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Abstract—Deep learning-based automatic modulation classi-
fication (AMC) models are susceptible to adversarial attacks.
Such attacks inject specifically crafted wireless interference into
transmitted signals to induce erroneous classification predictions.
Furthermore, adversarial interference is transferable in black
box environments, allowing an adversary to attack multiple
deep learning models with a single perturbation crafted for a
particular classification model. In this work, we propose a novel
wireless receiver architecture to mitigate the effects of adversarial
interference in various black box attack environments. We begin
by evaluating the architecture uncertainty environment, where we
show that adversarial attacks crafted to fool specific AMC DL
architectures are not directly transferable to different DL archi-
tectures. Next, we consider the domain uncertainty environment,
where we show that adversarial attacks crafted on time domain
and frequency domain features to not directly transfer to the
altering domain. Using these insights, we develop our Assorted
Deep Ensemble (ADE) defense, which is an ensemble of deep
learning architectures trained on time and frequency domain
representations of received signals. Through evaluation on two
wireless signal datasets under different sources of uncertainty, we
demonstrate that our ADE obtains substantial improvements in
AMC classification performance compared with baseline defenses
across different adversarial attacks and potencies.

Index Terms—Adversarial attacks, automatic modulation clas-
sification, machine learning in communications, wireless security

I. INTRODUCTION

THE recent exponential growth of wireless traffic has re-
sulted in a crowded radio spectrum, which, among other

factors, has contributed to reduced mobile efficiency. With the
number of devices requiring wireless resources projected to
continue increasing, this inefficiency is expected to present
large-scale challenges in wireless communications. Automatic
modulation classification (AMC), which is a part of cognitive
radio technologies, aims to alleviate the inefficiency induced
in shared spectrum environments by dynamically extracting
meaningful information from massive streams of wireless data.
Traditional AMC methods are based on maximum-likelihood
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approaches [2]–[6], which consist of deriving statistical de-
cision boundaries using hand-crafted (i.e., manually-defined)
features to discern various modulation constellations. More
recently, deep learning (DL) has become a popular alternative
to maximum-likelihood methods for AMC, since it does not
require manual feature engineering to attain high classification
performance [7]–[11].

Despite their ability to obtain strong AMC performance,
however, deep learning models are highly susceptible to adver-
sarial evasion attacks [12]–[16], which introduce additive wire-
less interference into radio frequency (RF) signals to induce
erroneous behavior on well-trained spectrum sensing models.
Adversarial interference signals are specifically crafted to
alter the classification decisions of trained DL models using
a minimum, and often undetectable, amount of power. Not
only do adversarial interference signals inhibit privacy and
security in cognitive radios, but they are also more efficient
than traditional jamming attacks applied in communication
networks [17]. As a result, wireless adversarial interference
presents high-risk challenges for the deployment of deep
learning models in autonomous signal classification receivers
[18].

Adversarial attacks can vary in potency depending on the
amount of system knowledge available to the attacker. The
most effective attack is crafted in a white box threat model,
where the adversary has knowledge of both the signal features
used for classification as well as the underlying classification
model (including its hyper-parameter settings and values). Not
only is the availability of such specific information to an
adversary rare in the context of wireless communications [19],
but it is also not necessary to craft an effective adversarial
interference signal. This is due to the transferability property
of adversarial attacks between classification models [20]–[22],
in that an attack crafted to fool a specific DL classifier can
significantly degrade performance on a disparate model trained
to perform the same task. Such black box attacks are more
realistic to consider than white box attacks in real-world
communication channels, where an adversary operates with
limited system information. As a result of the transferability
property of adversarial attacks, an adversary can induce large-
scale AMC performance degradation, thus reducing spectrum
efficiency and compromising secure communication channels.

In this work, we develop a novel wireless receiver architec-
ture capable of mitigating the effects of transferable AMC ad-
versarial interference injected into transmitted signals in black
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box environments. We train a series of deep learning-based
AMC models, which utilize two different representations of
wireless signals as input features: (i) in-phase and quadrature
(IQ) time domain signals, and (ii) frequency domain signals.
Our methodology incorporates two key insights from this
analysis. First, we find that attacks on DL-based AMC models
are not directly transferable between signal domains (i.e., from
the time domain to the frequency domain, and vice versa).
Second, we find that the transferability property varies sub-
stantially between DL architectures. Based on these insights,
we propose an ensemble AMC classification methodology that
utilizes different signal representations and DL models, which
we find significantly mitigates the effects of additive black box
adversarial interference instantiated on both time domain and
frequency domain feature sets.

Outline and Summary of Contributions: Compared to
related work in AMC (Sec. II), we make the following
contributions:

1) Cross-domain signal receiver architecture for AMC
(Sec. III-A, III-B, III-C, and IV-B): We develop a
robust AMC module consisting of both IQ-based and
frequency-based deep learning models. We show that
these models obtain high classification accuracy on two
real-world datasets.

2) Resilience to transferable adversarial attacks be-
tween classification architectures (Sec. III-D and Sec
IV-C): We demonstrate our receiver’s ability to with-
stand transferable adversarial interference between deep
learning classification architectures trained on the same
input signal representation.

3) Resilience to transferable adversarial interference
across domains (Sec. III-E and Sec. IV-D): For a given
type of DL classification architecture, we demonstrate
the resilience of frequency domain trained classifiers to
time domain instantiated attacks, and vice versa. This
analysis leads to the identification of the most robust
deep learning architectures suitable for withstanding
transferable adversarial attacks.

4) Black box adversarial interference mitigation via
deep ensemble (Sec. III-F and Sec. IV-E): Using the
foregoing properties, we develop a deep ensemble con-
sisting of both time domain and frequency domain-based
AMC classifiers trained on a variety of architectures.
Our experiments show that this ensemble effectively
mitigates evasion attacks regardless of the signal features
or classification architecture targeted by the adversary.

II. RELATED WORK

Deep learning has been widely proposed for AMC as it re-
quires little to no feature selection to attain high classification
performance on IQ samples. In particular, several studies have
demonstrated the success of convolutional neural networks
(CNNs) for AMC [8], [9], [23]–[26] using network graphs
such as AlexNet [27] and ResNet [28]. In addition to CNNs,
recurrent neural networks (RNNs) have also been shown to
provide high AMC accuracy [29]–[31]. In this work, we build
upon the success of prior AMC deep learning by proposing

a series of models consisting of convolutional, recurrent, both
convolutional and recurrent, and dense fully connected layers
to construct the classifiers contained in our wireless signal
receiver. Moreover, building on prior work [32], [33], we
consider how varying the signal domain representation (time
or frequency) of the input signal can impact AMC.

Although the susceptibility of deep learning AMC classifiers
to evasion attacks has been demonstrated in prior work [12]–
[15], [34], relatively few defenses have been proposed to detect
[35] or mitigate the effects of adversarial interference [34],
[36]. The defense algorithms which have been proposed for
AMC DL classifiers – adversarial training [37], [38], Gaussian
smoothing [39], [40], and autoencoder pre-training [41] –
have each demonstrated degraded performance in black box
environments. This is largely due to these defenses being
specifically designed to defend white box attacks and being
directly adopted in black box environments without special
consideration being given to the differing threat model. Our
proposed wireless receiver architecture, on the other hand, is
designed with the intention of mitigating black box adversarial
interference attacks under different knowledge levels of the
adversary such as DL architecture uncertainty and classifica-
tion domain uncertainty. In this regard, and to the best of
our knowledge, no work has explored the extent to which
adversarial attacks in AMC are transferable between signal
domains (although various domains for classification have
been investigated [32], [33]).

