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Abstract

Predicting protein properties from amino acid sequences is an important problem in biology and pharmacology. Protein-
protein interactions among SARS-CoV-2 spike protein, human receptors, and antibodies are key determinants of the
potency of this virus and its ability to evade the human immune response. As a rapidly evolving virus, SARS-CoV-2
has already developed into many variants with considerable variation in virulence among these variants. Utilizing the
proteomic data of SARS-CoV-2 to predict its viral characteristics will, therefore, greatly aid in disease control and
prevention. In this paper, we review and compare recent successful prediction methods based on long short-term memory
(LSTM), transformer, convolutional neural network (CNN), and a similarity-based topological regression model and
offer recommendations about appropriate predictive methodology depending on the similarity between training and test
datasets. We compare the effectiveness of these models in predicting the binding affinity and expression of SARS-CoV-2
spike protein sequences. We also explore how effective these predictive methods are when trained on laboratory-created
data and are tasked with predicting the binding affinity of the in-the-wild SARS-CoV-2 spike protein sequences obtained
from the GISAID datasets. We observe that topological regression is a better method when the sample size is small and test
protein sequences are sufficiently similar to the training sequence. However, when the training sample size is sufficiently
large and prediction requires extrapolation, LSTM embedding and convolutional neural network-based predictive model
show superior performance.

Key words: COVID-19, Machine learning, Biological sequence analysis, Protein-protein interaction, Topological
regression, Performance evaluation

Introduction

COVID-19 is a respiratory disease caused by the novel human

coronavirus SARS-CoV-2. The infection is initiated by the

binding of the viral spike protein (S-protein) receptor bin-

ding domain (RBD) and human angiotensin converting enzyme

(ACE2) receptors. The mutations in spike protein, especially

near the RBDs, impact the protein expression and viral tran-

smissibility by increasing or decreasing the binding affinity [1].

Since, RBD is also the primary target of most neutralizing anti-

bodies that inhibit the S-protein and ACE2 receptor binding [2],

substantial changes in S-protein may prevent antibodies from

recognizing the antigen, and may diminish the effectiveness of

autoimmunity or vaccines [3]. Understanding S-protein mutati-

ons and their relationship to viral characteristics are essential

for understanding the virulence of SARS-CoV-2, monitoring

its dangerous mutations, and responding to COVID pandemics

with appropriate clinical measures.

Since its discovery in human populations, SARS-CoV-2 has

undergone multiple mutations. Periodic emergence of variants

of concern (VOCs) and variants of interest (VOIs) have posed

renewed threats to public health. The Alpha (B.1.1.7 line-

age), Beta (B.1.351 lineage), Gamma (P.1 lineage), and Delta

(B.1.617 lineage) variants have become major VOCs show-

ing higher transmissibility and/or virulence as compared to
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the original strain of SARS-CoV-2. A collaborative genomic

surveillance effort has been tracking emerging mutations and

the sequencing data of emerging variants are made publicly

available through online databases such as National Center

for Biotechnology Information (NCBI)[4] and the Global Ini-

tiative on Sharing Avian Influenza Data (GISAID)[5]. These

open datasets have made SARS-CoV-2 sequences readily avai-

lable, and opened up a promising avenue to understand the

correlation between sequences and viral pathogenicity.

In addition to experimental efforts, computational methods

to predict protein functions based on the sequence characte-

ristics are routinely carried out. Alignment-based homology

analysis is perhaps the standard method for analyzing newly

identified sequences [6]. This approach uses similarity search

tools such as BLAST, PSI-BLAST, SSEARCH, FASTA, and

HMMER to identify sequences with similar structures or com-

mon ancestors by searching for sequences that have obvious

matches with significantly higher similarity than random.

The similarity of proteins can be defined using alignment

methods - for example, BLAST that approximates Smith-

Waterman (SW) algorithm [7] to provide alignment scores as

a proxy for similarities among sequences. In the proteomic ali-

gnment process, two protein sequences are assumed to share

a common ancestor, and mismatches/gaps represent the point

mutations / insertions and deletions. In this article, the seque-

nces we want to analyze are mutated from the common ancestor

wild-type SARS-CoV-2 variant and have a high degree of simi-

larity except for a few mutation loci. Consequently, we use SW

algorithm for sequence alignment.

