,n I9,b

)+ ma mn
(
I2,b I9,n + I2,n I9,b

)
,

A278
ab = −cn

a

(
I7,b I8,n + I7,n I8,b

)+ k n
a

(
I2,b I8,n + I2,n I8,b

)
,

A279
ab = −cn

a

(
I7,b I9,n + I7,n I9,b

)+ k n
a

(
I2,b I9,n + I2,n I9,b

)
,

A288
ab = −cn

a I8,bI8,n + qn
a

(
I2,b I8,n + I2,n I8,b

)
,

A289
ab = −cn

a

(
I8,b I9,n + I8,n I9,b

)+ qn
a

(
I2,b I9,n + I2,n I9,b

)
,

A299
ab = −cn

a I9,b I9,n,

A448
ab = na nn

(
I4,b I8,n + I4,n I8,b

)
,

A449
ab = na nn

(
I4,b I9,n + I4,n I9,b

)
, (6.5)

A458
ab = na nn

(
I5,b I8,n + I5,n I8,b

)+ l n
a

(
I4,b I8,n + I4,n I8,b

)
,

A459
ab = na nn

(
I5,b I9,n + I5,n I9,b

)+ l n
a

(
I4,b I9,n + I4,n I9,b

)
,

A468
ab = nann

(
I6,b I8,n + I6,n I8,b

)+ ma mn
(
I4,b I8,n + I4,n I8,b

)
,

A469
ab = na nn

(
I6,b I9,n + I6,n I9,b

)+ ma mn
(
I4,b I9,n + I4,n I9,b

)
,

A478
ab = na nn

(
I7,b I8,n + I7,n I8,b

)+ k n
a

(
I4,b I8,n + I4,n I8,b

)
,

A479
ab = na nn

(
I7,b I9,n + I7,n I9,b

)+ k n
a

(
I4,b I9,n + I4,n I9,b

)
,

A488
ab = na nn I8,b I8,n + qn

a

(
I4,b I8,n + I4,n I8,b

)
,

A489
ab = na nn

(
I8,b I9,n + I8,n I9,b

)+ qn
a

(
I4,b I9,n + I4,n I9,b

)
,

A499
ab = na nn I9,b I9,n ,

A558
ab = l n

a

(
I5,b I8,n + I5,n I8,b

)
,

A559
ab = l n

a

(
I5,b I9,n + I5,n I9,b

)
,
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A568
ab = l n

a

(
I6,b I8,n + I6,n I8,b

)+ ma mn
(
I5,b I8,n + I5,n I8,b

)
,

A569
ab = l n

a

(
I6,bI9,n + I6,nI9,b

)+ ma mn
(
I5,b I9,n + I5,n I9,b

)
,

A578
ab = l n

a

(
I7,b I8,n + I7,n I8,b

)+ k n
a

(
I5,b I8,n + I5,n I8,b

)
,

A579
ab = l n

a

(
I7,b I9,n + I7,n I9,b

)+ k n
a

(
I5,b I9,n + I5,n I9,b

)
, (6.6)

