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Abstract—Medical applications have driven many areas of
engineering to optimize diagnostic capabilities and convenience.
In the near future, wireless body area networks (WBANSs) are
expected to have widespread impact in medicine. To achieve this
impact, however, significant advances in research are needed
to cope with the changes of the human body’s state, which
make coherent communications difficult or even impossible.
In this paper, we consider a realistic noncoherent WBAN system
model where transmissions and receptions are conducted without
any channel state information due to the fast-varying channels
of the human body. Using distributed reception, we propose
several symbol detection approaches where on-off keying (OOK)
modulation is exploited, among which a supervised-learning-
based approach is developed to overcome the noncoherent system
issue. Through simulation results, we compare and verify the
performance of the proposed techniques for noncoherent WBANs
with OOK transmissions. We show that the well-defined detection
techniques with a supervised-learning-based approach enable
robust communications for noncoherent WBAN systems.

Index Terms— Wireless body area networks (WBANS),
noncoherent symbol detection, on-off keying (OOK), distributed
reception, supervised learning.

I. INTRODUCTION

NCREASES in life expectancy and investments in health-
Icare technology have led to advances in sophistication and
integration in medical-use electronic devices. This has been
particularly evident in sensing devices that hinge on wireless
connectivity. Wireless body area networks (WBANs), which
are standardized through the IEEE 802.15.6 task group, hold
much promise in increasing the prevalence and acceptance
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of wearable devices [2]-[5]. At the same time, WBANSs
could potentially be used in non-medical applications such
as gaming devices or mobile applications that respond to
physical activities [6]. For WBANs to become widely used,
however, multiple challenges in power consumption, form
factor, and user-oriented design must be overcome [7], [8].
Recent works take these challenges into account for var-
ious applications, e.g., group activity management, remote
patient monitoring, and interference management [9]-[11].
Comprehensive research, though, is still required to implement
practical wireless devices optimized for the ever-increasing
understanding of the human body’s electromagnetic (EM)
characteristics.

Three physical layers (PHYs) for WBANS are defined by the
IEEE 802.15.6 task group: narrowband (NB), ultra-wideband
(UWB), and body channel communication (BCC) [12]. When
wireless communication is conducted inside or on the human
body using radio frequency bands, the body itself significantly
influences the communication channel. Unfortunately, WBAN
propagation through the body does not follow the traditional
over-the-air channel models. NB and UWB signals propa-
gate both through the surface of the skin and the air, and
they can suffer from a large path loss due to body block-
age [13]. This interaction with the human body is regulated
and leads to heating of the tissue [14]-[17]. In NB and
UWB PHYs, several efforts to statistically characterize the
channel in such a non-traditional environment were conducted
in [18]-[20], and the theoretical performance, including power
allocation, channel capacity, and outage probability, was inves-
tigated in [21] and [22].

The BCC systems operate in the carrier frequencies of
5-50 MHz [7], utilizing EM propagation through both the
skin surface and the entire human body for communication.
The electrical conductivity of human tissue is higher than that
for air, and a lower power consumption of transceivers for
the BCC systems is guaranteed by using an electrode [23].
The properties of the human body imply that the channel
experienced by BCC can vary greatly across the different
frequencies. The channel for the BCC PHY was modeled as a
simple electronic circuit, which operates based on capacitive
and galvanic coupling in [23]-[25]. In terms of wireless
communications, there has been relatively little work on
stochastic channel modeling for BCC since a larger number
of parameters that influence the channel conditions make it
difficult to classify and analyze the channel.

The difficulty in modeling the WBAN channel is also
compounded by its quickly varying characteristics. Properties
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of the human body along with its movement can lead to a
channel that is not easily tracked. For this reason, WBANSs
will often have to operate noncoherently, i.e., all transceivers
can acquire neither instantaneous nor statistical channel state
information (CSI) due to the 1) fast varying body state such as
temperature, posture, and composition in time, and 2) varying
channel statistics depending on people [18]-[20]. In such a
situation, it would be preferable to use only the envelope of the
instantaneous received signals for symbol detection. There are
many previous works, including [26], [27], on communication
systems using the envelope of the received signals; however,
most of them exploited channel statistics at the receiver side,
which is not suitable for WBANS.

In wireless communications, receivers can detect data sym-
bols by defining decision regions. This is fundamentally a
problem of classification, and the classifier can usually be
designed using pilot symbols. As noted above, however, it is
difficult to accurately characterize the input-output model used
for WBAN communication and thereby to conduct classifi-
cation as in a conventional over-the-air communication. This
difficulty of accurate channel modeling motivates the use
of machine-learning techniques that can leverage empirical
data with training samples derived from an unknown system.
In this paper, we focus on supervised learning to detect data
symbols. Supervised-learning approaches have been used for
data detection [28] and adaptive modulation [29] in wireless
communications. However, these past techniques are only valid
for channels with long coherence times.

