2019 IEEE Symposium Series on Computational Intelligence (SSCI)

December 6-9 2019, Xiamen, China

Exploring the Insecurity of Google Account
Registration Protocol via Model Checking

Tian Xie, Sihan Wang, Guan-Hua Tu
Department of Computer Science
Michigan State University
East Lansing, Michigan, 48823
Email: xietianl, wangsih3, ghtu@msu.edu

Abstract—People nowadays use online service accounts (e.g.,
Google, Facebook, Twitter) to access certain services. Among
them, Google accounts have become increasingly important for
users. Not only do many Google services (e.g., Gmail, Google
Voice, Google Play, etc.) require them, but many online services
also trust and rely on them for operational needs (e.g., login
based on Google accounts). This trend introduces a new type
of attacks that create a large number of fake, but valid, Google
accounts. The fake Google accounts allow the adversary to launch
various cyber attacks towards Google account-related services.
It motivates us to conduct an empirical security study on the
Google account registration service. In this paper, we apply model
checking techniques to systematically analyze the insecurity
of Google account registration service. We develop a model-
checking tool, GAcctAnalyzer, which consists of two phases:
(1) service screening phase, which generates counterexamples
from the violation of desired properties, and (2) experimental
validation phase, which validates the counterexamples through
real experiments. We use GAcctAnalyzer to discover four security
vulnerabilities including design defects, operational slips, etc.
Based on the discovered vulnerabilities, we devise two practical
attacks against mobile users and Google: fake Google account
generation and Google text/voice spamming attack. They can
not only threaten the security of mobile applications and online
services, but also cause the Google company to receive user
complaints and lawsuits. We finally confirm the feasibility of
these attacks through experiments, assess the real-world impact,
and propose recommended solutions.

Keywords—Security; Google account;
checking.

registration; model

I. INTRODUCTION

Google accounts are essential for users to access many
Google services including Gmail, Google Voice, Google Drive,
Google Play, etc. Moreover, many online service providers
(e.g., eBay, Expedia, New York News, Pinterest, Dropbox,
Airbnb, Groupon) allow users to directly access their online
services through Google accounts without registering new
ones. When the adversary can obtain a great number of Google
accounts and abuse them, such attack can threaten not only
Google services but also other online services. They may
promote malicious and profitable Android applications using
fake reviews and downloads, as well as distribute phishing/ad
emails, frauds (e.g., eBay seller frauds [1]), and fake news [2].
We believe that the insecurity of Google account registration
service/protocol requires more attention from our research

978-1-7281-2485-8/19/$31.00 ©2019 IEEE

Chi-Yu Li
Department of Computer Science
National Chiao Tung University
Hsinchu, Taiwan, 30010
Email: chiyuli@cs.nctu.edu.tw

Xinyu Lei
Department of Computer Science
Michigan State University
East Lansing, Michigan, 48823
Email: leixinyu@msu.edu

community. We thus conduct a study on the sale of Google
accounts in the underground economy. We discover that on
many websites ([3]-[6]), the Google accounts verified through
phone numbers can be sold up to $4.5 each. Besides, there are
two findings. First, the sale prices of the US phone-number-
verified accounts are eight times more expensive than those
of the non-US ones [6]. Second, Google has deployed new
security mechanisms against the large-scale account creation
and some account creation tools [7] no longer work since
2017.

We then take a security study on how Google defends
against the attacks of large-scale account generation. Its secu-
rity mechanisms mainly focus on user eligibility verification,
which verifies whether an account registrant is indeed a real
person or not. We find that Google employs four major
measures as follows. First, Google prevents a device from
being used to register too many (i.e., 10 accounts based on our
experiments) accounts by identifying the device’s fingerprints.
The fingerprints are generated by JavaScript codes in the
registration pages. To hinder adversaries from forging valid
fingerprints, Google obfuscates the codes. Second, the device
fingerprinting mechanism is resistant to the spoofing. Not
only can any tampering on a device fingerprint with integrity
protection lead a registration request to be rejected, but also
a fingerprint cannot be spoofed successfully by the changes
of network, software, or hardware settings. Third, Google
restricts the phone numbers as well as the times for each
phone number to verify Google accounts. The phone number
providers are restricted to only mobile network operators (e.g.,
AT&T). A phone number can be used to pass the verification
at most twice per day and ten times during its lifetime. Last,
Google employs a proprietary mouse cursor tracker to defend
against automated bots.

However, one question arises: “are these security mecha-
nisms sufficient to secure the Google account registration?”
We observe that people can still buy bulk accounts from the
underground markets even though the aforementioned security
mechanisms have been deployed. To find the answer, we adopt
a model checking technique to systematically examine the
registration security. We then develop a tool GAcctAnalyzer,
which is written in Promela (Process Meta Language, a mod-
eling language [8]), to uncover possible vulnerabilities of the

3087

Authorized licensed use limited to: Michigan State University. Downloaded on September 19,2022 at 16:15:41 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SUMMARY OF SECURITY VULNERABILITIES FROM THE GOOGLE ACCOUNT REGISTRATION SERVICE.

Vulnerability | Type [

Description |

V1: One-time Check of Device Usage Limit. Design defect

The device usage limit (e.g., only 3 accounts without phone number
verification can be registered at one device) is checked only once at
an intermediate state during the registration process, so a registration
instance that passes the check may make the usage exceed the limit
after it completes. (Section VI-A)

V2: No or Long Inactivity Timeout. Design defect

No or long inactivity timeout allows adversaries to make registration
instances stay at a certain intermediate state during the registration
process and then manipulate them to launch attacks with sufficient
time. (Section VI-B)

V3: Loose Limits of Phone Number Verifica-

. Design defect
tions.

Google places several limits on phone number verifications, but some
are too loose and may be abused. (Section VI-C)

V4: Local-view Blockage of Phone Numbers. | Operation slip

Google has only local-view blockage of phone numbers for each
individual service. Even if one phone number is blocked by the Google
account registration service, it can still be successfully used by other
Google services. (Section VI-D)

account registration protocol between the browsers (clients)
and Google servers.

