
Exploring the Insecurity of Google Account
Registration Protocol via Model Checking

Tian Xie, Sihan Wang, Guan-Hua Tu
Department of Computer Science

Michigan State University

East Lansing, Michigan, 48823

Email: xietian1, wangsih3, ghtu@msu.edu

Chi-Yu Li
Department of Computer Science

National Chiao Tung University

Hsinchu, Taiwan, 30010

Email: chiyuli@cs.nctu.edu.tw

Xinyu Lei
Department of Computer Science

Michigan State University

East Lansing, Michigan, 48823

Email: leixinyu@msu.edu

Abstract—People nowadays use online service accounts (e.g.,
Google, Facebook, Twitter) to access certain services. Among
them, Google accounts have become increasingly important for
users. Not only do many Google services (e.g., Gmail, Google
Voice, Google Play, etc.) require them, but many online services
also trust and rely on them for operational needs (e.g., login
based on Google accounts). This trend introduces a new type
of attacks that create a large number of fake, but valid, Google
accounts. The fake Google accounts allow the adversary to launch
various cyber attacks towards Google account-related services.
It motivates us to conduct an empirical security study on the
Google account registration service. In this paper, we apply model
checking techniques to systematically analyze the insecurity
of Google account registration service. We develop a model-
checking tool, GAcctAnalyzer, which consists of two phases:
(1) service screening phase, which generates counterexamples
from the violation of desired properties, and (2) experimental
validation phase, which validates the counterexamples through
real experiments. We use GAcctAnalyzer to discover four security
vulnerabilities including design defects, operational slips, etc.
Based on the discovered vulnerabilities, we devise two practical
attacks against mobile users and Google: fake Google account
generation and Google text/voice spamming attack. They can
not only threaten the security of mobile applications and online
services, but also cause the Google company to receive user
complaints and lawsuits. We finally confirm the feasibility of
these attacks through experiments, assess the real-world impact,
and propose recommended solutions.

Keywords—Security; Google account; registration; model
checking.

I. INTRODUCTION

Google accounts are essential for users to access many

Google services including Gmail, Google Voice, Google Drive,

Google Play, etc. Moreover, many online service providers

(e.g., eBay, Expedia, New York News, Pinterest, Dropbox,

Airbnb, Groupon) allow users to directly access their online

services through Google accounts without registering new

ones. When the adversary can obtain a great number of Google

accounts and abuse them, such attack can threaten not only

Google services but also other online services. They may

promote malicious and profitable Android applications using

fake reviews and downloads, as well as distribute phishing/ad

emails, frauds (e.g., eBay seller frauds [1]), and fake news [2].

We believe that the insecurity of Google account registration

service/protocol requires more attention from our research

community. We thus conduct a study on the sale of Google

accounts in the underground economy. We discover that on

many websites ([3]–[6]), the Google accounts verified through

phone numbers can be sold up to $4.5 each. Besides, there are

two findings. First, the sale prices of the US phone-number-

verified accounts are eight times more expensive than those

of the non-US ones [6]. Second, Google has deployed new

security mechanisms against the large-scale account creation

and some account creation tools [7] no longer work since

2017.

We then take a security study on how Google defends

against the attacks of large-scale account generation. Its secu-

rity mechanisms mainly focus on user eligibility verification,

which verifies whether an account registrant is indeed a real

person or not. We find that Google employs four major

measures as follows. First, Google prevents a device from

being used to register too many (i.e., 10 accounts based on our

experiments) accounts by identifying the device’s fingerprints.

The fingerprints are generated by JavaScript codes in the

registration pages. To hinder adversaries from forging valid

fingerprints, Google obfuscates the codes. Second, the device

fingerprinting mechanism is resistant to the spoofing. Not

only can any tampering on a device fingerprint with integrity

protection lead a registration request to be rejected, but also

a fingerprint cannot be spoofed successfully by the changes

of network, software, or hardware settings. Third, Google

restricts the phone numbers as well as the times for each

phone number to verify Google accounts. The phone number

providers are restricted to only mobile network operators (e.g.,

AT&T). A phone number can be used to pass the verification

at most twice per day and ten times during its lifetime. Last,

Google employs a proprietary mouse cursor tracker to defend

against automated bots.

However, one question arises: “are these security mecha-
nisms sufficient to secure the Google account registration?”

We observe that people can still buy bulk accounts from the

underground markets even though the aforementioned security

mechanisms have been deployed. To find the answer, we adopt

a model checking technique to systematically examine the

registration security. We then develop a tool GAcctAnalyzer,

which is written in Promela (Process Meta Language, a mod-

eling language [8]), to uncover possible vulnerabilities of the

2019 IEEE Symposium Series on Computational Intelligence (SSCI)
December 6-9 2019, Xiamen, China

978-1-7281-2485-8/19/$31.00 ©2019 IEEE 3087

Authorized licensed use limited to: Michigan State University. Downloaded on September 19,2022 at 16:15:41 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SUMMARY OF SECURITY VULNERABILITIES FROM THE GOOGLE ACCOUNT REGISTRATION SERVICE.

Vulnerability Type Description

V1: One-time Check of Device Usage Limit. Design defect

The device usage limit (e.g., only 3 accounts without phone number
verification can be registered at one device) is checked only once at
an intermediate state during the registration process, so a registration
instance that passes the check may make the usage exceed the limit
after it completes. (Section VI-A)

V2: No or Long Inactivity Timeout. Design defect

No or long inactivity timeout allows adversaries to make registration
instances stay at a certain intermediate state during the registration
process and then manipulate them to launch attacks with sufficient
time. (Section VI-B)

V3: Loose Limits of Phone Number Verifica-
tions.

Design defect
Google places several limits on phone number verifications, but some
are too loose and may be abused. (Section VI-C)

V4: Local-view Blockage of Phone Numbers. Operation slip

Google has only local-view blockage of phone numbers for each
individual service. Even if one phone number is blocked by the Google
account registration service, it can still be successfully used by other
Google services. (Section VI-D)

account registration protocol between the browsers (clients)

and Google servers.

