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Abstract—As a highly complex and integrated cyber-physical
system, modern power grids are exposed to cyberattacks. False
data injection attacks (FDIAs), specifically, represent a major
class of cyber threats to smart grids by targeting the mea-
surement data’s integrity. Although various solutions have been
proposed to detect those cyberattacks, the vast majority of the
works have ignored the inherent graph structure of the power
grid measurements and validated their detectors only for small
test systems with less than a few hundred buses. To better exploit
the spatial correlations of smart grid measurements, this paper
proposes a deep learning model for cyberattack detection in large-
scale AC power grids using Chebyshev Graph Convolutional
Networks (CGCN). By reducing the complexity of spectral graph
filters and making them localized, CGCN provides a fast and
efficient convolution operation to model the graph structural
smart grid data. We numerically verify that the proposed CGCN
based detector surpasses the state-of-the-art model by 7.86% in
detection rate and 9.67% in false alarm rate for a large-scale
power grid with 2848 buses. It is notable that the proposed
approach detects cyberattacks under 4 milliseconds for a 2848-
bus system, which makes it a good candidate for real-time
detection of cyberattacks in large systems.

I. INTRODUCTION

A modern power grid integrates the cyber communication
network into the physical power system infrastructure. In this
highly complex cyber-physical system, Remote Terminal Units
(RTUs) deliver physical measurement data to the Supervisory
Control and Data Acquisition Systems (SCADAs) [1]. Then,
the communication network transfers these measurements to
the application level in which they are processed by the
Energy Management System (EMS). The security of the cyber-
physical pipeline is critical as the secure and reliable operation
of power grids strongly depends on the integrity of these data.

Integrity and validity of input data for the power system
state estimation (PSSE) algorithm is crucial for the reliability
of power grid operations as the output of the PSSE block
is directly used by various EMS units such as forecasting
of the load and analysis of contingency [2]. As one of the
major classes of cyberattacks to the PSSE, false data injection
attacks (FDIAs) aim to compromise the measurement data
to bypass the bad data detection (BDD) algorithm and make
the attack unobservable [3]. If the grid operator takes actions
according to the false system state, s/he might jeopardize the
security and reliability of the grid. Traditional BDD algorithms

for detecting FDIAs are insufficient as stealth (unobservable)
cyberattacks can easily dodge these algorithms. Thus, FDIAs
constitutes one of the most prominent threats to today’s
modern power grids.

FDIA detection algorithms are classified into two main
categories as model-based methods and data-driven methods
[4]. In model-based methods, a system model is built and
its parameters are estimated. They do not require a historical
dataset since they do not include any separate system to be
trained. However, manual threshold optimization steps, high
detection delays, and scalability issues limit their applicability
for real time analysis. In contrast, data-driven methods elim-
inate the manual tuning steps, increase the scalability of the
algorithm for attack detection, and reduce the detection time
at the expense of a training process which need a historical
dataset [4].

Recently, deep learning (DL) based data-driven detectors
such as Fully-Connected Neural Networks (FCN) [5], Recur-
rent Neural Network (RNN) [6], Convolutional Neural Net-
work (CNN) [7] have been proposed for cyberattack detection
in power grids, thanks to the increasing volume of collected
historical data samples. However, despite their powerful mod-
eling capabilities, DL approaches may not generalize the data
well enough and fail to detect cyberattacks if their architecture
ignores the underlying physical system generating the data
[4]. For instance, RNNs are perfectly suited architectures to
model the recurrent structure of the language data. Similarly,
CNNs are better candidates for image and video processing
since sliding kernels are extremely efficient to exploit the pixel
locality of image data [8].

Most of the works dealing with the detection of FDIAs
ignore the spatial correlation of the power grid data, therefore,
they fail to fully model the underlying graph topology of the
power grid. There is only a few works [9], [10] in the literature
that exploit the spatial correlations of the power grids to detect
cyberattacks using Graph Signal Processing (GSP). Although
GSP offers highly efficient tools for cyberattack detection, the
custom design steps of spectral filters and scalability problems
restrict its usability in real life scenarios. As a data-driven
version of GSP, Graph Convolutional Networks (GCN) predict
the filter weights in their hidden layers and eliminate the
manual filter design steps. This automation makes GCNs more
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attractive to power grid applications, for instance, GCNs are
utilized for optimal power flow applications of power grids
in [11], for cyberattack detection in [12], and for cyberattack
localization in [13].

Scalability and detection time are the most fundamental
factors in designing cyberattack detectors as the number of
units varies between tens to a few thousand in today’s power
grids. Except a few highly scalable models including [12]–
[15], most of the proposed models for cyberattack detection are
designed for small-scale systems such as IEEE 14- [16]–[19]
and IEEE 30- [6], [20] bus test systems. Scalability problems
may appear as high detection delays when small-scale models
are applied to large-scale networks.

