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Abstract—Cascading failure in power systems is triggered
by a small perturbation that leads to a sequence of failures
spreading through the system. The interconnection between
different components in a power system causes failures to easily
propagate across the system. The situation gets worse by con-
sidering the interconnection between cyber and physical layers
in power systems. A plethora of work has studied the cascading
failure in power systems to calculate its impact on the system.
Understanding how failures propagate into the system in time and
space can help the system operator to take preventive actions and
upgrade the system accordingly. Due to the nonlinearity of the
power flow equation as well as the engineering constraints in the
power system, it is essential to understand the spatio-temporal
failure propagation in cyber-physical power systems (CPPS).
This paper proposes an asynchronous algorithm for investigating
failure propagation in CPPS. The physics of the power system is
addressed by the full AC power flow equations. Various practical
constraints including load shedding, load-generation balance, and
island operation are considered to address practical constraints
in power system operation. The propagation of various random
initial attacks of different sizes is analyzed and visualized to
elaborate on the applicability of the proposed approach. Our
findings shed light on the cascading failure evolution in CPPS.

I. INTRODUCTION

The interaction between different components in cyber-
physical power systems (CPPS) makes these systems more
vulnerable to cascading failures as failure in one component
can easily propagate into other components [1]. Electric Power
Systems incorporate numerous communication devices, that
enable full observability, controllability, and flexibility of
power system operation. Furthermore, utilizing communica-
tion components in power systems increases the interaction
surface between different components and paves the way
for initiating cascading failures in CPPS. Cascading failure
starts from a local failure and propagates into the system by
overloading other components. For instance, the U.S. 2003
blackout was initiated to a large extent by the failure that
initially occurred in the information and communications tech-
nology (ICT) system [2]. Studying how the failures propagate
in time and space is crucial for making the power system
more resilient. A plethora of research has been dedicated
to studying the impact of cascading failures on the power
system. However, the dynamics of cascading failures and how
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they propagate into the system are less studied. To predict
and mitigate failure spreading in a CPPS, understanding their
spatio-temporal propagation properties is crucial. To bridge
this gap, we model the propagation of cascading failure and
analyze how it propagates into the CPPS. To this end, we first
randomly attack different lines and force them to be out of
service. Then, we study the impact of these outages on the
system.

The mechanism of failure propagation in power systems
strongly depends on the physics of the power systems, which
is dictated by the nonconvex nonlinear power flow equations.
Numerous studies have neglected the power flow equations in
studying cascading failure propagation in power systems [3].
These studies focus on the topology of the system and leverage
complex network theory to model failure propagation [4]-
[6]. Although methods based on the complex network theory
require a much lower computational time, it is difficult to
incorporate the physical mechanisms of cascading failure into
the topological metrics. Sandpile model has been employed
to study the cascading failure characteristics in different types
of complex networks [7]. However, this model is not able to
address the physics of power systems. In power grids, flows
are driven by Kirchoff’s laws, and cannot be described by
a network flow model. Accordingly, when a failure occurs
in a power grid, the power flow is redistributed on the rest
of the network, and some elements could overload and fail
which leads to cascading failures. Thus, without detailed
power grid information, the results of the methods based on
complex network theory yield differ greatly and could result
in misleading conclusions about the grid vulnerability [8].
Various studies consider load redistribution of a failed node
among the in-service nodes, i.e., when a node fails, the load it
was carrying (right before the failure) is redistributed equally
among the remaining nodes [9]. This is not the case in the
power grid, where the physics of the system is governed by
the nonlinear power flow equations and thus a more sophis-
ticated model needs to address the load redistribution after a
contingency. There are numerous studies that have addressed
the physics of the power system in cascading failure problems
via linearized power flow equations [10], [11]. Although DC
power flow equations have been utilized to reasonably solve
various problems in power systems, it has been shown that
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cascading failure simulations that underlie the DC model
(e.g., ignoring power losses, reactive power flow, and voltage
magnitude variations) can lead to inaccurate and overly opti-
mistic cascade predictions [10]. More specifically, utilizing DC
power flow to study cascading failure in large networks tends
to overestimate the number of in-service components after
stopping the failure propagation [10] as DC power flow cannot
properly capture nonlinear mechanisms like voltage collapse
or dynamic instability in power systems. Hence, using the DC
model for cascade prediction may result in a misrepresentation
of the gravity of a cascade [10]. Multiple studies developed
statistical models that use data from simulations [12], [13],
or historical cascades [14] to represent the general features of
cascading. Statistical models are useful but cannot replace de-
tailed simulations to fully understand cascading mechanisms.

