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Abstract—Channel dispersion quantifies the convergence speed
of coding rate to channel capacity under different latency con-
straints. Under the setting of packet erasure channels (PECs) with
Bernoulli packet arrivals, this work characterizes the channel dis-
persions of random linear streaming codes (RLSCs) and MDS block
codes, respectively. New techniques are developed to quantify the
channel dispersion of sequential (non-block-based) coding, the
first in the literature. The channel dispersion expressions are then
used to compare the levels of error protection between RLSCs
and MDS block codes. The results show that if and only if the
target error probability pe is smaller than a threshold (≈ 0.1774),
RLSCs offer strictly stronger error protection than MDS block
codes, which is on top of the already significant 50% latency
savings of RLSCs that eliminate the queueing delay completely.

I. INTRODUCTION

This work considers an information source that generates
message packets sequentially, which are then encoded and sent
through a noisy packet erasure channel (PEC). In every time
slot t ≥ 1, one message packet m(t) ∈ GF(2q) may arrive at
the encoder with probability R ∈ (0, 1). The message packet
m(t) is causally encoded to generate the coded packet x(t) ∈
GF(2q), which is then transmitted through a PEC with the
output being perfect y(t) = x(t) or erased y(t) = ∗, with
erasure probability ε. The goal is to decode the message packet
m(t) transmitted at time t by time t+∆. Decoding after t+∆
is considered useless and will be counted towards the error
probability pe.

Such a system model characterizes the interaction among
the sequential arrival rate R, the channel capacity C = 1− ε,
the hard decoding deadline ∆ and the deadline-constrained
error probability pe, and is motivated by next-generation low
latency communications [1] and some existing error protection
techniques such as erasure network coding [2]–[12].

Following the seminal work of Polyanskiy et al. [13], this
work studies the setting of fixed pe > 0 and C = 1 − ε and
characterizes the convergence speed of R↗ C when ∆→∞.
Specifically, [13] shows that for any fixed pe < 0.5, we have

R = C −
√
V · 1√

∆
·Q−1(pe) + o

(
1√
∆

)
(1)
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for a wide variety of channel models1, block coding
schemes and converse results [11]–[17], where Q(x) =∫∞
x

1√
2π
e−u

2/2du is the complimentary cumulative distribu-
tion function (CCDF) of the standard Gaussian distribution,
and Q−1(·) is the inverse of Q(·). The constant V is termed the
channel dispersion. Given the system reliability requirement
(fixed pe), the channel dispersion equation (1) shows that
the gap-to-optimality C − R admits an important product
form consisting of

√
V , determined by the underlying channel

distribution, 1√
∆

, the convergence rate versus the deadline
constraint ∆, and Q−1(pe), the cost needed to achieve pe.

All existing results of channel dispersion studied an infinite
backlogged setting [11]–[17], for which all the messages are
available to the encoder before transmission. In contrast, this
work considers the sequential Bernoulli arrival setting and
characterizes the channel dispersion of random linear stream-
ing codes (RLSCs) over PECs. RLSCs belong to the class of
sequential coding for which the encoder receives a string of
message packets sequentially and outputs a string of coded
packets in real time. With continuous arrival of new messages
and continuous transmission of coded packets simultaneously,
there is no concept of “blocks” in its operations. RLSCs thus
do not experience any queueing delay typically associated
to the block-based designs, a feature that is especially ap-
pealing for the next-generation low latency communications
[18]. Meanwhile, the non-existence of “blocks” means that all
the existing intuitions and techniques of block-based channel
dispersion analysis no longer hold and we have to devise new
ways of quantifying the convergence speed of R ↗ C when
∆→∞ under fixed pe.

The main contributions of this work are:
(i) We show that even with a non-block-based design, the

channel dispersion equation of RLSCs, surprisingly, still has
the same form as (1). Specifically, the gap-to-optimality is
once again a product of

√
V and 1√

∆
but one has to replace the

cost term Q−1(pe) by a different function S−1(pe) to precisely
account for the non-block nature of RLSCs. Note that our
results focus exclusively on achievability without any converse
discussion. At this moment, it remains an open problem

1The remainder term o(
√

1/∆) in (1) can be further improved for many
models such as discrete memoryless channels and Gaussian channels [13].



whether this is a phenomenon limited to the RLSCs over PECs
considered herein or a result with broader generality.