We also explore how diversity techniques can be used to
overcome the challenging propagation conditions in WBANSs.
Distributed reception employs multiple receiving nodes that
are geographically separated [30]-[33]. These nodes usually
guarantee a low cost and low power consumption, and more-
over, the rudimentary data acquired from each node can be
jointly used to facilitate performance approaching that of a
centralized system. A wearable communication system with
distributed reception over-the-air was also examined in [34],
but distributed reception has not been applied on noncoherent
WBAN systems.

One issue with WBANSs is that the channel characteris-
tics can behave unpredictably due to the fluid, movement,
and heterogeneous composition of the human body. In this
paper, we address this by proposing a noncoherent WBAN
transmission and reception framework. Distributed reception,
constrained using practical assumptions, is exploited in this
system to obtain spatial diversity. To the best of our knowl-
edge, this paper proposes for the first time ever noncoherent
distributed detection, while most (if not all) previous works on
wireless distributed detection are based on at least some form
of coherent processing [30]-[36]. We focus on the popular and
standardized technique of on-off keying (OOK) for signaling,
which is a binary modulation and one of the mandatory modes
in certain frequency bands for WBANs [2], [37]. We adopt
distributed reception to reliably detect OOK symbols where
a fusion center, which is wired with geographically separated
receiving nodes, collects necessary information for the symbol
detection. A preliminary study was performed in [1] with an
idealistic assumption of real-valued channels.

4899

We propose two novel symbol detection approaches for
noncoherent WBANs where both approaches are not able
to utilize conventional channel estimation. One approach is
based on marginalization in probability where the fusion center
computes marginal distributions from the joint probability
distribution of the received signals in an empirical manner.
This probabilistic noncoherent detection approach utilizes the
entire received pilot signals for each time slot to compute these
probability distributions for the symbol detection, resulting in
huge computational overhead.

The second proposed symbol detection approach is based
on supervised learning. This approach is developed by relying
only on the traditional pilot and data transmission framework
used in most wireless communication systems. Pilot symbols
are used to compute a small amount of refined information
called reference values for data symbol detection. In contrast to
conventional symbol detection, our supervised-learning-based
approach copes with a totally unknown WBAN system at
transceivers where the channels are time-varying, and static
channel knowledge acquisition is of little use for detec-
tion. We develop three symbol detection techniques for the
supervised-learning approach without adopting any complex
deep learning algorithm. Employing only a few reference val-
ues, these techniques make the symbol detection process much
simpler with less complexity than that of the marginalization-
based approach.

We verify through simulations with realistic body chan-
nel models that the supervised-learning-based approach is
comparable or even superior to the marginalization-based
approach. The supervised-learning-based approach can even
make comparable performance to the case using perfect CSI
for coherent detection.

The paper is organized as follows. Our system model
employing OOK modulation for WBANs is described in
Section II. We explain the first OOK symbol detection
approach based on marginalization, called empirical likelihood
ratio test (eLRT), in Section III. In Section 1V, the second
detection approach based on supervised learning is introduced
where three detection techniques, namely, weight-comparing
noncoherent detection (WCNDe) techniques with probability-,
deviation-, and combination-valued weights, are proposed in
detail. The practicality of WCNDe is also discussed in the
section. Simulation results for these detection approaches are
shown in Section V, followed by the conclusion in Section VI.

Notations: fq[nj(a) represents the probability density func-
tion for the random process a[n] where n is the time instant.
E,ny{b[n]} denotes the expectation over a[n] of the random
process b[n]. |-| denotes the absolute value of a complex
number. The function CA (,u, 02) is the complex-valued nor-
mal distribution function with the mean p and the variance
o?. R(z) and $(z) represents the real and imaginary parts
of a complex value z € C where C is the set of all
complex numbers.

II. SYSTEM MODEL

We model a single-input multiple-output (SIMO) WBAN
system with a transmitter and K geographically separated
receiving nodes as in Fig. 1. The fusion center is wired with the
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Distributed .
Rx nodes
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Fig. 1. Structure of a WBAN SIMO system. Distributed receiving nodes
convey the information of received signals to the fusion center to detect OOK
symbols.

receiving nodes to collect necessary information for symbol
detection. The channel between the transmitter and each of the
receiving nodes depends on where the transceivers are located
and through which path transmitted signals are conveyed in a
human body. Therefore, the channel between the transmitter
and each receiving node follows a unique probability distribu-
tion. The channel distribution is influenced by the complicated
structure of the human body, including blood fluid or posture,
and its channel gain continuously varies with time due to the
rapid change of the body’s state. Consequently, these factors
make it impossible for the transceivers to obtain instantaneous
or statistical CSIL

For time slot n, the received signal at the k-th receiving
node is given as

yx[n] = VPhi[n]z[n] + wi[n, (1

where z[r] € {0,1} is the transmit symbol that represents
OOK modulation, the simplest form of amplitude shift keying
and P is the transmit power. The complex-valued channel
gain of the k-th receiving node hi[n] € C follows a certain
circularly-symmetric probability distribution fp, [nj(hs), i.e.,
hi[n] ~ fh,(n(hx). The channel distribution for each k is
assumed to be stationary, i.e., fr,nj(hx) = frym)(hx) for
all time instances n and m. In other words, the instanta-
neous channel gain varies in each time slot, but its channel
distribution does not change during the time of interest. The
noise wi[n|] € C is circularly-symmetric, independent, and
identically distributed following CN (0, NoB) where Ny and
B are respectively the noise spectral density and the band-
width. We assume all K channels and noises are independent
of each other.