and

A588
ab = l n

a I8,b I8,n + qn
a

(
I5,b I8,n + I5,n I8,b

)
,

A589
ab = l n

a

(
I8,b I9,n + I8,n I9,b

)+ qn
a

(
I5,b I9,n + I5,n I9,b

)
,

A599
ab = l n

a I9,b I9,n ,

A668
ab = ma mn

(
I6,b I8,n + I6,n I8,b

)
,

A669
ab = ma mn

(
I6,b I9,n + I6,n I9,b

)
,

A678
ab = ma mn

(
I7,b I8,n + I7,n I8,b

)+ k n
a

(
I6,b I8,n + I6,n I8,b

)
,

A679
ab = ma mn

(
I7,b I9,n + I7,n I9,b

)+ k n
a

(
I6,b I9,n + I6,n I9,b

)
,

A688
ab = ma mn I8,b I8,n + qn

a

(
I6,b I8,n + I6,n I8,b

)
,

A689
ab = mamn

(
I8,bI9,n + I8,nI9,b

)+ qn
a

(
I6,b I9,n + I6,n I9,b

)
,

A699
ab = ma mn I9,b I9,n ,

A778
ab = k n

a

(
I7,b I8,n + I7,n I8,b

)
,

A779
ab = k n

a

(
I7,b I9,n + I7,n I9,b

)
,

A788
ab = k n

a I8,b I8,n + qn
a

(
I7,b I8,n + I7,n I8,b

)
,

A789
ab = k n

a

(
I8,b I9,n + I8,n I9,b

)+ qn
a

(
I7,b I9,n + I7,n I9,b

)
,

A799
ab = k n

a I9,b I9,n ,

A888
ab = qn

a I8,b I8,n ,

A889
ab = qn

a

(
I8,b I9,n + I8,n I9,b

)
,

A999
ab = qn

a I9,b I9,n . (6.7)

For inhomogeneous incompressible monoclinic solids, in addition to the universality con-
straints (4.19), and (4.20) there are the following 16 extra sets of universality constraints
(each term must be symmetric in (ab) for A = 1,2,3, and B ≥ A):

C 8A
ab = (F−1)An qn

a|b + (F−1)Ab qn
a|b + qn

a

[
(F−1)Bb (F−1)An,B − γ m

nb (F−1)Am

]
,

C 18A
ab = bn

a

[
(F−1)An I8,b + (F−1)Ab I8,n

]+ qn
a

[
(F−1)An I1,b + (F−1)Ab I1,n

]
,

C 19A
ab = bn

a

[
(F−1)An I9,b + (F−1)Ab I9,n

]
,

C 28A
ab = −cn

a

[
(F−1)An I8,b + (F−1)Ab I8,n

]+ qn
a

[
(F−1)An I2,b + (F−1)Ab I2,n

]
,

C 29A
ab = −cn

a

[
(F−1)An I9,b + (F−1)Ab I9,n

]
,



A. Yavari, A. Goriely

C 48A
ab = na nn

[
(F−1)An I8,b + (F−1)Ab I8,n

]+ qn
a

[
(F−1)An I4,b + (F−1)Ab I4,n

]
,

C 49A
ab = na nn

[
(F−1)An I9,b + (F−1)Ab I9,n

]
,

C 58A
ab = qn

a

[
(F−1)An I5,b + (F−1)Ab I5,n

]+ 	n
a

[
(F−1)An I8,b + (F−1)Ab I8,n

]
,

C 59A
ab = 	n

a

[
(F−1)An I9,b + (F−1)Ab I9,n

]
,

C 68A
ab = ma mn

[
(F−1)An I8,b + (F−1)Ab I8,n

]+ qn
a

[
(F−1)An I6,b + (F−1)Ab I6,n

]
,

C 69A
ab = ma mn

[
(F−1)An I9,b + (F−1)Ab I9,n

]
,

C 78A
ab = k n

a

[
(F−1)An I8,b + (F−1)Ab I8,n

]+ qn
a

[
(F−1)An I7,b + (F−1)Ab I7,n

]
,

C 79A
ab = k n

a

[
(F−1)An I9,b + (F−1)Ab I9,n

]
,

C 88A
ab = qn

a

[
(F−1)An I8,b + (F−1)Ab I8,n

]
,

C 89A
ab = qn

a

[
(F−1)An I9,b + (F−1)Ab I9,n

]
,

C 8AB
ab = qn

a

[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
. (6.8)

6.1 Family 0

In [42] it was shown that for homogeneous incompressible monoclinic solids homogeneous
deformations are universal for any three constant unit vectors (N1,N2,N3) such that N1 and
N2 are non-parallel, and N3 is normal to the plane of N1 and N2. We assume that the angle
between N1 and N2 is θ (0 < θ < π

2 ), and hence, g = N1 · N2 = cos θ . In the reference
configuration let us choose the Cartesian coordinates (X1,X2,X3) such that8

N1 = ∂

∂X1
, N2 = cos θ

∂

∂X1
+ sin θ

∂

∂X2
, N3 = ∂

∂X3
, (6.9)

i.e.,

NA
1 = δA

1 , NA
2 =

⎧
⎪⎨

⎪⎩

cos θ, A = 1

sin θ, A = 2

0, A = 3

. (6.10)