Contrary to the limited defenses that exist for defending
black box AMC adversarial interference, several defenses have
been proposed for defending deep learning image classifiers
from black box adversarial attacks, with no method generally
accepted as a robust solution [42]. Nonetheless, even consider-
ing the adoption of image classification defenses for AMC is
difficult due to the differing constraints placed on the adversary
in each setting (e.g., channel effects and transmit power budget
in AMC versus visual perceptibly and targeted pixel attacks in
image classification). Therefore, in this work, we develop an
ensemble defense specifically tailored to defend AMC models
from adversarial attacks when the adversary is constrained by
communications-based limitations. Future work may consider
the adaptation of our proposed method for AMC in the image
classification setting.

III. OUR AMC METHODOLOGY

In this section, we outline the wireless channel input-output
model we consider for AMC as well as our proposed defense
mechanisms to mitigate black box adversarial interference.
We begin by describing our system model (Sec. III-A and
III-B), followed by the DL classifiers that we consider for
AMC (Sec. III-C). Then, we characterize the adversary’s attack
strategy (Sec. III-D) and define transferability relative to model
architectures and signal domains (Sec. III-E). Finally, we
present our deep ensemble defense for robustness against black
box attacks (Sec. III-F). An overview of our methodology is
given in Fig. 1.
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Fig. 1: Our AMC system model with adversarial interference. The shaded blocks correspond to our constructed models deployed in the
wireless receiver, and the solid and dotted lines correspond to the adversarial frequency feature-based signal and adversarial IQ feature-based
signal, respectively. The models that exhibit the highest degree of attack mitigation in both the signal domain uncertainty environment and
the architecture uncertainty environment are utilized in the construction of the assorted deep ensemble (ADE) defense, whose outputs are
aggregated to calculate the predicted constellation of the input signal.

A. Signal and Channel Modeling

We consider a wireless channel consisting of a transmitter,
which is aiming to send a modulated signal, and a receiver,
whose objective is to perform AMC on the received wave-
form and realize its modulation constellation. In addition, we
consider an adversary aiming to inject interference into the
transmitted signal to induce misclassification at the receiver.
We will denote the channel from the transmitter to the receiver
as ht ∈ C` and the channel from the adversary to the
receiver as ha ∈ C` , where ht = [ht[0], . . . , ht[` − 1]]T ,
ha = [ha[0], . . . , ha[` − 1]]T , and ` denotes the length of
the received signal’s observation window. Both ht and ha
also include radio imperfections such as sample rate offset
(SRO), center frequency offset (CFO), and selective fading,
none of which are known to the receiver. We further assume
that the receiver has no knowledge of the channel model or
its distribution. Therefore, the channel model is not directly
utilized in the development of our methodology. However, this
general setting motivates an AMC solution using a data-driven
approach, as we consider in this work, in which the true
modulation constellation of the received signal is estimated
from a model trained on a collection of pre-existing labeled
signals, which capture the effects of the considered wireless
channel.

At the transmitter, we denote the transmitted signal as
s = [s[0], . . . , s[` − 1]], which is modulated using one of
C = |S| modulation constellations chosen from a set, S ,
of possible modulation schemes, with each scheme having
equal probability of selection. At the receiver, the collected
waveform is modeled by

rt =
√
ρHts + n (1)

when the adversary does not instantiate an attack and as

ra = rt + Haδδδ =
√
ρHts + Haδδδ + n (2)

when the adversary launches an adversarial interference signal,
which is denoted by δδδ ∈ C`, whose potency (i.e., effectiveness
in inducing misclassification) is dependent on the adversary’s
power budget, denoted as PT . In both (1) and (2), rt =
[rt[0], . . . , rt[` − 1]]T and ra = [ra[0], . . . , ra[` − 1]]T denote
the received signal in the absence and presence of adversarial
interference, respectively, Ht = diag{ht[0], . . . , ht[` − 1]} ∈
C`×`, Ha = diag{ha[0], . . . , ha[` − 1]} ∈ C`×`, n ∈ C`
represents complex additive white Gaussian noise (AWGN)
distributed as CN (0, 1), and ρ denotes the signal to noise ratio
(SNR), which is known at the receiver. Note that although
rt = ra when δδδ = 0, we define both signals separately to
characterize the construction of δδδ throughout this work.

B. Signal Domain Transform

At the receiver, we model rt = [rt[0], . . . , rt[`− 1]]T using
both (i) its in-phase and quadrature (IQ) components in the
time domain and (ii) its frequency components obtained from
the discrete Fourier transform (DFT) of rt. Specifically, the pth

component of the DFT of rt is given by

Rt[p] =
`−1∑
k=0

rt[k]e
− j2π` pk, p = 0, . . . , `− 1, (3)

where Rt = [Rt[0], . . . , Rt[` − 1]]T contains all frequency
components of rt. Here, we are interested in comparing the
effects of δδδ when an attack is instantiated on an AMC model
trained on one domain (i.e., ra or Ra) and transferred to an
AMC model trained on the other (i.e., Ra or ra, respectively).

Although both signal representations are complex (i.e.,
rt,Rt ∈ C`), we represent all signals as two-dimensional
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reals, using the real and imaginary components for the first and
second dimension, respectively, in order to utilize all signal
components during classification. Thus, we represent all time
and frequency domain features as real-valued matrices (i.e.,
rt,Rt ∈ R`×2).

C. Deep Learning Architectures

At the receiver, we consider four distinct deep learning
architectures for AMC. Each considered classifier is trained on
a set of modulated data signals, X ⊂ R`×2, where each input,
rt ∈ X , belongs to one of C modulation constellations and
is constructed using time domain IQ features. In general, we
denote a time domain trained deep learning classifier, parame-
terized by θi, as f (i)(·, θi) : X → RC , where f (i)(·, θi) for i =
1, . . . , 4 refers to one of four deep learning architectures used
to construct the classifier along with its corresponding parame-
ters θi. The trained classifier assigns each input rt ∈ X a label
denoted by Ĉ(rt, θi) = argmaxk f

(i)
k (rt, θi), where f (i)k (rt, θi)

is the vector of predicted classification probabilities, assigned
by the ith model, of rt being modulated according to the kth

constellation for k = 1, . . . , C . Similarly, we denote the ith

deep learning classifier trained using the DFT of the input
signal, Rt, parameterized by φi, as g(i)(·, φi) : R`×2 → RC ,
which is trained to perform the same classification task as
f (i)(·, θi) but using the frequency features of rt to comprise
the input signal. Note that θi denotes the parameters of a time
domain trained classifier whereas φi denotes the parameters
of a frequency domain trained classifier.

We analyze the classification performance and the efficacy
of our proposed defense on four common AMC deep learning
architectures: the fully connected neural network (FCNN),
the convolutional neural network (CNN), the recurrent neural
network (RNN), and the convolutional recurrent neural net-
work (CRNN). For each model, we apply the ReLU non-
linearity activation function in its hidden layers, given by
ν(a) = max{0, a}, and a C-unit softmax activation function
at the output layer given by

ν(a)k =
eak

C∑
j=1

eaj
, (4)

where k = 1, . . . , C for input vector a. This normalization
allows a probabilistic interpretation of the model’s output
predictions.