GAcctAnalyzer takes two phases: (1) service screening
and (2) experimental validation. The first phase generates
and analyzes counterexamples from the cases that desired
properties are not met, and the second phase validates the
counterexamples using real experiments. GAcctAnalyzer leads
us to discover four security vulnerabilities: one-time check of
device usage limit (V1), no or long inactivity timeout (V2),
loose limit of phone number verification (V3), and local-view
blockage of phone numbers (V4). The first three are design
defects, whereas the last one is an operational slip. The details
are summarized in Table I.

We devise two proof-of-concept attacks based on the
vulnerabilities: (1) fake Google account generation and (2)
Google text/voice spamming attack. The first attack allows
the adversary to create not only many non-phone-verified
accounts (NPVAs), but also phone-number-verified accounts
(PVAs) at the cost as low as only 50% of the prices on bulk-
account-sale websites. In the second attack, the adversary can
spam mobile users with a large number of text messages and
voice calls from the Google registration service. It may cause
Google to receive user complaints and lawsuits. Note that
we seek to disclose new security vulnerabilities of Google
account registration, and effective attacks, but not to aggravate
the damage. We finally propose recommended solutions to
eliminate the vulnerabilities with the goal of minimal impacts
on the existing system.

In summary, we make four major contributions as follows.

o We study state-of-the-art security mechanisms of the Google
account registration protocol, which are mainly deployed to
defend against the attacks of large-scale account generation.

o We develop GAcctAnalyzer to explore security vulnerabil-
ities of the Google account registration protocol using a
model checker approach. To our best knowledge, we are the
first researchers who apply the model checking technique to
studying the insecurity of the Google registration service.

Phone
number
verifying

Request

Usage > a .
¢ Terminated,

Device
usage
checking

Device
fingerprinting

Start
—

Succeeds

Account
created

User profile
filling in

Usage <

Fig. 1. User eligibility verification for the Google account registration («
is the maximum number of Google accounts that can be created on a single
device).

o We devise two proof-of-concept attacks against Google and
mobile users by exploiting the vulnerabilities. We assess the
real world impact and discuss how they can propagate to
mobile applications and online services in practice.

o We propose recommended solutions that only require min-
imal update of the existing system. They will not only
help Google secure its account registration service, but also
benefit other online service providers (e.g., Facebook).

II. GOOGLE ACCOUNT REGISTRATION

Some Google services are available only to Google users. A
Google account can be registered by filling name, username,
password, personal information, recovery email address and
agreeing with the privacy the terms of the Google account.

During the registration process, Google verifies user eligi-
bility to prevent fake accounts with two manners as shown in
Figure 1. The first manner is to limit the number of Google
accounts that can be created daily on a single device, say
a (« 3 observed in our experiments). Google identifies
devices by their unique fingerprints, which are used to form
device IDs. Several techniques have been proposed for this
purpose, such as Canvas-based [9] and WebGL-based [10]
ones. The device fingerprints are collected through some
scripts or applications (e.g., JavaScript codes, Google Chrome
browser) at devices while their users access Google websites.

3088

Authorized licensed use limited to: Michigan State University. Downloaded on September 19,2022 at 16:15:41 UTC from IEEE Xplore. Restrictions apply.

The second manner is to verify users through their phone
numbers for the registration. When the number of created
accounts reaches o on a day at one device, a new registration
request would redirect the user to a “Verify your phone
number” webpage. The user can proceed with the registration
by verifying the phone number. This can thwart the attack of
fake account generation from robots or malicious programs.

III. THREAT MODEL AND METHODOLOGY

In our threat model, the adversary has no control of Google
service infrastructure but his/her own computers. We study the
security mechanisms of Google account registration protocol
against the large-scale fake account creations and propose
GAcctAnalyzer to discover the vulnerabilities of the security
mechanisms. We thus devise two proof-of-concept attacks
based on our findings with the mobile numbers from three
major U.S. carriers: Verizon, T-Mobile, and AT&T.

We bear in mind that some feasibility tests and attack
evaluations might be harmful to mobile users, carriers, and
the service providers. Thus, this study is conducted in a
responsible manner through two measures. First, we seek to
disclose the vulnerabilities of the Google registration service
by our GAcctAnalyzer, but not to aggravate the damage. For
example, finite state machines are tested locally instead of
brute-force tests on Google directly. Second, in the proof-
of-the-concept attacks, we only use our or our colleagues’
phones as the victims and do not launch large scale attacks.
In addition, we have reported the discovered issues to Google
and provided them with our solutions.

IV. SECURITY STUDY ON USER ELIGIBILITY
VERIFICATION

In this section, we conduct a security study on the Google’s
verification of user eligibility. We seek to explore whether
the verification can be easily bypassed to generate fake
Google accounts. We discover that Google employs four major
measures: (1) obfuscated JavaScript codes; (2) anti-spoofing
device fingerprints; (3) restricted phone number verification;
(4) automated bot-detection. We next elaborate on each of
them.

A. Obfuscated JavaScript Codes

We find that device fingerprints are generated by JavaScript
codes in the registration page. A registration request cannot
be made without enabling the browser’s JavaScript support!.
To secure the generation of device fingerprints, Google makes
obfuscation to its JavaScript codes. Specifically, it names both
functions and parameters in a meaningless way, and adds many
redundant codes. It leads to a very large set of JavaScrpit codes
with more than ten thousand lines. Moreover, the codes vary
on a daily basis and only partial functions can be observed
from the client side. It prevents the adversary from spying
how to generate the device fingerprints.

I'The error message is “To create a Google Account, turn on JavaScript
and try again.”

flowName: SignUp

gmscoreversion: undefined

deviceinfo: [...,"77185425430.apps.googleusercontent.com",
"6b8448 e8-0c09-45a7-9f49-0671b380290a", ...]

bgRequest: "web-glif-signup",
"1LS6ILg9C90AI3BBIUM***gDH5yt04pkl7g4snnQrqYuxScipeFQ"
f.req: "AEThLIxg***03iwHkw", "Tyler", "Alvin", "Tyler", "Alvin",
"TylerAlvin9426", "11pGVXZ14eEmdu", "TylerAlvin94 26", true
continue: https://www.google.com/

hl: en
azt: AFoagUUW4n plFKevkE-tlb-iNMY4uHJEIg:1537326733528
flowentry: GlifWebSignin

Fig. 2. A decrypted message that carries encrypted device fingerprints
(deviceinfo).