Due to the large variations in amino acid characteristics,

different point mutations impact the protein characteristics

differently. For example, conservative mutations have minor

influences on the protein function as compared to radical muta-

tions [3]. By introducing substitution matrix (PAM, BLOSUM,

etc.) protein alignment takes into account differential impact

of amino acid mutations as well. Thus, conservative mutations

have higher alignment scores than radical mutations reflecting

higher protein similarities.

With the similarity measure defined, often shallow data-

driven methods are used to predict protein functions after

aligning multiple sequences. Customarily, these approaches

find the most similar instances to the sequence of interest

and assume that high similarity in sequence results in simi-

lar responses (protein functions in our case). Models such as

k-nearest neighbor (KNN), kernel regression, profile hidden

Markov model [8] are popular predictive models that rely on

similarity estimates among protein sequences.

More recently, deep learning methods have become popular

tools to predict protein functions from their structures. These

methods generally rely on quantification of protein sequences

either at residual (single amino acid) level or at peptide level.

At the residual level, each amino acid is quantified separa-

tely. Numeric vectors representing each residual in the protein

sequence are then concatenated to represent the entire pro-

tein. For instance, principal components scores associated with

the Vectors of Hydrophobic, Steric, and Electronic proper-

ties (VHSE) [9] for individual amino acid descriptors are row

concatenated to produce a 2-dimensional array representing a

protein sequence which, in turn, forms the input for the pre-

dictive model. At peptide level, numerical vectors quantifying

the amino acids are further processed to produce an embedding

vector representing the entire protein. Two immediate bene-

fits of peptide level embeddings are (a) the configuration of

residuals in each protein sequence is taken into account while

generating the embedding, and (b) the dimension of the embed-

ding vector can be fixed a-priori thereby alleviating the problem

of dealing with wide variation in the length of the protein

sequences.

Popular classes of models for generating the foregoing

peptide level embeddings consist of (a) sequence neural netw-

ork models, such as 1-D convolutional neural network (CNN),

recurrent neural network (RNN), (b) k−mer based approa-

ches for sequence analysis [10], and (c) autocovariance (AC)

based approaches that encode the protein sequence in terms

of distance among the residuals [11]. Several deep learning

methods have been developed for sequence embedding in

the context of protein quantification. DeepAffinity[12] uses

autoencoder-based Seq2Seq embedding, ProtSolver [13] and

ELASPIC[14] use graph convolution-based neural networks

to generate embeddings, DeepConv-DTI [15] and DeepDTA

[16] apply one-dimensional convolution on protein sequences

and generate convolutional embeddings of the entire sequence.

MDeePred exploits multiple aspects of protein characteristics

and feed them into the CNN model as a multi-channel input

[17]. More recently, NLP techniques have been brought to

bear to encode protein sequences. These methods typically

understand residuals as words/tokens and each sequence as a

sentence. ProtVec[18] uses Word2Vec (Skip-gram)[19] to gene-

rate embeddings of protein sequences, with the properties of

the protein being encoded in the semantic embedding. Dee-

pAffinity integrates unsupervised Seq2Seq RNN for embedding

and supervised CNN for prediction[12]. In ProtTrans[20], seve-

ral transformer models (Transformer-XL, XLNet, Bert, Albert)

are trained on 2.1 billion protein sequences and can be used

to generate the vector embeddings and predict protein structu-

res and characteristics. Turning to viral sequence embedding,

[21] used bidirectional long short-term memory (BiLSTM) to

analyze the semantic embeddings, viral fitness, and immune

escapes. The semantic change and grammaticality that were

generated from the BiLSTM embedding were subsequently used

for predicting the properties of sequences. [22] developed LSTM

based SPBuild for generating protein embeddings, [23] develo-

ped SeqVec algorithm that used Embeddings from Language

Models (ELMo) to provide a fast model to create protein

embeddings.

k−mer based methods, on the other hand, count all the

subsequences of length k (k-mers) to produce the set {V, F},
where V is the set of all possible k-mers and F is the freque-

ncy of each appearing in the traversed sequence. A normalized

version of fixed-dimensional F represents the embedding of the

protein sequence. The AC approach requires the residuals to be

numerically encoded. Then, for each dimension of the encoded

vector, AC can be calculated at given lags. The combination

of k-mer and AC is also used as a protein-level featurization

method [24].

We note that similarity-based approaches can be imple-

mented after obtaining the protein embeddings as well. For

example, the Euclidean distance of BiLSTM embeddings can

be used to quantify similarity among protein sequences. The

pairwise distances between sequences and their corresponding

responses can be used to train distance regression models [25].