FCNN: FCNNs consist of multiple layers, which are com-
prised of individual units. Each unit contains a set of trainable
weights, whose dimensionality is equal to the number of units
in the preceding layer, and the number of units in each layer
is an adjustable hyper-parameter. The output of a single unit,
u, in a particular layer is given by

ν

(∑
i

w
(u)
i ai + b(u)

)
, (5)

where ν(·) is the activation function, w = [w
(u)
1 , . . . , w

(u)
n ]

is the weight vector for unit u estimated from the training
data, a = [a1, . . . , an] is the vector containing the outputs
from the previous layer, and b(u) is a threshold bias for unit

u. Our FCNN consists of three hidden layers with 256, 128,
and 128 units, respectively, and each hidden layer applies a
20% dropout rate during training.

CNN: CNNs consist of one or more convolutional layers,
which extract spatially correlated patterns from their inputs.
Each convolutional layer is comprised of a set of L×W filters,
denoted as m ∈ RL×W . The output of the pth convolutional
unit in a particular layer (termed a feature map) is given by

yp[j, k] = ν

( L−1∑
l=0

W−1∑
w=0

x[j + l, k + w]m[l(p), w(w)]

)
, (6)

where the two dimensional input, x, and the pth filter,
with each kernel index denoted by m[l(p), w(w)], are cross-
correlated and passed through an activation function, ν(·), to
produce the pth feature map, y, indexed at j and k. Our CNN
is comprised of two convolutional layers consisting of 256
2 × 5 and 64 1 × 3 feature maps (each with 20% dropout),
respectively, and a 128-unit ReLU fully connected layer.

RNN: RNNs implement feedback layers, which extract
temporally correlated patterns from their inputs. Long-short-
term-memory (LSTM) cells [43] extend recurrence to create
memory in neural networks by introducing three gates for
learning. Input gates prevent irrelevant features from entering
the recurrent layer while forget gates eliminate irrelevant
features altogether. Output gates produce the LSTM layer
output, which is inputted into the subsequent network layer.
The gates are used to recursively calculate the internal state
of the cell, denoted by z

(t)
c at time t for cell c, at a specific

recursive iteration, called a time instance, which is then used
to calculate the cell output given by

q(t) = tanh(z(t)c )ν(p(t)), (7)

where p(t) is the parameter obtained from the output gate and
ν(·) is the logistic sigmoid function given by ν(p(t)i ) = 1/(1+

e−p
(t)
i ) for the ith element in p(t). Our RNN is comprised

of a 75-unit LSTM layer followed by a 128-unit ReLU fully
connected layer.

CRNN: Lastly, we consider a CRNN, which captures both
spatial (convolutional) and temporal (recurrent) correlations in
the input sequence. Our CRNN is consists of two convolutional
layers (containing 256 2 × 5 and 128 1 × 4 feature maps,
respectively) followed by a 128-unit LSTM layer and a 64-
unit ReLU fully connected layer.

Training Details: Each AMC classifier contained in the
wireless receiver is trained using the Adam optimizer [44]
with a batch size of 64 and a dynamic learning rate scheduler.
Furthermore, an early stopping criterion with a patience of
50 epochs was used as the stopping condition for training on
each model to achieve convergence (i.e., the model training is
terminated when the loss on a validation set has not decreased
in the last 50 successive epochs). Each model was trained
using the categorical cross entropy cost function, which, for
the time domain feature-based models, is given by

Ln(rt,n,yn, θ) =
C∑
j=1

yj log(ŷj) (8)
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for the nth raining sample rt,n, and

L = − 1

N

N∑
n=1

Ln, (9)

over the entire training set containing N samples. Note that
N denotes the number of samples in the training set whereas
` denotes the length of the received signal’s observation
window. Here, yn is the one-hot encoded label of the nth

signal (i.e., yj = 1 if the ground truth label of the sample
is modulation class j and yj = 0 otherwise), and ŷj is the
confidence assigned by the classifier, parameterized by θ, that
the given input is modulated according to constellation j.
The categorical cross entropy cost for the frequency domain
feature-based models is calculated similarly to (8) and (9), but
with Rt,n and φ replacing the rt,n and θ, respectively, in (8).

D. Adversarial Interference

Adversarial interference (i.e., δδδ ∈ R`×2) is specifically
crafted to induce erroneous modulation constellation predic-
tions at the receiver. Several methods exist to craft adversarial
interference signals and, therefore, several designs of δδδ may
effectively induce misclassification (i.e., disparate and unique
constructions for δδδ may fulfill an adversary’s objective). For a
general classifier trained on IQ features, adversarial interfer-
ence is crafted by solving

min
δδδ

||δδδ||2 (10a)

s. t. Ĉ(rt, θ) 6= Ĉ(rt + Haδδδ, θ), (10b)

||δδδ||22 ≤ PT , (10c)

rt + Haδδδ ∈ R`×2, (10d)

where || · ||2 refers to the l2 norm. The constraint given in
(10b) attempts to induce misclassification with respect to the
parameters of one particular targeted model (trained on time
domain features) while simultaneously using the least amount
of power possible to evade detection caused by higher powered
adversarial interference [35], [45], thus restricting the power
budget to PT in (10c). Finally, (10d) ensures that the perturbed
sample, ra, remains in the same space as rt. An adversary
may also choose to instantiate an attack on a classifier trained
on frequency features; in this case, the crafted perturbation
is given by replacing rt with Rt in (10) while utilizing the
classifier parametertized by φ instead of θ.

Note that δδδ can be constrained using other lp norms such
as p = 0, p = 1, or p = ∞, but p = 2 is a natural choice
to consider in the domain of wireless communications as it
directly corresponds to the perturbation power. Furthermore,
the best solution to (10) is not necessarily realized when ||δδδ||2
is minimized or when ||δδδ||22 = PT , as the primary objective of
the adversary is to induce misclassification on ra. In addition,
a solution to (10) is not always guaranteed to exist, and in such
cases, the additive perturbation may not necessarily result in
ra being misclassified at the receiver.

In a real-world wireless communication channel, the adver-
sary’s knowledge for constructing an attack is limited, which
prevents it from solving (10) directly. Our focus is on black

box threat models in which the adversary has some or no
knowledge about the classification method at the receiver. In
this capacity, we consider three distinct knowledge levels for
the adversary: (i) architecture uncertainty, where the adversary
is aware of the features being used for classification (i.e., IQ
vs DFT features) but unaware of the DL architecture used
for classification; (ii) signal domain uncertainty, where the
adversary is aware of the DL classification architecture but
unaware of the features used to comprise the input signal
for classification; and (iii) overall uncertainty, where the
adversary is unaware of both the classification architecture and
signal features used for classification at the receiver.

Furthermore, due to the black box threat model, the opti-
mization in (10) is formulated as an untargeted adversarial
attack, where the adversary aims to induce misclassification
without regard to a particular incorrect constellation assigned
at the receiver. Since prior work has shown that targeted
adversarial examples rarely transfer with their targeted labels
[20], our considered black box threat model would treat
both targeted and untargeted attacks crafted on a surrogate
model as untargeted attacks on the underlying target classifier.
Therefore, we evaluate the resilience of our wireless receiver
on untargeted attacks only.