For monoclinic solids the constraints (4.39) still hold. Notice that only the last two sets of
constraints in (5.8) are nontrivial. The universality constraint (5.8)14 implies that

CMKNK
2 NA

2 W6,AN = CNKNK
2 NA

2 W6,AM , M,N = 1,2,3 . (6.11)

Explicitly, we have

(
CM1 cos2 θ + CM2 cos θ sin θ

)
W6,1N + (

CM1 cos θ sin θ + CM2 sin2 θ
)
W6,2N

= (
CN1 cos2 θ + CN2 cos θ sin θ

)
W6,1M + (

CN1 cos θ sin θ + CN2 sin2 θ
)
W6,2M . (6.12)

8In order to make the calculations simpler we have chosen α = 0 in (3.65).
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These are three constraints corresponding to (M,N ) = (1,2), (1,3), (2,3), and read
(
C12 cos2 θ + C22 cos θ sin θ

)
W6,11 − (

C11 cos θ sin θ + C12 sin2 θ
)
W6,22

+ (−C11 cos2 θ + C22 sin2 θ
)
W6,12 = 0 ,

(
C13 cos2 θ + C23 cos θ sin θ

)
W6,11 + (

C13 cos θ sin θ + C23 sin2 θ
)
W6,12

− (
C11 cos2 θ + C12 cos θ sin θ

)
W6,13 − (

C11 cos θ sin θ + C12 sin2 θ
)
W6,23 = 0 ,

(
C13 cos2 θ + C23 cos θ sin θ

)
W6,12 + (

C13 cos θ sin θ + C23 sin2 θ
)
W6,22

− (
C12 cos2 θ + C22 cos θ sin θ

)
W6,13 − (

C12 cos θ sin θ + C22 sin2 θ
)
W6,23 = 0 .

(6.13)
Suppose [CAB] is diagonal. From (6.13)2, one concludes that cos θ W6,13 + sin θ W6,23 = 0,
which must hold for any θ ∈ (0, π

2 ). This implies that W6,13 = W6,23 = 0. Substituting this
back into (6.13)2 one concludes that (C13 cos θ + C23 sin θ )

(
cos θ W6,11 + sin θ W6,12

) =
0, which implies that W6,11 = W6,12 = 0. Substituting these into (6.13)3 one obtains(
C13 cos θ sin θ + C23 sin2 θ

)
W6,22 = 0, which implies that W6,22 = 0. Therefore, we have

shown that

(W6,1),A = (W6,2),A = 0, A = 1,2,3 . (6.14)

The universality constraint (5.8)15 implies that

(CM1 cos θ + CM2 sin θ )
(
C1

K cos θ W7,KN + C2
K sin θ W7,KN

)

+ (
CMKC1

K cos θ + CMKC2
K sin θ

) (
cos θ W7,1N + sin θ W7,2N

)
, (6.15)

is symmetric in (MN ). For M = 1,N = 3, and diagonal [CAB], the universality constraint
is simplified to read

C11
(
2 cos θ W7,13 + sin θ W7,23

)+ C22 sin θ W7,23 = 0 . (6.16)

This must hold for arbitrary C11 and C22, and hence, W7,13 = W7,23 = 0. Substituting
this back into the universality constraint and considering simple shear deformations for
which C12 = C13 = 0, one concludes that cos θ W7,11 + 2 sin θ W7,12 = 0, which must hold
for an arbitrary θ . Thus, W7,11 = W7,12 = 0. Substituting these back into the constraint
for simple shear, one concludes that W7,33 = 0. For M = 2,N = 3, and simple shear
deformations for which C12 = C13 = 0, the universality constraint is simplified to read:
C23 (2C22 + C33) sin2 θ W7,22 = 0, which implies that W7,22 = 0. Therefore, we have con-
cluded that W7,AB = (

W7,A

)
,B

= 0, A,B = 1,2,3.
For homogeneous deformations and uniform material preferred directions only the last

set of constraints in (6.8) are non-trivial and are rewritten in terms of the referential quanti-
ties as (for K,N = 1,2,3)