B. Anti-spoofing Device Fingerprinting

Our study shows that the device fingerprinting is resistant
to spoofing attacks. The generated fingerprints are carried in
the deviceinfo field of the account registration message,
as shown in Figure 2. They have confidentiality and integrity
protection. A tempered fingerprint can fail registration requests
from its device. We validate the anti-spoofing mechanism by
changing environments of a phone#-verify-required device and
see whether it can spoof the Google registration system to be
considered as a new device without the phone number verifi-
cation. We consider the environments from three dimensions:
network, software and hardware. We vary each possible setting
while keeping the others the same, and observe whether any
verification request of the phone number happens.

Network. We consider two ways of changing the device’s IP
address. First, we let the device get a different IP address
from various campus routers, but they belong to the same
autonomous system (AS) number [11]. Second, we let the
device get an IP address from different AS numbers by
using cellular networks. It is observed that the phone number
verification is still required for the device in both ways.

Software. We make three levels of software changes to the
test device: different browsers, new OS with virtualization,
and new installed OS. First, we do the Google registration
using Internet explorer and Firefox instead of Chrome. Second,
we install a new OS, Ubuntu 18.04.1 LTS, on a VMWare
workstation player, and do registration using Firefox. Third,
we replace the original OS, Windows 10, with Ubuntu 18.04.1
LTS. Our result shows that none of these changes can eliminate
the phone number verification on the device.

Hardware. We replace several hardware components including
CPU, network interface, and memory module on the test
device, but the phone number verification is still required. Note
that we do not replace its hard disk in this experiment since
we want to keep the same network and software settings in
the disk.

Finally, we discover that making changes to all the three
dimensions together can bypass the check of device finger-

3089

Authorized licensed use limited to: Michigan State University. Downloaded on September 19,2022 at 16:15:41 UTC from IEEE Xplore. Restrictions apply.

TABLE II
NoOT ALL PPHONE NUMBERS ARE ELIGIBLE FOR GOOGLE’S PHONE
NUMBER VERIFICATION; IT VARIES WITH TELEPHONY SERVICE

PROVIDERS.

[Type [Providers | Cost | Supported |
Online telephony Nexmo $0.57 cents/msg X
service providers | Google Voice Free X

AT&T $30/month Vv

Mobile Verizon $30/month VA
network operators T-Mobile $10 cents/msg VA
US Mobile | $3.75 cents/msg V4

prints of the registration system and thus the phone number
verification is not needed. The changes include assigning an IP
address from a different AS, installing a new OS, and changing
a new motherboard. This mechanism has imposed a large cost
on the spoofing attacks which seek to generate fake accounts.

C. Restricted Phone Number Verification

We investigate whether there are any restrictions on the
phone number verification from two aspects: telephony service
providers and phone number reusability. Our study shows that
each of them has some restriction.

Restricted telephony service providers. We study two types
of the providers: (1) online providers including Nexmo and
Google Voice, and (2) cellular network operators including
AT&T, T-Mobile, Verizon, and US Mobile. As shown in
Table II, the phone numbers from the first type cannot be
used for the verification, but those from the second type can
work. Note that when an unsupported phone number is used,
the user can receive an error message, “This phone number
cannot be used for verification.”

Restricted phone number reusability. We find that a phone
number can be used to pass the verification at most twice per
day. When a number has been used to pass two verification
tests on a day, the user can receive an error message, “This
phone number has been used too many times,” for further
verification tests using the number. We further discover that
a number can be used for the verification at most 10 times.
Further usage of the number can lead to the error, “This
phone number cannot be used for verification.” Note that this
blockage may be permanent. One of our tested phone numbers
has been blocked for longer than three months.

Note that Google allows users to receive verification codes
from public SMS (Short Message Service) gateways (e.g.,
www.receive-sms-online.info), which can be used at no cost. It
is possibly because their phone numbers are usually provided
by cellular network operators.

D. Bot Detection

The adversary may use automated scripts on web pages
to invoke some functions by generating button clicks without
user involvement. The Google registration process is resistant
to this automated bot attack. It employs a proprietary mouse
cursor tracker to defend against the bot. Specifically, when
a click event is triggered, the JavaScript codes determine

Phase 1: Service Screenin
Common () Acct. Creation Specific ‘
D d Properties
Network Model
.~ Use Signal Model Satisfaction
a_, Scenarios| ~ | Generator| -.I Checker K

Account creation Google Account [} f‘[°P9l1y Violation
service analysis Registration Service FSM

Phase 2: Validation /ﬂ
—~
o

Operational
Flaws

Trace
Collector

Design Flaws
Validation

Fig. 3. GAcctAnalyzer overview

whether it indeed comes from the user by checking whether
the cursor’s coordinate is located within the button’s area
on the page by obtaining the mouse cursor’s coordinate and
calculating the cursor’s relative position on the screen.

V. GAcctAnalyzer: SECURITY DIAGNOSIS ON GOOGLE
ACCOUNT REGISTRATION

Our empirical security study shows that Google has de-
ployed several security mechanisms against the attacks of fake
account registration. However, without a rigorous examination
based on some formal method, it is unclear whether they
are sufficient to secure the registration process. We then
develop GAcctAnalyzer to conduct security diagnosis on the
Google registration. We seek to uncover any design flaws or
operational slips from its practice.

GAcctAnalyzer takes a two-phase approach as shown in
Figure 3. In Phase 1, it does service screening that ex-
plores possible, logical design defects via model checking and
then produces corresponding counterexamples. GAcctAnalyzer
moves to Phase 2, once any design defect is identified.
In Phase 2, we validate each counterexample through real
experiments.

A. Phase 1: Service Screening

We develop a model-checking tool based on the Spin [8] to
discover design issues from the client side. We model states
of the Google registration service, and those of client and
server interactions. We also define several checking properties
specific to the fake account registration (e.g., the maximum
number of Google accounts that can be registered). Given
all these inputs, we use the model to check whether a
set of desired properties are satisfied. For each instance of
property violation, which indicates a possible design defect, a
counterexample is generated. In this service screening process,
there are three issues to be addressed: (1) How to model the
Google registration service? (2) How to define the desired
properties? (3) How to identify property violations?