In this work, we consider three methods for crafting
adversarial perturbations: the gradient-based fast gradient
sign method (FGSM) [46], the gradient-based basic iterative
method (BIM) [47], and the optimization-based Carlini and
Wagner (CW) l2 attack [48]. Under the FGSM attack, the
adversary exhausts its total power budget on a single step
attack, whereas under the BIM and CW attacks, the adversary
iteratively uses a fraction of its attack budget, resulting in
a more potent attack, in comparison to the FGSM pertur-
bation, at the cost of higher computational overhead. In the
two considered gradient-based attacks, the cost of ra,n is
first linearized as Ln(rt,n + δδδn,yn, θ) ≈ Ln(rt,n,yn, θ) +
(Haδδδ)

TLn(rt,n,yn, θ), which is maximized by setting Haδδδ =
εLn(rt,n,yn, θ) where ε is a scaling factor to satisfy the ad-
versary’s power constraint. The optimization-based CW attack,
on the other hand, optimizes (10a) subject to the constraint
Ĉ(rt+Haδδδ, θ) = t, where t is the second highest constellation
prediction of rt+Haδδδ made by the classifier paramertized by θ.
This is solved by replacing the highly non-linear optimization
constraint with an objective function, denoted by ι(·), and
reformulating the initial optimization as

min
δδδ
||δδδ||2 + c · ι(rt + Haδδδ), (11)

which is solved using stochastic gradient descent (SGD) and
the smallest possible value for c > 0 that results in ι(rt +
Haδδδ) ≤ 0.

FGSM: In this case, for a time domain attack the adversary
adds an l2-bounded perturbation, given by

δδδ =
√
PT

∇rtLn(rt,n,yn, θ)

||∇rtLn(rt,n,yn, θ)||2
, (12)

to the transmitted signal, rt,n, in a single step exhausting the
power budget, PT . Formally, the nth perturbed received signal
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is given by

ra, n = rt,n + Ha

√
PT

∇rtLn(rt,n,yn, θ)

||∇rtLn(rt,n,yn, θ)||2
, (13)

where L refers to the cost function of f(·, θ) in (8). Similarly,
for a frequency domain attack, the additive perturbation is
given by δδδ =

√
PT

∇RtLn(Rt,n,yn,φ)

||∇RtLn(Rt,n,yn,φ)||2 resulting in the nth

perturbed received signal being

Ra,n = Rt,n + Ha

√
PT

∇RtLn(Rt,n,yn, φ)

||∇RtLn(Rt,n,yn, φ)||2
. (14)

Adding a perturbation in the direction of the cost function’s
gradient behaves as performing a step of gradient ascent, thus
aiming to increase the classification error on the perturbed
sample.

BIM: The BIM is an iterative extension of the FGSM.
Specifically, in each iteration, a fraction of the total power
budget, α < PT , is added to the perturbation, and the
optimal direction of attack (the direction of the gradient) is
recalculated. Formally, the total perturbation, ∆ ∈ R`×2,
is initialized to zero (i.e., ∆

(0)
n = 0), and the perturbation

on iteration k + 1 on the nth sample in the time domain is
calculated according to

∆(k+1)
n = ∆(k)

n +
√
α
∇rtLn(r

(k)
t,n ,yn, θ)

||∇rtLn(r
(k)
t,n ,yn, θ)||2

, (15)

which results in the perturbation given by δδδ =
√
PT

∆n

||∆n||2 .
Formally, the nth signal perturbed using the BIM is given by

ra,n = rt,n + Ha

√
PT

∆n

||∆n||2
. (16)

Similarly, for a frequency domain attack, the total perturbation
is calculated according to

∆(k+1)
n = ∆(k)

n +
√
α
∇RtLn(R

(k)
t,n ,yn, φ)

||∇RtLn(R
(k)
t,n ,yn, φ)||2

, (17)

yielding the perturbed frequency domain signal

Ra,n = Rt,n + Ha

√
PT

∆n

||∆n||2
, (18)

where the final additive perturbation, ∆n, in both the time
and frequency domain is scaled by

√
PT

||∆n||2 to satisfy the power
constraint of the adversary.

CW: The CW attack seeks to optimize (11) using SGD.
Formally, the adversarial perturbation, with the effect of the
adversary’s channel, on the nth received signal is given by

min
w

∣∣∣∣∣∣∣∣12
(

tanh(w)+1

)
−rt,n

∣∣∣∣∣∣∣∣2
2

+c·ι
(
1

2
(tanh(w)+1)

)
, (19)

where c is a constant and ι(·) is empirically found to be

ι(ra) = max
(

max
i6=t
{Z(ra, θ)i − Z(ra, θ)t},−κ

)
, (20)

where Z(·, θ) outputs the classifier’s logit vector for (·) (i.e.,
the classifier predictions prior to softmax normalization), i is
the correct modulation prediction, and t is the second most
likely constellation prediction of ra made by the classifier

parameterized by θ. In addition, the parameter κ controls the
confidence with which misclassification occurs (nominally to
class t) on ra. κ can be interpreted as a confidence parameter,
with higher κ making a sample more likely to be misclassified
when transferred to a different model. More details on this
derivation are given in [48].

For each attack, we assume a naive adversarial attack
instantiation, where we set Ha = I, following [13], [40],
[41]. As a result, each element of the crafted perturbation
retains its sign and magnitude after going through the channel.
This general setup focuses on controlling the model’s behavior
at the transmitter and receiver, while considering the most
stringent threat model for the adversary. Furthermore, since
Ha = I, PT directly corresponds to both the adversary’s power
constraint as well as the received power at the sink.

E. Resilience to Transferable Interference

We demonstrate the resilience of our wireless AMC re-
ceiver to transferable adversarial interference in architecture
uncertainty and signal domain uncertainty environments. In
the architecture uncertainty threat model, the adversary has
access to one of the classifiers contained within the receiver
trained on IQ time domain samples. In this case, δδδ, in
both the FGSM and BIM attacks, is constructed using the
gradient of the accessible classifier and transmitted alongside
rt. Specifically, we evaluate the improvement provided by
Ĉ(ra, θj) = argmaxk f

(j)
k (ra, θj) when an attack is crafted

using PT and ∇rtL(rt,y, θi), which we evaluate ∀i 6= j.
In the signal domain uncertainty environment, the adversary

crafts δδδ using the gradient of either f (i)(·, θi) or g(i)(·, φi) and
attempts to transfer the attack onto g(i)(·, φi) or f (i)(·, θi),
respectively. Formally, the transferability of an attack from
the time domain to the frequency domain is assessed through
the accuracy improvement provided by f (i)(·, θi) when the
adversary operates based on g(i)(·, φi) (and vice versa for
assessing the transferability of an attack from the frequency
domain to the time domain). In this scenario, we demonstrate
the resilience of our wireless AMC receiver to transferable
attacks targeted at degrading domain specific classifiers.