In this work, we propose a cyberattack detection model
that utilizes Chebsyhev Graph Convolutional Networks in its
hidden layers, enabling it to fully exploit the spatial correla-
tions of the smart grid data. We integrate the grid topology
to our detector with the weighted graph adjacency matrix
obtained by grid’s admittance matrix represented with Y bus.
To train the proposed model, we generate a historical dataset
having 36000 samples for a large-scale smart grid with 2848
buses. We verify the proposed detector by implementing two
of the frequently used cyberattack models and comparing the
detection results with the existing architectures designed for
cyberattack detection.

The contributions of this work are summarized as follows:

• We design a deep learning architecture by employing
Chebyshev Graph Convolutional Networks in its hidden
layers to adequately capture the spatial correlations of
graph structural smart grid data.

• We propose a model to detect cyberattacks in a few
milliseconds even for large-scale grids with more than
2000 buses.

• The proposed model has an end-to-end automatic training
process without having any custom optimization step.

The rest of this paper is organized as follows. While
Section II formulates the problem, Section III proposes the
FIDA detection method using GCNN. Results and discussion
are presented in Section IV. Section V concludes the paper.

II. PROBLEM FORMULATION

In power grids, system state x ∈ Rn is calculated in PSSE
block using complex measurements z ∈ Rm as follows:

x̂ = arg min
x

||z − h(x)||2. (1)

where x represents bus voltage magnitudes/angles (Vi, θi),
and z denotes the active/reactive power injections at buses
(Pi, Qi), h(x) is the nonlinear equations vector correspondent
to the flows on branches (Pij , Qij) that can be represented by

AC power flow equations in (2):

Pi =
∑
j∈Ωi

ViVj(Gij cos θij +Bij sin θij) = PGi − PLi

Qi =
∑
j∈Ωi

ViVj(Gij sin θij −Bij cos θij) = QGi −QLi

Pij = V 2
i (gsi + gij)− ViVj(gij cos θij + bij sin θij)

Qij = −V 2
i (bsi + bij)− ViVj(gij sin θij − bij cos θij).

(2)
where Ωi represents the set of buses connected to bus i;
Gij+jBij corresponds to the ijth elements of bus admittance
matrix Y ; and gij + jbij denotes the series branch admittance
between buses i and j, respectively.

PSSE unit can be vulnerable to cyberattacks because if an
adversary has ‘enough’ knowledge about the power grid, s/he
can shift the system state from its original value by injecting
some false data to the measurements. In other words, if the
adversary find vectors a ∈ Rm and c ∈ Rn that satisfy
equation (3), then they can easily add their attack vector a
to the z and shift the state vector by c from its original value
x without being detected by traditional BDD algorithms.

z + a = h(x+ c), (3)

III. CYBERATTACK DETECTION BY CHEBYHSEV GRAPH
CONVOLUTIONAL NETWORKS

A. Chebyshev Graph Convolution

Power system variables such as P , Q, V , and θ ∈ Rn
can be represented as graph signals by modeling the power
grid as a graph. Specifically, if we map buses to vertices
V (|V| = n), branches and transformers to edges (E), and
line admittances to weighted adjacency matrix (W ∈ Rn×n),
we can efficiently represent the power grid topology with a
connected, undirected, weighted graph G = (V , E ,W ). For
G, the normalized graph Laplacian can be given by (4).

L = In −D−1/2WD−1/2 ∈ Rn×n (4)

The Laplacian, i.e. L is an essential operator in the theory
of GSP. Since L is a real, symmetric, and positive semi-
definite matrix, it can be factorized as L = UΛUT where
U = [u0, . . . ,un−1] ∈ Rn×n denotes the n orthonormal
eigenvectors, and Λ = diag([λ0, . . . , λn−1]) ∈ Rn×n corre-
sponds n eigenvalues of G. Indeed, ui and λi values form the
Fourier basis and Fourier frequencies in spectral domain of G
[21].

Different from classical signal processing, there is no mean-
ingful translation operation in the vertex domain [22]. Thus,
to filter a vertex domain graph signal x ∈ Rn with a filter gθ
defined on G, x is first transformed into the spectral domain
using Graph Fourier Transformation (GFT) by x̃ = UTx.
Next, the spectral domain signal x̃ ∈ Rn is filtered in the
spectral domain by ỹ = gθ(Λ)x̃ where gθ(Λ) = diag(θ) is
a filter kernel, and θ ∈ Rn is a vector of Fourier coefficients
[21]. Finally, the result is transformed back to the vertex
domain using inverse GFT by y = UT ỹ [22].
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Fig. 1. Architecture of the proposed GNN based detector. It takes active and reactive bus power injections P and Q as its inputs, extracts their spatial
correlations in its Chebyshev GCN based hidden layers, weights the extracted features in its dense layer and produces the binary flag in its output layer. Note
that while the input layer has two channels, the CGCN layers can have multiple channels.

