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Abstract

Predicting protein properties from amino acid sequences is an important problem in biology and pharmacology. Protein-
protein interactions among SARS-CoV-2 spike protein, human receptors, and antibodies are key determinants of the
potency of this virus and its ability to evade the human immune response. As a rapidly evolving virus, SARS-CoV-2
has already developed into many variants with considerable variation in virulence among these variants. Utilizing the
proteomic data of SARS-CoV-2 to predict its viral characteristics will, therefore, greatly aid in disease control and
prevention. In this paper, we review and compare recent successful prediction methods based on long short-term memory
(LSTM), transformer, convolutional neural network (CNN), and a similarity-based topological regression model and
offer recommendations about appropriate predictive methodology depending on the similarity between training and test
datasets. We compare the effectiveness of these models in predicting the binding affinity and expression of SARS-CoV-2
spike protein sequences. We also explore how effective these predictive methods are when trained on laboratory-created
data and are tasked with predicting the binding affinity of the in-the-wild SARS-CoV-2 spike protein sequences obtained
from the GISAID datasets. We observe that topological regression is a better method when the sample size is small and test
protein sequences are sufficiently similar to the training sequence. However, when the training sample size is sufficiently
large and prediction requires extrapolation, LSTM embedding and convolutional neural network-based predictive model
show superior performance.

Key words: COVID-19, Machine learning, Biological sequence analysis, Protein-protein interaction, Topological
regression, Performance evaluation

Introduction autoimmunity or vaccines [3]. Understanding S-protein mutati-

ons and their relationship to viral characteristics are essential
COVID-19 is a respiratory disease caused by the novel human p

coronavirus SARS-CoV-2. The infection is initiated by the
binding of the viral spike protein (S-protein) receptor bin-

for understanding the virulence of SARS-CoV-2, monitoring
its dangerous mutations, and responding to COVID pandemics
ith iate clinical .

ding domain (RBD) and human angiotensin converting enzyme wi .applroprl.a e lIll(L:a mieasures .

. . . . : Since its discovery in human populations, SARS-CoV-2 has
(ACE2) receptors. The mutations in spike protein, especially . X o K
undergone multiple mutations. Periodic emergence of variants
of concern (VOCs) and variants of interest (VOIs) have posed
renewed threats to public health. The Alpha (B.1.1.7 line-
age), Beta (B.1.351 lineage), Gamma (P.1 lineage), and Delta

(B.1.617 lineage) variants have become major VOCs show-

near the RBDs, impact the protein expression and viral tran-
smissibility by increasing or decreasing the binding affinity [1].
Since, RBD is also the primary target of most neutralizing anti-
bodies that inhibit the S-protein and ACE2 receptor binding [2],
substantial changes in S-protein may prevent antibodies from

ing higher t smissibilit d irul 3 d t
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the original strain of SARS-CoV-2. A collaborative genomic
surveillance effort has been tracking emerging mutations and
the sequencing data of emerging variants are made publicly
available through online databases such as National Center
for Biotechnology Information (NCBI)[4] and the Global Ini-
tiative on Sharing Avian Influenza Data (GISAID)[5]. These
open datasets have made SARS-CoV-2 sequences readily avai-
lable, and opened up a promising avenue to understand the
correlation between sequences and viral pathogenicity.

In addition to experimental efforts, computational methods
to predict protein functions based on the sequence characte-
ristics are routinely carried out. Alignment-based homology
analysis is perhaps the standard method for analyzing newly
identified sequences [6]. This approach uses similarity search
tools such as BLAST, PSI-BLAST, SSEARCH, FASTA, and
HMMER to identify sequences with similar structures or com-
mon ancestors by searching for sequences that have obvious
matches with significantly higher similarity than random.

The similarity of proteins can be defined using alignment
methods - for example, BLAST that approximates Smith-
Waterman (SW) algorithm [7] to provide alignment scores as
a proxy for similarities among sequences. In the proteomic ali-
gnment process, two protein sequences are assumed to share
a common ancestor, and mismatches/gaps represent the point
mutations / insertions and deletions. In this article, the seque-
nces we want to analyze are mutated from the common ancestor
wild-type SARS-CoV-2 variant and have a high degree of simi-
larity except for a few mutation loci. Consequently, we use SW
algorithm for sequence alignment.