GAcctAnalyzer takes two phases: (1) service screening

and (2) experimental validation. The first phase generates

and analyzes counterexamples from the cases that desired

properties are not met, and the second phase validates the

counterexamples using real experiments. GAcctAnalyzer leads

us to discover four security vulnerabilities: one-time check of

device usage limit (V1), no or long inactivity timeout (V2),

loose limit of phone number verification (V3), and local-view

blockage of phone numbers (V4). The first three are design

defects, whereas the last one is an operational slip. The details

are summarized in Table I.

We devise two proof-of-concept attacks based on the

vulnerabilities: (1) fake Google account generation and (2)

Google text/voice spamming attack. The first attack allows

the adversary to create not only many non-phone-verified

accounts (NPVAs), but also phone-number-verified accounts

(PVAs) at the cost as low as only 50% of the prices on bulk-

account-sale websites. In the second attack, the adversary can

spam mobile users with a large number of text messages and

voice calls from the Google registration service. It may cause

Google to receive user complaints and lawsuits. Note that

we seek to disclose new security vulnerabilities of Google

account registration, and effective attacks, but not to aggravate

the damage. We finally propose recommended solutions to

eliminate the vulnerabilities with the goal of minimal impacts

on the existing system.

In summary, we make four major contributions as follows.

• We study state-of-the-art security mechanisms of the Google

account registration protocol, which are mainly deployed to

defend against the attacks of large-scale account generation.

• We develop GAcctAnalyzer to explore security vulnerabil-

ities of the Google account registration protocol using a

model checker approach. To our best knowledge, we are the

first researchers who apply the model checking technique to

studying the insecurity of the Google registration service.

Device
fingerprinting

Phone
number
verifying

Device
usage

checking

User profile
filling in

Request
Terminated

Account
created

Account
created

Start
Succeeds

Fails
Usage >

Usage ≤

Fig. 1. User eligibility verification for the Google account registration (α
is the maximum number of Google accounts that can be created on a single
device).

• We devise two proof-of-concept attacks against Google and

mobile users by exploiting the vulnerabilities. We assess the

real world impact and discuss how they can propagate to

mobile applications and online services in practice.

• We propose recommended solutions that only require min-

imal update of the existing system. They will not only

help Google secure its account registration service, but also

benefit other online service providers (e.g., Facebook).

II. GOOGLE ACCOUNT REGISTRATION

Some Google services are available only to Google users. A

Google account can be registered by filling name, username,

password, personal information, recovery email address and

agreeing with the privacy the terms of the Google account.

During the registration process, Google verifies user eligi-

bility to prevent fake accounts with two manners as shown in

Figure 1. The first manner is to limit the number of Google

accounts that can be created daily on a single device, say

α (α = 3 observed in our experiments). Google identifies

devices by their unique fingerprints, which are used to form

device IDs. Several techniques have been proposed for this

purpose, such as Canvas-based [9] and WebGL-based [10]

ones. The device fingerprints are collected through some

scripts or applications (e.g., JavaScript codes, Google Chrome

browser) at devices while their users access Google websites.

3088

Authorized licensed use limited to: Michigan State University. Downloaded on September 19,2022 at 16:15:41 UTC from IEEE Xplore. Restrictions apply.

The second manner is to verify users through their phone

numbers for the registration. When the number of created

accounts reaches α on a day at one device, a new registration

request would redirect the user to a “Verify your phone

number” webpage. The user can proceed with the registration

by verifying the phone number. This can thwart the attack of

fake account generation from robots or malicious programs.

III. THREAT MODEL AND METHODOLOGY

In our threat model, the adversary has no control of Google

service infrastructure but his/her own computers. We study the

security mechanisms of Google account registration protocol

against the large-scale fake account creations and propose

GAcctAnalyzer to discover the vulnerabilities of the security

mechanisms. We thus devise two proof-of-concept attacks

based on our findings with the mobile numbers from three

major U.S. carriers: Verizon, T-Mobile, and AT&T.

We bear in mind that some feasibility tests and attack

evaluations might be harmful to mobile users, carriers, and

the service providers. Thus, this study is conducted in a

responsible manner through two measures. First, we seek to

disclose the vulnerabilities of the Google registration service

by our GAcctAnalyzer, but not to aggravate the damage. For

example, finite state machines are tested locally instead of

brute-force tests on Google directly. Second, in the proof-

of-the-concept attacks, we only use our or our colleagues’

phones as the victims and do not launch large scale attacks.

In addition, we have reported the discovered issues to Google

and provided them with our solutions.

IV. SECURITY STUDY ON USER ELIGIBILITY

VERIFICATION

In this section, we conduct a security study on the Google’s

verification of user eligibility. We seek to explore whether

the verification can be easily bypassed to generate fake

Google accounts. We discover that Google employs four major

measures: (1) obfuscated JavaScript codes; (2) anti-spoofing

device fingerprints; (3) restricted phone number verification;

(4) automated bot-detection. We next elaborate on each of

them.

A. Obfuscated JavaScript Codes

We find that device fingerprints are generated by JavaScript

codes in the registration page. A registration request cannot

be made without enabling the browser’s JavaScript support1.

To secure the generation of device fingerprints, Google makes

obfuscation to its JavaScript codes. Specifically, it names both

functions and parameters in a meaningless way, and adds many

redundant codes. It leads to a very large set of JavaScrpit codes

with more than ten thousand lines. Moreover, the codes vary

on a daily basis and only partial functions can be observed

from the client side. It prevents the adversary from spying

how to generate the device fingerprints.

1The error message is “To create a Google Account, turn on JavaScript
and try again.”

flowName: SignUp
gmscoreversion: undefined
deviceinfo: [..., "77185425430.apps.googleusercontent.com",
"6b8448e8-0c09-45a7-9f49-0671b380290a", ...]
bgRequest: "web-glif-signup",
"!LS6lLg9C9oAl3B9um***qDH5yt04pkJ7q4snnQrqYuxScipeFQ"
f.req: "AEThLlxg***03iwHkw", "Tyler", "Alvin", "Tyler", "Alvin",
"TylerAlvin9426", "11pGVXZ14eEmdu", "TylerAlvin9426", true
continue: https://www.google.com/
hl: en
azt: AFoagUUW4npIFKevkE-tIb-iNMY4uHJElg:1537326733528
flowentry: GlifWebSignIn

Fig. 2. A decrypted message that carries encrypted device fingerprints
(deviceinfo).