We assume that CSI is unknown to the transceivers, which
means that each receiving node has no knowledge of hj[n] and
fhynj(hi) at all. Although there are some theoretical channel
models for WBANS, e.g., [18]-[21], they differ depending on
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a person and even the location within a person. Therefore,
it is desirable to develop detectors that can work for arbitrary
channel models. In this paper, we implement symbol detectors
without using any knowledge of instantaneous or statistical
CSI while we adopt body channel models from [21] for
numerical simulations in Section V.

Even though the channel characteristics of the WBAN
system make acquisition of instantaneous CSI infeasible, there
is still benefit to using pilots. We assume that the transmitter
sends a known pilot sequence whose length is IV, as

Np

2'.‘
N,

0, forn:f—l—l,---,Np,

1, forn=1,2,---,

(2)

zn| =

which is equally applied to all of the proposed approaches
in this paper. Sending predetermined OOK pilot symbols of
1 and 0 would not give the fusion center instantaneous CSI,
but it would provide some empirical channel statistics for non-
coherent OOK symbol detection, which will be explained in
the next two sections. After N, pilot transmissions, we assume
the transmitter sends each OOK data symbol equally likely for
Ny channel uses throughout the paper.

II1. MARGINALIZATION-BASED OOK SYMBOL
DETECTION APPROACH

In this section, we propose a detection approach that is
similar to a detection criterion with statistical CSI in which the
pilot symbols are employed for empirical marginalization of
a joint probability distribution. This approach is motivated by
estimation of a probability density function [38]. In general,
statistical knowledge of channel input-output relationships is
given to a receiver and utilized to design a detector. Proba-
bility distributions for two or more hypotheses from a certain
symbol constellation would be the common knowledge used
to conduct LRT for symbol detection. However, we assume
the transceivers for WBANs do not know any instantaneous
CSI due to the fast-varying channels of a human body or
any statistical CSI because of the uncertainty of the body’s
movements and node locations. Instead, we will exploit esti-
mated empirical probability distributions from the received
pilot signal sequence in this section.

We start from the ideal case when the true channel distri-
butions are known at the receiver side. With the channel dis-
tribution fy, 1mj(hx) at each receiving node, symbol detection
through LRT is conducted with the conditional distribution
of the received signal assuming a specific transmit symbol,
computed as

fyk[n]|m{n](yk|:"‘r)
:/Cfhk[m](hk)fyk[n]lx[n],hk[m](yklzahk)dhk: (3

where it is implicitly assumed that the channel distribution is
independent of the transmit symbol. We write the likelihood
function for statistical CSI as

K
Letai (I[’ﬂHyz [n]a LUK [n]) . H fyﬂn”z[n] (ykl-'ﬂ}a 4)

k=1
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for z[n] = 1 or z[n] = 0. Note that this expression is
normalized using the assumption that the two binary OOK
symbols are equally likely. The transmit symbol is finally
detected by conducting LRT with (4) for the two hypotheses.
This ideal case, however, is not possible when the receiver
does not know the channel distributions.

Alternatively, we introduce the detection technique, called
eLRT. to compute an empirical likelihood function using the
pilot symbols in (2). During the data transmissions, using the
pilot signal sequence received during the pilot transmissions
and an instantaneous received data signal, the fusion center
conducts LRT. The likelihood functions are defined as

Lerrr (z[n] = 1|win], -+ ,yx[n])
K 2 Np/2 -
— H N, Z _e—Ciyk[n] velmll* - (5)
and
Lerrr (z[n] = 0|y1 [n],--- ,yx[n])
Ny
= H Ni Z Ee—CEykiﬂi—yk[m]!2: (6)
k=1 P m=N_/2+1

for N, +1 < n < N, + Ng channel uses. The function
£ g=elyx[nl—ux[mIl®  which integrates to one over C, converges
to a Dirac delta functlon as ¢ — oo and its variance goes to
zero. The sample average of the function £e—elyx[n]—vi[m]*
could be considered as a smoothed contmuous version of a
probability mass function that converges to the true probability
density function as Np,¢ — oc in probability [38]. This is
explicitly derived in the following lemma.