F. Assorted Deep Ensemble Defense

We now develop our defense against adversarial interference
in a complete black box attack environment in which the
adversary is blind to both the classification architecture and
the signal domain used at the receiver. Here, we introduce
our assorted deep ensemble (ADE) defense, which offers
diversity among both classification architectures and signal
representations. Contrary to deep ensemble models that have
been proposed for other applications in prior work [49], our
proposed ADE for AMC employs a variety of models trained
on both IQ and frequency-based features. Furthermore, each
classifier contained in our ADE defense is trained using Gaus-
sian smoothing, which improves classification performance on
out-of-distribution waveforms. Specifically, Gaussian smooth-
ing involves adding multiple copies of each training sample
into the training set, where each copied signal is randomly
perturbed. When the training dataset is augmented with a
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Fig. 2: Illustration of our AMC methodology in the black box adversarial attack environment on a GFSK modulation signal, where the
adversary is forced to use the gradient of a surrogate model to craft the interference signal.

sufficient amount of random perturbations in this fashion, the
classification performance of a single DL model increases
on adversarial examples, since the random noise accounts
for various distortions that may be induced by adversarial
examples [39]. Finally, each classifier in our ADE is trained
using the entire available training set (as opposed to bootsrap
aggregating, i.e., bagging, traditionally used in ensemble train-
ing), where different random initializations (as well as, in our
case, Gaussian noise signal perturbations in the training set)
are used to create diversity among the models.

Algorithm 1 outlines the training process for our proposed
ADE. Here, N denotes generating an ` × 2 matrix from a
Gaussian distribution. Consistent with the design of black box
attacks crafted in prior work [20]–[22], [42], the adversary
uses a surrogate deep learning classifier to craft their attack,
which is transmitted to the underlying classification model
at the receiver (we will discuss the procedure used by the
adversary to construct the surrogate model in our experiments
in Sec. IV-E). In this fashion, our defense is especially
applicable in overall uncertainty black box environments when
an adversary cannot access the gradient of the underlying
classifier at the receiver.

During deployment, the modulation constellation of an
input, ra, is predicted by aggregating the output of each
classifier in the ensemble trained on IQ features, F =
{f (1)(·, θ1), . . . , f (M)(·, θM )}, and frequency features, G =
{g(1)(·, φ1), . . . , g(M)(·, φM )}. Algorithm 2 outlines the de-
ployment of our ADE defense against adversarial signals. The
application of our black box defense is illustrated in Fig. 2.

IV. RESULTS AND DISCUSSION

In this section, we conduct an empirical evaluation of our
AMC methodology. First, we overview the datasets that we
use (Sec. IV-A). Next, we present the baseline classification
performances in the absence of adversarial interference (Sec.
IV-B). We then demonstrate our wireless receiver’s resilience
to transferable adversarial interference between classification

architectures (Sec. IV-C) and signal domains (Sec. IV-D).
Finally, we evaluate our assorted deep ensemble (ADE) de-
fense and demonstrate its robustness in black box attack
environments over three comparative baselines (Sec. IV-E).

A. Datasets and Evaluation Metrics

We employ the GNU RadioML2016.10a (referred to as
Dataset A) [50] and RadioML2018.01a (referred to as Dataset
B) [23] datasets for our analysis. Each signal in the Ra-
dioML2016 dataset (rt,n) is normalized to unit energy and
consists of a 128-length (` = 128) observation window
modulated according to a certain constellation (yn). In order to
isolate the impact of adversarial interference, we focus on the
following four modulation schemes, which, as we will show
in Sec. IV-B, have equivalent classification performance on
both time and frequency domain features in the absence of
adversaries: CPFSK, GFSK, PAM4, and QPSK. Each constel-
lation set contains 6000 examples for a total of 24000 signals.
In the RadioML2018.01a dataset, each considered signal is
oversampled with an observation window of ` = 1024.
For a consistent comparison between datasets, signals in the
RadioML2018.01a dataset are downsampled by 1/8 to obtain
an observation window of ` = 128. We then focus on the
following modulation constellations within the dataset: OOK,
8ASK, BPSK, and FM. Each modulation scheme contains
4096 examples for a total of 16384 signals. Following in
line with previous studies [13], [40], [41], we focus on
high SNR signals, where small perturbations can significantly
degrade the classification performance of otherwise robust
AMC models. Therefore, for each considered dataset, we
present results at a constant SNR of 18 dB unless otherwise
stated. However, our conclusions hold at SNRs greater than
2 dB, where previous works (e.g., [32]) have achieved high
classification accuracy for deep learning-based AMC. We will
analyze the effects of varying the SNR more closely in Sec.
IV-E.
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Algorithm 1 ADE Construction

1: input: X IQ: IQ feature-based training set
XDFT: frequency feature-based training set
ζζζ = {ζ(1), . . . , ζ(M)}: set of randomly initialized
untrained deep learning architectures
k: number of noisy samples generated per signal
σIQ: standard deviation of Gaussian noise added to
IQ samples
σDFT: standard deviation of Gaussian noise added
to DFT samples

2: initialize: F ← ∅
G← ∅

3: for i = 1, . . . ,M do
4: for j = 1, . . . , k do
5: X IQ

noisy ← ∅
6: XDFT

noisy ← ∅
7: for rt,Rt ∈ X IQ,XDFT do
8: n`×2j ← N (µ = 0, σ = σIQ)

9: N`×2
j ← N (µ = 0, σ = σDFT)

10: r̃t ← rt + nj
11: R̃t ← Rt + Nj

12: X IQ
noisy ← X

IQ
noisy ∪ r̃t

13: XDFT
noisy ← XDFT

noisy ∪ R̃t
14: end for
15: end for
16: f (i)(·, θi)← train ζ(i) on X IQ

noisy
17: F ← F ∪ f (i)(·, θi)
18: g(i)(·, φi)← train ζ(i) on XDFT

noisy
19: G← G ∪ g(i)(·, φi)
20: end for
21: return F,G

In each experiment, we employ a 70/15/15 train-
ing/validation/testing dataset split, where the training and
validation data are used to estimate the parameters of f (i)(·, θi)
and g(i)(·, φi), and the testing dataset is used to evaluate each
trained model’s susceptibility to adversarial interference as
well as the effectiveness of our proposed defense. In particular,
the validation set is used to tune the model parameters using
unseen data during the training process whereas the testing set
is used to measure the performance of the resulting model. For
each dataset, we denote the training, validation, and testing
datasets, consisting of time domain IQ points or frequency
domain feature components, as X ttr, X tva, X tte, Xωtr, Xωva, and
Xωte, respectively.