Although powerful, those spectral filters are computation-
ally complex and spatially not localized due to the forward
and inverse GFT operations. To reduce their complexity and
make them localized, Chebyshev convolutional graph filters
are proposed in [22]. Chebyshev polynomial of the first kind
Tk(x) with the order K can be computed by a recursion as
follows:

Tk(x) = 2xTk−1(x)− Tk−2(x), (5)

where T0(x) = 1 and T1(x) = x [23]. Similarly, a filter gθ can
be computed by Chebyshev polynomial approximation, Tk, up
to order K−1. In this case, gθ can filter x using the following
equation:

y = gθ ∗G x =

K−1∑
k=0

θkTk(L̃)x, (6)

where θ ∈ RK is a vector of Chebyshev coefficients, and
Tk(L̃) ∈ Rn×n is the K order Chebyshev polynomial eval-
uated at the scaled Laplacian L̃ = 2L/λmax − In. Slightly
changing notation, y can be calculated by:

y =
K−1∑
k=0

θkx̄k (7)

where x̄0 = x, x̄1 = L̃x, and x̄k is computed recursively by:

x̄k = 2L̃x̄k−1 − x̄k−2. (8)

Note that Chebyshev polynomial approximation makes gθ
K-localized and reduces its computational complexity from
O(n2) to O(K|E|). Therefore, Chebyshev Graph Convolu-
tional operation can be effectively employed to capture the
spatial correlations of the power grid data. More details can
be found in [21], [22].

B. Architecture of the Proposed Detector

The architecture of the proposed CGCN-based cyberattack
detector is depicted in Fig. 1 where the model inputs/outputs
and hidden layers are outlined with dashed and solid blocks,
respectively. Due to the fact that Pi + jQi =

∑
k∈Ωi

Pik +
jQik, node values can be used to represent branch values as
summation in their corresponding set of buses connected to
them. Therefore, we only employ Pi and Qi values to feed the
proposed model. The model consists of L hidden Chebyshev

graph convolutional layers for spatial feature extraction and
one dense layer for predicting the probability of the input
sample being attacked. In this multilayer architecture, the
input, X l−1 ∈ Rn×cl−1 , and output, X l ∈ Rn×cl , of each
CGCN layer are related by equation (9).

X l = ReLU(θl ∗G X l−1 + bl), (9)

where ReLU is rectified linear unit activation function, θl ∈
RK×cl−1×cl is unknown trainable Chebyshev coefficients, bl ∈
Rcl is bias term of the layer l, and cl is the number of channels
in layer l for 1 ≤ l ≤ L. Dense layer, on the contrary, gives
y in the classical feed-forward neural network fashion by:

y = σ(WLXL + bL) (10)

where WL ∈ Rn×cL is feature weights, bL ∈ R is the bias
term and σ is the nonlinear sigmoid activation operation.

IV. NUMERICAL EXPERIMENTS & DISCUSSIONS

A. Dataset Generation

Due to the privacy reasons, there is no publicly available
dataset for cyberattack detection, therefore, we generate a
synthetic dataset. As a first step, for each t in 1 ≤ t ≤ 36000,
we scale load and generation values of each bus in the 2848-
bus test system [24] by a uniform random value between
0.8 and 1.2; run AC power flow algorithms [25]; and save
power measurements after adding 1% noise to them to mimic
the timely behavior of the grid. Then, to simulate the cy-
berattacks, we implement data scale attacks (As) [26] and
distribution-based attacks (Ad) [27] as of two frequently used
cyberattack generation algorithms. Scale attacks multiply the
original measurement with a number sampled from a uniform
distribution between 0.9 and 1.1. In contrast, distribution-
based attacks replace it with a value drawn from the Gaussian
distribution satisfying the same mean and variance with the
original measurements.

B. Model Training

We scale the dataset with the normal scaler for faster
training, and split it into three sections to use 4/6 of them
for training, 1/6 of them for validation, and 1/6 of them for
testing. The number of samples in each split is given in Table
I where we keep the number of attacked samples equal with



the number of unattacked samples in each split for a balanced
classification problem. Each sample contains Pi, and Qi as
input features and a binary output label y to indicate the
presence of the attack.

TABLE I
NUMBER OF SAMPLES IN EACH SPLIT.

split non-attacked Ad As total

train 12000 6000 6000 24000
validation 3000 1500 1500 6000

test 3000 1500 1500 6000

We utilize the binary cross-entropy loss function in (11)
to compute all unknown parameters of the model represented
with Wθ, by an end-to-end training process of N training
samples.