1) Modeling: We do modeling from two main aspects: state
transitions and usage scenarios.

State transitions. We model both client-side and server-side
state transitions for the Google registration service’>. We build

20ur FSMs cannot show all existing state transitions since the site is not
controlled by us. However, any identified issues on our FSMs also exist on
the real system.

3090

Authorized licensed use limited to: Michigan State University. Downloaded on September 19,2022 at 16:15:41 UTC from IEEE Xplore. Restrictions apply.

Next/Ask for a new phone# (the
prev. phone# cannot be used)

Next/Ask the uses to fill in account
info again due to some errors. Ask users to fill
in account info. ey

o
fof “(\‘oe

Ask the user
to fill in
account info.

Send acct.
creation reques
to server

Ask users to fill in account info.

Call Instead/Send
dialing req to server

Invalid /Ask for code
again

Enter
Gverify-

Wait for
Gverify-

enter code
Valid
Ask more acct. info (code is correct)

Account is
created

Wait for
account
creation

additional
acct. info.

Ask server to

Show acct. creation
Q create an acct.

finished page to users

Errors (e.g., not older than 18yr)/
fill in additional acct. info. again

Fig. 4. The state transition diagram of client-side Google account registration service (blue: states; green: trigger condition, e.g., users click the Next button;

black: the output/action following a state transition).

No/Specify error cause and ask the
user to provide a new phone number

No/Ask users to fill in account info again due
to errors (e.g., username has been used).

Acct. creation

Check if
request

user acct.
info is valid,

device

Account is created and device usage is updated

No/Ask the user to

User asks to resend code again

user’s phone
number is
valid

Gverify-
code

Gverify-
code

Check if
additional
acct. info is
valid

Wait for
additional
acct. info

Fig. 5. The state transition diagram of server-side Google account registration service (blue: states; green: trigger condition, e.g., receiving user requests;

black: the output/action following a state transition).

the client-side finite state machine (FSM) shown in Figure 4
by analyzing the Javascript program that validates user inputs
and interacts with the Google server from the client. By
considering client/server interactions and the client-side FSM,
we build the server-side FSM as shown in Figure 5.

Usage scenarios. We seek to explore all the possible client
requests and server responses, but it is impractical due to its
huge amount of combinations. We thus take a semi-sampling
approach as follows. For the components with limited options
(e.g., user gender, birthday, and webpage operations), we
enumerate all the possible combinations. For the others like
user name, phone number, and verification code, we adopt a
random sampling method.

We first consider client requests, where a client is allowed
to register multiple accounts. We use a run-time signal gen-
erator to randomly create user events including Create,
Next, Cancel, Back, Resend, Call Instead, and
Waiting?. These events are triggered individually on the
registration pages. We then record how the registration service

3This event simulates that a user is thinking or waiting at one state.

reacts to each event. For example, given a Create event at the
Start state, a new account registration request is created and
the service moves to the state, Fill_ in_account_info.
GAcctAnalyzer then fills in the input fields of the first reg-
istration page with randomly generated account information
including first name, last name, username, and password.

We next examine server responses with respect to various
client requests. We can observe that the server records the
number of accounts which have been successfully created
by each user and each verification phone number provided
by the user. We equally test all the possibilities, which
include rejects with various error reasons. For example, at
the Verify_phone_number state, there are 6 server error
types which can happen for the eligibility verification of a
phone number and they are summarized in Table III.

2) Defining Desired Properties: From the client-side and
server-side FSMs, we observe that Google mainly relies on
verification codes to defend against the attacks of large-scale
fake account registration. It shall satisfy two important require-
ments during the registration. First, in any use scenarios, the
number of Google accounts which a user can create without

3091

Authorized licensed use limited to: Michigan State University. Downloaded on September 19,2022 at 16:15:41 UTC from IEEE Xplore. Restrictions apply.

TABLE III
S1X SERVER ERROR TYPES FOR THE ELIGIBILITY VERIFICATION OF
PHONE NUMBERS.

[Error Code [Description |
ERR1 Please enter a phone number.
ERR2 Please enter a valid phone number.
ERR3 This phone number format is not recognized.

Please check the country and number.

ERR4 This phone number has been used too many times.
ERRS This phone number cannot be used for verification.
ERR6 There was a problem verifying your phone number.

phone number verification should not exceed the designated
limit. Second, a phone number cannot be used unlimitedly for
the verification.

We define two desired properties for those two
requirements respectively: (1) LimitedAccountCre-
ation_WithoutPhoneVerify; (2) RestrictedPhoneNumberUsage.
The first is that the number of registered accounts without
phone number verification shall be not greater than a
predefined threshold, . The second is that the times that a
phone number can be used for the registration verification
shall be not greater than another threshold, 5. According to
the above study, o and [are respectively set to 3 and 2 per
day for one device.

3) Identifying Property Violations: We perform the proce-
dure of the formal model checking. First, the model checker
creates entire state space by interleaving all FSMs. We then
run the depth-first algorithm to explore state transitions from
the initial state under various usage scenarios. Once a property
violation is hit, a counterexample is generated. The model
checker finally generates all counterexamples, as well as their
violated properties and internal states. The internal states in-
clude the statuses of all the registration instances, where some
of them may have finished the registration and others may stop
at intermediate states. We then analyze each counterexample
to identify security issues based on its internal states.

Specifically, we mainly focus on two desired properties:
LimitedAccountCreation_WithoutPhoneVerify and Restricted-
PhoneNumberUsage. A counterexample of the first property
is that more than « accounts without any phone number
verification on a trial of one day are generated. That of the
second property appears, when the usage times of a phone
number for the registration verification are greater than /.

4) Model Checker Implementation: We implement a
model-checking tool, GAcctAnalyzer in Spin. Specifically, we
model the client and server FSMs (as illustrated in Figure 4
and 5) by the modeling language Promela [8]. The GAcctAna-
lyzer runs on a Dell laptop with an installation of Ubuntu 18.04
(CPU: i7-7700HQ, RAM: 16GB). It captures counterexamples
caused by the property violations. We further analyze output
traces and derive root causes of the violations.