B. Anti-spoofing Device Fingerprinting

Our study shows that the device fingerprinting is resistant

to spoofing attacks. The generated fingerprints are carried in

the deviceinfo field of the account registration message,

as shown in Figure 2. They have confidentiality and integrity

protection. A tempered fingerprint can fail registration requests

from its device. We validate the anti-spoofing mechanism by

changing environments of a phone#-verify-required device and

see whether it can spoof the Google registration system to be

considered as a new device without the phone number verifi-

cation. We consider the environments from three dimensions:

network, software and hardware. We vary each possible setting

while keeping the others the same, and observe whether any

verification request of the phone number happens.

Network. We consider two ways of changing the device’s IP

address. First, we let the device get a different IP address

from various campus routers, but they belong to the same

autonomous system (AS) number [11]. Second, we let the

device get an IP address from different AS numbers by

using cellular networks. It is observed that the phone number

verification is still required for the device in both ways.

Software. We make three levels of software changes to the

test device: different browsers, new OS with virtualization,

and new installed OS. First, we do the Google registration

using Internet explorer and Firefox instead of Chrome. Second,

we install a new OS, Ubuntu 18.04.1 LTS, on a VMWare

workstation player, and do registration using Firefox. Third,

we replace the original OS, Windows 10, with Ubuntu 18.04.1

LTS. Our result shows that none of these changes can eliminate

the phone number verification on the device.

Hardware. We replace several hardware components including

CPU, network interface, and memory module on the test

device, but the phone number verification is still required. Note

that we do not replace its hard disk in this experiment since

we want to keep the same network and software settings in

the disk.

Finally, we discover that making changes to all the three

dimensions together can bypass the check of device finger-

3089

Authorized licensed use limited to: Michigan State University. Downloaded on September 19,2022 at 16:15:41 UTC from IEEE Xplore. Restrictions apply.

TABLE II
NOT ALL PPHONE NUMBERS ARE ELIGIBLE FOR GOOGLE’S PHONE

NUMBER VERIFICATION; IT VARIES WITH TELEPHONY SERVICE

PROVIDERS.

Type Providers Cost Supported

Online telephony
service providers

Nexmo $0.57 cents/msg ×
Google Voice Free ×

Mobile
network operators

AT&T $30/month
√

Verizon $30/month
√

T-Mobile $10 cents/msg
√

US Mobile $3.75 cents/msg
√

prints of the registration system and thus the phone number

verification is not needed. The changes include assigning an IP

address from a different AS, installing a new OS, and changing

a new motherboard. This mechanism has imposed a large cost

on the spoofing attacks which seek to generate fake accounts.

C. Restricted Phone Number Verification

We investigate whether there are any restrictions on the

phone number verification from two aspects: telephony service

providers and phone number reusability. Our study shows that

each of them has some restriction.

Restricted telephony service providers. We study two types

of the providers: (1) online providers including Nexmo and

Google Voice, and (2) cellular network operators including

AT&T, T-Mobile, Verizon, and US Mobile. As shown in

Table II, the phone numbers from the first type cannot be

used for the verification, but those from the second type can

work. Note that when an unsupported phone number is used,

the user can receive an error message, “This phone number
cannot be used for verification.”

Restricted phone number reusability. We find that a phone

number can be used to pass the verification at most twice per

day. When a number has been used to pass two verification

tests on a day, the user can receive an error message, “This
phone number has been used too many times,” for further

verification tests using the number. We further discover that

a number can be used for the verification at most 10 times.

Further usage of the number can lead to the error, “This
phone number cannot be used for verification.” Note that this

blockage may be permanent. One of our tested phone numbers

has been blocked for longer than three months.

Note that Google allows users to receive verification codes

from public SMS (Short Message Service) gateways (e.g.,

www.receive-sms-online.info), which can be used at no cost. It

is possibly because their phone numbers are usually provided

by cellular network operators.

D. Bot Detection

The adversary may use automated scripts on web pages

to invoke some functions by generating button clicks without

user involvement. The Google registration process is resistant

to this automated bot attack. It employs a proprietary mouse

cursor tracker to defend against the bot. Specifically, when

a click event is triggered, the JavaScript codes determine

Google Account
Registration Service FSM

Acct. Creation Specific
Properties

Property Violation
+Counterexamples

Property
SatisfactionModel

Checker

Scenario Setup

Operational
Flaws

Design Flaws
Validation

Phase 1: Service Screening

Use
Scenarios

Common
Demands

Phase 2: Validation

InternetInternet Trace
Collector

Network Model
Signal

Generator

Account creation
service analysis

Fig. 3. GAcctAnalyzer overview

whether it indeed comes from the user by checking whether

the cursor’s coordinate is located within the button’s area

on the page by obtaining the mouse cursor’s coordinate and

calculating the cursor’s relative position on the screen.

V. GAcctAnalyzer: SECURITY DIAGNOSIS ON GOOGLE

ACCOUNT REGISTRATION

Our empirical security study shows that Google has de-

ployed several security mechanisms against the attacks of fake

account registration. However, without a rigorous examination

based on some formal method, it is unclear whether they

are sufficient to secure the registration process. We then

develop GAcctAnalyzer to conduct security diagnosis on the

Google registration. We seek to uncover any design flaws or

operational slips from its practice.
GAcctAnalyzer takes a two-phase approach as shown in

Figure 3. In Phase 1, it does service screening that ex-

plores possible, logical design defects via model checking and

then produces corresponding counterexamples. GAcctAnalyzer
moves to Phase 2, once any design defect is identified.

In Phase 2, we validate each counterexample through real

experiments.

A. Phase 1: Service Screening
We develop a model-checking tool based on the Spin [8] to

discover design issues from the client side. We model states

of the Google registration service, and those of client and

server interactions. We also define several checking properties

specific to the fake account registration (e.g., the maximum

number of Google accounts that can be registered). Given

all these inputs, we use the model to check whether a

set of desired properties are satisfied. For each instance of

property violation, which indicates a possible design defect, a

counterexample is generated. In this service screening process,

there are three issues to be addressed: (1) How to model the

Google registration service? (2) How to define the desired

properties? (3) How to identify property violations?
1) Modeling: We do modeling from two main aspects: state

transitions and usage scenarios.
State transitions. We model both client-side and server-side

state transitions for the Google registration service2. We build

2Our FSMs cannot show all existing state transitions since the site is not
controlled by us. However, any identified issues on our FSMs also exist on
the real system.