Due to the large variations in amino acid characteristics,
different point mutations impact the protein characteristics
differently. For example, conservative mutations have minor
influences on the protein function as compared to radical muta-
tions [3]. By introducing substitution matrix (PAM, BLOSUM,
etc.) protein alignment takes into account differential impact
of amino acid mutations as well. Thus, conservative mutations
have higher alignment scores than radical mutations reflecting
higher protein similarities.

With the similarity measure defined, often shallow data-
driven methods are used to predict protein functions after
aligning multiple sequences. Customarily, these approaches
find the most similar instances to the sequence of interest
and assume that high similarity in sequence results in simi-
lar responses (protein functions in our case). Models such as
k-nearest neighbor (KNN), kernel regression, profile hidden
Markov model [8] are popular predictive models that rely on
similarity estimates among protein sequences.

More recently, deep learning methods have become popular
tools to predict protein functions from their structures. These
methods generally rely on quantification of protein sequences
either at residual (single amino acid) level or at peptide level.
At the residual level, each amino acid is quantified separa-
tely. Numeric vectors representing each residual in the protein
sequence are then concatenated to represent the entire pro-
tein. For instance, principal components scores associated with
the Vectors of Hydrophobic, Steric, and Electronic proper-
ties (VHSE) [9] for individual amino acid descriptors are row
concatenated to produce a 2-dimensional array representing a
protein sequence which, in turn, forms the input for the pre-
dictive model. At peptide level, numerical vectors quantifying
the amino acids are further processed to produce an embedding
vector representing the entire protein. Two immediate bene-
fits of peptide level embeddings are (a) the configuration of
residuals in each protein sequence is taken into account while

generating the embedding, and (b) the dimension of the embed-
ding vector can be fixed a-priori thereby alleviating the problem
of dealing with wide variation in the length of the protein
sequences.

Popular classes of models for generating the foregoing
peptide level embeddings consist of (a) sequence neural netw-
ork models, such as 1-D convolutional neural network (CNN),
recurrent neural network (RNN), (b) k—mer based approa-
ches for sequence analysis [10], and (c) autocovariance (AC)
based approaches that encode the protein sequence in terms
of distance among the residuals [11]. Several deep learning
methods have been developed for sequence embedding in
the context of protein quantification. DeepAffinity[12] uses
autoencoder-based Seq2Seq embedding, ProtSolver [13] and
ELASPIC[14] use graph convolution-based neural networks
to generate embeddings, DeepConv-DTI [15] and DeepDTA
[16] apply one-dimensional convolution on protein sequences
and generate convolutional embeddings of the entire sequence.
MDeePred exploits multiple aspects of protein characteristics
and feed them into the CNN model as a multi-channel input
[17]. More recently, NLP techniques have been brought to
bear to encode protein sequences. These methods typically
understand residuals as words/tokens and each sequence as a
sentence. ProtVec[18] uses Word2Vec (Skip-gram)[19] to gene-
rate embeddings of protein sequences, with the properties of
the protein being encoded in the semantic embedding. Dee-
pAffinity integrates unsupervised Seq2Seq RNN for embedding
and supervised CNN for prediction[12]. In ProtTrans[20], seve-
ral transformer models (Transformer-XL, XLNet, Bert, Albert)
are trained on 2.1 billion protein sequences and can be used
to generate the vector embeddings and predict protein structu-
res and characteristics. Turning to viral sequence embedding,
[21] used bidirectional long short-term memory (BiLSTM) to
analyze the semantic embeddings, viral fitness, and immune
escapes. The semantic change and grammaticality that were
generated from the BiLSTM embedding were subsequently used
for predicting the properties of sequences. [22] developed LSTM
based SPBuild for generating protein embeddings, [23] develo-
ped SeqVec algorithm that used Embeddings from Language
Models (ELMo) to provide a fast model to create protein
embeddings.

k—mer based methods, on the other hand, count all the
subsequences of length k (k-mers) to produce the set {V, F},
where V is the set of all possible k-mers and F' is the freque-
ncy of each appearing in the traversed sequence. A normalized
version of fixed-dimensional F' represents the embedding of the
protein sequence. The AC approach requires the residuals to be
numerically encoded. Then, for each dimension of the encoded
vector, AC can be calculated at given lags. The combination
of k-mer and AC is also used as a protein-level featurization
method [24].