To address these drawbacks, our method proposes an asyn-
chronous algorithm that periodically propagates the failures
between cyber and power layers. Furthermore, the full AC
power flow equations along with the engineering constraints
in power grids, e.g., load-generation balance, island operation
criteria, etc. have been utilized to properly address the physics
of power systems. Moreover, a realistic graph generation
algorithm [15] is employed to construct the underlying cyber
graph in CPPS.

II. PROPAGATION OF CASCADING FAILURE

Before delving into the proposed approach for failure prop-
agation, we need a realistic framework for cyber graph gener-
ation which is essential for modeling the failure propagation
in CPPS. We recently proposed a realistic model for graph
generation that mimics the features of a real-world communi-
cation system of a smart grid [15]. The model leverages the
Hungarian algorithm [16] to minimize the total cross edge
distance in the graph which reduces the distance between
corresponding cyber and power system nodes. We applied
our approach in [15] to generate realistic cyber graphs in this
paper.

To model the failure propagation in cyber-physical power
system, we model the interconnected CPPS with a graph. In
this connection, we first consider an undirected graph G(V, &)
as a model of a power grid network. Here V is a set of
nodes, and £ is a set of edges. Similarly, the cyber layer
is modeled with a graph with the same number of vertices
that the corresponding power system has, i.e, V. The topology
of the cyber graph, i.e., edge position, is determined by our
proposed algorithm in [15]. For sake of simplicity, we assume
one connection between each node in the power systems
with the corresponding node in the cyber layer. Note that
the proposed model can be easily generalized to consider
different typologies of the cyber graph, i.e., a cyber graph
with a different number of nodes.

The proposed model is an asynchronous model in which
faults propagate in only one subsystem, i.e., power or cyber
graph, at a specific time step. Once the fault propagation
is finished in one subsystem, it can propagate into other
subsystems through the linking edges that connect cyber and

power graph nodes. The fault propagation in power and cyber
layers acts differently as the physics that governs these systems
are totally different. For instance, in the cyber layer, after
creation of islands, the largest island will be considered in-
service and the other islands will be deleted from the system.
Conversely, different islands in the power system can operate
simultaneously as long as they satisfy the power system
constraints. Algorithm 1 demonstrates the different phases of
the proposed cascading failure approach where the relevant
method of the class ‘Grid’ is called from Algorithm 2. Phase A
of the proposed cascading failure approach models the failure
propagation in the power system after a random attack. Then
phase B reflects the impact of the topology changes in phase
A into the cyber layer by removing the cyber nodes that are
connected to the deleted nodes in the power system. Next,
phase C propagates the failure into the cyber layer based on
the node removals in Phase B and updates the topology of the
cyber layer accordingly.

Algorithm 1: Main of Cascading Failure

Input : power network PN, cyber network CN, attacked
buses Ay, attacked branches Ag

Output : binary flag indicating the blackout
1 grid < Grid(PN,CN) // create the Grid obj.
2 grid.trigger_failure_in_power(Ay, Ag)
3 while True do

4 grid.prop_failure_in_power() // phase A
5 grid.prop_failure_to_cyber() // phase B
6 if grid.stopped break

7 grid.prop_failure_in_cyber() // phase C
8 grid.prop_failure_to_power() // phase D

9 if grid.stopped break
10 blackout < grid.check_blackout()
11 return blackout

Finally, phase D reflects the impact of the topology changes
in phase C into the power layer by removing the power nodes
that are connected to the deleted nodes in the cyber layer.
Phases A to D are continuously executed until no further
removal happens in either the cyber or power layers. The
cascading failure can be terminated if the number of removed
nodes exceeds a threshold.