3090

Authorized licensed use limited to: Michigan State University. Downloaded on September 19,2022 at 16:15:41 UTC from IEEE Xplore. Restrictions apply.

Start Create
Ask the user

to fill in
account info.

Fill in
account

info

Next

Fill in
additional
acct. info.

Next Wait for
account
creation

Verify
phone

number

Next/Ask for a new phone# (the
prev. phone# cannot be used)

Enter
Gverify-

code
Next

Call Instead/Send
dialing req to server

Ask more acct. info (code is correct)

BackBack

Back

Invalid /Ask for code
again

Finished

Wait for
device usage

check

Account is
created

Next/Ask the uses to fill in account
info again due to some errors.

Ask server to
create an acct.

Send acct.
creation request

to server

Ask users to fill in account info.
Show acct. creation

finished page to users

Ask users to fill
in account info.

Ask users to
enter code

Ask for a new
phone#

Errors (e.g., not older than 18yr)/
fill in additional acct. info. again

Wait for
Gverify-
code veri.

Next
Send
code

Valid

Fig. 4. The state transition diagram of client-side Google account registration service (blue: states; green: trigger condition, e.g., users click the Next button;
black: the output/action following a state transition).

Check if
user acct.

info is valid
Idle

Acct. creation
request

No/Ask users to fill in account info again due
to errors (e.g., username has been used).

Wait for
additional
acct. info

Wait for
Gverify-

code

Yes Check
device
usage

Call
Instead

No/Ask the user to
enter the code again

Recv. additional.
acct. info.

No/Specify error cause and ask the
user to provide a new phone number

Check if
user’s phone

number is
valid

Yes Code Text
Gverify-

code

Code
sent

User asks to resend
Gverify-code

Call with
Gverify-

code
Call
finished

YesCheck if
additional
acct. info is

valid

Yes
Ask for additional acc. info

Account is created and device usage is updated

Create
account &

update dev.
usage

Check if
Gverify-

code is valid

No

Fig. 5. The state transition diagram of server-side Google account registration service (blue: states; green: trigger condition, e.g., receiving user requests;
black: the output/action following a state transition).

the client-side finite state machine (FSM) shown in Figure 4

by analyzing the Javascript program that validates user inputs

and interacts with the Google server from the client. By

considering client/server interactions and the client-side FSM,

we build the server-side FSM as shown in Figure 5.

Usage scenarios. We seek to explore all the possible client

requests and server responses, but it is impractical due to its

huge amount of combinations. We thus take a semi-sampling

approach as follows. For the components with limited options

(e.g., user gender, birthday, and webpage operations), we

enumerate all the possible combinations. For the others like

user name, phone number, and verification code, we adopt a

random sampling method.

We first consider client requests, where a client is allowed

to register multiple accounts. We use a run-time signal gen-

erator to randomly create user events including Create,

Next, Cancel, Back, Resend, Call Instead, and

Waiting3. These events are triggered individually on the

registration pages. We then record how the registration service

3This event simulates that a user is thinking or waiting at one state.

reacts to each event. For example, given a Create event at the

Start state, a new account registration request is created and

the service moves to the state, Fill_in_account_info.

GAcctAnalyzer then fills in the input fields of the first reg-

istration page with randomly generated account information

including first name, last name, username, and password.

We next examine server responses with respect to various

client requests. We can observe that the server records the

number of accounts which have been successfully created

by each user and each verification phone number provided

by the user. We equally test all the possibilities, which

include rejects with various error reasons. For example, at

the Verify_phone_number state, there are 6 server error

types which can happen for the eligibility verification of a

phone number and they are summarized in Table III.

2) Defining Desired Properties: From the client-side and

server-side FSMs, we observe that Google mainly relies on

verification codes to defend against the attacks of large-scale

fake account registration. It shall satisfy two important require-

ments during the registration. First, in any use scenarios, the

number of Google accounts which a user can create without

3091

Authorized licensed use limited to: Michigan State University. Downloaded on September 19,2022 at 16:15:41 UTC from IEEE Xplore. Restrictions apply.

TABLE III
SIX SERVER ERROR TYPES FOR THE ELIGIBILITY VERIFICATION OF

PHONE NUMBERS.

Error Code Description

ERR1 Please enter a phone number.

ERR2 Please enter a valid phone number.

ERR3
This phone number format is not recognized.
Please check the country and number.

ERR4 This phone number has been used too many times.

ERR5 This phone number cannot be used for verification.

ERR6 There was a problem verifying your phone number.

phone number verification should not exceed the designated

limit. Second, a phone number cannot be used unlimitedly for

the verification.

We define two desired properties for those two

requirements respectively: (1) LimitedAccountCre-
ation WithoutPhoneVerify; (2) RestrictedPhoneNumberUsage.

The first is that the number of registered accounts without

phone number verification shall be not greater than a

predefined threshold, α. The second is that the times that a

phone number can be used for the registration verification

shall be not greater than another threshold, β. According to

the above study, α and β are respectively set to 3 and 2 per

day for one device.

3) Identifying Property Violations: We perform the proce-

dure of the formal model checking. First, the model checker

creates entire state space by interleaving all FSMs. We then

run the depth-first algorithm to explore state transitions from

the initial state under various usage scenarios. Once a property

violation is hit, a counterexample is generated. The model

checker finally generates all counterexamples, as well as their

violated properties and internal states. The internal states in-

clude the statuses of all the registration instances, where some

of them may have finished the registration and others may stop

at intermediate states. We then analyze each counterexample

to identify security issues based on its internal states.

Specifically, we mainly focus on two desired properties:

LimitedAccountCreation WithoutPhoneVerify and Restricted-
PhoneNumberUsage. A counterexample of the first property

is that more than α accounts without any phone number

verification on a trial of one day are generated. That of the

second property appears, when the usage times of a phone

number for the registration verification are greater than β.

4) Model Checker Implementation: We implement a

model-checking tool, GAcctAnalyzer in Spin. Specifically, we

model the client and server FSMs (as illustrated in Figure 4

and 5) by the modeling language Promela [8]. The GAcctAna-
lyzer runs on a Dell laptop with an installation of Ubuntu 18.04

(CPU: i7-7700HQ, RAM: 16GB). It captures counterexamples

caused by the property violations. We further analyze output

traces and derive root causes of the violations.