For a query sequence, such distance regression model predi-

cts the distances in the response space which can be mapped

to actual response value using backscoring techniques [26, 27].

These techniques respect the topology of the input and response

spaces and allow more flexibilities in the sense that sequences

that are similar are not assumed to produce responses that are
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similar as well. We call this technique topological regression

(TR) and offer more details in the Supplementary Materials.

In the context of predicting viral properties of SARS-CoV-2

sequences, [28] utilized Bi-path Convolutional Neural Networks

(BiPathCNN) to compare the infectivity patterns of SARS-

CoV-2 and predict host range and potential reservoir species

of this virus. [29] utilized Screening for Non-acceptable Poly-

morphisms (SNAP [30]) to predict the protein function changes

induced by single mutations on SARS-COV-2 spike RBD and

discovered the critical mutations that influence S-protein sta-

bility and binding affinity. Wang et al.[31] utilized AA-index

and CNN to predict binding affinity, protein expression, and

antibody escape. [21] predicted the mutation probability and

their effect on viral fitness and immune escape of SARS-CoV-2

using BiLSTM. [14] used deep-learning feature extraction and

gradient boosting decision tree (GBDT) to predict the effects

of single mutations on the binding to ACE2. In [32], Wang et

al. developed a joint model to predict paired viral-human pro-

tein pathogen-host interactions and examined their model on

the dataset of the interactions between 26 SARS-CoV-2 pro-

teins and human proteins found in [33]. They used ontology

information was embedded into vectors, combined with one-

hot encoded sequences, and modeled as a classification problem

with convolutional and fully-connected networks.

In this article, we investigate several feasible data-driven

viral characteristics prediction pipelines. We train these mach-

ine learning methods on lab-created mutations of SARS-CoV-2

strains and test the ability of the trained models in predicting

the binding affinity and expression profiles of the strains obse-

rved in the real-world variants. We investigate how the size of

the training set and the similarity between the training and

test set impact the predictive performance of these empirical

models. When the test sequences are close to (far from) the

set of sequences in the training sample, we call the prediction

as interpolation (extrapolation) task. Our results suggest that

machine learning models should be carefully chosen depending

on the size of the training dataset and “location” of the test

sequences vis-a-vis their training counterparts.

Methods

We begin by reviewing current computational approaches for

predicting viral functions based on their sequences. We then

propose a generic predictive pipeline that includes visualiza-

tion of viral sequences, protein feature extraction, training

predictive models. Fig.1 provides a graphical description of the

pipeline. We confine ourselves to supervised models only and

compare the prediction performance of several shallow and deep

learners, including the foregoing TR method in the following

sections.

Data preparation

First we outline the data acquisition protocol. In this arti-

cle, we used the deep mutation scan (DMS) dataset that was

created from experiments in order to understand the relation-

ships between the S-protein amino acid sequence and the viral

fitness and antigenicity [34]. More specifically, the dataset was

created to investigate RBD mutations’ effects on the expres-

sion of spike protein and binding affinity to ACE2. Mutated

hCoV19 spike protein sequences were generated from wild-type

Wuhan-Hu-1 with each variant having one or more amino acid

mutations. For the binding affinity data, log binding constants

∆log10(KD, app) relative to the wild-type SARS-CoV-2 RBD

were provided and used as the responses. Each variant’s mean

fluorescence intensity (MFI) was measured for the expression

data, and the ∆log(MFI) relative to the unmutated sequence

was also supplied. Data were processed following the procedures

described in [21]. After discarding the invalid variants, 105526

and 116258 variants were retained for training the models for

predicting binding affinity and expression profiles, respectively.

For real-world sequences, we collected S-protein sequences

from GISAID as of December 3, 2021, and related sample

information as the metadata [5]. The metadata, for our pur-

pose, included the dates of sample collection, locations, and

strains/lineages. We determined the variants according to the

Pangolin lineage [35] in the metadata, following the VOC and

VOI definition suggested by CDC. Sequences containing “X”,

denoting unknown amino acids, were discarded. 131719 unique

sequences with metadata were retained for testing purposes.

Sequence dissimilarity measure

We used SW algorithm with BLOSUM55 as the substitution

matrix to measure similarities among protein sequences. We

define the alignment distance as the difference between the

maximum alignment score and the actual alignment score.