(ii) We also consider a simple and reasonable block-
based scheme that first “queues” the incoming Bernoulli-
arrival message packets and then protects them by the optimal
maximum distance separable (MDS) block code. We analyze
the channel dispersion of such a block-MDS-based scheme,
termed BMDS. By comparing the dispersion equations of the
two fundamentally different designs, we show that if and only
if the target error probability pe is smaller than a threshold
(≈ 0.1774), RLSCs offer strictly stronger error protection than
BMDS. This implies that, for any commonly used reliability
requirement pe ∈ [10−6, 10−2], RLSCs not only save 50%
of the latency by eliminating queueing delay, but also offer
stronger error protection than traditional block-based designs.

(iii) If we ignore the remainder term o(
√

1/∆), the channel
dispersion equation (1) can be used as an approximation
of the finite-length performance. We conduct extensive nu-
merical evaluation and compare the new channel-dispersion-
based approximation versus the exact finite-length results in
our previous work [19]–[21]. The gap-to-optimality C − R
predicted by the new approximation is within 7.1% of the
actual C − R from exact analysis even for ∆ as small as
100, which shows numerically the power of the new channel
dispersion result when used as a finite-length approximation.

II. DISPERSION FOR BLOCK-MDS-BASED DESIGN

This section describes a traditional way of protecting se-
quentially arriving packets by BMDS, and then characterizes
its channel dispersion over PECs. While the result is new, the
techniques follow directly from [13]. Our goal is to establish
a baseline for our main results, the RLSC schemes in Sec. III.

For any integer nB ≥ 1, the BMDS encoder first queues the
message packets m(t) arrived in time slot t ∈ [1, nB ]. Denote
MnB

1 the number of message packets arrived during [1, nB ],
which is binomially distributed with parameters (nB , R). At
the end of time nB , those MnB

1 message packets are encoded
into nB coded packets by a non-systematic2 MDS block code.
The resulting packets are sent in time slots [nB + 1, 2nB ]. At
the end of time 2nB , the receiver attempts decoding.

The BMDS can be naturally pipelined for continuous op-
eration. That is, during the transmission in [nB + 1, 2nB ],
the encoder queues the next batch of incoming messages,
encodes and transmits them in [2nB+1, 3nB ], and so forth. To
accommodate the queueing delay nB incurred in [1, nB ] plus
the transmission delay nB incurred in (nB , 2nB ], we choose
the block length nB according to the deadline constraint ∆ by

nB = b0.5∆c. (2)

If we use Y 2nB
nB+1 to denote the number of successful deliveries

in [nB + 1, 2nB ], the error probability becomes

pe = Pr
(
MnB

1 > Y 2nB
nB+1

)
. (3)

2In both BMDS and the RLSCs in Sec. III, we use non-systematic
construction for fair comparison. A systematic construction may further reduce
the error probability but the analysis involves various code-dependent “partial
observing/decoding” events, which is beyond the scope of this work.
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Fig. 1: The illustration of the cumulative generator matrix G(t)

in (5) and the random column and row removal to derive H(t).

Proposition 1. With the capacity being C = 1 − ε, for any
pe ∈ (0, 0.5), we have

R = C −
√

2ε (1− ε) 1
√
nB

Q−1(pe) + o

(
1
√
nB

)
. (4)

Sketch of the proof: The error event can be rewritten as
{
∑nB

i=1 Zi > 0} where Zi = Mi−Yi+nB
, and Mi ∼ Bern(R)

and Yi ∼ Bern(1− ε) denote the arrival of the message
and the delivery of the coded packet at time i, respectively.
Because Zi is i.i.d. with E {Zi} = R − C and Var(Zi) =
Var(Mi) +Var(Yi+nB

) = R(1−R) + ε(1− ε), by the Berry-
Essen Theorem and by noting that R↗ C = 1− ε when nB
is large, we have (4).

Remark 1: Eq. (4) is written in terms of the nB , which can
be easily converted to an expression of the ∆ by (2).