We note that similarity-based approaches can be imple-
mented after obtaining the protein embeddings as well. For
example, the Euclidean distance of BiLSTM embeddings can
be used to quantify similarity among protein sequences. The
pairwise distances between sequences and their corresponding
responses can be used to train distance regression models [25].
For a query sequence, such distance regression model predi-
cts the distances in the response space which can be mapped
to actual response value using backscoring techniques [26, 27].
These techniques respect the topology of the input and response
spaces and allow more flexibilities in the sense that sequences
that are similar are not assumed to produce responses that are



similar as well. We call this technique topological regression
(TR) and offer more details in the Supplementary Materials.

In the context of predicting viral properties of SARS-CoV-2
sequences, [28] utilized Bi-path Convolutional Neural Networks
(BiPathCNN) to compare the infectivity patterns of SARS-
CoV-2 and predict host range and potential reservoir species
of this virus. [29] utilized Screening for Non-acceptable Poly-
morphisms (SNAP [30]) to predict the protein function changes
induced by single mutations on SARS-COV-2 spike RBD and
discovered the critical mutations that influence S-protein sta-
bility and binding affinity. Wang et al.[31] utilized AA-index
and CNN to predict binding affinity, protein expression, and
antibody escape. [21] predicted the mutation probability and
their effect on viral fitness and immune escape of SARS-CoV-2
using BiLSTM. [14] used deep-learning feature extraction and
gradient boosting decision tree (GBDT) to predict the effects
of single mutations on the binding to ACE2. In [32], Wang et
al. developed a joint model to predict paired viral-human pro-
tein pathogen-host interactions and examined their model on
the dataset of the interactions between 26 SARS-CoV-2 pro-
teins and human proteins found in [33]. They used ontology
information was embedded into vectors, combined with one-
hot encoded sequences, and modeled as a classification problem
with convolutional and fully-connected networks.

In this article, we investigate several feasible data-driven
viral characteristics prediction pipelines. We train these mach-
ine learning methods on lab-created mutations of SARS-CoV-2
strains and test the ability of the trained models in predicting
the binding affinity and expression profiles of the strains obse-
rved in the real-world variants. We investigate how the size of
the training set and the similarity between the training and
test set impact the predictive performance of these empirical
models. When the test sequences are close to (far from) the
set of sequences in the training sample, we call the prediction
as interpolation (extrapolation) task. Our results suggest that
machine learning models should be carefully chosen depending
on the size of the training dataset and “location” of the test
sequences vis-a-vis their training counterparts.

Methods

‘We begin by reviewing current computational approaches for
predicting viral functions based on their sequences. We then
propose a generic predictive pipeline that includes visualiza-
tion of viral sequences, protein feature extraction, training
predictive models. Fig.1 provides a graphical description of the
pipeline. We confine ourselves to supervised models only and
compare the prediction performance of several shallow and deep
learners, including the foregoing TR method in the following
sections.

Data preparation

First we outline the data acquisition protocol. In this arti-
cle, we used the deep mutation scan (DMS) dataset that was
created from experiments in order to understand the relation-
ships between the S-protein amino acid sequence and the viral
fitness and antigenicity [34]. More specifically, the dataset was
created to investigate RBD mutations’ effects on the expres-
sion of spike protein and binding affinity to ACE2. Mutated
hCoV19 spike protein sequences were generated from wild-type
Wuhan-Hu-1 with each variant having one or more amino acid
mutations. For the binding affinity data, log binding constants
Alog10(Kp, app) relative to the wild-type SARS-CoV-2 RBD

Predicting SARS-CoV-2 S-protein binding | 3

were provided and used as the responses. Each variant’s mean
fluorescence intensity (MFI) was measured for the expression
data, and the Alog(M FI) relative to the unmutated sequence
was also supplied. Data were processed following the procedures
described in [21]. After discarding the invalid variants, 105526
and 116258 variants were retained for training the models for
predicting binding affinity and expression profiles, respectively.
For real-world sequences, we collected S-protein sequences
from GISAID as of December 3, 2021, and related sample
information as the metadata [5]. The metadata, for our pur-
pose, included the dates of sample collection, locations, and
strains/lineages. We determined the variants according to the
Pangolin lineage [35] in the metadata, following the VOC and
VOI definition suggested by CDC. Sequences containing “X”,
denoting unknown amino acids, were discarded. 131719 unique
sequences with metadata were retained for testing purposes.