To measure the potency of the additive adversarial interfer-
ence, we use the perturbation-to-noise ratio (PNR), which is
given by

PNR [dB] =
E[‖δδδ‖22]
E[‖ra‖22]

[dB] + SNR [dB], (21)

where E is the expected value. A higher PNR indicates higher
levels of additive interference. We consider a perturbation to
be imperceptible when PNR ≤ 1 dB because the perturbation
power would be at or below the noise power. At high PNR (i.e.,
PNR > 1 dB), the underlying signal is masked to a greater

Algorithm 2 ADE Deployment

1: input: ra: perturbed wireless signal
F = {f (1)(·, θ1), . . . , f (M)(·, θM )}
G = {g(1)(·, φ1), . . . , g(M)(·, φM )}

2: initialize: q̂f ← 0M×C

q̂g ← 0M×C

3: for i = 1, . . . ,M do
4: q̂f [i]← f (i)(ra, θi)

5: Ra ←
`−1∑
k=0

ra[k]e
− j2π` pk for p = 0, . . . , `− 1

6: q̂g[i]← g(i)(Ra, φi)
7: end for
8: Q̂2M×C ← [q̂f ; q̂g]
9: ŷ← 0C×1

10: for j = 1, . . . , C do

11: ŷ[j]← 1
2M

2M∑
i=1

Q̂[i, j]

12: end for
13: Ĉ ← argmaxi ŷi
14: return Ĉ

TABLE I: The testing accuracy of each considered model on X (·)
te as

well as the Pearson Product-Moment correlation coefficient (PPMCC)
between the validation sets of Dataset A and Dataset B. The CNN
outperforms every other considered model (although the CRNN
delivers equivalent accuracy, it is achieved with a longer training
time on both datasets).

Model Input
Features

Accuracy on
Dataset A

Accuracy on
Dataset B PPMCC

FCNN IQ 92.78% 99.35% 0.64
FCNN Frequency 92.22% 99.10% 0.57
CNN IQ 99.19% 99.59% 1.0
CNN Frequency 99.25% 99.72% 0.85
RNN IQ 93.61% 98.58% 0.80
RNN Frequency 92.53% 99.15% 0.65

CRNN IQ 99.61% 99.59% 0.80
CRNN Frequency 98.92% 99.63% 0.52

extent by the perturbation, making effective classification
difficult in any case due to the loss of salient features across
classification architectures.

At each PNR, we measure the accuracy of the considered
testing set (i.e., X tte or Xωte), which is given by dividing
the total number of correctly classified samples by the total
number of samples in the set. Although random predictions
would yield an accuracy of 25% (since C = 4) in our experi-
ments, we will see that adversarial perturbations can result in
classification accuracies significantly below random guessing,
indicating their potency on DL-based wireless communication
networks.

B. AMC Wireless Receiver Performance

We begin by evaluating the performance of both f (i)(·, θi)
and g(i)(·, φi) in the absence of adversarial interference. In
Figs. 3 and 4, we plot the evolution of the classification ac-
curacy across training epochs achieved by each deep learning
architecture on their respective training and validation sets.
We see that each model trained using our proposed frequency
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Fig. 3: The model training performance on Dataset A of each
considered AMC architecture on the corresponding training and
validation sets. We see that the frequency-based features g(·, φ)
outperform or match the time domain features f(·, θ) in terms of both
training and validation accuracy for each deep learning architecture.
The CNN results in the fastest convergence and highest accuracy for
both f(·, θ) and g(·, φ).

Fig. 4: The model training performance on Dataset B of each
considered AMC architecture on the corresponding training and
validation sets. Similar to Fig. 3, we see that the CNN and CRNN
achieve robust classification performance on both IQ and frequency
features. Unlike Fig. 3, the FCNN and RNN experience similar
performance to the CNN and CRNN.

feature-based input performs equivalently or outperforms its
time domain counter-part model in terms of final accuracy
(calculated with regards to the subset of considered modu-
lation constellations in each dataset) and required training
epochs, with the exception of the CRNN. We also see in Figs.
3 and 4 that, among each considered architecture, the CNN
and CRNN consistently obtain the best performance overall
on their validation sets. Contrarily, both IQ and frequency
features present more challenges during training on the FCNN
and RNN compared to the CNN and CRNN on Dataset

Fig. 5: The transferability of the BIM perturbation between clas-
sification architectures on Dataset A. We see that the effects of
FCNN, CNN, and RNN instantiated attacks are nearly eliminated
on the CRNN in the low PNR regime whereas the effects of CRNN
instantiated attacks fail to strongly transfer onto RNNs.

A, whereas the CRNN presents more training instability on
Dataset B. Specifically, on Dataset A, both the FCNN and the
RNN experience slight overfitting to the training data and fail
to converge on a validation accuracy greater than 94%, while
the CNN and CRNN models present generalizable and robust
performance nearing or exceeding 99%. Dataset B, however,
experiences a sudden drop in training accuracy on the CRNN
but does not experience overfitting on any classifier trained on
either IQ or frequency features, while delivering a validation
accuracy greater than 99% on each classification architecture.

Each trained model’s accuracy achieved on its correspond-
ing testing set is shown in Table I. In addition, we show
the Pearson Product-Moment correlation coefficient (PPMCC)
[51] between the validation accuracies (at the end of each
training iteration) on Dataset A and Dataset B for the same set
of signal features (i.e., IQ vs. FFT) on each dataset. Among
all eight considered models, the CNN trained on frequency
features achieves the highest testing accuracy while converging
using the fewest epochs as shown in Figs. 3 and 4. Although
the CRNN achieves a slightly higher testing accuracy, the
higher number of required epochs results in substantially
higher computational overhead (the CNN converges three
times faster than the CRNN). Moreover, the CNN has the
highest PPMCC correlation between Dataset A and Dataset
B on their corresponding classifiers. Therefore, our proposed
CNN trained using frequency features is the most desirable
model in terms of classification performance, training time,
consistency between datasets, and computational efficiency.

C. Architecture Uncertainty Performance

In Figs. 5 - 6, we demonstrate the ability of our wireless
receiver to withstand the effects of transferable adversarial
interference in architecture uncertainty environments under the
FGSM and BIM attacks for Dataset A and Dataset B. From
these figures, we see that the potency of adversarial attacks are
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Fig. 6: The transferability of the FGSM perturbation between clas-
sification architectures on Dataset B. Here, transferrability is smaller
than for Dataset A. The FCNN provides the greatest resilience in
attacks targeted at the CNN, RNN, and CRNN, whereas the CRNN
provides the greatest attack mitigation for interference targeted at the
FCNN.

mitigated when they are transferred onto architectures differing
from the ones used to craft the attacks. In particular, each
classifier that experiences a transferred attack has a higher
accuracy than the target model for all PNRs. Furthermore, in
each case, we find particular classifiers that almost entirely
withstand the effects of the additive interference. Specifically,
in Fig. 5, the CRNN experiences nearly no degradation in the
imperceptible PNR region for BIM attacks instantiated on the
FCNN, CNN, and RNN, and similarly, the RNN reduces the
effects of the CRNN instantiated attacks across nearly the en-
tire considered PNR range. For Dataset B in Fig. 6, we observe
the same general trends on the FGSM perturbation, except the
attacks are less effective overall (due to the lower potency
of the FGSM attack compared to the BIM attack), and thus,
there is less variation in transferrability between architectures.
This indicates that black box adversarial attacks instantiated
on AMC models are not directly transferable between the deep
learning classification architectures considered in our wireless
receiver.

D. Signal Domain Uncertainty Performance

We now evaluate our receiver’s ability to withstand trans-
ferable adversarial interference between signal domains. Figs.
7 and 8 give the results for the FGSM and BIM attacks on
Dataset A. Each plot shows the transferrability of an attack on
the time domain trained classifier, f (i)(·, θi), to the frequency
domain trained classifier, g(i)(·, φi), and vice versa, for each
architecture. In addition, Table II shows the transferability
results on Dataset B for time domain and frequency domain
attacks on varying PNRs.