CMN

[
NM

1 NA
2 δB

K + NM
2 NB

1 δA
K + NM

1 NB
2 δA

K + NM
2 NA

1 δB
K

]
W8,AB

= CMK

[
NM

1 NA
2 δB

N + NM
2 NB

1 δA
N + NM

1 NB
2 δA

N + NM
2 NA

1 δB
N

]
W8,AB . (6.17)

Thus, we have

C1N

(
cos θ W8,1K + sin θ W8,2K

)+ (CN1 cos θ + CN2 sin θ )W8,1K

= C1K

(
cos θ W8,1N + sin θ W8,2N

)+ (CK1 cos θ + CK2 sin θ )W8,1N . (6.18)



A. Yavari, A. Goriely

Equation (6.18) are three constraints corresponding to (K,N ) = (1,2), (1,3), and (2,3),
and read

(2C12 cos θ + C22 sin θ )W8,11 − 2C11 cos θ W8,12 − C11 sin θ W8,22 = 0 ,

(2C13 cos θ + C23 sin θ )W8,11 + C13 sin θ W8,12 − (2C11 cos θ + C12 sin θ )W8,13

− C11 sin θ W8,23 = 0 ,

(2C13 cos θ + C23 sin θ )W8,12 − (2C12 cos θ + C22 sin θ )W8,13 + C13 sin θ W8,22

− C12 sin θ W8,23 = 0 . (6.19)

The above constraints need to be satisfied for an arbitrary matrix [CAB] with unit determi-
nant. For simple shear in the X2X3-plane (C12 = C13 = 0), (6.19)3 gives C23 sin θ W8,12 −
C22 sin θ W8,13 = 0, which must hold for arbitrary C23, and hence W8,12 = W8,13 = 0. Thus,
(6.19) is simplified to read

(2C12 cos θ + C22 sin θ )W8,11 − C11 sin θ W8,22 = 0 ,

(2C13 cos θ + C23 sin θ )W8,11 − C11 sin θ W8,23 = 0 ,

C13 sin θ W8,22 − C12 sin θ W8,23 = 0 .

(6.20)

For simple shear in the X1X2-plane (C13 = C23 = 0), (6.20)2 gives C11 sin θ W8,23 = 0,
which implies that W8,23 = 0. Thus

(2C12 cos θ + C22 sin θ )W8,11 − C11 sin θ W8,22 = 0 ,

(2C13 cos θ + C23 sin θ )W8,11 = 0 ,

C13 sin θ W8,22 = 0 .

(6.21)

The last two equations imply that W8,11 = W8,22 = 0. Thus, (6.19) implies that (W8,1),A =
(W8,2),A = 0, A = 1,2,3.

In summary, the universality constraints give us the following

(W1,A),B = (W2,A),B = (W5,A),B = (W7,A),B = 0 , A,B = 1,2,3 ,

(W4,1),A = (W6,1),A = (W6,2),A = (W8,1),A = (W8,2),A = 0 , A = 1,2,3 . (6.22)

Using a lengthy but standard argument (similar to those of §3.2) one can show that the
constraints (6.22) imply the following result.

Proposition 6.1 For inhomogeneous incompressible nonlinear monoclinic solids, Family 0
deformations are universal for any energy function of the following form

W (X, I1, I2, I4, I5, I6, I7, I8, I9) = W (I1, I2, I4, I5, I6, I7, I8, I9)

+ H(I1, I2, I4, I5, I6, I7, I8, I9) · X

+ ‹W (X3, I4, I6, I8, I9) , (6.23)

where (N1,N2,N3) are constant unit vectors such that N3 is parallel to the Cartesian X3-
axis.

Remark 6.2 Note that the last term of the energy function in (6.23) has a form identical to
that of compressible monoclinic solids (3.84).
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6.2 Family 1

In [42] it was shown that for Family 1 deformations of homogeneous incompressible mon-
oclinic solids the universal material preferred directions are

N̂1 =
⎡

⎣
0

cosψ1(X)
± sinψ1(X)

⎤

⎦ , N̂2 =
⎡

⎣
0

cosψ2(X)
± sinψ2(X)

⎤

⎦ , (6.24)

where ψ1(X) and ψ2(X) are arbitrary functions such that ψ1(X) �= ψ2(X). The constraints
(4.45), (4.47), and (5.13) hold for monoclinic solids as well. The constraints C 8A

[ab] = 0, for
(A,a, b) = (2,1,2) and (A,a, b) = (3,1,2), require vanishing of some lengthy expressions
that we do not report here. Neither of these two constraints can be satisfied, and hence

∂W8

∂Y
= ∂W8

∂Z
= 0 . (6.25)

All the other universality constraints are satisfied. Therefore, we conclude that W =
W (X,I1, I2, I4, I5, I6, I7, I8, I9) + ‹W (X,Y,Z, I9). Noting that the term ‹W (X,Y,Z, I9) is
mechanically inconsequential, we have proved the following result.