Lemma 1: The empirical function Loppr(-) converges in
probability to the likelihood function with only the statistical
CSI Estat('): l-.e.,

1 yK [ﬂ])
= ‘Csta.t.( |n Pyl [ﬂ.

Lerrr (z[n]|yin], - -

- ykn]), ()

as Ny, c — oo for both cases of x[n] =1 and 0.
Please see Appendix for the proof.

The likelihood functions of eLRT in (5) and (6) resem-
ble (4), but do not exploit statistical CSI. Although perfor-
mance of eLRT with large N, and c approaches to that with
the statistical CSI, it requires enormous pilot overhead to con-
verge. Moreover, compared to the techniques to be proposed
in the following section, eLRT is inefficient in that the entire
received pilot signal sequence Yk [m] form = 1,...,Np is
used to compute EGLRT |y1 [n],- - ,uK [n]) for symbol
detection in each time slot

IV. SUPERVISED-LEARNING-BASED OOK SyMBOL
DETECTION APPROACH

Using the received pilot signals labeled as 1 or 0, the
fusion center can learn weights that work as kernel functions
to classify the received data signals. This learning process for
symbol detection can be considered as a kind of model-based
classical machine learning belonging to supervised learning,
which is different from deep learning based on complex
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Fig. 2. The process of OOK symbol detection that is composed of (a) pilot
transmissions with N time slots and (b) data transmissions.

learning algorithms and excessive computational resources.
Compared to eLRT using the entire pilot symbols, the
proposed approach employs only reference values computed
during the pilot transmissions, which reduces computational
complexity significantly. Three kinds of detection techniques
based on supervised learning, i.e., probability-WCNDe
(p-WCNDe), deviation-WCNDe (d-WCNDe), and
combination-WCNDe (c-WCNDe), are proposed in this
section. Among them, c-WCNDe attains the best symbol
detection performance by combining the first two WCNDe
techniques. We first explain a basic symbol detection rule
and then elaborate in detail on the three WCNDe techniques,
followed by comments on the practicality of the proposed
detection techniques.

A. General Detection Framework

Fig. 2 describes the overall process of pilot and data
transmissions. The pilot symbols employed in this section
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are the same as in (2). Depending on a particular detection
criterion, certain reference values, which will be defined as
typical or simple statistics like sample averages, are computed
at each receiving node using the received pilot signal sequence.
During the data transmissions Np +1 < n < Np + Ng,
the transmitter sends OOK symbols, and the fusion center
computes weights using the instantaneous received data signals
and the reference values defined during the pilot transmissions.
The fusion center performs OOK symbol detection as
K

]_ for Z w1 k[ﬂ, Zk—l T.Uo,k[n] > O,
Zn] = = (8)

0, forz al

w1 k[ﬂ, Zk:l T.Uo,k[n] << O,

where wy x[n] and wox[n] are the weights for the k-th
receiving node, which correspond to how much more likely
1 or 0 are transmitted. The weight difference 3 5 pe1 Wik[n] —
K, wox[n] has a similar form to the typical binary log-
likelihood ratio, but in this framework, the full joint probability
distribution is not obtained at the transceivers. Instead, the
weights whose definition depends on particular WCNDe are
employed. We will explain the three kinds of WCNDe in
the following subsections, which employ the reference values
based on supervised learning to classify the data signals.

B. Probability-WCNDe (p-WCNDe)

We first define p-WCNDe, which exploits empirical con-
ditional probabilities that are functions of the pilot symbols.
The threshold amplitude, one of the reference values for
p-WCNDe, at the k-th receiving node is defined as

Z |yx[m]].

pml

Ammg = 9
The k-th receiving node compares the amplitude of each
received pilot signal to Ay, x, and a detected pilot symbol
is obtained as

] — {1, for lya[n]| > Au,

Iiln (10)
01 for |yk[n]| < Ath,k:

forn =1,..., Np. The k-th receiving node counts how many
pilot symbols Z[n] are correctly detected for z[n] = 1 and
z[n] = 0, computed as

Np/2
G6= Y Bemam (11)
m=1
and
NP
gor= Y, Osmizpm (12)

m=Np/2+1
where éik[m],z[m] is the Kronecker delta function defined as

5 ] 1, for &x[m]
#embalml = 0, for dx[m] # z{m]

= z[m],

(13)

For the pilot symbols z[m| for m = 1,..., Np/2, if the
pilot symbols are perfectly detected for some k, the function
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g1,r becomes Ny /2. In contrast, g; » = 0 indicates that the
entire pilot symbols are incorrectly detected as x[n] = 0. This
extreme case is possible when the transmit power is extremely
low. The function go can have the same extreme values
in similar situations. The k-th receiving node computes two
empirical conditional probabilities, another reference values,
written as

r: 2
— for g1 =0,
M, N,
Pajye = ¢ l—ﬁ, for g1 = 7 (14)
2p
.—, elsewhere,
{ g1.k Np
and
f 2
=y for do.k = 0,
My N
Poopyr=4¢ 1— N for gox = 7;:1 (15)
2?
—, elsewhere.
k gu’kN , elsewhere

The conditional probability P(1j1),x corresponds to the event
of zx[n] = 1 given z[n] = 1, and Plg)q) , is similarly defined.
The reason not to assign the value O or 1 to these empirical
probabilities will be explained later.