To make the proposed work more practical, the full AC
power flow equations (1) are considered in this paper.
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In eq. (1), [ and m are both ends of each line (I,m) € L
in the system, and g, + jbi, and jb. i, are the mutual
admittance and shunt admittance in the II model of power
lines, respectively. P, + jQ., denotes the complex power
flow and 6, is equal to 6; — 6,, for each line terminal
(I,m) e L.

Furthermore, other practical constraints including
generation-load balance are considered for each island
in the power system. Step-wise load shedding is also
incorporated into the model to keep the islands that do not
have enough generation to satisfy their loads. This makes the
power system not lose an island because of a small imbalance
between generation and load and consequently withstand
fault propagation for a longer period of time.

The cascading failure is initially triggered by the outage of
certain nodes or lines in the power system (Alg. 2, line 9-
13). These line outages can change the network topology and
might divide the power system network into separate compo-
nents [17]. If there is enough generation in each component to
satisfy the load, then the component can operate. If there is no
generation in a separated component, the component will be
removed by force outage its nodes and branches. Likewise, if
there is no load in a separated component, the component will
be removed by force outage its nodes and branches (Alg. 3,
line 15-17).

For the components with both supply and demand, we first
check the generation-demand balance. If the total demand was
greater than the generation, the demand would be reduced at all
nodes by a common factor, i.e., load shedding. Accordingly,
if total generation was greater than the load, the generation
would be reduced at all generation nodes by a common factor,
i.e., generation curtailment (Alg. 3, line 22-23). We next check
the line flows to determine the overflowed lines in the system.
These lines will be removed from the system using a selected
line outage rule (Alg. 3, line 8-11). The cascade continues
with the removal of those lines. If there is no new line failure
in any of the remaining components, the cascade ends in the
power system layer (Alg. 2, line 20-21).
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Fig. 1. Blackout probabilities of the cascading failure triggered by the number
of initial attacked buses (a) and branches (b) for various systems and cyber
networks. Each power network having 30- (red), 118- (green), and 300-bus
(blue) simulated with three different cyber networks where there is no cyber
graph (circle), cyber graph with the same topology as power system’s graph
(square), and cyber graph with a realistic topology (diamond), respectively.
Blackout probabilities are calculated as the mean values of 1000 runs in which
attacked buses or branches selected randomly.

Algorithm 2: Class Grid

// Constructer method of the class

1 def Grid: :Grid (PN, CN)

2 PN + PN

3 CN «+ CN

4 n,m < |PN.V|, |PN.£| // # of components
5 l + (PN) // total active load in PN
6 sz,é'lf «— 0,0 // Failed power components
7 ch,é:{ «— 0,0 // Failed cyber components
8 stopped < False // Failure stopped
9 def Grid: :trigger_failure_in_power (Ay, Ag)

foreach v € Ay do
mark bus v in PN as out of service
foreach e € Ag do
mark branch e in PN as out of service
// Phase A
14 def Grid: :prop_power_failure_in power ()
15 while True do

-
[ S ]

16 foreach island P in PN do

17 run_power_flow (P)

18 remove_overloaded_branches (P)

19 extract_islands (P)

20 if there is no new failure

21 break

22 V;: , 575 < determine failed components in PN
// Phase B

23 def Grid: :prop_power_ failure_ to_cyber()
2 iEV =0

25 stopped < True

26 else

27 foreach u in V,{ do

28 mark correspoding node v as failed in CN
// Phase C

29 def Grid: :prop_cyber_ failure_ in_cyber()

30 determine the connected components in CN

31 keep only the giant component of CN

32 mark other islands as failed in CN

33 V!, &l « determine failed components in CN
// Phase D

34 def Grid: :prop_cyber_failure_to_P (P)
35 ifVi=90

36 stopped < True

37 else

38 foreach u in V{ do

39 mark correspoding node v as failed in PN

40 def Grid: :check_blackout (P)

41 if IPNV| < § or [PN.L| <% or (PN) <
42 return True

43 else

44 return False

L
2

III. RESULTS AND DISCUSSION

This section demonstrates the effectiveness of the proposed
approach using IEEE 30-, 118-, and 300-bus test cases. All
implementation was carried out in Python 3.8 on Intel 19-8950
HK CPU 2.90GHz with NVIDIA GeForce RTX 2070 GPU.