Sequence dissimilarity measure

We used SW algorithm with BLOSUMS55 as the substitution
matrix to measure similarities among protein sequences. We
define the alignment distance as the difference between the
maximum alignment score and the actual alignment score.
These distances were used to offer a high-level visualization of
sequence clusters and formed the input in the downstream TR
model. Alignment scores and prediction performance are depen-
dent on the substitution matrix. In this paper, we compared the
substitution matrices provided in the library Biopython.

Approaches for visualization

After computing the similarities among protein sequences, we
used multidimensional scaling (MDS) and t-Distributed Stoch-
astic Neighbor Embedding (t-SNE) on the similarity measures
to find the embeddings of sequences in a 2-D space. A scatter
plot was then used to display the two-dimensional coordina-
tes associated with the sequences. The coordinates were color
coded according to their variant label.

Approaches for feature extraction

We used VHSE [9] technique for residual level featurization. It
uses eight dimensions, corresponding to the dominant eight pri-
ncipal components of 50 physicochemical variables, to describe
physicochemical properties of amino acids. Thus, for an S-
protein sequence of length I, VHSE produced a matrix of size
Ix8.

For protein-level embedding, we used pre-trained ProtBert
from [20] and BiLSTM from [21]. We note that, ProtBert was
not exclusively trained on the DMS dataset. Rather, we used
the transformer layers of the pre-trained ProtBert to obtain the
embeddings of the protein sequences in DMS dataset. Admit-
tedly, in our deployment, ProtBert was not optimized for DMS.
However, we posit that this deployment would offer deeper insi-
ght into its performance in potentially out-of-distribution query
points. The BiLSTM model, on the other hand, was indeed pre-
trained on the same DMS dataset from [34], we simply ignored
the output layer(s) of [34] and only retained the protein level
embeddings generated by the LSTM /transformer layers.

Approaches for predictive modeling

We compared the performance of models created under various
combinations of featurization and predictive methods. The first
class of models consisted of semantic embedding that encoded
protein sequence information and then used shallow learners,
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Fig. 1. Overview of proposed protocol for viral sequence prediction.

trained on NLP embedding layers’ output, as the predictive
model. As mentioned before BiLSTM with semantic changes
& grammaticality encoding [21] and ProtBERT [20] were two
prototypical embedding generation models considered in class.
Once the embeddings were generated, we also calculated the
distances in the (embedded) feature space and trained our
topological regression model.

The second type of model consisted of residual level featu-
rization with deep learning predictive models that can handle
the sequential nature of the inputs. VHSE was used to quantify
each amino acid and the protein was encoded via row conca-
tenation of the 8-dimensional vectors representing each amino
acid in the sequence. Since the columns of this protein-encoding
matrix consist of principal components scores, the interpre-
tation of the variables remains consistent across the rows of
this matrix. Hence, a 1-dimensional CNN, with eight channels
matching the column dimension of the protein matrix, was used
as a predictive model. For the GISAID dataset, sequences were
padded with Os to a maximum length of 1330 before being fed
into the CNN model. The architecture of CNN is provided in
Supplementary Materials.

The third type of model relied on similarity-based appro-
aches. We trained the topological regression model using the
pairwise distances (dissimilarities) among sequences as inputs
and response distance as the output. In principle, the entire
training dataset could be used to calculate the pairwise dista-
nces, but the resulting distance matrix is too large for efficient
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downstream computation. One option is to induce sparsity by
imposing some tapering structure [36]. However, in the abse-
nce of a biologically justifiable tapering structure, we preferred
to use a randomly selected subset of the training dataset to
act anchor points. These anchor points can be envisioned as a
special case of “knots” that are inserted in the construction of
spatial predictive processes [37]. Selecting the number of anchor
points depends on the trade-off between predictive accuracy
and computational time. In general, the prediction performance
increases with the number of anchor points. However, since the
distances between the training data and the anchor points need
to be computed and stored, fewer anchor points reduce the com-
putational time and memory requirement considerably. Herein
we compared 200 and 500 anchors to demonstrate the perfor-
mance of topological regression. More details about topological
regression are provided in Supplementary Materials topological
regression Section. The list below summarizes various model
combinations that were tested in this article:

e Semantic embedding + shallow learners:
BIiLSTM embedding (semantic change, CSCS scores) +
Linear regression
BiLSTM embedding + Ridge regression
BiLSTM embedding + RF
BiLSTM embedding + Fully-Connected (FC) ANN
ProtBert embedding + Ridge regression
ProtBert embedding + RF
ProtBert embedding + FC-ANN



e Residual encoding + deep sequence model:
VHSE encoding + 1-D CNN
e Similarity-based models:
SW alignment score 4+ Topological regression
SW alignment score + KNN
CNN embedding distances + Topological regression

Note that the listed methods are specifically for regres-
sion. However, the proposed pipeline also applies to classi-
fication tasks. We discuss its application on classification in
Supplementary Materials.