Remark 2: The channel dispersion of PECs for the infinite
backlogged setting is V = ε(1 − ε) [13, Theorem 53]. The
new Bernoulli arrival setting effectively doubles the dispersion
V in (4) to 2ε(1 − ε) since the dispersion V is additionally
contributed by the random arrivals that are absent in an
infinite-backlogged setting.

III. DISPERSION FOR RLSCS

A. Construction of RLSCs

Following the sequential arrival setting in Sec. I, the RLSC
encoder uses all the received packets until time t as input and
outputs one coded packet x(t) ∈ GF(2q) per time slot. We
first describe the operations assuming no randomness. That is,
a new message arrives in each time slot (R = 1), and there is
no erasure (ε = 0). Define Gt as the 1-by-t generator matrix
and G(t) as the t-by-t cumulative generator matrix for slot t.
We have

x(t) = Gtm
t
1 and xt1 = G(t)mt

1 (5)

where each entry of Gt is chosen uniformly and randomly
from GF(2q) excluding 0, G(t) is obtained by vertically
concatenating G1 to Gt, and mt

1 (resp. xt1) is the cumulative
column vector consisted by vertically concatenating m(1) to
m(t) (resp. x(1) to x(t)). Because of the causal construction,
G(t) is a lower triangular matrix, see Fig. 1.



We now consider random message arrival (R < 1) and ran-
dom erasure (ε > 0). Essentially the effect of random message
arrival is to delete each column of G(t) with probability 1−R
and the effect of random erasure is to delete each row of G(t)

with probability ε. After applying random column and row
deletions to G(t), we denote the final matrix by H(t), which
we term the cumulative receiver matrix. We then have

yt1 = H(t)mt
1 (6)

where we slightly abuse the notation and use mt
1 to denote

the message packets that actually arrive during [1, t] and yt1 to
denote the coded packets delivered successfully during [1, t].

In Fig. 1, the columns boxed in blue signify no message
arrival at time 2, 5 and t − 2, and the rows boxed in red
signify packet erasure at time 3, 5 and t − 1. Removing the
blue columns and red rows, the remaining matrix is the H(t).

With sufficiently large finite field GF(2q), we assume that
Bernoulli arrival patterns are conveyed to the receiver with
negligible overhead. As a result, the receiver has perfect
knowledge of the random matrix H(t) for all t. The goal is
to decode m(t) (if a message did arrive at time t) by the
observation yt+∆

1 and the knowledge of H(t+∆). We thus have

Definition 1. A packet m(t) is decodable by time t + ∆ if
the transpose of its location column vector ~δm(t) is in the row
space of H(t+∆), where ~δm(t) is of the same dimension as the
mt+∆

1 and its entry corresponding to the location of m(t) is
one and all other M t+∆

1 − 1 entries are zero.

B. Existing Results on RLSCs

In [22], the concept of information debt was proposed to
describe the error events of (random) linear streaming codes:

Definition 2. Initializing Id(0) , 0, the information debt Id(t)
at time t ≥ 1 can be computed iteratively by

Id(t) , (Mt − Yt + Id(t− 1))
+ (7)

where Mt and Yt are the numbers of the message arrivals and
successful packet deliveries at time t and (·)+ , max(·, 0).

[22, Lemma 6] states the following converse statement on
decodability: If Id(t) > 0, at least one message packet m(τ)
with τ ∈ [1, t] cannot be decoded by time t. Our previous
work [20] reused this definition of Id(t) but significantly
strengthened the relationship between error events and Id(t).

Definition 3. Define t0 , 0 and define iteratively

ti , inf{τ : τ > ti−1, Id(τ) = 0} (8)

as the i-th time that Id(t) hits 0.

Lemma 1 (Proposition 1 in [20]). Assume the Generalized
MDS condition (GMDS) in [20] (which is similar to assuming
an infinite field q →∞). For any time τ ∈ (ti, ti+1] for some
fixed i ≥ 0, the earliest decoding time (EDT) of the message
m(τ) is the next 0-hitting time ti+1.