These distances were used to offer a high-level visualization of

sequence clusters and formed the input in the downstream TR

model. Alignment scores and prediction performance are depen-

dent on the substitution matrix. In this paper, we compared the

substitution matrices provided in the library Biopython.

Approaches for visualization

After computing the similarities among protein sequences, we

used multidimensional scaling (MDS) and t-Distributed Stoch-

astic Neighbor Embedding (t-SNE) on the similarity measures

to find the embeddings of sequences in a 2-D space. A scatter

plot was then used to display the two-dimensional coordina-

tes associated with the sequences. The coordinates were color

coded according to their variant label.

Approaches for feature extraction

We used VHSE [9] technique for residual level featurization. It

uses eight dimensions, corresponding to the dominant eight pri-

ncipal components of 50 physicochemical variables, to describe

physicochemical properties of amino acids. Thus, for an S-

protein sequence of length l, VHSE produced a matrix of size

l× 8 .

For protein-level embedding, we used pre-trained ProtBert

from [20] and BiLSTM from [21]. We note that, ProtBert was

not exclusively trained on the DMS dataset. Rather, we used

the transformer layers of the pre-trained ProtBert to obtain the

embeddings of the protein sequences in DMS dataset. Admit-

tedly, in our deployment, ProtBert was not optimized for DMS.

However, we posit that this deployment would offer deeper insi-

ght into its performance in potentially out-of-distribution query

points. The BiLSTM model, on the other hand, was indeed pre-

trained on the same DMS dataset from [34], we simply ignored

the output layer(s) of [34] and only retained the protein level

embeddings generated by the LSTM/transformer layers.

Approaches for predictive modeling

We compared the performance of models created under various

combinations of featurization and predictive methods. The first

class of models consisted of semantic embedding that encoded

protein sequence information and then used shallow learners,

https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html
https://github.com/biopython/biopython/blob/master/Bio/SubsMat/MatrixInfo.py
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Fig. 1. Overview of proposed protocol for viral sequence prediction.

trained on NLP embedding layers’ output, as the predictive

model. As mentioned before BiLSTM with semantic changes

& grammaticality encoding [21] and ProtBERT [20] were two

prototypical embedding generation models considered in class.

Once the embeddings were generated, we also calculated the

distances in the (embedded) feature space and trained our

topological regression model.

The second type of model consisted of residual level featu-

rization with deep learning predictive models that can handle

the sequential nature of the inputs. VHSE was used to quantify

each amino acid and the protein was encoded via row conca-

tenation of the 8-dimensional vectors representing each amino

acid in the sequence. Since the columns of this protein-encoding

matrix consist of principal components scores, the interpre-

tation of the variables remains consistent across the rows of

this matrix. Hence, a 1-dimensional CNN, with eight channels

matching the column dimension of the protein matrix, was used

as a predictive model. For the GISAID dataset, sequences were

padded with 0s to a maximum length of 1330 before being fed

into the CNN model. The architecture of CNN is provided in

Supplementary Materials.

The third type of model relied on similarity-based appro-

aches. We trained the topological regression model using the

pairwise distances (dissimilarities) among sequences as inputs

and response distance as the output. In principle, the entire

training dataset could be used to calculate the pairwise dista-

nces, but the resulting distance matrix is too large for efficient

downstream computation. One option is to induce sparsity by

imposing some tapering structure [36]. However, in the abse-

nce of a biologically justifiable tapering structure, we preferred

to use a randomly selected subset of the training dataset to

act anchor points. These anchor points can be envisioned as a

special case of “knots” that are inserted in the construction of

spatial predictive processes [37]. Selecting the number of anchor

points depends on the trade-off between predictive accuracy

and computational time. In general, the prediction performance

increases with the number of anchor points. However, since the

distances between the training data and the anchor points need

to be computed and stored, fewer anchor points reduce the com-

putational time and memory requirement considerably. Herein

we compared 200 and 500 anchors to demonstrate the perfor-

mance of topological regression. More details about topological

regression are provided in Supplementary Materials topological

regression Section. The list below summarizes various model

combinations that were tested in this article:

• Semantic embedding + shallow learners:

BiLSTM embedding (semantic change, CSCS scores) +

Linear regression

BiLSTM embedding + Ridge regression

BiLSTM embedding + RF

BiLSTM embedding + Fully-Connected (FC) ANN

ProtBert embedding + Ridge regression

ProtBert embedding + RF

ProtBert embedding + FC-ANN
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• Residual encoding + deep sequence model:

VHSE encoding + 1-D CNN

• Similarity-based models:

SW alignment score + Topological regression

SW alignment score + KNN

CNN embedding distances + Topological regression

Note that the listed methods are specifically for regres-

sion. However, the proposed pipeline also applies to classi-

fication tasks. We discuss its application on classification in

Supplementary Materials.