Fig. 7, as well as Table II, demonstrate the resilience of
each trained classifier to withstand FGSM attacks. For both
datasets, we see that there are certain architectures for which
transferrability from the time domain to the frequency domain,

Fig. 7: The transferability of the FGSM attack between time and
frequency domain classifiers on Dataset A. Both the RNN and CRNN
mitigate the effects of the attack targeted at g(i)(·, φi) to the largest
extent when transferred to f (i)(·, θi), while the frequency domain
CNN classifier withstands time domain attacks to the greatest extent.

Fig. 8: The transferability of the BIM attack between time and
frequency domain classifiers on Dataset A. Similar to Fig. 7, we see
that the RNN and CRNN mitigate frequency domain-based attacks
to the greatest extent while the the CNN withstands time domain
instantiated attacks to the greatest extent.

and from the frequency domain to the time domain, are
significantly mitigated. In particular, the RNN and CRNN
architectures demonstrate the greatest resilience in that they
achieve accuracy improvements greater than 70% and 65%,
respectively, on Dataset A while the attack is less potent
on Dataset B for the same DL architectures at 0 dB PNR.
Furthermore, the CNN demonstrates significant gains in clas-
sification performance when an attack is transferred from the
time domain to the frequency domain on both datasets (e.g.,
improving accuracy from 39.14% to 89.50% at 5 dB PNR on
Dataset A and from 43.81% to 87.18% on Dataset B at 10
dB PNR). The ability of the CNN and CRNN to withstand
attacks to the highest degree overall indicates their increased
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TABLE II: The classification accuracies of the FGSM and BIM
attacks between the time and frequency domain classifiers on Dataset
B at low (−10 and −5 dB), medium (0 dB), and high (5 and 10
dB) perceptibility levels. Consistent with Dataset A, we see that that
adversarial perturbations are not directly transferable between signal
domains.

PNR
(dB) Model IQ FGSM Attack Freq. BIM Attack

f(·, θ) g(·, φ) g(·, φ) f(·, θ)

-10

FCNN 98.82% 98.25% 95.20% 98.94%
CNN 99.22% 99.10% 89.38% 97.97%
RNN 69.40% 98.90% 76.03% 84.25%

CRNN 94.71% 96.42% 99.06% 99.47%

-5

FCNN 96.46% 95.97% 90.84% 98.41%
CNN 98.29% 98.41% 71.72% 93.65%
RNN 70.01% 98.45% 74.61% 83.16%

CRNN 75.34% 84.25% 97.97% 99.35%

0

FCNN 88.03% 91.74% 69.60% 94.79%
CNN 95.20% 96.46% 62.08% 77.87%
RNN 69.48% 95.52% 73.35% 80.68%

CRNN 58.74% 72.50% 88.36% 97.84%

5

FCNN 66.27% 80.84% 53.30% 79.70%
CNN 85.64% 91.66% 59.89% 64.04%
RNN 63.67% 90.11% 70.79% 78.44%

CRNN 37.23% 53.09% 57.53% 90.85%

10

FCNN 51.74% 70.67% 43.04% 63.63%
CNN 43.81% 87.18% 61.51% 74.17%
RNN 54.19% 85.55% 68.02% 74.65%

CRNN 25.87% 40.36% 15.37% 63.38%

resilience to transferable adversarial interference.
The effectiveness of our proposed defense against the BIM

adversarial attack, as shown in Fig. 8 and Table II, consistent
with the response of the FGSM attacks: BIM instantiated
adversarial attacks are not directly transferable between signal
domains. Moreover, the time domain-based CRNN eliminates
the degradation effects of the frequency domain instantiated
attacks almost completely. However, the degree to which BIM
attacks effectively transfer between domains differs between
Dataset A and Dataset B, indicating that the mitigation of
adversarial attacks in the domain uncertainty environment may
be dataset dependent. Thus, as shown by the instantiation of
both considered attacks, our wireless receiver architecture mit-
igates the transferability of adversarial interference between
IQ-based and frequency-based features to a significant degree.

We analyze the CNN and CRNN’s resilience to transferable
attacks between signal domains on Dataset A more closely in
Figs. 9 – 10. We consider the CNN’s performance on a time
domain attack compared to the case of no interference in Fig.
9, and the CRNN’s performance on a frequency domain attack
compared to the case of no interference in Fig. 10.

As shown in Figs. 9 and 10, both time and frequency
features deliver robust AMC performance in the absence of
adversarial interference with classification rates around 99%
for both models. However, at a PNR of 5 dB, the classification
rate drops to 39.14% and 31.03% when the FGSM attack
is transmitted in the time domain, in Fig. 9, and frequency
domain, in Fig. 10, respectively. From Figs. 9 and 10, we see
that the adversarial interference pushes the majority of signals
within the classification decision boundaries of the PAM4
modulation constellation for the CNN in the time domain,
and the CPFSK constellation for the CRNN in the frequency

Fig. 9: The CNN classifiers on Dataset A, with no interference,
achieve roughly equivalent performance using IQ features (top left)
and frequency features (top right). Moreover, the instantiation of a 5
dB PNR FGSM attack in the time domain (bottom left) is significantly
mitigated on the frequency domain classifier (bottom right), with the
largest incongruency being between PAM4 and QPSK.

Fig. 10: The CRNN classifiers on Dataset A, with no interference,
achieve roughly equivalent performance using frequency features (top
left) and IQ features (top right), and furthermore, the instantiation of
a 5 dB PNR FGSM attack in the frequency domain (bottom left)
is significantly mitigated on the time domain feature-based model
(bottom right).

domain. This is largely due to the nature of the untargeted
attack in which the adversary’s sole objective is to induce
misclassification without targeting a specific misclassified pre-
diction. The attacks are mitigated to a large extent when
they are transferred from the time domain to the frequency
domain (Fig. 9) and from the frequency domain to the time
domain (Fig. 10) with accuracies of 89.50% and 94.25%, cor-
responding to classification accuracy improvements of 50.36%
and 63.22%, respectively. Frequency domain-based models
correctly classify a majority of CPFSK and GFSK modulation
schemes corrupted with time domain-based attacks, with the
largest incongruency being between PAM4 and QPSK. Time
domain-based models, on the other hand, exhibit stronger per-
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Fig. 11: Defense performance of our proposed ADE method com-
pared with three baselines for various types of attack construction on
Dataset A. We see that the ADE outperforms the baseline methods
on each considered attack for each PNR.

Fig. 12: Defense performance of our proposed ADE method com-
pared with three baselines for various types of attack construction on
Dataset B. We see that the ADE performs equivalently or outperforms
baseline methods on each considered attack.

formance on frequency domain-based attacks, with an overall
misclassification rate of 5.75%.

E. Assorted Deep Ensemble Defense Performance

Lastly, we evaluate our proposed assorted deep ensemble
(ADE) defense in the overall black box environment, where
the adversary crafts an adversarial interference signal using the
gradient of a surrogate classifier, as discussed in Sec. III-F. We
assume that the adversary uses the VT-CNN2 classifier as the
surrogate model, since it is a widely proposed model for DL-
based AMC [13], [25], [35], [50]. The VT-CNN2 classifier is
comprised of two convolutional layers containing 256 1 × 3
and 80 2 × 3 feature maps, respectively, followed by a 256-
unit dense layer (as visualized in Fig. 2). Note that other

Fig. 13: Defense performance of our proposed ADE method com-
pared with each baseline for varying SNRs at a constant PNR of 5
dB on Dataset A. We see that our method outperforms each baseline
in the high SNR regime, while each method expectedly performs
ineffectively in the low SNR regime.

surrogate models (e.g., the AMC classifier in [26] or other
classifiers contained in our ADE) can be used by the adversary
to generate transferable adversarial interference signals, and
in such cases, we expect consistent attack mitigation by our
ADE due to its demonstrated resilience against transferable
adversarial attacks as shown in Sec. IV-C & IV-D.