During the data transmissions, the transmitter transmits an
equally likely data symbol z[n]. By measuring the amplitude
of the received data signal, each receiving node performs
symbol detection as in (10) and computes the two weights
using the empirical probabilities in (14) and (15) as

u}p [ﬂ] _ ].Og-P(1|1),k1 for -i'k[ﬂ] = ]_’ (16)
& log (1 — Pj1),k), for #x[n] =0,
and
w?P ] = log (1 — P(0|0)1,‘.,), for #x[n] =1, i
0,k log Pojo) k> for #x[n] = 0.

The fusion center collects all the weights wY ;[n] and wf ; [n]
from the K receiving nodes and finally detects the symbol
#P[n] by combining the weights as in (8). The detection rule of
p-WCNDe resembles the conventional LRT that is performed
in a binary communication channel [39]. The difference is that
p-WCNDe utilizes empirical probabilities.

Remark 1: With the finite NV, pilot symbols, the empirical
probability P(1)1),x can approach one when the transmit power
is high. By adopting Py|1) » = 1, however, the fusion center
is not able to consider the possibility that the detection
performed at the k-th receiving node is incorrect. The situation
of incorrect detection is always possible even at high transmit
power because the channel gain changing every time slot can
become very small. There is a similar problem when Py
goes to zero with low transmit power. Defining bounded values
of the empirical probabilities intuitively implies how much
trust we have in the detection for each channel condition.
In this paper, we set the bound on the conditional probabilities
as 2/N, and 1 — 2/N,, in (14) and (15), with the implication
that there must be at least one correctly or incorrectly detected
symbol at each receiving node.
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Remark 2: With high transmit power, the detection and error
probabilities in the weights defined in (16) and (17) become
the bounded values for all the receiving nodes. In this case, the
symbol detection conducted at the fusion center boils down to
the majority rule since all the weights are the same regardless
of k.

C. Deviation-WCNDe (d-WCNDe)

In d-WCNDe, each receiving node compares the differences
between the reference values that are computed during the
pilot transmissions and the amplitude of an instantaneous data
signal at each receiving node. Using the received pilot signal
sequence for z[n] = 1 and z[n] = 0, two sample averages are
computed as

Ny/2

2
Avg= 5= > luelmll, (18)
P m=1
and
Np
Aok=7 D luelmll, (19)
P m=N,/24+1

for each k. These sample averages are exploited as the
reference values in d-WCNDe.

Using an instantaneous received data signal and the sample
averages Ay and Ag . the weights for each k in d-WCNDe
are computed as

wf [n] = |yx[n]| — A1g, (20)

and

wd [n] = Aok — |yk[nll, (21)

which consider the two asymmetric magnitude distributions
for the cases of z[n] = 1 and x[n] = 0 that have the different
mean values. For large |yx [n], the weight w{ , [n] has a larger
value than w{ ,[n], giving more credit on the hypothesis of
z[n] = 1, and vice versa. The fusion center finally detects the
OOK symbol %[n] using w{ ,[n] and w§ ,[n] as in (8).

Remark 3: For the case of a singie receiving node,
p-WCNDe and d-WCNDe have the same detection result. The
detection rule of p-WCNDe in (10) is simplified to identifying
whether |yx[n]| is larger than Ay, 4 or not, which becomes the
same as the weight calculations of d-WCNDe in (20) and (21).
The two WCNDe techniques, however, may give different
detection results with multiple receiving nodes. In p-WCNDe,
once the receiving nodes detect the instantaneous data symbols
with (10), symbol detection at the fusion center is conducted
with only the fixed empirical probabilities in (8) regardless
of |yg[n]|. On the contrary, for d-WCNDe, the fusion center
detects the symbol by exploiting the instantaneous value of
|yx[n]| as in (20) and (21).

D. Combination-WCNDe (c-WCNDe)

For the design of c-WCNDe, the various types of processed
values with the same received pilot signals are utilized to
improve the symbol detection performance. Specifically, all
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the reference values and the weights developed for p-WCNDe
and d-WCNDe are exploited in c-WCNDe. As will be shown
in Section V, c-WCNDe is very robust to fast-varying channel
conditions in a human body compared to p-WCNDe and
d-WCNDe.