Proposition 6.3 For inhomogeneous incompressible nonlinear monoclinic solids with any
of the universal material preferred directions given in (6.24), Family 1 deformations are
universal for any energy function of the form W = W (X,I1, I2, I4, I5, I6, I7, I8, I9).

6.3 Families 2 and 3

In [42] it was shown that for Family 2 and 3 deformations of homogeneous incompressible
monoclinic solids the universal material preferred directions are

N̂1 =
⎡

⎣
0

cosχ1(R)
± sinχ1(R)

⎤

⎦ , N̂2 =
⎡

⎣
0

cosχ2(R)
± sinχ2(R)

⎤

⎦ , (6.26)

where χ1(R) �= χ2(R) are arbitrary functions.
For monoclinic solids, the constraints (4.56), (4.58), and (5.15) still hold. The constraints

C 8A
[ab] = 0, for (A,a, b) = (2,1,2) and (A,a, b) = (3,1,2), require vanishing of some lengthy

expressions that we do not report here. Neither of these two constraints can be satisfied, and
hence

∂W8

∂�
= ∂W8

∂Z
= 0 . (6.27)

All the other universality constraints are satisfied. Therefore we conclude that W =
W (R,I1, I2, I4, I5, I6, I7, I8, I9) + ‹W (R,�,Z, I9). Noting that the term ‹W (R,�,Z, I9) is
mechanically inconsequential, we have proved the following result.

Proposition 6.4 For inhomogeneous incompressible nonlinear monoclinic solids with any of
the universal material preferred directions given in (6.26), Family 2 and 3 deformations are
universal for any energy function of the form W = W (R,I1, I2, I4, I5, I6, I7, I8, I9).

Yavari and Goriely [42] showed that for homogeneous incompressible monoclinic solids
Family 4 deformations are not universal. This is the case for inhomogeneous incompressible
monoclinic solids as well.
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6.4 Family 5

In [42] the following universal material preferred directions were reported:

Class (i) : N̂1 =
⎡

⎣
cos ξ1

± sin ξ1

0

⎤

⎦ , N̂2 =
⎡

⎣
cos ξ2

± sin ξ2

0

⎤

⎦ , ξ1 �= ξ2 , (6.28)

Class (ii) : N̂1 =
⎡

⎣
0

±1
0

⎤

⎦ , N̂2 =
⎡

⎣
0

cosη

± sinη

⎤

⎦ , sinη �= 0 , (6.29)

Class (iii) : N̂1 =
⎡

⎣
0
0

±1

⎤

⎦ , N̂2 =
⎡

⎣
0

cosη

± sinη

⎤

⎦ , cosη �= 0 . (6.30)

Noting that sinη cosη = 0, Classes (ii) and (iii) become unacceptable (N̂1 · N̂2 = 0), and
hence the correct universal material preferred directions are:

N̂1 =
⎡

⎣
cos ξ1

± sin ξ1

0

⎤

⎦ , N̂2 =
⎡

⎣
cos ξ2

± sin ξ2

0

⎤

⎦ , ξ1 �= ξ2 . (6.31)

This means that the material preferred directions are two families of fibers that are
parallel to the (R,�) plane and are distributed uniformly in two distinct fixed direc-
tions.