To illustrate the impact of the size of the training set on
the predictive performance of the above set of models, we gene-
rated three different training sets by sampling 0.5%, 5%, and
100% of the whole DMS dataset, resulting in =~ 500, = 5000,
and = 105, 000 samples, respectively. Data were split into 60%
training, 20% validation, and 20% testing. Tuning of hyperpa-
rameters, for all models, were performed on the validation set
via grid search. Hyperparameters with the best mean square
error (MSE) were selected to arrive at the final predictive model
that was deployed on the test set. Details for hyperparameter
tuning can be found in Supplementary Materials.

We also evaluated the performance gains from simple model
stacking, where a linear regression model was trained on the
validation set using the outputs of multiple base models as pre-
dictors and target values in the validation set as responses. The
estimated regression parameters provided weights that were
used to linearly combine the predictions generated by various
candidate models on the test set.

Results
Visualization based on pairwise similarities

To visually illustrate the distances among the S-protein sequ-
ences, especially between DMS training set vs. GISAID test
data, we perform unsupervised MDS and t-SNE analyses.
(Modified here) For visual clarity, among all 131K sequences
collected from GISAID, we randomly select 100 samples for
each VOC, and 200 for others, and concatenate them with
the sequences from the DMS training set and then using the
sequence dissimilarity measure discussed earlier, we project the
sequences on 2D MDS (t-SNE) planes. We display the 700
randomly selected points in Figure 2 and color-code different
variants determined from their lineages. We notice that the
variants were well separated in both MDS and t-SNE planes,
and the main collection dates coincide with the clusters accor-
dingly. Clearly, there exist considerable dissimilarities among
the variants to suggest predictive models trained on one type
of variant must be deployed with caution when trying to predict
the outcomes associated with a different variant. Furthermore,
the training set (DMS dataset) formed a cluster well separated
from the two major VOCs, Alpha and Delta. Consequently, the
prediction problem turned out to be an extrapolation problem
with the feature set associated with the test set may be well
outside the space spanned by the feature set associated with
the training data. This scatter plot forms a part of explora-
tory data analysis which can help us choose the downstream
predictive models. For example, if we want to computationally
predict the binding affinity associated with the GISAID sam-
ples collected after June 2021 (marking the emerging of Delta
variant) using the samples collected until June as the training
set, we may need to utilize the time stamps associated
with each data point and develop a regime-switching
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time series model (emergence of new variants marking
new regimes) that takes high dimensional temporally
varying covariates as inputs and predict the binding
affinities over time. The forecast errors that such non-
stationary regime switching model [? ] generates can
potentially reveal higher levels of extrapolation error
which, in turn, can be used to assess the reliability
of these forecasts. Although, this modeling approach
is appealing in its own right, we do not pursue this
strategy any further in this article.
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Fig. 2. Scatter plot visualization of GISAID samples and DMS training

dataset.

Comparison of predictive performance on virus binding
affinity under homogeneous setting: interpolation task

In this section, we confine ourselves to the DMS dataset only.
We compared the predictive performance of foregoing eleven
models under three different sample size scenarios. Each model
was trained on 316, 3165, and 63,000 samples and tested on
106, 1056, and 21,000 samples, respectively. Models were com-
pared using the Spearman and Pearson correlation coefficients,
normalized root mean square error (NRMSE), and normalized
Mean Absolute Error (NMAE). Since the training and test sam-
ples were obtained from relatively homogeneous DMS set (as
revealed in Figure 2), we consider this prediction task as inter-
polation. Figure 3 shows the foregoing comparison metrics for
each model under each scenario.

First, observe that when the size of the training set is small
(= 100) TR, with each training sample acting as anchor points,
outperformed the competing candidate models. Furthermore,
TR offered considerable improvement over KNN regression
implying that in complex regression problems the assumption
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of isometry between input and output space is perhaps not
tenable. For moderate size training set (= 3000), VHSE -
CNN showed the best predictive performance. However, TR,
with only 500 anchor points, produced fairly similar predictive
results, at a much lower computation cost, as compared to the
aforesaid deep learner. As dataset size increases, we observe
that VHSE-CNN steadily pulls away from the other compe-
ting models affirming the reliability of the deep learners when
sufficient samples are available to train them.