During the pilot transmissions, the threshold amplitude
Ain r and the sample averages Ay ; and Agj are computed
as in (9), (18), and (19) as well as the empirical probabilities
Pij1),x and Pgjp) x as in (14) and (15), respectively. With an
instantaneous received signal during the data transmissions,
the weights in c-WCNDe for each k are computed as

wf x[n] = wil[n] + wi%[n], (22)
and
w§ k] = wilk[n] + wgk[n], (23)
where
lwf i [n][?
willn] = —TT, 24)
|wg,k [n]|2
3.1:: [n] a _T,kj (25)
d 2
ao o oe Py for n] =1,
c2 e | th,k )
wik[n] = 1 [w  [n] 2
10g (l_P{1|1),k) Lk 4 for :fk[ﬂ.]:{},
th,k i
(26)
and
1 d ]
log (1= Pojoy ) ™", for #x[n]=1,
whkln] = Ml plus.lnll® T
L ; 5 or I |n|=0,
o &L (0j0).k k

(27)

and the corresponding weights are defined in (20) and (21).
The fusion center combines w§ [n] and w§ [n] for all k as
in (8) to detect £°[n]. ' '

Focusing on w¢ , [n], the two terms w$Y [n] and w¢?% [n] are
balanced by norrﬁalizing with Ay g and Ath ks resp,ectively.
The scalar A;; in (24) even balances the weights among
K receiving nodes. The second term w§% [n] is modified to
instantaneously adjust the fixed weights (i.e., the empirical
probability) of p-WCNDe. Although heuristic, it is shown
in Section V that ¢c-WCNDe outperforms p-WCNDe and
d-WCNDe and is comparable to the case of perfect CSL

E. Discussions on Practicality

To discuss the practicality of the proposed detection tech-
niques, we first briefly compare their computational com-
plexities by counting the number of scalar additions and
multiplications. As stated in Section II, the transmitter sends
N, symbols for pilot transmissions followed by N; symbols
for data transmissions. For the marginalization-based approach
in Section III, eLRT computes the likelihood functions in (5)
and (6) during data transmissions, whose complexity is pro-
portional to K N, N4. On the contrary, the supervised-learning-
based approach computes the reference values during the
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TABLE 1

CONSIDERED DISTRIBUTIONS OF SQUARED CHANNEL GAIN
di(p) Distribution model (p > 0) cv
di(p) Burr ([4.71%1077,2.43,5.61]) 0.4861
da(p) Burr ([9.32%1077,3.88 % 101,552 % 1071])  0.0638
ds(p) Burr ([2.29 % 1078,1.21 % 10},5.07  10~1])  0.2390
da(p) Burr ([5.63%1075,2.40%10%,3.97*1071]) 0.1363
ds(p) Weibull ([1.76 + 10~6, 3.88]) 0.2884
ds(p) Burr ([3.83 %107, 7.06,1.26]) 0.2392
d7(p) Burr ([1.31 1076, 5.25,1.47]) 0.3055
ds(p) Weibull ([1.01 * 10—, 4.05]) 0.2774
da(p) Burr ([7.76 % 107%,9.71, 7.87]) 0.1295

pilot transmissions and then the weights during the data
transmissions for each receiving node, which results in the
complexity of same order K (N, + Ng) for all WCNDe
techniques. Consequently, WCNDe has lower computational
complexity than eLRT does. In particular, c-WCNDe can be
implemented to compute the reference values and weights in
the fusion center with equally low complexity, and only the
short length of the received pilot sequence is sufficient, which
is examined in Section V.

We now discuss the practicality of WCNDe. Today’s com-
monly used in-body transmitters, e.g., those used in capsule
endoscopy, must operate without any external power source.
Therefore, the transmitter is required to use minimal power,
and one of the simplest solutions is to transmit OOK sym-
bols without any form of hybrid automatic repeat request.
The receiving nodes may have very limited computational
capability to make them cost efficient and just forward the
received signals to the fusion center. However, the fusion
center, which is located outside of the body with external
power source, can have high computing power to process
a large amount of data cooperatively, handling data storage,
synchronization, error correction, etc. Note that it is not neces-
sary to synchronize the receiving nodes, i.e., the fusion center
can post-process and perform WCNDe after collecting all the
received signals from the receiving nodes. This function split
between the fusion center and receiving nodes makes WCNDe
highly practical.

V. SIMULATION RESULTS

In this section, we evaluate performance using the uncoded
bit error rate (BER) for the two detection approaches devel-
oped in Sections III and IV. For simulations, we adopt the
probabilistic models of squared channel gain, i.e., |hx[n]|?,
of a human body as in Table I, which are from [21]. We assume
the phase of each channel is uniformly distributed from 0
to 2. In each model, we state the coefficient of variation (CV),
which shows how much the channel realization fluctuates in
time, defined as oy /ugr where py and og are the mean and
variance of the corresponding squared-channel-gain distrib-
ution. We set the noise spectral density and the bandwidth
to Np = —174 dBm/Hz and B = 100 MHz, respectively.
We assume that the channel model between the transmitter
and each receiving node does not vary during the time of
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Fig. 3. BERs for p-WCNDe in (a) and c-WCNDe in (b) following nine
different channel distributions between the transmitter and a single receiving
node.

interest. The transmitter and each receiving node do not know
the corresponding channel distribution and its instantaneous
channel value that changes in every time slot, making the
system noncoherent. For all simulation results except the last
one in Fig. 8, a fixed-length pilot sequence is employed as
N, = 40, which makes the training overhead in time quite
negligible for the B = 100 MHz bandwidth system. The
constant ¢ for eLRT is set to 1/(NpB) in Watt scale, which
is a large value, to verify Lemma 1.