B. Phase 2: Experimental Validation

We set up validation experiments for the generated coun-
terexamples from the service screening phase. We collect

plain-text traces of client/server communication and compare
them with anticipated results. The experiments cover two
popular browsers, Chrome and Firefox, and two computers
with Windows 10 and Ubuntu 18.04. We develop a Python
script to launch multiple account registration requests. To
collect the traces, we deploy an SSL-Split server to intercept
and decrypt all HTTPS traffic between the client and the
Google server. As for the phone number verification, we use
text message services from four major network carriers, AT&T,
T-Mobile, Verizon, and US Mobile, and use three smartphone
models, Samsung Galaxy S8, iPhone 8, and Google Nexus
6P. The other experimental settings are based on the identified
counterexamples in the service screening phase. We also test
common use scenarios to explore whether any operational slip
that breaks those two properties can be observed.

Note that current GAcctAnalyzer has two limitations. First,
the implementation of the Google registration service on the
server side is not accessible to the public, so GAcctAnalyzer
may not be able to discover all of its security vulnerabilities.
This issue can be addressed by further collaborating with
Google, but a non-disclosure agreement may be required.
Second, GAcctAnalyzer stipulates only properties related to the
Google registration in the screening. Other types of security
issues have not been covered yet.

VI. SECURITY VULNERABILITIES FROM GOOGLE
ACCOUNT REGISTRATION

In this section, we uncover four security vulnerabilities
from the Google registration service. The first three are
identified via the counterexamples from GAcctAnalyzer and
can be attributed to design defects, whereas the last one is
an operational slip observed from the comparison between the
registration and other Google services.

A. VI: One-time Check of Device Usage Limit

We discover that Google checks the device usage limit
only once during the registration process, after analyzing
the counterexamples caused by the violation of the Lim-
itedAccountCreation_WithoutPhoneVerify property. This can
be attributed to a design defect. They happen when multiple
registration clients are at the states which are subsequent to
the Wait_for_device_usage_check state, as shown in
Figure 4. Even when any clients among them finish registration
and cause the usage limit to reach «, the other clients,
whose usage limits have been verified, can still proceed to
successfully finish the registration without any requests of
phone number verification. It means that once the device usage
limit is checked while the client-side service transits to the
Fill_in_additional_acct_info state, it will not be
checked again at any subsequent states.

Experimental validation. We validate this vulnerability by
showing that o + 1 Google accounts (here, it is 4) can be
registered at one device without any phone number verification
on one day. We first create two Google accounts at our test
device, and then let another two clients proceed to finish
registration after both of them pass the one-time usage limit

3092

Authorized licensed use limited to: Michigan State University. Downloaded on September 19,2022 at 16:15:41 UTC from IEEE Xplore. Restrictions apply.

check. Thus, four Google accounts are created successfully.
We conduct experiments for the latter two clients as follows.
First, we create two Chrome browser tabs for those two
clients. Second, for both of them, we fill in a form with the
basic account information and press the Next button. Third,
additional account information is requested for both of them.
Note that their device usage limits are checked at this moment.
Forth, we make them finish the registration one by one. Note
that more accounts cannot be registered without phone number
verification afterwards.

B. V2: No or Long Inactivity Timeout

Some counterexamples from the violations of the Lim-
itedAccountCreation_WithoutPhoneVerify property, show that
some registration instances have been staying at the
Fill_in_additional_acct_info state for a long time
(e.g., tens of minutes). We infer that the Google reg-
istration process may have no or long inactivity time-
out. Though the number of registered accounts has
reached o« + 1 in those counterexamples, these instances,
which have passed the device usage check to reach the
Fill_in_additional_acct_info state, should still be
able to successfully create accounts due to V1. It can cause
the number of registered accounts to be much larger than o on
a day. It can be attributed to another design defect. Note that
these counterexamples happen when Waiting events keep
being generated for those idle registration instances.
Experimental validation. We do validation
by letting a registration process stay at the
Fill_in_additional_acct_info state for various
time periods and then proceed to finish the registration. We
seek to observe whether any inactivity timeout can lead to
registration failure or not. In the experiment, we create four
Chrome browser tabs to do Google account registration.
For each tab, we proceed to the page with the need of
additional account information after entering valid account
information. We finish the remaining registration process for
these four tabs after 15 mins, 30 mins, 45 mins, and 60 mins,
respectively. It is observed that all these registration requests
are successful. As a result, the Google registration service
has no inactivity timeout or the timeout longer than one hour.

C. V3: Loose Limit of Phone Number Verification

We also get some counterexamples that violate Restricted-
PhoneNumberUsage property, i.e., a phone number is used
more than 3 times for the verification. After our analysis
on their internal states, we discover that a number can be
used for the verification more than [times, but only [
times can be successful. That is, for one day, a number
can continue to be used for the verification until its (-th
verification succeeds. It is because an instance can switch
back and forth between the Verify_phone_number and
Enter_Gverify_code states. In this case, though the
phone number has been used for the verification and a 6-digit
verification code is then sent, the instance does not complete
the verification with a correct code. The limit is loose for the

verification usage and may be abused. We further find that the
number of usage times for a phone number on the verification
is at most 10.

Experimental validation. We first turn one device to be
required for the phone number verification on a new ac-
count registration by successfully creating three Google ac-
counts on it. We then use one phone number to do ver-
ification for subsequent Google registrations, and manually
control the browser to switch back and forth between the
Verify_phone_number and Enter_Gverify_ code
states by clicking Next and Back buttons. Each verification
trial triggers a 6-digit verification code to be sent out to our
phone.

We run this experiment for a week and have the following
two observations. First, the 11th verification trial is always
denied by Google, so the maximum verification times allowed
for a phone number are 10 on a daily basis. Second, the
verification times are reset after 24 hours. We validate that
a phone number can be used 70 times for the verification in
a week. In summary, the usage of a phone number for the
verification has three limits: the maximum times for successful
verifications per day, those during the phone number’s lifetime,
and the maximum times for being used for the verification per
day. They are respectively 2, 10, and 10. When any limit is
met, the verification based on the phone number would be
denied.