In [40] it was shown that the for Family 5 deformations constraints (4.19) imply
that

∂W1

∂R
= ∂W1

∂�
= ∂W1

∂Z
= ∂W2

∂R
= ∂W2

∂�
= ∂W2

∂Z
= 0 . (6.32)

The above relations hold for inhomogeneous monoclinic solids as well. As was shown in
§4.6 the universality constraints (4.20) imply that W4,A = W5,A = W6,A = W7,A = 0. For the
universal material preferred direction (6.31), one can show that

C 8A
[ab] = 0, for (A,a, b) = (1,1,2) ⇒

C3
1

¶
C3 sin ξ1

[(
1 + C2

2

)
cos ξ2 + C2 C3 sin ξ2

]

+ cos ξ1
[
C2

(
2 + 2C2

2 + C2
3

)
cos ξ2 + C3

(
2C2

2 + C2
3

)
sin ξ2

]© = 0 ,

C 8A
[ab] = 0, for (A,a, b) = (2,1,2) ⇒

C13
¶

cos ξ1
[(−2 + C22(−6 − 4C22 + C32)

)
cos ξ2

+C2 C3(−2 − 4C2
2 + C2

3 ) sin ξ2
]

+C3 sin ξ1
[
C2

(
1 + C22 + 6C32

)
cos ξ2 + C3

(
C2

2 + 6C2
3

)
sin ξ2

]© = 0 ,



The Universal Program of Nonlinear Hyperelasticity

C 8A
[ab] = 0, for (A,a, b) = (3,2,3) ⇒

C6
1 C3

¶
C3 sin ξ1

[(
1 + C2

2

)
cos ξ2 + C2 C3 sin ξ2

]

+ cos ξ1
[
C2

(
2 + 2C2

2 + C2
3

)
cos ξ2 + C3

(
2C2

2 + C2
3

)
sin ξ2

]© = 0 . (6.33)

None of the above constraints can be satisfied, and hence

∂W8

∂R
= ∂W8

∂�
= ∂W8

∂Z
. (6.34)

In summary, we have proved the following result.

Proposition 6.5 For inhomogeneous incompressible nonlinear monoclinic solids Family 5
deformations are not universal.

Table 4 summarizes our results for inhomogeneous incompressible monoclinic solids.

7 Concluding Remarks

In this paper we studied universal deformations in inhomogeneous anisotropic bodies. Equi-
librium equations in the absence of body forces, and arbitrariness of energy functions in
a given class of materials impose certain constraints that we call universality constraints.
We observed that the universality constraints of inhomogeneous solids include those of the
corresponding homogeneous solids. In other words, for a given class of materials universal
deformations and universal material preferred directions are determined by the universal-
ity constraints of the corresponding homogeneous solids. Universal inhomogeneities (posi-
tion dependence of the energy function) are those inhomogeneities that are consistent with
the universality constraints. We characterized the universal inhomogeneities for inhomoge-
neous compressible transversely isotropic, orthotropic, and monoclinic solids. In the case of
inhomogeneous incompressible solids, for each of the six known families of universal de-
formations, and material preferred directions we characterized the corresponding universal
inhomogeneities for inhomogeneous incompressible transversely isotropic, orthotropic, and
monoclinic solids. Table 1 summarizes our results for inhomogeneous compressible trans-
versely isotropic, orthotropic, and monoclinic solids. Tables 2, 3, and 4 summarize our re-
sults for inhomogeneous incompressible transversely isotropic, orthotropic, and monoclinic
solids, respectively.

This classification of universal solutions concludes our universal program for hy-
perelastic materials. It provides a complete collection of solutions that can be used
for applications and can be systematically analyzed by stability methods to look for
the existence of nearby solutions. In our construction for incompressible solids we
have assumed that the choice of material preferred directions is consistent with the
underlying symmetries of the deformation (e.g., radial fibers for radial deformations).
Therefore, our results do not preclude the existence of other universal solutions that
would not preserve the underlying symmetry of the deformations. However, we be-
lieve that these solutions are unlikely to exist and we conjecture that this classification,
like the cases of isotropic incompressible solids, and isotropic anelastic solids is com-
plete.
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W
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W
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1
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I 5
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I 6
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I 7

,
I 8

,
I 9

)

+H
(I

1
,
I 2

,
I 4

,
I 5

,
I 6

,
I 7

,
I 8

,
I 9

)·
X

+
‹ W

(X
3
,
I 4
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I 6
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I 8
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I 9
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1

⎧ ⎪ ⎨ ⎪ ⎩
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−
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Y
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