Fig. 1 demonstrates the blackout probability with respect to
the number of the attacked nodes and branches for 30-, 118-,
and 300-bus test cases. The blackout is defined as the loss
of fifty percent of either the number of nodes, the number of
branches, or the total load in the system (Alg. 2, line 40-44).



Algorithm 3: Power utility functions

1 def run_power_flow (P)

2 foreach s € {1.0, 0.95, ..., 0.05} do
3 scale loads of P with s

4 result < runpf (P)

5 if result

6 mark island P as succeded

7 return

8 mark island P as failed

9 def remove_overloaded branches (P)
10 foreach e € P.£ do

11 if e’s loading > 100%

12 mark e as out of service

13 def extract_islands (P)

14 determine the connected components in [P

15 foreach island € P do

16 if P has no generation or load

17 mark P’s component as out of service
18 continue

19 if P has no slack bus

20 g < highest generation capacity bus
21 set g as the slack bus

22 if total generation > total load

23 apply generation curtailment

It is clear that the probability of having blackout increases by
the initial attack size as expected. There are three different
plots in Fig. 1 for each test case that are corresponding to
the different topology of the underlying cyber graph of the
power systems. The lines with circles, squares, and diamonds
in Fig. 1 represent the probability of occurring blackout in
CPPS where there is no cyber graph, cyber graph with the
same topology as the power system’s graph, and cyber graph
with a realistic topology, respectively. From Fig. 1 it is clear
that the topology of the underlying cyber graph in CPPS plays
an important role in the dynamics of failure propagation.

Figs. 2 and 3 visualize different phases of failure propaga-
tion after random attacks for IEEE 118- and 300-bus test cases,
respectively. Comparing Fig. 3b and Fig. 3¢ demonstrate that
the failures propagate nonlocally in power systems.

IV. CONCLUSION

To better understand the dynamics of cascading failure in
cyber-physical power systems, we proposed an asynchronous
algorithm to model failure propagation in cyber-physical
power systems. In contrast to most previous works that employ
DC power flow model for cascading failure analysis, we
implement the full AC power flow equation in our model to
accurately address the physics of power systems. Moreover,
to make the proposed approach more general, the interdepen-
dency between power and cyber layers is taken into consid-
eration in the proposed model. We illustrated via simulations
the failure propagation in cyber-physical power systems. We
showed that the failures in power systems propagate globally,
i.e., the consecutive failures can be far away from each other,
rather than locally. We also show that taking cyber layer
impacts into account can expedite failure propagation process,
as it was expected. The outcome of this paper can be used to

analyze the resiliency of cyber-physical systems against failure
propagation. Furthermore, the proposed model can shed light
on identifying critical components and analyzing contingency
analysis in cyber-physical systems. This work is under study
to model the interaction between power and cyber layers via
graph theory metrics. More specifically, dependability and
importance of a specific node in one layer to the corresponding
node in another layer will be incorporated in the proposed
model to more accurately simulate the interaction between
layers in cyber-physical power systems.
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(i) phase 4-A (j) phase 4-C

Fig. 2. Iterations of a cascading failure for the IEEE 118-bus test system where the power and cyber nodes are depicted with circles at the bottom layer and
squares at the top layer, respectively. Different islands are plotted with different colors and failed nodes are always given in black. Note that failure triggered
in two power buses (b) eventually stopped after four iterations (j). Due to the space limitation, only phases A and C are depicted.
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Fig. 3. Different iterations of the proposed model for failure propagation in the IEEE 300-bus test system for a random attack. Note that the failure triggered
in the power system (b) propagates in the power system which causes three additional bus failures (c). It demonstrates that a failure can propagate non-locally
due to the power system’s physics.
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