Compared to the converse-only statement in [22, Lemma 6],
Lemma 1 implies both (i) m(τ) can be decoded at the next

time Id(t) hits 0, and (ii) m(τ) cannot be decoded at any
earlier time slot. As a result, for any fixed τ the deadline-
constrained error probability for m(τ) is equal to Pr(Hτ (0)−
τ > ∆), where Hτ (0) = inf{t ≥ τ : Id(t) = 0} is the next
0-hitting time after (and including) time τ .

Since Id(t) is a random walk bounded below by 0, by the
standard renewal theorem we immediately have

Lemma 2 (Lemma 1 in [20]). Assume R < C = 1 − ε and
the GMDS, the error probability of RLSCs (averaged over all
m(τ)) can be computed by

pe =
E
{

(ti0+1 − ti0 − (∆ + 1))
+
}

E {ti0+1 − ti0}
(9)

for any arbitrary constant i0 ≥ 0.

C. Main Results on RLSCs

We define a new function before stating our main results.

Definition 4. For any x ∈ (0,∞), define

S(x) ,
4

π
x · e− x2

2

∫ ∞
0

u2

(x2 + u2)
2 e
−u2

2 du. (10)

Some properties of the function S(x) are in order:

Proposition 2. (i) S(x) is non-increasing; (ii) limx↘0 S(x) =
1; and (iii) limx→∞ S(x) = 0. Specifically, if we expand the
domain of S(x) by letting S(0) , limx↘0 S(x), then S(x) is
a CCDF of a positive finite random variable.

The proof is omitted due to space constraints. It is worth
noting that Property (iii) can be easily derived by examining
(10). The proofs of Properties (i) and (ii) are quite involved
and we need special techniques beyond simply taking the
derivatives. For example, directly plugging x = 0 in (10) gives
0 rather 1. Comparing this fact to Property (ii), we can see
that (10) is discontinuous at x = 0, while being continuous
everywhere in (0,∞).

We also analyze the asymptotics of S(x). For two ar-
bitrary functions f(x) and g(x), we say f(x) ∼ g(x) if
limx→∞

f(x)
g(x) = 1. For example, it is known that Q(x) ∼

1√
2π
x−1e−

x2

2 . We then have

Proposition 3.

S(x) ∼ 2
√

2√
π
x−3e−

x2

2 (11)

Using the S(x) function, we state our main results.

Proposition 4. For the random packet arrival setting in this
work, the channel dispersion equation of RLSCs becomes

R = C −
√

2ε (1− ε) 1√
∆
S−1(pe) + o

(
1√
∆

)
(12)

where pe ∈ (0, 1) is the target error probability and S−1(·)
is the inverse of S(·).

The similarity between (4) and (12) is striking, especially
considering the fundamental differences between BMDS and



RLSCs. The former has a block structure that partitions the
time-axis into disjoint segments. RLSCs have no block struc-
ture and the decodings of past and future messages m(t) are
inherently correlated across the entire time axis. Regardless,
Proposition 4 shows that the channel dispersion of RLSCs still
admits an identical form as that of BMDS (4). In both cases,
the gap-to-optimality C − R is a product involving the same
dispersion term (

√
2ε(1− ε)), augmented by the additional

randomness of packet arrivals. Both share the same (·)−.5
decrease term due to the nB in (4) or the ∆ in (12).

Even the cost of achieving the target probability pe shares
a similar form, both being the inverse of a CCDF with BMDS
using the Q−1(·) due to the underlying central limit theorem
and the RLSCs using the new S−1(·) function that is clearly
related to Gaussian distributions (10) but has a much different
expression due to the sequential nature of RLSCs.

Fig. 2 plots the CCDFs Q(x) versus S(x). One can see
that when pe = 0.1774, the inverse terms are identical
Q−1(0.1774) = S−1(0.1774). This implies that if and only
if pe < 0.1774, RLSCs will have a smaller gap-to-optimality
(C − R) due to the smaller cost term S−1(pe) < Q−1(pe),
and thus offer stronger error protection. Note that even though
Fig. 2 plots S(x) versus Q(x) only for x ∈ (0, 5], we have
S(x) < Q(x) for all x ∈ (5,∞) since the asymptotics of S(x)
in Proposition 3 has the x−3 term, which decays faster than
the asymptotics of Q(x) that only has the x−1 term. The error
protection benefits of RLSCs thus persist for all pe < 0.1774.