Turning to model stacking, we select the top two individual
models, TR and VHSE-CNN, under all three sample size scena-
rios and generate stacked predictions obtained using the above
discussed linear regression method. For a complete picture,
we also report the prediction performance for each candidate
model, their average prediction (mean model) in Fig. 4. As
expected, stacking produces better predictive performance as
compared to individual models and the mean model under all
sample size scenarios.

We perform similar analyses on the DMS protein expression
dataset from [34]. After discarding the sequences containing
stops (*) in the middle, 116k sequences were retained. Again,
the entire dataset was sampled at 0.5%, 5%, and 100% level
to assess the performance of models under different sizes of
training set. TR again turned out to be the best perfor-
mer under small sample scenario with VHSE-CNN dominating
other models for the remaining two scenarios. Stacking of TR
and VHSE-CNN produced consistently superior performance
in terms of error. All the results for protein expression were
relegated to the Supplementary Materials.

Binding affinity prediction on GISAID sequences:
Extrapolation task

Ideally, we would like the predictive models, trained using
the information available on the existing/experimental strains,
to accurately assess the potency/transmissibility of new virus
strains. To understand the predictive “reach” of the models
discussed herein, we trained four prototypical models on DMS
dataset using binding affinity as the target response and gene-
rated predictions for the real-world variants extracted from the
GISAID dataset. The prototypical models considered in this
section are: (a) RF and Ridge regression with BiLSTM embed-
ding ', (b) RF and Ridge regression with ProtBert embedding,
(c) 1-D CNN with VHSE encoded sequences, and (d) TR with
SW distance with BLOSUMS55 substitution matrix. Observe
that, above mentioned models represent four major classes of
the eleven models considered in this article and our intention
here is to understand which class of models generate reliable
predictions when the features associated with test samples may
not belong to the space spanned by the training features (see
Figure 2) and therefore the prediction becomes an extrapolation
task.

However, the binding affinities of the variants extracted
from GISAID were not available and hence customary metrics
to compare prediction accuracy (NRMSE, NMAE etc.) could
not be computed. Instead, we looked at the distribution of
predicted binding affinities for each VOC and generated a sto-
chastic ordering of these VOCs in terms of the predicted binding
affinities. We then compared this ordering with the results of
microscale thermophoresis (MST) experiments that estimated

the binding affinities between human ACE2 and RBD of SARS-
CoV-2 for the Alpha, Beta, Gamma, and Delta variants [38]. It
appeared that both MST and molecular dynamics simulations
indicated that the Alpha variant had significantly higher bin-
ding affinity with ACE2 receptors as compared to Beta, Gamma
and Delta variants.

Fig. 5 shows the distributions of binding affinity distribu-
tions predicted using the above models for VOC Alpha, Beta,
Gamma, Delta, and sequences not identified as VOCs or VOI
(defined as “Others”). To formally assess whether our predicti-
ons are in agreement with the MST results [38], we performed a
Kruskal-Wallis test using variants as the factors and predicted
binding affinities from representatives of four classes of models
as responses. Rejection of Kruskal-Wallis test was followed
up with post-hoc Dunn test (with Sidak adjustment) to esta-
blish the stochastic ordering among the variants 2. We used
the existing MST results for hypotheses generation and
posited, as alternative hypotheses in the foregoing Dunn
test, that predicted binding affinities of Alpha variant
will be stochastically larger than the predicted binding
affinities of (i) Beta, (ii) Gamma and (iii) Delta vari-
ants. Both BiLSTM and TR provided statistical evidence that
binding affinities of Alpha were stochastically larger than that
of Delta, Beta and Gamma variants (p—values & 0), thereby
supporting the results from MST experiments (Table 4, Sup-
plementary material). However, results from ProtBert and
VHSE-CNN indicated different stochastic ordering. We rele-
gate the detailed statistical test results to the supplementary
materials Exploration on GISAID dataset section.