B. Phase 2: Experimental Validation

We set up validation experiments for the generated coun-

terexamples from the service screening phase. We collect

plain-text traces of client/server communication and compare

them with anticipated results. The experiments cover two

popular browsers, Chrome and Firefox, and two computers

with Windows 10 and Ubuntu 18.04. We develop a Python

script to launch multiple account registration requests. To

collect the traces, we deploy an SSL-Split server to intercept

and decrypt all HTTPS traffic between the client and the

Google server. As for the phone number verification, we use

text message services from four major network carriers, AT&T,

T-Mobile, Verizon, and US Mobile, and use three smartphone

models, Samsung Galaxy S8, iPhone 8, and Google Nexus

6P. The other experimental settings are based on the identified

counterexamples in the service screening phase. We also test

common use scenarios to explore whether any operational slip

that breaks those two properties can be observed.

Note that current GAcctAnalyzer has two limitations. First,

the implementation of the Google registration service on the

server side is not accessible to the public, so GAcctAnalyzer
may not be able to discover all of its security vulnerabilities.

This issue can be addressed by further collaborating with

Google, but a non-disclosure agreement may be required.

Second, GAcctAnalyzer stipulates only properties related to the

Google registration in the screening. Other types of security

issues have not been covered yet.

VI. SECURITY VULNERABILITIES FROM GOOGLE

ACCOUNT REGISTRATION

In this section, we uncover four security vulnerabilities

from the Google registration service. The first three are

identified via the counterexamples from GAcctAnalyzer and

can be attributed to design defects, whereas the last one is

an operational slip observed from the comparison between the

registration and other Google services.

A. V1: One-time Check of Device Usage Limit

We discover that Google checks the device usage limit

only once during the registration process, after analyzing

the counterexamples caused by the violation of the Lim-
itedAccountCreation WithoutPhoneVerify property. This can

be attributed to a design defect. They happen when multiple

registration clients are at the states which are subsequent to

the Wait_for_device_usage_check state, as shown in

Figure 4. Even when any clients among them finish registration

and cause the usage limit to reach α, the other clients,

whose usage limits have been verified, can still proceed to

successfully finish the registration without any requests of

phone number verification. It means that once the device usage

limit is checked while the client-side service transits to the

Fill_in_additional_acct_info state, it will not be

checked again at any subsequent states.

Experimental validation. We validate this vulnerability by

showing that α + 1 Google accounts (here, it is 4) can be

registered at one device without any phone number verification

on one day. We first create two Google accounts at our test

device, and then let another two clients proceed to finish

registration after both of them pass the one-time usage limit

3092

Authorized licensed use limited to: Michigan State University. Downloaded on September 19,2022 at 16:15:41 UTC from IEEE Xplore. Restrictions apply.

check. Thus, four Google accounts are created successfully.

We conduct experiments for the latter two clients as follows.

First, we create two Chrome browser tabs for those two

clients. Second, for both of them, we fill in a form with the

basic account information and press the Next button. Third,

additional account information is requested for both of them.

Note that their device usage limits are checked at this moment.

Forth, we make them finish the registration one by one. Note

that more accounts cannot be registered without phone number

verification afterwards.

B. V2: No or Long Inactivity Timeout

Some counterexamples from the violations of the Lim-
itedAccountCreation WithoutPhoneVerify property, show that

some registration instances have been staying at the

Fill_in_additional_acct_info state for a long time

(e.g., tens of minutes). We infer that the Google reg-

istration process may have no or long inactivity time-

out. Though the number of registered accounts has

reached α + 1 in those counterexamples, these instances,

which have passed the device usage check to reach the

Fill_in_additional_acct_info state, should still be

able to successfully create accounts due to V1. It can cause

the number of registered accounts to be much larger than α on

a day. It can be attributed to another design defect. Note that

these counterexamples happen when Waiting events keep

being generated for those idle registration instances.

Experimental validation. We do validation

by letting a registration process stay at the

Fill_in_additional_acct_info state for various

time periods and then proceed to finish the registration. We

seek to observe whether any inactivity timeout can lead to

registration failure or not. In the experiment, we create four

Chrome browser tabs to do Google account registration.

For each tab, we proceed to the page with the need of

additional account information after entering valid account

information. We finish the remaining registration process for

these four tabs after 15 mins, 30 mins, 45 mins, and 60 mins,

respectively. It is observed that all these registration requests

are successful. As a result, the Google registration service

has no inactivity timeout or the timeout longer than one hour.

C. V3: Loose Limit of Phone Number Verification

We also get some counterexamples that violate Restricted-
PhoneNumberUsage property, i.e., a phone number is used

more than β times for the verification. After our analysis

on their internal states, we discover that a number can be

used for the verification more than β times, but only β
times can be successful. That is, for one day, a number

can continue to be used for the verification until its β-th

verification succeeds. It is because an instance can switch

back and forth between the Verify_phone_number and

Enter_Gverify_code states. In this case, though the

phone number has been used for the verification and a 6-digit

verification code is then sent, the instance does not complete

the verification with a correct code. The limit is loose for the

verification usage and may be abused. We further find that the

number of usage times for a phone number on the verification

is at most 10.
Experimental validation. We first turn one device to be

required for the phone number verification on a new ac-

count registration by successfully creating three Google ac-

counts on it. We then use one phone number to do ver-

ification for subsequent Google registrations, and manually

control the browser to switch back and forth between the

Verify_phone_number and Enter_Gverify_code
states by clicking Next and Back buttons. Each verification

trial triggers a 6-digit verification code to be sent out to our

phone.
We run this experiment for a week and have the following

two observations. First, the 11th verification trial is always

denied by Google, so the maximum verification times allowed

for a phone number are 10 on a daily basis. Second, the

verification times are reset after 24 hours. We validate that

a phone number can be used 70 times for the verification in

a week. In summary, the usage of a phone number for the

verification has three limits: the maximum times for successful

verifications per day, those during the phone number’s lifetime,

and the maximum times for being used for the verification per

day. They are respectively 2, 10, and 10. When any limit is

met, the verification based on the phone number would be

denied.