It is worth reiterating that there is no “queueing phase” in
RLSC and it thus has no queueing delay. For comparison,
because of the queueing delay in BMDS, the nB values in
(4) is roughly half of the ∆ value in (12), see (2). The
aforementioned benefit of S−1(pe) < Q−1(pe) is thus on top
of the already significant savings of eliminating the queueing
delay (i.e., 1√

∆
≈ 1√

2nB
).

The proof of Proposition 4 consists of the following results.

Lemma 3. Assuming R < C = 1− ε, for any fixed i0 ≥ 0,

E {ti0+1 − ti0} =
(1−R)(1− ε)

1−R− ε
. (13)

Recall that Id(t) is updated in (7) via the random movement
(Mt−Yt). For z ∈ {−1, 0, 1}, define Pz = Pr (Mt − Yt = z).
We have P+1 = Rε, P−1 = (1−R)(1− ε), and

Lemma 4. Assuming R < C = 1− ε, for any fixed i0 ≥ 0,

E
{

(ti0+1 − ti0 − (∆ + 1))
+
}

(14)

=

∫ 1

0

8P−1P+1 sin2
(π

2
x
)(

1− sin2
(π

2
x
))

·

(
1−

(√
P+1 −

√
P−1

)2 − 4
√
P−1P+1 sin2

(
π
2x
))∆

((√
P+1 −

√
P−1

)2
+ 4
√
P−1P+1 sin2

(
π
2x
))2 dx.

Sketch of the proof: The term ti0+1 − ti0 is the classic
definition of hitting time. We can thus easily use Doob’s
optional stopping theorem to derive its moment generating
function (MGF). Lemma 3 is then a direct result of the MGF
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Fig. 2: Comparison between Q(x) and S(x).

expression. Nonetheless, how to evaluate the left-hand side of
(14) using the MGF is an open problem. Instead, we take the
following different approach.

Assuming R = E {Mt} < C = E {Yt}, Id(t) is a random
walk with negative drift. We thus have ti0 and ti0+1 be finite
almost surely. For any fixed finite integers n ∈ [0,∞), define
the following event:

An =
{

max{Id(τ) : τ ∈ (ti0 , ti0+1]} < n
}
. (15)

That is, An is the event that the entire trajectory of Id(t) in the
interval (ti0 , ti0+1] is strictly below a ceiling value n. Define
1An as the indicator function of An.

In our proof we first show that

E
{
1An

· (ti0+1 − ti0 − (∆ + 1))
+
}

=
1

n

n−1∑
`=1

f(
`

n
) (16)

for some function f(·) that does not depend on n. The reason
that (16) is easier to derive is that multiplying 1An restricts
the state space of interest from all non-negative integers
to a finite range [0, n]. The (restricted) Id(t) thus becomes
a finite-state Markov chain, which is much more tractable
than the original unrestricted infinite-state-space problem. For
example, the finite transition matrix admits an almost tri-
diagonal structure because the random movement (Mt − Yt)
in (7) only takes values in {−1, 0, 1}. We can then use the
eigenspace decomposition results of tri-diagonal matrices [23]
to complete the derivation of (16).

By the monotone convergence theorem, we have

lim
n→∞

E
{
1An

· (ti0+1 − ti0 − (∆ + 1))
+
}

= E
{

(ti0+1 − ti0 − (∆ + 1))
+
}
. (17)

Since letting n→∞ turns the summation in (16) to an integral∫ 1

x=0
f(x)dx, we have Lemma 4. In fact, the expression

of f(x), which we did not specify earlier, is exactly the
expression of the integrand in (14).

Since (9), (13), and (14) jointly governs the exact rela-
tionship among (R, ε,∆, pe), we can conduct the asymptotic



∆ = 100 ∆ = 200
RLSCs BMDS RLSCs BMDS

Rexact(∆): Exact Finite-Length 0.3181 0.2286 0.3680 0.2982
Rapprox(∆): Ch. Disper. Approx. 0.3053 0.1910 0.3623 0.2815

C−Rapprox(∆)

C−Rexact(∆)
1.0704 1.1385 1.0432 1.0828

TABLE I: Tightness comparison with ε = 0.5 and pe = 10−3.

analysis that characterizes the tradeoff between R and ∆ by
fixing ε and pe in (9), (13), and (14). The final result is then
the channel dispersion equation in (12).