D. V4: Local-view Blockage of Phone Numbers

We compare the verification limit of the Google account
registration with that of other Google services including the
activation of a suspended Google account and a Google voice
account. We discover that Google does not take the phone
number verification as a united function over all of its services;
instead, it has only local-view blockage of phone numbers for
each individual service. Specifically, even if one phone number
is blocked by the Google registration service, it can still work
for the other two services. As a result, a phone number can
be repetitively used to abuse different Google services.
Experimental validation. We examine whether a phone num-
ber that is blocked by the Google account registration can be
used to activate a suspended Google account and link a phone
number to the Google voice service. We first make an AT&T
phone number be blocked by the registration service. By using
this number, we are then able to do activation of a suspended
account and a Google voice number successfully.

VII. PROOF-OF-CONCEPT ATTACKS

We devise two proof-of-concept attacks based on the dis-
covered vulnerabilities: fake Google account generation and
text/voice spamming attacks. The former’s victims are Google,
whereas the latter’s ones are cellular users and Google.

A. Fake Google Account Generation

We devise this attack by exploiting V1 and V2 and
its pseudo code is shown in Algorithm 1. It con-
sists of two steps. First, we start a group of registra-
tion instances on one device and let them stop at the

3093

Authorized licensed use limited to: Michigan State University. Downloaded on September 19,2022 at 16:15:41 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1:
Registration

Input: N, the number of accounts to be created
Output: F'ile, a file contains the information of N created Google accounts

Automated Fake Account

1 1=1;75=1;
2 Create F'ile;
3 while i < N do
4 Create p;; // open "Create Your Google Account" tab
5 Generate FirstName, LastName, UserName, PassWord;
6 Store UserName, PassWord in Flile;
7 Set FirstName, LastName, UserName, PassWord on Pis
8 Move mouse cursor to “"Next” button;
9 Click button; ¢ 4 +;
/+ N pages are opened. */
10 while j < N do
1 Open p;;
12 Set Birthday > 18-yr old on p;;
13 Set Gender on p;;
14 Move mouse cursor to “"Next” button;
15 Click button;
6 | J++;
/+* N Google accounts are created. */

17 Return Flile;

Fill_in_additional_acct_info state (see Figure 4).
Due to VI, all these instances can pass the one-time check
of the device usage limit. Second, we make them proceed
to finish their registration procedures. Though it may take
a little longer time to fill the required information fields
at each registration instance, the registration process has no
or long inactivity timeout (V2). In this way, each instance
can successfully create a Google account without any phone
number verification.

Implementation. We implement an automatic tool that uses
the Selenium [12] software to control the Firefox browser,
instead of an automated script, which is resisted by the Google
registration service. At the first step, the tool automatically
creates browser tabs, each of which is used to create one
fake account. For each tab, it goes to the Google Account
creation page and fills in registration forms with fake account
information. It then moves the mouse cursor to the Next
button and presses it. After all the required tabs proceed to the
Fill_in_additional_acct_info page, the tool starts
the second step to finish each tab’s registration procedure.

Evaluation. We examine whether our developed tool can
indeed create many fake Google accounts successfully. We aim
to examine the attack effectiveness instead of aggravating the
real world damage, so only 20 fake accounts are considered
in this experiment. Our result shows that the tool can first
create 20 browser tabs for Google account registration, have
them proceed to the F111_in_additional_acct_info
page, and then successfully finish their registration procedures
one by one. To confirm these fake accounts are valid, we use
them to access Gmail and Youtube services without any issue.

Note that the attack costs negligible CPU resource and net-
work bandwidth. But it requires memory to maintain multiple
tabs concurrently. Given no inactivity timeout, the bottleneck
of this attack is how many Firefox tabs can be concurrently
kept on one device. Our experiment shows that each tab takes
up to 30 MB memory during the account registration. For a

computer with 16 GB RAM, the adversary can create up to
546 fake Google accounts theoretically. One device used to
launch the attack before can be used again after 12 days.

Attack variant: low-cost phone-verified accounts (PVAs).
The PVAs are the accounts that have passed Google’s phone
number verification, whereas the fake ones generated by
the above attack are non-phone-verified accounts (NPVAs).
Google imposes more security restrictions on NPVAs than
PVAs. For example, Google does not allow multiple NPVAs to
be accessed from the same device. It can temporarily suspend
them and ask for phone number verification. But, the PVAs do
not have this restriction. The Google PVAs are more expensive
than the NPVAs on the markets [3], [4], [6].

We devise this attack variant by leveraging the above attack
and V4. It has three steps. First, a cellular phone number
($5.49 from US Mobile with $3.99 one-time SIM card fee
and $1.5 sending/receiving 40 texts) with a prepaid text service
plan is purchased. This phone number allows us to create 10
PVAs (see V3) and then is permanently blocked by Google
for the account registration service. Second, we apply for two
Google voice numbers, which require two PVAs and a cellular
number. The two PVAs can come from the first step, whereas
we can use the same cellular number. Note that one cellular
number can be used to apply for at most two Google voice
numbers. Due to V4, though the number is blocked for the
account registration service, it is still clean for Google voice.
Third, we can activate suspended NPVAs to become PVAs by
passing their phone number verifications. We use the cellular
number and the two Google voice numbers obtained at the
second step to activate the suspended NPVAs. Our experiment
shows that each number can be used to activate at most 4
suspended NPVAs, so they can totally activate 12 NPVAs to
become PVAs. Thus, this attack can create 22 PVAs (10 from
the first step) at the cost of $5.49. On the average, the cost of
each account is $0.25, which is 50% cheaper than the price
$0.5 at bulkpvaseller.us.

Attack incentive and negative real-world impact. Both Google
PVAs and NPVAs can be traded on several websites [3], [4],
[6]. A PVA averagely costs from $0.5 to $4.5 by considering
a transaction of bulk Google accounts. We thus believe that
adversaries have incentives to launch a large scale of attack in
practice.

The real-world impact of this attack can be negative and
far-reaching due to two reasons. First, there are many popular
online service providers that allow users to login/access the
services with Google accounts, such as eBay, imgur, Wikia,
imdb, Pinterest, Zillow, Expedia, Trulia, Realtor, Tripadvisor,
to name a few. These service providers share the same security
threats with Google and can suffer from a large-scale attack of
the fake account registration. Second, in the era of smartphone,
adversaries can promote their malicious smartphone applica-
tions (e.g., a Bitcoin wallet application accepting the remote
BTC transfer commands from adversaries) or services to users
as well as generate fake reviews to affect the rating system
(e.g., Google Play, Yelp) with the fake Google accounts. The

3094

Authorized licensed use limited to: Michigan State University. Downloaded on September 19,2022 at 16:15:41 UTC from IEEE Xplore. Restrictions apply.

similar service has been seen on the markets [6].