To construct our defense strategies outlined in Algorithms
1 and 2, we use the CNN and CRNN architectures since,
as demonstrated from the architecture uncertainty and signal
uncertainty environments, they provide the greatest resilience
to transferable adversarial interference. We use the following
hyper-parameters for constructing the defense for both Dataset
A and Dataset B: M = 4, k = 30, σIQ = 0.001, and
σDFT = 0.005.

We compare our method to three previously proposed meth-
ods for adversarial interference mitigation in AMC: Gaussian
smoothing [40], autoencoder pre-training [41], and deep en-
sembles (DE) [49]. Gaussian smoothing consists of retraining
a single classifier with samples augmented with random noise
in order to improve classification performance on various
distortions that may be encountered during deployment such as
adversarial examples. Autoencoder pre-training, on the other
hand, trains an autoencoder and uses its encoder to calculate a
latent space representation of the input data, which is then used
to train an AMC classifier, with the rationale being that fewer
degrees of freedom (i.e., a lower dimensional representation
in the latent space) will prevent misclassifications from adver-
sarial attacks. DEs employ the same classification architecture
and use the same data representation for each classifier in a
constructed ensemble, with the outputs aggregated to obtain
the model’s predicted modulation constellation.

Figs. 11 and 12 show the performance of our ADE when
defending the transferred FGSM and BIM attack from the
VT-CNN2 classifier on each dataset. On Dataset A, we see
that our proposed defense outperforms the baselines for all
attacks and PNRs considered, with almost no degradation in
classification for PNRs below 2 dB. For example, our ADE
method improves the classification accuracy from 22.23% to
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TABLE III: The testing accuracy of each model on X (·)
te for Dataset A when the CW perturbation is crafted by the adversary with varying

confidence levels (κ). Our proposed ADE mitigates the attack to the greatest extent in comparison to the three baselines across multiple
confidence levels of the attack.

κ
Input

Features

Model Accuracies

VT-CNN2 ADE Gaussian
Smoothing [39]

Autoencoder
pre-training [41] Standard DE [49]

0 IQ 16.53% 99.67% 96.42% 87.00% 75.25%
Frequency 11.94% 99.58% 40.22% 94.02% 36.92%

10 IQ 35.02% 98.97% 91.39% 83.19% 41.94%
Frequency 12.00% 99.19% 13.06% 91.75% 21.83%

20 IQ 60.47% 94.81% 85.17% 82.06% 61.75%
Frequency 15.67% 98.72% 15.80% 90.75% 16.78%

30 IQ 71.61% 93.31% 79.06% 82.08% 71.61%
Frequency 16.36% 98.36% 16.58% 89.58% 16.67%

40 IQ 86.14% 96.97% 90.17% 86.58% 86.31%
Frequency 17.58% 98.50% 17.72% 88.33% 17.78%

50 IQ 94.13% 99.25% 95.89% 89.39% 94.53%
Frequency 18.44% 98.19% 18.50% 87.11% 18.47%

90.53% on the time domain BIM attack at 8 dB PNR, whereas
Gaussian smoothing, autoencoder pre-training, and standard
DEs achieve classification accuracies of 47.86%, 65.33%, and
25.94%, respectively, on the same attack. In comparison to
DEs, we find that incorporating diversity into the classifiers
comprising a deep ensemble, as we propose in our ADE, is
necessary for mitigating transferable adversarial attacks. In
our ADE, this diversity stems from the gradient mismatch
between the adversary’s classifier used to craft the attack and
the classifiers used in the ADE at the receiver. In this regard,
the gradient mismatch results in an attack that is less potent
on the ADE, thus resulting in higher classification rates on
adversarially perturbed inputs. In addition, for lower PNRs,
we see that Gaussian smoothing outperforms autoencoder
pre-training for time domain attacks, while autoencoder pre-
training is significantly better than Gaussian smoothing for
defending frequency domain instantiated attacks.

For Dataset B, we see that the performances of each
defense are generally closer, which is consistent with our prior
observations that attacks are less potent on this dataset. The
performance of our ADE is comparable to autoencoder pre-
training, while Gaussian smoothing performs similarly to no
defense mitigation. Finally, we see that our proposed defense
continues to mitigate the effects of attacks even after the
received signal is masked by the perturbation (PNR > 0 dB).

In addition, Table III shows the performance of our ADE
defense against the CW attack crafted on the VT-CNN2
classifier under varying confidence levels κ. Overall, we see
that our proposed ADE defense significantly mitigates the
effects of the CW perturbations across multiple confidence
levels in a complete black box environment. By contrast, each
of the baselines exhibits significant performance degradation
as κ and/or the input features are varied. Similar results were
observed on Dataset B (omitted for brevity).

We now consider the effect of varying the SNR while
holding the PNR constant. Fig. 13 shows the classification
performance of our method, as well as each considered base-
line, for the SNR range of [−20, 18] dB while holding the
PNR constant at 5 dB. The results are shown here for the
FGSM attack on the Dataset A (we find them to be consistent

for other cases as well). We see that, in comparison to the
SNR of 18 dB at which the results have been presented
in this paper, the performance obtained by our method is
consistent when the SNR is greater than 2 dB. At SNRs
lower than 2 dB, classification performance is overall degraded
due to poor signal quality (consistent with prior work, e.g.,
[7], [8], [23]). In these cases, the classification performance,
even of the improved gains in accuracy, are not very effective
due to the poor signal environment induced from low SNR
waveforms. Future work must consider methods to improve
AMC performance in the low SNR regime before evaluating
the effects of adversarial attacks in this setting.

V. CONCLUSION

Deep learning (DL) has recently been proposed as a ro-
bust method to perform automatic modulation classification
(AMC). Yet, deep learning AMC models are vulnerable to
adversarial attacks, which can alter a trained model’s predicted
modulation constellation with relatively little input power.
Furthermore, such attacks are transferable, which allows the
interference to degrade the performance of several classifiers
simultaneously. In this work, we developed a novel wireless
transmission receiver architecture – consisting of both time and
frequency domain feature-based classification models – which
is capable of mitigating the transferability of adversarial in-
terference in black box environments. Specifically, we showed
that our models are resilient to transferable adversarial attacks
between DL classification architectures and between the time
and frequency domain, where convolutional neural networks
(CNNs) and convolutional recurrent neural networks (CRNNs)
demonstrated the greatest degree of mitigation. Using these
insights, we proposed our assorted deep ensemble defense,
which defends a wireless receiver from complete black box
adversarial perturbations. We found that our proposed method
is capable of mitigating adversarial AMC attacks to a greater
extent than previously proposed methods, thus increasing the
robustness of deep learning AMC receivers from malicious
behavior.
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