To illustrate the impact of the size of the training set on

the predictive performance of the above set of models, we gene-

rated three different training sets by sampling 0.5%, 5%, and

100% of the whole DMS dataset, resulting in ≈ 500, ≈ 5000,

and ≈ 105, 000 samples, respectively. Data were split into 60%

training, 20% validation, and 20% testing. Tuning of hyperpa-

rameters, for all models, were performed on the validation set

via grid search. Hyperparameters with the best mean square

error (MSE) were selected to arrive at the final predictive model

that was deployed on the test set. Details for hyperparameter

tuning can be found in Supplementary Materials.

We also evaluated the performance gains from simple model

stacking, where a linear regression model was trained on the

validation set using the outputs of multiple base models as pre-

dictors and target values in the validation set as responses. The

estimated regression parameters provided weights that were

used to linearly combine the predictions generated by various

candidate models on the test set.

Results

Visualization based on pairwise similarities

To visually illustrate the distances among the S-protein sequ-

ences, especially between DMS training set vs. GISAID test

data, we perform unsupervised MDS and t-SNE analyses.

(Modified here) For visual clarity, among all 131K sequences

collected from GISAID, we randomly select 100 samples for

each VOC, and 200 for others, and concatenate them with

the sequences from the DMS training set and then using the

sequence dissimilarity measure discussed earlier, we project the

sequences on 2D MDS (t-SNE) planes. We display the 700

randomly selected points in Figure 2 and color-code different

variants determined from their lineages. We notice that the

variants were well separated in both MDS and t-SNE planes,

and the main collection dates coincide with the clusters accor-

dingly. Clearly, there exist considerable dissimilarities among

the variants to suggest predictive models trained on one type

of variant must be deployed with caution when trying to predict

the outcomes associated with a different variant. Furthermore,

the training set (DMS dataset) formed a cluster well separated

from the two major VOCs, Alpha and Delta. Consequently, the

prediction problem turned out to be an extrapolation problem

with the feature set associated with the test set may be well

outside the space spanned by the feature set associated with

the training data. This scatter plot forms a part of explora-

tory data analysis which can help us choose the downstream

predictive models. For example, if we want to computationally

predict the binding affinity associated with the GISAID sam-

ples collected after June 2021 (marking the emerging of Delta

variant) using the samples collected until June as the training

set, we may need to utilize the time stamps associated

with each data point and develop a regime-switching

time series model (emergence of new variants marking

new regimes) that takes high dimensional temporally

varying covariates as inputs and predict the binding

affinities over time. The forecast errors that such non-

stationary regime switching model [? ] generates can

potentially reveal higher levels of extrapolation error

which, in turn, can be used to assess the reliability

of these forecasts. Although, this modeling approach

is appealing in its own right, we do not pursue this

strategy any further in this article.

hCoV19 spike proteins visualized by variants

Smith-Water mandistance -- MDS

Variant

DMS (Lab)

VOC Alpha

VOC Gam m a

VOC Beta

VOC Delta

Others

Wild type

hCoV19 spike proteins visualized by variants

Smith-Water mandistance -- tSNE

Variant

DMS (Lab)

VOC Alpha

VOC Gam m a

VOC Beta

VOC Delta

Others

Wild type

Fig. 2. Scatter plot visualization of GISAID samples and DMS training

dataset.

Comparison of predictive performance on virus binding

affinity under homogeneous setting: interpolation task

In this section, we confine ourselves to the DMS dataset only.

We compared the predictive performance of foregoing eleven

models under three different sample size scenarios. Each model

was trained on 316, 3165, and 63,000 samples and tested on

106, 1056, and 21,000 samples, respectively. Models were com-

pared using the Spearman and Pearson correlation coefficients,

normalized root mean square error (NRMSE), and normalized

Mean Absolute Error (NMAE). Since the training and test sam-

ples were obtained from relatively homogeneous DMS set (as

revealed in Figure 2), we consider this prediction task as inter-

polation. Figure 3 shows the foregoing comparison metrics for

each model under each scenario.