D. V4: Local-view Blockage of Phone Numbers
We compare the verification limit of the Google account

registration with that of other Google services including the

activation of a suspended Google account and a Google voice

account. We discover that Google does not take the phone

number verification as a united function over all of its services;

instead, it has only local-view blockage of phone numbers for

each individual service. Specifically, even if one phone number

is blocked by the Google registration service, it can still work

for the other two services. As a result, a phone number can

be repetitively used to abuse different Google services.
Experimental validation. We examine whether a phone num-

ber that is blocked by the Google account registration can be

used to activate a suspended Google account and link a phone

number to the Google voice service. We first make an AT&T

phone number be blocked by the registration service. By using

this number, we are then able to do activation of a suspended

account and a Google voice number successfully.

VII. PROOF-OF-CONCEPT ATTACKS

We devise two proof-of-concept attacks based on the dis-

covered vulnerabilities: fake Google account generation and

text/voice spamming attacks. The former’s victims are Google,

whereas the latter’s ones are cellular users and Google.

A. Fake Google Account Generation
We devise this attack by exploiting V1 and V2 and

its pseudo code is shown in Algorithm 1. It con-

sists of two steps. First, we start a group of registra-

tion instances on one device and let them stop at the

3093

Authorized licensed use limited to: Michigan State University. Downloaded on September 19,2022 at 16:15:41 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Automated Fake Account
Registration

Input: N , the number of accounts to be created
Output: File, a file contains the information of N created Google accounts

1 i = 1; j = 1;
2 Create File;
3 while i ≤ N do
4 Create pi; // open "Create Your Google Account" tab
5 Generate FirstName, LastName, UserName, PassWord;
6 Store UserName, PassWord in File;
7 Set FirstName, LastName, UserName, PassWord on pi;
8 Move mouse cursor to ”Next” button;
9 Click button; i + +;

/* N pages are opened. */
10 while j ≤ N do
11 Open pi;
12 Set Birthday > 18-yr old on pi;
13 Set Gender on pi;
14 Move mouse cursor to ”Next” button;
15 Click button;
16 j + +;

/* N Google accounts are created. */
17 Return File;

Fill_in_additional_acct_info state (see Figure 4).

Due to V1, all these instances can pass the one-time check

of the device usage limit. Second, we make them proceed

to finish their registration procedures. Though it may take

a little longer time to fill the required information fields

at each registration instance, the registration process has no

or long inactivity timeout (V2). In this way, each instance

can successfully create a Google account without any phone

number verification.

Implementation. We implement an automatic tool that uses

the Selenium [12] software to control the Firefox browser,

instead of an automated script, which is resisted by the Google

registration service. At the first step, the tool automatically

creates browser tabs, each of which is used to create one

fake account. For each tab, it goes to the Google Account

creation page and fills in registration forms with fake account

information. It then moves the mouse cursor to the Next
button and presses it. After all the required tabs proceed to the

Fill_in_additional_acct_info page, the tool starts

the second step to finish each tab’s registration procedure.

Evaluation. We examine whether our developed tool can

indeed create many fake Google accounts successfully. We aim

to examine the attack effectiveness instead of aggravating the

real world damage, so only 20 fake accounts are considered

in this experiment. Our result shows that the tool can first

create 20 browser tabs for Google account registration, have

them proceed to the Fill_in_additional_acct_info
page, and then successfully finish their registration procedures

one by one. To confirm these fake accounts are valid, we use

them to access Gmail and Youtube services without any issue.

Note that the attack costs negligible CPU resource and net-

work bandwidth. But it requires memory to maintain multiple

tabs concurrently. Given no inactivity timeout, the bottleneck

of this attack is how many Firefox tabs can be concurrently

kept on one device. Our experiment shows that each tab takes

up to 30 MB memory during the account registration. For a

computer with 16 GB RAM, the adversary can create up to

546 fake Google accounts theoretically. One device used to

launch the attack before can be used again after 12 days.

Attack variant: low-cost phone-verified accounts (PVAs).
The PVAs are the accounts that have passed Google’s phone

number verification, whereas the fake ones generated by

the above attack are non-phone-verified accounts (NPVAs).

Google imposes more security restrictions on NPVAs than

PVAs. For example, Google does not allow multiple NPVAs to

be accessed from the same device. It can temporarily suspend

them and ask for phone number verification. But, the PVAs do

not have this restriction. The Google PVAs are more expensive

than the NPVAs on the markets [3], [4], [6].

We devise this attack variant by leveraging the above attack

and V4. It has three steps. First, a cellular phone number

($5.49 from US Mobile with $3.99 one-time SIM card fee

and $1.5 sending/receiving 40 texts) with a prepaid text service

plan is purchased. This phone number allows us to create 10

PVAs (see V3) and then is permanently blocked by Google

for the account registration service. Second, we apply for two

Google voice numbers, which require two PVAs and a cellular

number. The two PVAs can come from the first step, whereas

we can use the same cellular number. Note that one cellular

number can be used to apply for at most two Google voice

numbers. Due to V4, though the number is blocked for the

account registration service, it is still clean for Google voice.

Third, we can activate suspended NPVAs to become PVAs by

passing their phone number verifications. We use the cellular

number and the two Google voice numbers obtained at the

second step to activate the suspended NPVAs. Our experiment

shows that each number can be used to activate at most 4

suspended NPVAs, so they can totally activate 12 NPVAs to

become PVAs. Thus, this attack can create 22 PVAs (10 from

the first step) at the cost of $5.49. On the average, the cost of

each account is $0.25, which is 50% cheaper than the price

$0.5 at bulkpvaseller.us.

Attack incentive and negative real-world impact. Both Google

PVAs and NPVAs can be traded on several websites [3], [4],

[6]. A PVA averagely costs from $0.5 to $4.5 by considering

a transaction of bulk Google accounts. We thus believe that

adversaries have incentives to launch a large scale of attack in

practice.