B. Google Text/Voice Spamming Attack

We devise this attack based on V3 to generate text/voice
spam messages towards mobile network users. The adversary
triggers the spam messages including Google verification
codes through the Google account registration service to the
users who do not request them. The victims can be both
mobile users and Google. The user victims can receive many
unsolicited text messages and voice calls from Google, and
may pay extra cellular service fees. Google may not only need
to pay for those spam messages, but also suffer from possible
lawsuits or complaints from the victims.

We develop an attack tool to send text/voice spams as many
as possible to victims. The tool keeps a list of victims’ phone
numbers and generates the allowable spams to them every day.
Note that the attack device’s IP address will be changed after
every 10 spams messages/calls because Google temporarily
blocks a device’s IP after 10 verification messages. According
to our experiment, this mechanism does not have the anti-
spoofing device fingerprinting introduced in Section IV-B.
Thus, this mechanism can be bypassed by only changing the
device’s IP address.

Implementation. We implement the attack tool by using the
Selenium software to control the Firefox browser. The initial
steps similar to the fake account generation attack include
creating a new browser tab, accessing the page ”Create your
Google Account” on this tab, filling in a registration form with
basic account information, and moving the mouse cursor to the
Next button to press it. Then it leads the registration process
to the phone verification page. It then inputs one victim’s
phone number, as well as moves the cursor to the Next,
Resend, or Call Instead button, presses it and triggers
the Google registration service to send the victim a spam text
message/voice call for the verification.

The tool repeats the actions on the phone verification page
with the attack intervals. After 10 text messages/voice calls
are generated to the current victim, a new victim is selected
from the victim list to be attacked. On each day, this attack
process does not stop until it goes through all the victims on
the list. Note that this attack must be launched on a phone#-
verify-required device (see Section II).

Evaluation. We use 13 phone numbers from our lab members
in the attack test. The numbers are from three US major
carriers including Verizon, AT&T, and T-Mobile; the residence
of participants covers from the East to the West of the U.S.
This attack lasts for one week. Our result shows that each
tester indeed receives 70 text messages and 70 voice calls
from Google. It confirms that a large-scale attack is feasible
since this attack is not limited by carriers or victims’ locations.

Attack incentive and negative real-world impact. In recent
years, there have been several spamming-related lawsuits. For
example, Papa John’s Pizza faced a $250 million lawsuit for
its spam texts in 2012. It finally paid $16.5 million to settle
this lawsuit in 2013. In 2018, Bloomingdale paid $1.4 million

for a complaint of its spam texts. Thus, victims may accuse
Google of the spam texts and voice calls from our developed
attack. Google may pay for this spamming attack* and lose its
reputation.

VIII. RECOMMENDED SOLUTIONS

We propose three recommended solutions to address the
above security vulnerabilities. We seek minimal modifications
on the existing system so that Google can eliminate them in
a short time.

Atomic registration process. We propose that the Google
registration process should be limited to an atomic transaction
where the check of device usage limit is done right before
the completion of the atomic transaction. Once the number
of registered accounts without phone number verification has
reached the device usage limit, «, the registration process
should ask for phone number verification; otherwise, a new
Google account is successfully created. Due to the atomic
transaction, the server can process the request with all users’
information and then do the check of device usage limit. It
can eliminate both V1 and V2, since no intermediate state
(e.g., Fill_in_additional_account_info) allows a
registration instance to stay to pass the limit check without
finishing the registration process. Note that the detection of
duplicate usernames and emails can be still done while the
user fills in input fields without additional intermediate state.

Anti-spam verification. We suggest that Google can take the
following two manners to defend against spams generated
from the verification service. First, it should reduce the verifi-
cation limit of a phone number from 10 to a smaller one (e.g.,
2 or 3) per day, thereby alleviating the impact of V3. Second,
it should provide a way for victims to report the verification
spams. For example, the verification text and voice can contain
a message that ‘G-XXXXX is your Google verification code. If
you did not request it, please reply SPAM.” Google can thus
stop an ongoing attack right away.

Unified number blockage system. We recommend that
Google should block phone numbers globally with a unified
number blockage system. Once a phone number is blocked at
one service, this blockage should be propagated to the other
services. It is because a number that is used to attack one
service may be abused to attack another services later. Google
can use a database to maintain the information of blocked
phone numbers, and share it with all the services. Such global
view of the phone number blockage can eliminate V4.

IX. RELATED WORK

In this section, we present related work in the security
aspects of Google and web services.

Google services. There have been several studies that focus on
the security of Google services [14]-[18]. Specifically, Gong
et al. [14] study security issues of Google+ by developing a
model to reproduce its social structure and node attributes.

4The company needs to pay for $500 to $1500 per each verified spam text
in Miami, FL [13].

3095

Authorized licensed use limited to: Michigan State University. Downloaded on September 19,2022 at 16:15:41 UTC from IEEE Xplore. Restrictions apply.

Reis et al. [15] discuss key issues about how to shield Google
Chrome from attacks, whereas Carlini et al. [16] examine the
security architecture of the Google Chrome extensions and
perform a security review on a set of 100 Chrome extensions.
Zhang et al. [17] report the security analysis of the virtual
personal assistants including Google home. Chauhan et al. Lei
et al. [18], [19] study the insecurity of using Google home
HDVA.

Web services. The security issues of web services are also
explored in many papers [20]-[24]. Specifically, Lu et al. [20]
study the website fingerprinting and suggest an effective coun-
termeasure to it by removing the information order. Malheiros
et al. [21] present a large-scale observation study of user drop-
out behaviors on web registration forms from several service
providers such as Microsoft and Yahoo. Sengupta et al. Pan
et al. [22] analyze the content security policy on real-world
websites. Nikiforakis et al. [23] explore the web-based device
fingerprinting. Fass et al. [24] propose a detection method of
malicious JavaScript codes.