For p-WCNDe and c-WCNDe, Fig. 3 shows the perfor-
mance where nine single-receiving-node situations for K =1
are considered, i.e., d;(p) for each i = 1,---,9 is chosen as
the squared gain distribution. The two WCNDe techniques
utilizing a single receiving node make all different perfor-
mance depending on the channel condition. The BERs of
p-WCNDe show an error floor with high transmit power,
depicted in Fig. 3a. Reference values in p-WCNDe are less
affected by the noise as transmit power increases. However,
the reference values, which remain fixed to the bounded value
(e.g.. 1 —2/Nyp), do not cope with the instantaneous channel
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Fig. 4. BERs with K = 1 in which dr (p) is exploited for perfect, statistical,
and no CSI cases.

realization in each time slot as explained in Remark 1. On the
contrary, the BERs of c-WCNDe in Fig. 3b decrease without
any bound, which verifies robust transmissions with high
transmit power.

Meanwhile, we classify the nine channels into two groups
that depend on whether the CV of each channel is relatively
large or small. Seeing Fig. 3, the dash-dot line corresponds
to a weak channel group that has large CVs, and the solid
line corresponds to a strong channel group with small CVs.
Strong channels tend to have the BERs that start decreasing
from small transmit power or achieve lower BERs with high
transmit power. The strong channels follow probability distri-
butions with large mean or small variance, allowing reliable
communications through the channels with small randomness,
and vice versa.

Focusing on d;(p) with K’ = 1, we discuss the disadvantage
of noncoherent detection in Fig. 4 with the performance of all
proposed techniques in Sections III and IV. For comparison,
we employ coherent detection with perfect CSI where the
fusion center performs maximum ratio combining (MRC).
The figure also shows the performance with statistical CSI
where the symbol detection is performed as explained in (4).
MRC shows the best performance followed by the one using
statistical CSI while both schemes are impractical for WBANS.
As discussed in Remark 3 in Section IV-C, p-WCNDe and
d-WCNDe show the same performance. While it does not
approach the performance with statistical CSI, eLRT also
shows an error floor with high transmit power due to the short
length of pilot sequence N,. Resolving the error-floor prob-
lem, c-WCNDe outperforms the other noncoherent detection
techniques with high transmit power.

In Fig. 5, using one of the channel groups classified as
in Fig. 3, we plot the BERs for two extreme cases. Fig. 5a
shows the performance exploiting the three strong channels of
di(p) for i = 2,4,9 with small CVs. However, the optimistic
case where the entire channels have small randomness might
seldom happen in practice. In Fig. 5b, we plot the performance
when using three receiving nodes whose corresponding chan-
nels follow the distributions of d;(p) for i = 1, 3, 6 in the weak
channel group. This channel situation represents a pessimistic

4905

10" T T T T

—&5—m=WCNDe
—<g— p-WCNDe
— > A WCNDe
—s—e-WCNDe
—&—eLRT
—#+— Btatistical O8I
—+— Perfect CSI{MRC] | |

BER

=50 =40 =30 =20 =10 0 10 20 30
Transmit power (dBm)
(a)

10°

—&— m-WCNDe
—<g— p-WCNDe
— > dWCNDe
—#— =WCNDe
—&—eLRT
—#— Btatistical CSI
——+— Perfect CSI{MRC)

w04 E

=R
g0ty :
e | g1
A
10-8 | | | i | 1 I
-50 -40 30 -20 -10 0 10 20 30
Transmit power (dBm)
(b)
Fig. 5. BERs for each of two groups that includes three (a) strong and

(b) weak channels.

case. In addition to the BERs for the three WCNDe variations
presented in the previous sections, this figure also compares
majority-WCNDe (m-WCNDe) for the noncoherent system.
Explaining m-WCNDe briefly, during the pilot transmissions,
&x[n] is computed for each k using A, x as in p-WCNDe.
Afterwards, the fusion center detects the data symbol with the
majority rule, i.e., by comparing the numbers of the symbol
detected as 1 and O at each receiving node.