The real-world impact of this attack can be negative and

far-reaching due to two reasons. First, there are many popular

online service providers that allow users to login/access the

services with Google accounts, such as eBay, imgur, Wikia,

imdb, Pinterest, Zillow, Expedia, Trulia, Realtor, Tripadvisor,

to name a few. These service providers share the same security

threats with Google and can suffer from a large-scale attack of

the fake account registration. Second, in the era of smartphone,

adversaries can promote their malicious smartphone applica-

tions (e.g., a Bitcoin wallet application accepting the remote

BTC transfer commands from adversaries) or services to users

as well as generate fake reviews to affect the rating system

(e.g., Google Play, Yelp) with the fake Google accounts. The

3094

Authorized licensed use limited to: Michigan State University. Downloaded on September 19,2022 at 16:15:41 UTC from IEEE Xplore. Restrictions apply.

similar service has been seen on the markets [6].

B. Google Text/Voice Spamming Attack

We devise this attack based on V3 to generate text/voice

spam messages towards mobile network users. The adversary

triggers the spam messages including Google verification

codes through the Google account registration service to the

users who do not request them. The victims can be both

mobile users and Google. The user victims can receive many

unsolicited text messages and voice calls from Google, and

may pay extra cellular service fees. Google may not only need

to pay for those spam messages, but also suffer from possible

lawsuits or complaints from the victims.

We develop an attack tool to send text/voice spams as many

as possible to victims. The tool keeps a list of victims’ phone

numbers and generates the allowable spams to them every day.

Note that the attack device’s IP address will be changed after

every 10 spams messages/calls because Google temporarily

blocks a device’s IP after 10 verification messages. According

to our experiment, this mechanism does not have the anti-

spoofing device fingerprinting introduced in Section IV-B.

Thus, this mechanism can be bypassed by only changing the

device’s IP address.

Implementation. We implement the attack tool by using the

Selenium software to control the Firefox browser. The initial

steps similar to the fake account generation attack include

creating a new browser tab, accessing the page ”Create your
Google Account” on this tab, filling in a registration form with

basic account information, and moving the mouse cursor to the

Next button to press it. Then it leads the registration process

to the phone verification page. It then inputs one victim’s

phone number, as well as moves the cursor to the Next,

Resend, or Call Instead button, presses it and triggers

the Google registration service to send the victim a spam text

message/voice call for the verification.

The tool repeats the actions on the phone verification page

with the attack intervals. After 10 text messages/voice calls

are generated to the current victim, a new victim is selected

from the victim list to be attacked. On each day, this attack

process does not stop until it goes through all the victims on

the list. Note that this attack must be launched on a phone#-
verify-required device (see Section II).

Evaluation. We use 13 phone numbers from our lab members

in the attack test. The numbers are from three US major

carriers including Verizon, AT&T, and T-Mobile; the residence

of participants covers from the East to the West of the U.S.

This attack lasts for one week. Our result shows that each

tester indeed receives 70 text messages and 70 voice calls

from Google. It confirms that a large-scale attack is feasible

since this attack is not limited by carriers or victims’ locations.

Attack incentive and negative real-world impact. In recent

years, there have been several spamming-related lawsuits. For

example, Papa John’s Pizza faced a $250 million lawsuit for

its spam texts in 2012. It finally paid $16.5 million to settle

this lawsuit in 2013. In 2018, Bloomingdale paid $1.4 million

for a complaint of its spam texts. Thus, victims may accuse

Google of the spam texts and voice calls from our developed

attack. Google may pay for this spamming attack4 and lose its

reputation.

VIII. RECOMMENDED SOLUTIONS

We propose three recommended solutions to address the

above security vulnerabilities. We seek minimal modifications

on the existing system so that Google can eliminate them in

a short time.

Atomic registration process. We propose that the Google

registration process should be limited to an atomic transaction

where the check of device usage limit is done right before

the completion of the atomic transaction. Once the number

of registered accounts without phone number verification has

reached the device usage limit, α, the registration process

should ask for phone number verification; otherwise, a new

Google account is successfully created. Due to the atomic

transaction, the server can process the request with all users’

information and then do the check of device usage limit. It

can eliminate both V1 and V2, since no intermediate state

(e.g., Fill_in_additional_account_info) allows a

registration instance to stay to pass the limit check without

finishing the registration process. Note that the detection of

duplicate usernames and emails can be still done while the

user fills in input fields without additional intermediate state.

Anti-spam verification. We suggest that Google can take the

following two manners to defend against spams generated

from the verification service. First, it should reduce the verifi-

cation limit of a phone number from 10 to a smaller one (e.g.,

2 or 3) per day, thereby alleviating the impact of V3. Second,

it should provide a way for victims to report the verification

spams. For example, the verification text and voice can contain

a message that ‘G-XXXXX is your Google verification code. If
you did not request it, please reply SPAM.’ Google can thus

stop an ongoing attack right away.

Unified number blockage system. We recommend that

Google should block phone numbers globally with a unified

number blockage system. Once a phone number is blocked at

one service, this blockage should be propagated to the other

services. It is because a number that is used to attack one

service may be abused to attack another services later. Google

can use a database to maintain the information of blocked

phone numbers, and share it with all the services. Such global

view of the phone number blockage can eliminate V4.

IX. RELATED WORK

In this section, we present related work in the security

aspects of Google and web services.

Google services. There have been several studies that focus on

the security of Google services [14]–[18]. Specifically, Gong

et al. [14] study security issues of Google+ by developing a

model to reproduce its social structure and node attributes.

4The company needs to pay for $500 to $1500 per each verified spam text
in Miami, FL [13].

3095

Authorized licensed use limited to: Michigan State University. Downloaded on September 19,2022 at 16:15:41 UTC from IEEE Xplore. Restrictions apply.

Reis et al. [15] discuss key issues about how to shield Google

Chrome from attacks, whereas Carlini et al. [16] examine the

security architecture of the Google Chrome extensions and

perform a security review on a set of 100 Chrome extensions.

Zhang et al. [17] report the security analysis of the virtual

personal assistants including Google home. Chauhan et al. Lei

et al. [18], [19] study the insecurity of using Google home

HDVA.

Web services. The security issues of web services are also

explored in many papers [20]–[24]. Specifically, Lu et al. [20]

study the website fingerprinting and suggest an effective coun-

termeasure to it by removing the information order. Malheiros

et al. [21] present a large-scale observation study of user drop-

out behaviors on web registration forms from several service

providers such as Microsoft and Yahoo. Sengupta et al. Pan

et al. [22] analyze the content security policy on real-world

websites. Nikiforakis et al. [23] explore the web-based device

fingerprinting. Fass et al. [24] propose a detection method of

malicious JavaScript codes.