Different from all these studies, our work focuses on the
Google account registration service. We systematically explore
its insecurity using a model checker approach, and then assess
its negative impacts.

X. CONCLUSION

Google accounts have been considered as important re-
sources. They are required for users to access many Google
services. Moreover, due to Google’s good reputation, many on-
line services trust Google emails and rely on Google accounts
to do resource authorization or user authentication. It can be
anticipated that Google services and other online ones can
be hurt by fake Google accounts, especially by a large scale
of fake ones. Specifically, adversaries can use fake Google
accounts to launch various attacks including the distribution
of fake news, fake reviews, phishing, spamming, etc. In this
work, we study the security mechanisms deployed by Google
to defend against the attacks of fake account generation with
a model checking tool GAcctAnalyzer. We thus find four
security vulnerabilities and implement two proof-of-concept
attacks. To eliminate the vulnerabilities with minimal impacts
on the existing system, three solutions are recommended. We
hope that our initial study can attract more attention from the
research community and the industry on the insecurity of the
Google account registration.

ACKNOWLEDGEMENT

This work is supported by the National Science Foundation
under Grant Numbers CNS-1815636, CNS-1814551, and by
the Ministry of Science and Technology under Grant Number
MOST 106-2628-E-009-003-MY3. Note that any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors only and do not neces-
sarily reflect those of the National Science Foundation or the
Ministry of Science and Technology.

[1]
[2]
[3]
[4]
[5]
[6]
[7]

[8]

[9]

[10]

(1]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

3096

REFERENCES

eBay, “Avoiding seller fraud,” https://www.ebay.com/help/buying/
resolving-issues-sellers/avoiding-seller-fraud?id=4024, 2019.

K. Rogers, “More fake newspaper sites claiming to be based in quebec
pop up two years after they were exposed,” https://www.cbc.ca/news/
technology/quebec-fake-newspapers-1.5228905, 2019.

BulkPVASeller, “Bulk pva seller,” bulkpvaseller.us, 2019.
HighQualityPVAs, “High quality pva’s online,” highqualitypvas.com,
2019.

BuyServiceUSA, “Buy aged gmail accounts,”
buyserviceusa.com/product/buy-old-gmail-accounts/, 2019.
“Buy bulk google (gmail) accounts,” https://buyaccs.com/en/
buy-bulk- gmail-accounts.php, 2019.

“How to create an unlimited amount of phone-verified google accounts
(includes gmail, g+ and youtube),” http://www.mytrafficresearch.com/
traffic-research/unlimitedgmailaccounts/, 2018.

G. Holzmann, The SPIN Model Checker: Primer and Reference Manual,
Ist ed. Addison-Wesley Professional, 2011.

G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and
C. Diaz, “The web never forgets: Persistent tracking mechanisms in
the wild,” in Proceedings of the Conference on Computer and Commu-
nications Security (CCS). ACM, 2014, pp. 674-689.

“Webgl - a new dimension for browser ex-
ploitation,” https://www.contextis.com/en/blog/
webgl-a-new-dimension-for-browser-exploitation, 2012.

“Autonomous system number (asn),” https://www.techopedia.com/
definition/26871/autonomous-system-number-asn, 2018.

Selenium, “Seleniumhq browser automation,” https://www.seleniumhq.

https://www.

org/, 2019.
“Getting spam text messages? you can recover
500—1500 per message,” https://www.sflinjuryattorneys.com/

spam-text-messages-recover-500-1500-per-message/, 2018.

N. Z. Gong, W. Xu, L. Huang, P. Mittal, E. Stefanov, V. Sekar, and
D. Song, “Evolution of social-attribute networks: measurements, mod-
eling, and implications using google+,” in Proceedings of the Internet
Measurement Conference (IMC). ACM, 2012, pp. 131-144.

C. Reis, A. Barth, and C. Pizano, “Browser security: lessons from google
chrome,” Communications of the ACM, vol. 52, no. 8, pp. 45-49, 2009.
N. Carlini, A. P. Felt, and D. Wagner, “An evaluation of the google
chrome extension security architecture.” in USENIX Security Symposium
(Usenix Security), 2012, pp. 97-111.

N. Zhang, X. Mi, X. Feng, X. Wang, Y. Tian, and F. Qian, “Understand-
ing and mitigating the security risks of voice-controlled third-party skills
on amazon alexa and google home,” arXiv preprint arXiv:1805.01525,
2018.

X. Lei, G.-H. Tu, A. X. Liu, K. Ali, C.-Y. Li, and T. Xie, “The insecurity
of home digital voice assistants-amazon alexa as a case study,” arXiv
preprint arXiv:1712.03327, 2017.

X. Lei, G.-H. Tu, A. X. Liu, C.-Y. Li, and T. Xie, “The insecurity
of home digital voice assistants-vulnerabilities, attacks and countermea-
sures,” in IEEE Conference on Communications and Network Security
(CNS). IEEE, 2018, pp. 1-9.

L. Lu, E.-C. Chang, and M. C. Chan, “Website fingerprinting and
identification using ordered feature sequences,” in European Symposium
on Research in Computer Security (ESORICS). Springer, 2010, pp.
199-214.

M. Malheiros and S. Preibusch, “Sign-up or give-up: Exploring user
drop-out in web service registration,” in Symposium on Usable Privacy
and Security (SOUPS), 2013.

X. Pan, Y. Cao, S. Liu, Y. Zhou, Y. Chen, and T. Zhou, “Cspau-
togen: Black-box enforcement of content security policy upon real-
world websites,” in Proceedings of the Conference on Computer and
Communications Security (CCS). ACM, 2016, pp. 653-665.

N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and
G. Vigna, “Cookieless monster: Exploring the ecosystem of web-based
device fingerprinting,” in JEEE symposium on Security and privacy (SP).
IEEE, 2013, pp. 541-555.

A. Fass, R. P. Krawczyk, M. Backes, and B. Stock, “Jast: Fully
syntactic detection of malicious (obfuscated) javascript,” in International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA). Springer, 2018, pp. 303-325.

Authorized licensed use limited to: Michigan State University. Downloaded on September 19,2022 at 16:15:41 UTC from IEEE Xplore. Restrictions apply.