First, observe that when the size of the training set is small

(≈ 100) TR, with each training sample acting as anchor points,

outperformed the competing candidate models. Furthermore,

TR offered considerable improvement over KNN regression

implying that in complex regression problems the assumption
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of isometry between input and output space is perhaps not

tenable. For moderate size training set (≈ 3000), VHSE -

CNN showed the best predictive performance. However, TR,

with only 500 anchor points, produced fairly similar predictive

results, at a much lower computation cost, as compared to the

aforesaid deep learner. As dataset size increases, we observe

that VHSE-CNN steadily pulls away from the other compe-

ting models affirming the reliability of the deep learners when

sufficient samples are available to train them.

Turning to model stacking, we select the top two individual

models, TR and VHSE-CNN, under all three sample size scena-

rios and generate stacked predictions obtained using the above

discussed linear regression method. For a complete picture,

we also report the prediction performance for each candidate

model, their average prediction (mean model) in Fig. 4. As

expected, stacking produces better predictive performance as

compared to individual models and the mean model under all

sample size scenarios.

We perform similar analyses on the DMS protein expression

dataset from [34]. After discarding the sequences containing

stops (*) in the middle, 116k sequences were retained. Again,

the entire dataset was sampled at 0.5%, 5%, and 100% level

to assess the performance of models under different sizes of

training set. TR again turned out to be the best perfor-

mer under small sample scenario with VHSE-CNN dominating

other models for the remaining two scenarios. Stacking of TR

and VHSE-CNN produced consistently superior performance

in terms of error. All the results for protein expression were

relegated to the Supplementary Materials.

Binding affinity prediction on GISAID sequences:

Extrapolation task

Ideally, we would like the predictive models, trained using

the information available on the existing/experimental strains,

to accurately assess the potency/transmissibility of new virus

strains. To understand the predictive “reach” of the models

discussed herein, we trained four prototypical models on DMS

dataset using binding affinity as the target response and gene-

rated predictions for the real-world variants extracted from the

GISAID dataset. The prototypical models considered in this

section are: (a) RF and Ridge regression with BiLSTM embed-

ding 1, (b) RF and Ridge regression with ProtBert embedding,

(c) 1-D CNN with VHSE encoded sequences, and (d) TR with

SW distance with BLOSUM55 substitution matrix. Observe

that, above mentioned models represent four major classes of

the eleven models considered in this article and our intention

here is to understand which class of models generate reliable

predictions when the features associated with test samples may

not belong to the space spanned by the training features (see

Figure 2) and therefore the prediction becomes an extrapolation

task.

However, the binding affinities of the variants extracted

from GISAID were not available and hence customary metrics

to compare prediction accuracy (NRMSE, NMAE etc.) could

not be computed. Instead, we looked at the distribution of

predicted binding affinities for each VOC and generated a sto-

chastic ordering of these VOCs in terms of the predicted binding

affinities. We then compared this ordering with the results of

microscale thermophoresis (MST) experiments that estimated

1 RF and Ridge were chosen to represent model-free and

parametric predictive approaches, respectively

the binding affinities between human ACE2 and RBD of SARS-

CoV-2 for the Alpha, Beta, Gamma, and Delta variants [38]. It

appeared that both MST and molecular dynamics simulations

indicated that the Alpha variant had significantly higher bin-

ding affinity with ACE2 receptors as compared to Beta, Gamma

and Delta variants.

Fig. 5 shows the distributions of binding affinity distribu-

tions predicted using the above models for VOC Alpha, Beta,

Gamma, Delta, and sequences not identified as VOCs or VOI

(defined as “Others”). To formally assess whether our predicti-

ons are in agreement with the MST results [38], we performed a

Kruskal-Wallis test using variants as the factors and predicted

binding affinities from representatives of four classes of models

as responses. Rejection of Kruskal-Wallis test was followed

up with post-hoc Dunn test (with Sidak adjustment) to esta-

blish the stochastic ordering among the variants 2. We used

the existing MST results for hypotheses generation and

posited, as alternative hypotheses in the foregoing Dunn

test, that predicted binding affinities of Alpha variant

will be stochastically larger than the predicted binding

affinities of (i) Beta, (ii) Gamma and (iii) Delta vari-

ants. Both BiLSTM and TR provided statistical evidence that

binding affinities of Alpha were stochastically larger than that

of Delta, Beta and Gamma variants (p−values ≈ 0), thereby

supporting the results from MST experiments (Table 4, Sup-

plementary material). However, results from ProtBert and

VHSE-CNN indicated different stochastic ordering. We rele-

gate the detailed statistical test results to the supplementary

materials Exploration on GISAID dataset section.