IV. NUMERICAL EVALUATION

In Fig. 3, we compare BMDS and RLSCs by plotting
their exact finite length results and the corresponding ap-
proximations using (4) plus (2) and using (12), respectively.
For any fixed (R, ε,∆) tuple, the exact pe,actual of BMDS is
computed by numerically evaluating (2) and (3). The exact
pe,actual of RLSCs is evaluated either by the previous results
[20, Proposition 2] using matrix operations or by combining
(9), (13), (14) and numerically computing the integral value
in (14). Either method gives identical pe,actual. We then fix the
channel ε = 0.5 and the target error probability pe = 10−3,
choose a deadline ∆ ∈ [100, 1000] (and nB = b0.5∆c), and
use the bisection method to find the largest R that still satisfies
pe,actual < pe. Varying ∆, we plot the corresponding R(∆) as
the “Exact Finite-Length” curve(s) in Fig. 3.

The validity of BMDS and RLSC channel dispersion equa-
tions is clearly visible in Fig. 3. For RLSCs, the approximation
(12) is quite tight even for moderate delay, say ∆ = 100 to
400. The complexity savings of the new approximation are
very significant when compared to the previous finite length
result [20, Proposition 2], which involves inverting a matrix of
size growing roughly-linearly with respect to ∆, a numerically
challenging task for large ∆. Even when compared to the new,
much simplified integral-based finite-length analysis (9), (13),
and (14), the complexity savings are still substantial since it
circumvents the need of finding R(∆) by bisection.

The RLSC channel dispersion approximation (12) is also
much tighter than (4) of BMDS. TABLE I compares the
exact Rexact(∆) and their channel dispersion approximations
Rapprox(∆). It also lists the ratios of the approximate versus
exact gap-to-optimality. As can be seen, RLSC approximation
is tighter than its BMDS counterpart, e.g., 107% versus 114%
when ∆ = 100. One possible explanation is that the nB used
in (4) is roughly half of the ∆ used in (12). As a result, the
“approximation power” of (4) at the same ∆ is only half of
that of (12). However, if we compare the ratio of C−Rapprox(∆)

C−Rexact(∆)
of RLSCs at ∆ = 100 with the ratio for BMDS but at
∆ = 200, one can see that the RLSC approximation is still
tighter. Additional investigation is needed to further compare
the approximation power of (4) and (12).

If we focus on the horizontal line of R = 0.4 in Fig. 3,
the delay needed by RLSCs is 358 while the delay needed
for BMDS is 902. That is, under the same pe = 10−3 and
R = 0.4, RLSCs reduce the end-to-end delay by 60.3%, which
implies that RLSCs not only eliminate the queueing delay
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Fig. 3: Rate-delay tradeoff with ε = 0.5 and pe = 10−3.
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Fig. 4: Rate-delay tradeoff with ε = 0.5 and pe = 0.25.

completely (thus 50%) but also offer better error protection.
This observation is consistent with our analytical discussion of
S−1(pe) versus Q−1(pe) in Sec. III-C. All the aforementioned
observations of Fig. 3 hold consistently when we repeat the
evaluation with different parameter values, including (ε, pe) =
(0.5, 10−6), (0.8, 10−3), (0.25, 10−2), etc.

For pedagogical purposes, Fig. 4 repeats the experiment
of Fig. 3 but with pe = 0.25, an impractically large value.
Focusing on the exact R(∆), at R = 0.48, the delays required
for RLSCs and BMDS are 689 and 926, respectively. This
implies that even though RLSCs eliminate queueing delay
(50% savings), they offer weaker error protection. Additional
delay is needed to maintain the same pe = 0.25 and the
combined delay savings are only 25.6%.

V. CONCLUSION

This work has studied the PECs with Bernoulli packet
arrivals. New channel dispersion characterizations have been
developed for RLSCs, the first of such kind for any sequential
coding schemes.
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