L(ŷ,Wθ) =
−1

N

N∑
n=1

yi log(ŷi) + (1− yi) log(1− ŷi), (11)

We feed samples into the model as mini batches having 28

samples in 28 maximum epoch. Moreover, we tolerate 16
epoch without any improvement in the validation set’s cross
entropy loss, otherwise we apply early stopping in order to
avoid overfitting. We run our implementations on Intel i9-8950
HK CPU 2.90GHz with NVIDIA GeForce RTX 2070 GPU
using Python 3.8 and Tensorflow 2.2 [28].

We also implement other existing deep learning based archi-
tectures in the literature such as FCN [5], RRN [6], and CNN
[7] to compare the proposed CGNN-based architecture with as
we do not have access to the dataset of corresponding works.
For a fair comparison, we optimize the models’ hyperparam-
eters such as the number of hidden layers L = {1, 2, 3, 4, 5},
the number of units U = {8, 16, 32, 64, 128}, and the size of
the filters K = {3, 5, 7, 9, } using grid search. Similar to the
proposed model, we train the detectors on the training split
and tune their hyperparameters on the validation split. Table
II summarizes the optimized model hyperparameters for each
model.

TABLE II
OPTIMIZED MODEL HYPER-PARAMETERS.

parameter FCN RNN CNN CGCN

L 4 4 3 4
U 64 32 32 32
K - - 5 5

C. Detection Results

We evaluate the model performance by the detection rate
DR = TP

TP+FN and false alarm rate FA = FP
FP+TN where

TP , FP , TN , and FN denote true positives, false positives,
true negatives, and false negatives, respectively. Fig 2 presents
the detection results of each model for the 2848 bus test
system. Clearly, FCN falls behind other models since it has
the lowest DR with 55.06% and highest FA with 62.5%.

RNN performs better than FCN with 71.19% DR and 22.43%
DR. Compared to the non-convolutional architectures, i.e.,
FCN and RNN, the convolutional architectures, i.e., CNN
and CGCN, give better results. Additionally, CGNN surpasses
CNN by 7.86% in DR and 9.67% in FA.

CGCN

CNN

RNN

FCN

95.53

87.67

67.67

61.73

0.33

10

22.43

62.5 DR
FA

Fig. 2. Detection results in terms of DR and FA percentages.

Our experiments indicate the importance of architectural
choices on the models’ detection performances. For instance,
FCN falls short since it ignores the locality of features and
overfits to the training data. RNN, on the contrary, does not
yield convenient results due to the fact that structure of power
grid data do not fit well into sequence type recurrent relations.
Compared to FCN and RNN, CNN gives better results since
it can capture the temporal or spatial correlations of the
input data in an Euclidean space in which local features can
be expressed linearly. Except some trivial grids, the spatial
relationship of the power grid measurements can not be fully
modeled in an Euclidean space due to the its graph structure.
In fact, power grid data needs topology-aware architectures
such as CGCN to better exploit its spatial correlations.

D. Detection Times

Detection time of a detector can be highly critical in a
practical application since PSSE outcome is directly fed into
various time sensitive Energy Management System (EMS)
blocks including contingency and reliability analysis, load
and price forecasting, and economic dispatch processes [29].
To compare the detection time of different algorithms, we
measure the elapsed time during the model’s detection process
for each sample in the test set and tabulate the mean values
in Table III.

TABLE III
MODELS’ DETECTION TIMES IN MILLISECONDS.

FCN RNN CNN CGCN

1.33 1125.66 3.54 3.25

As can be seen from Table III, RNN’s detection time is
not acceptable for real time application since it takes more
than a second to respond. FCN, in contrast, yields the best
detection delay with only 1.33 ms. Yet, its unsatisfactory DR
and FA confine its suitability for real time application. CNN
and CGCN give acceptable delays for a practical scenario with
3.54 and 3.25 ms detection times, respectively. Besides, CGCN



provides better results in terms of detection performance and
delay.

V. CONCLUSION

Modern power grids are vulnerable to cyberattacks due to
their highly complex and integrated cyber-physical networks.
Although a number of solutions have been proposed to detect
those cyberattacks, most of the studies have disregarded the
inherent topology of the power grid and used small test
systems to verify their algorithms. To address these issues and
detect cyberattacks in large scale AC power grids, we propose
a deep learning model that employs Graph Convolutional
Networks in its hidden layers to better capture power grid
measurements’ spatial correlations. It is numerically verified
on a large-scale power grid with 2848 buses that the proposed
detector outperforms state-of-the-art model by 7.86% and
9.67% in false alarm rate and detection rate, respectively.
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