Conclusion

In this paper, we briefly reviewed predictive modeling appro-

aches for virus sequences and proposed a general protocol for

predicting virus characteristics from raw sequences. We tested

three ways of generating predictions, (a) residual encoding fol-

lowed by deep sequence learners model, (b) semantic sequential

embedding followed by shallow learners, and (c) similarity-

based models for topological regression, under two different

scenarios - (i) interpolation task, when input space of training

set closely matches with that of the test set, and (ii) extrapo-

lation task, when input space of training set does not overlap

with that of the test set. Our results suggest that both sample

size and distance of query point(s) from the training set must

be taken into account before determining appropriate predictive

strategy. Consequently, we strongly recommend performing an

initial unsupervised visualization of the input feature cluster

associated with training and test samples using MDS or t−SNE

projections. If the distance between the input spaces associ-

ated with training and test samples is close, we recommend

similarity-based topological regression methods when the size

of the training set is not sufficient to train deep learning models.

However, under the same scenario, when sufficient training sam-

ples are available, we recommend deep sequence learners (for

example, 1-D CNNs).

If, however, the input space associated with the training set

is sufficiently far from that of the test samples, CNN-based deep

learners may not be the best predictive strategy. This caveat is

important because CNN-based deep learners can show excellent

k−fold cross validation performance within the training set and

2 A random variable Y is said to be stochastically

larger than a random variable X if P (Y > t) ≥ P (X > t)
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Fig. 4. Mean stacking performance of topological regression and VHSE CNN for fitness dataset at 3 different sample sizes.

therefore can offer an objective justification for selecting this

type of models. However, under extrapolation scenario, k−fold

cross validation can potentially overestimate the extrapolative

potential of these predictive models [39]. Our results suggest

that, for extrapolation tasks, pre-processing input features

using transformer-based architectures that capture semantic

information coupled with a standard shallow predictive model

can produce more reliable predictions. This finding agrees with

[40] who demonstrated that transformers, trained on suffici-

ently large datasets, can produce robust predictions over a

spectrum of covariate shifts in test samples.

We also note that, for regression tasks, although there may

exist considerable variations in the predicted binding affinity

values for the test samples obtained under different models,

there may exist agreement in terms of ranking the variants

according to the predicted binding affinity. It appears that, at

least in the context of this article, ranking the target proper-

ties of new variants apropos of existing observed variants is

more reliable. Furthermore, we caution against using a single

model, that may turn out to be the best performing one during

the training phase, for predicting the viral properties of new

variants from their S-protein sequence. Instead, we recommend

using multiple transformer-based algorithms to encode the pro-

tein sequence information and then use these extracted features

to train a set of shallow learners as the predictive bag-of-models.

Each combination of embedding and shallow predictive model

should be used to predict the properties of multiple known vari-

ants and generate a stochastic ordering of these variants. The

level of agreement among the candidate model combinations in

terms of ranking the variants should be used to quantify the

reliability of the prediction exercise. If the candidate models

do not produce statistically similar ordering (recall, ProtBert

and BiLSTM produced very different ordering of variants), we

caution against making any conclusive statements about the

ordering of the variants.

In summary, we submit that, in the absence of readily avai-

lable experimental information on focal viral characteristics of

emerging variants of SARS-CoV-2, machine learning models

can be used to provide a relatively quick assessment of the cha-

racteristics of interest. However, customary predictive accuracy

metrics associated with empirical models cannot be computed

in this context due to the inavailability of ground-truthing expe-

rimental information. Hence, in the absence of well-established

formulae for extrapolation penalties associated with complex

machine learning models, we recommend that outputs obtai-

ned from these models should also be accompanied by distance

metrics quantifying how far the input space of training sample is

compared to the input space of the query variants. We caution

against using conventional deep learning predictive algorithms

when the input space of the training samples does not intersect

with that of the query samples. We also caution against using a

single model for extrapolation tasks regardless of how well the

said model performs in the training phase.
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