In Fig. 5b, m-WCNDe approaches to p-WCNDe with
high transmit power, as discussed in Remark 2. Meanwhile,
d-WCNDe shows lower or comparable BER performance
to p-WCNDe in both sub-figures of Fig. 5. The weights
are computed with continuous values, and the fusion center
can conduct more precise detection than that employing the
discretized empirical probabilities. Error floors still appear in
m-WCNDe, p-WCNDe, d-WCNDe, and eLRT, indicating that
these detection techniques do not cope with the noncoherent
system. In addition, eLRT underperforms some WCNDe tech-
niques due to the short length of pilot sequence. On the con-
trary, c-WCNDe outperforms other WCNDe without an error
floor.
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Fig. 7. Distribution of the normalized weight difference for p-WCNDe in (a),
d-WCNDe in (b), and c-WCNDe in (c) with K = 3 channels. Even with high
transmit power of 40 dBm. p-WCNDe and d-WCNDe suffer from detection
error when z[n] = 1 is sent due to the channel fading while c-WCNDe
overcomes the fading effectively.

In Fig. 6, we plot the performance when employing the
entire channels in Table I, which is a definitely more realistic
situation with various channel conditions. Comparing to the
case using only the strong channels in Fig. 5a, m-WCNDe,
p-WCNDe, and d-WCNDe become worse in certain range
of transmit power even using more receiving nodes due to
the effect of weak channels. Without such degradation, eLRT
certainly benefits from utilizing many receiving nodes, and
again, c-WCNDe is shown to be the best detection technique
among the proposed ones. With only N, = 40 for the length
of pilot sequence, c-WCNDe is comparable to the detection
technique with statistical CSI and close to optimal combining
using perfect CSI.

Employing multiple receiving nodes, we plot in Fig. 7
the distribution of the weight difference, ZRK=1 wi kn] —
S, wox[n), for the three WCNDe variations in Section IV
using received data signals after proper normalization. With
the high transmit power of 40 dBm, three channels using d;(p)
for ¢ =1, 5,8 are used in this figure where the circles denote
for the data symbols of z[n] = 1 and the crosses denote for
x[n] = 0. The filled circles indicate the symbols z[n] = 1
detected incorrectly as #[n] = 0. Fig. 7a shows the weights
have discretized values with empirical probabilities, whereas
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Fig. 8. BERs for arbitrary three channels exploiting the length of pilot

sequence ranging from 6 to 1000 with fixed transmit power of —15 dBm.

in Fig. 7b the weights in d-WCNDe are continuous values.
When transmit power is high, the distribution for z[n] = 1
has much larger variance than that for z[n] = 0. As shown
in the two sub-figures, even with very high transmit power,
some data symbols for z[r] = 1 can be detected as &[n] =0
in p-WCNDe and d-WCNDe due to the fast-varying channel.
In Fig. 7c, c-WCNDe correctly detects all OOK symbols with
high transmit power, resolving the error-floor problem.

Fig. 8 shows the performance with varying length of pilot
sequences N, from 6 to 1000 with fixed transmit power of
—15 dBm. In this figure, we choose three channels of d;(p)
for : = 1,3,6 from Table I. In m-WCNDe and d-WCNDe,
there is no extra gain with larger N, in which the threshold
amplitude and the sample averages as the reference values
already converge even with small N,. On the contrary, the
BER of p-WCNDe decreases by increasing N, because the
empirical probabilities Pqj1)x and Pgjp)x become more
accurate. The BER of eLRT seems to converge to that of
detection using the statistical CSI as derived in Lemma 1, but
a large IV, is required for convergence. The BER of c-WCNDe
decreases as N}, increases, and with only small N, c-WCNDe
gives better performance than eLRT and the other WCNDe
employing the reference values for the noncoherent detection.
The results clearly show the practicality of c-WCNDe since
its performance approaches that of detection using perfect
statistical CSI, even when using a small NNV, value.

VI. CONCLUSION

In this paper, we considered a realistic noncoherent system
model for WBANs in which a transmitter sends OOK sym-
bols in fast-varying channel conditions. Distributed reception
with multiple receiving nodes enables reliable communications
where pilot symbols are not used for typical channel esti-
mation. We first developed a marginalization-based approach
employing the entire received pilot signals to compute like-
lihood functions for symbol detection. To mitigate the high
complexity of the marginalization-based approach, we also
proposed three techniques based on supervised learning that
utilize reference values extracted from the received pilot
signals and compute weights during data transmissions. The
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proposed WCNDe techniques enable robust transmissions to
various channel conditions for noncoherent WBAN systems.
Especially, c-WCNDe achieves outstanding performance due
to the well-defined reference values and weights, which also
benefits from small pilot overhead. A related future work
could be to consider more practical WBAN scenarios such
as frequency selective channels or when the transmitter is
equipped with multiple transmit antennas.

APPENDIX
PROOF OF LEMMA 1

For arbitrary k, we first show the convergence of an argu-
ment of the product for the case z[n| = 1, i.e., as N, — oo
and ¢ — oo,
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and channel distribution. In a similar way, for the case z[n] =
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