Different from all these studies, our work focuses on the

Google account registration service. We systematically explore

its insecurity using a model checker approach, and then assess

its negative impacts.

X. CONCLUSION

Google accounts have been considered as important re-

sources. They are required for users to access many Google

services. Moreover, due to Google’s good reputation, many on-

line services trust Google emails and rely on Google accounts

to do resource authorization or user authentication. It can be

anticipated that Google services and other online ones can

be hurt by fake Google accounts, especially by a large scale

of fake ones. Specifically, adversaries can use fake Google

accounts to launch various attacks including the distribution

of fake news, fake reviews, phishing, spamming, etc. In this

work, we study the security mechanisms deployed by Google

to defend against the attacks of fake account generation with

a model checking tool GAcctAnalyzer. We thus find four

security vulnerabilities and implement two proof-of-concept

attacks. To eliminate the vulnerabilities with minimal impacts

on the existing system, three solutions are recommended. We

hope that our initial study can attract more attention from the

research community and the industry on the insecurity of the

Google account registration.

ACKNOWLEDGEMENT

This work is supported by the National Science Foundation

under Grant Numbers CNS-1815636, CNS-1814551, and by

the Ministry of Science and Technology under Grant Number

MOST 106-2628-E-009-003-MY3. Note that any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the authors only and do not neces-

sarily reflect those of the National Science Foundation or the

Ministry of Science and Technology.

REFERENCES

[1] eBay, “Avoiding seller fraud,” https://www.ebay.com/help/buying/
resolving-issues-sellers/avoiding-seller-fraud?id=4024, 2019.

[2] K. Rogers, “More fake newspaper sites claiming to be based in quebec
pop up two years after they were exposed,” https://www.cbc.ca/news/
technology/quebec-fake-newspapers-1.5228905, 2019.

[3] BulkPVASeller, “Bulk pva seller,” bulkpvaseller.us, 2019.
[4] HighQualityPVAs, “High quality pva’s online,” highqualitypvas.com,

2019.
[5] BuyServiceUSA, “Buy aged gmail accounts,” https://www.

buyserviceusa.com/product/buy-old-gmail-accounts/, 2019.
[6] “Buy bulk google (gmail) accounts,” https://buyaccs.com/en/

buy-bulk-gmail-accounts.php, 2019.
[7] “How to create an unlimited amount of phone-verified google accounts

(includes gmail, g+ and youtube),” http://www.mytrafficresearch.com/
traffic-research/unlimitedgmailaccounts/, 2018.

[8] G. Holzmann, The SPIN Model Checker: Primer and Reference Manual,
1st ed. Addison-Wesley Professional, 2011.

[9] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and
C. Diaz, “The web never forgets: Persistent tracking mechanisms in
the wild,” in Proceedings of the Conference on Computer and Commu-
nications Security (CCS). ACM, 2014, pp. 674–689.

[10] “Webgl - a new dimension for browser ex-
ploitation,” https://www.contextis.com/en/blog/
webgl-a-new-dimension-for-browser-exploitation, 2012.

[11] “Autonomous system number (asn),” https://www.techopedia.com/
definition/26871/autonomous-system-number-asn, 2018.

[12] Selenium, “Seleniumhq browser automation,” https://www.seleniumhq.
org/, 2019.

[13] “Getting spam text messages? you can recover
500−1500 per message,” https://www.sflinjuryattorneys.com/
spam-text-messages-recover-500-1500-per-message/, 2018.

[14] N. Z. Gong, W. Xu, L. Huang, P. Mittal, E. Stefanov, V. Sekar, and
D. Song, “Evolution of social-attribute networks: measurements, mod-
eling, and implications using google+,” in Proceedings of the Internet
Measurement Conference (IMC). ACM, 2012, pp. 131–144.

[15] C. Reis, A. Barth, and C. Pizano, “Browser security: lessons from google
chrome,” Communications of the ACM, vol. 52, no. 8, pp. 45–49, 2009.

[16] N. Carlini, A. P. Felt, and D. Wagner, “An evaluation of the google
chrome extension security architecture.” in USENIX Security Symposium
(Usenix Security), 2012, pp. 97–111.

[17] N. Zhang, X. Mi, X. Feng, X. Wang, Y. Tian, and F. Qian, “Understand-
ing and mitigating the security risks of voice-controlled third-party skills
on amazon alexa and google home,” arXiv preprint arXiv:1805.01525,
2018.

[18] X. Lei, G.-H. Tu, A. X. Liu, K. Ali, C.-Y. Li, and T. Xie, “The insecurity
of home digital voice assistants-amazon alexa as a case study,” arXiv
preprint arXiv:1712.03327, 2017.

[19] X. Lei, G.-H. Tu, A. X. Liu, C.-Y. Li, and T. Xie, “The insecurity
of home digital voice assistants-vulnerabilities, attacks and countermea-
sures,” in IEEE Conference on Communications and Network Security
(CNS). IEEE, 2018, pp. 1–9.

[20] L. Lu, E.-C. Chang, and M. C. Chan, “Website fingerprinting and
identification using ordered feature sequences,” in European Symposium
on Research in Computer Security (ESORICS). Springer, 2010, pp.
199–214.

[21] M. Malheiros and S. Preibusch, “Sign-up or give-up: Exploring user
drop-out in web service registration,” in Symposium on Usable Privacy
and Security (SOUPS), 2013.

[22] X. Pan, Y. Cao, S. Liu, Y. Zhou, Y. Chen, and T. Zhou, “Cspau-
togen: Black-box enforcement of content security policy upon real-
world websites,” in Proceedings of the Conference on Computer and
Communications Security (CCS). ACM, 2016, pp. 653–665.

[23] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and
G. Vigna, “Cookieless monster: Exploring the ecosystem of web-based
device fingerprinting,” in IEEE symposium on Security and privacy (SP).
IEEE, 2013, pp. 541–555.

[24] A. Fass, R. P. Krawczyk, M. Backes, and B. Stock, “Jast: Fully
syntactic detection of malicious (obfuscated) javascript,” in International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA). Springer, 2018, pp. 303–325.

3096

Authorized licensed use limited to: Michigan State University. Downloaded on September 19,2022 at 16:15:41 UTC from IEEE Xplore. Restrictions apply.