Conclusion

In this paper, we briefly reviewed predictive modeling appro-
aches for virus sequences and proposed a general protocol for
predicting virus characteristics from raw sequences. We tested
three ways of generating predictions, (a) residual encoding fol-
lowed by deep sequence learners model, (b) semantic sequential
embedding followed by shallow learners, and (c) similarity-
based models for topological regression, under two different
scenarios - (i) interpolation task, when input space of training
set closely matches with that of the test set, and (ii) extrapo-
lation task, when input space of training set does not overlap
with that of the test set. Our results suggest that both sample
size and distance of query point(s) from the training set must
be taken into account before determining appropriate predictive
strategy. Consequently, we strongly recommend performing an
initial unsupervised visualization of the input feature cluster
associated with training and test samples using MDS or t—SNE
projections. If the distance between the input spaces associ-
ated with training and test samples is close, we recommend
similarity-based topological regression methods when the size
of the training set is not sufficient to train deep learning models.
However, under the same scenario, when sufficient training sam-
ples are available, we recommend deep sequence learners (for
example, 1-D CNNs).

If, however, the input space associated with the training set
is sufficiently far from that of the test samples, CNN-based deep
learners may not be the best predictive strategy. This caveat is
important because CNN-based deep learners can show excellent
k—fold cross validation performance within the training set and

I RF and Ridge were chosen to represent model-free and
parametric predictive approaches, respectively

2 A random variable Y is said to be stochastically

larger than a random variable X if P(Y >t) > P(X > t)
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Fig. 3. Comparison of models for viral fitness dataset with 3 different sample sizes. The data were sampled from the DMS fitness dataset which has
105k samples, and three subsets were obtained by using different sampling fractions.
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Models stacking comparision on 3 different dataset sizes
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Fig. 4. Mean stacking performance of topological regression and VHSE CNN for fitness dataset at 3 different sample sizes.

therefore can offer an objective justification for selecting this
type of models. However, under extrapolation scenario, k—fold
cross validation can potentially overestimate the extrapolative
potential of these predictive models [39]. Our results suggest
that, for extrapolation tasks, pre-processing input features
using transformer-based architectures that capture semantic
information coupled with a standard shallow predictive model
can produce more reliable predictions. This finding agrees with
[40] who demonstrated that transformers, trained on suffici-
ently large datasets, can produce robust predictions over a
spectrum of covariate shifts in test samples.

We also note that, for regression tasks, although there may
exist considerable variations in the predicted binding affinity
values for the test samples obtained under different models,
there may exist agreement in terms of ranking the variants
according to the predicted binding affinity. It appears that, at
least in the context of this article, ranking the target proper-
ties of new variants apropos of existing observed variants is
more reliable. Furthermore, we caution against using a single
model, that may turn out to be the best performing one during
the training phase, for predicting the viral properties of new
variants from their S-protein sequence. Instead, we recommend
using multiple transformer-based algorithms to encode the pro-
tein sequence information and then use these extracted features
to train a set of shallow learners as the predictive bag-of-models.
Each combination of embedding and shallow predictive model
should be used to predict the properties of multiple known vari-
ants and generate a stochastic ordering of these variants. The
level of agreement among the candidate model combinations in
terms of ranking the variants should be used to quantify the
reliability of the prediction exercise. If the candidate models
do not produce statistically similar ordering (recall, ProtBert
and BiLSTM produced very different ordering of variants), we
caution against making any conclusive statements about the
ordering of the variants.

In summary, we submit that, in the absence of readily avai-
lable experimental information on focal viral characteristics of
emerging variants of SARS-CoV-2, machine learning models
can be used to provide a relatively quick assessment of the cha-
racteristics of interest. However, customary predictive accuracy
metrics associated with empirical models cannot be computed
in this context due to the inavailability of ground-truthing expe-
rimental information. Hence, in the absence of well-established
formulae for extrapolation penalties associated with complex
machine learning models, we recommend that outputs obtai-
ned from these models should also be accompanied by distance
metrics quantifying how far the input space of training sample is
compared to the input space of the query variants. We caution
against using conventional deep learning predictive algorithms
when the input space of the training samples does not intersect
with that of the query samples. We also caution against using a
single model for extrapolation tasks regardless of how well the
said model performs in the training phase.

Data and code availability

The DMS data are available in [34]. The GISAID data are
available at https://www.gisaid.org/ [5].

Codes to reproduce the results in this paper are available at
https://github.com/Ribosome25/cov_seqs.
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Fig. 5. Affinity prediction of GISAID sequences by different models. The distributions of predictions are shown in the figure grouped by VOC variants.
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