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Abstract—In this work, a compressed sensing-aided wideband
MIMO-OFDM channel training framework is proposed to reduce
the training overhead in slowly-varying channels with frequency-
and spatial-wideband (dual-wideband) effects. To combat the
beam squint effect, a set of frequency-dependent array re-
sponse matrices are constructed, enabling the recovery of the
sparse beamspace channel from multiple observations across
OFDM subcarriers, via multiple measurement vectors (MMV).
A channel training algorithm (MMV-LS-CS) is proposed to
estimate slowly-varying multipath channel parameters: MMV
least squares (MMV-LS) is first used to estimate the channel on
the previous beam index support, followed by MMV compressed
sensing (MMV-CS) on the residual to estimate the time-varying
multipath components. Finally, a channel refining algorithm is
proposed to estimate the gains and time delays of the dominant
channel paths jointly on pilot subcarriers. Numerical results show
that MMV-LS-CS achieves more accurate and robust channel
estimation than the state-of-the-art approach on slowly-varying
dual-wideband MIMO-OFDM: given a moderate SNR of 20 dB,
our algorithm attains NMSE = 0.15, as opposed to the state-of-
the-art which attains NMSE = 0.43 in the same configuration.
Besides, MMV-LS-CS necessitates SNR = 14 dB to achieve the
spectral efficiency of 6 bit/s/Hz/stream, while the state-of-the-art
scheme needs SNR = 17 dB to attain the same spectral efficiency.

I. INTRODUCTION

Millimeter-wave (mmWave) communication has been inves-
tigated as a promising solution to meet the capacity demands
of future wireless systems, thanks to ample available band-
width [1]. However, mmWave channels experience difficult
channel conditions, requiring narrow beam communication
with massive multiple-input multiple-output (MIMO) [2]. To
reap the beamforming gain, accurate MIMO channel state in-
formation (CSI) is required, usually attained by beam scanning
over a set of candidate beams to find the strongest one. Yet,
this approach incurs an unacceptably large overhead due to
the large beam space.

To reduce the training overhead, beam alignment has been
largely investigated in recent years, ranging from feedback-
based schemes [3], [4], data-assisted schemes [5], [6], to
multipath estimation [7]–[9]. Feedback-based schemes adapt
the beam-training according to the feedback information in
an online fashion [3], or leverage the mobility of users as
in [4]; data-assisted schemes use side information from an
array of available sensors. Our work belongs to the class
of multipath estimation schemes, which exploit the spatial
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sparsity of the MIMO channel via compressed sensing (CS)
to acquire the associated channel parameters (e.g., angle of ar-
rivals (AOAs), angle of departures (AODs), etc.). The work [9]
proposed an adaptive algorithm for mmWave massive MIMO
channel estimation using a hierarchical multiresolution code-
book. For wideband systems, MIMO orthogonal frequency
division multiplexing (MIMO-OFDM) has been considered as
the dominant structure to combat frequency selectivity, i.e.,
frequency-wideband effect. In addition, the time-delays across
the aperture on large-scale antenna arrays are non-negligible,
especially in massive MIMO, leading to the spatial-wideband
effect [10], [11]. The AOAs/AODs observed by the receiver
for a given propagation path are different across subcarriers,
called a beam squint effect. The work [11] proposed a tensor-
based channel training using the Vandermonde constraint and
spatial smoothing for dual-wideband (frequency- and spatial-
wideband effects) MIMO-OFDM channels. However, it does
not leverage the temporal correlation of the channel, requiring
periodic training with severe overhead.

The problem of exploiting the temporal correlation of the
channel has been investigated for narrowband MIMO [12],
[13] and frequency-wideband multiuser MIMO-OFDM [14],
considering a common (or slightly-varying) support over time
[15]. In [14], the problem of estimating the channel with a
common slowly-varying support from multiple measurements
among subcarriers is formulated as a multiple measurement
vectors (MMV) problem, but without consideration of dual-
wideband effects. However, this technique cannot be directly
used on time-varying dual-wideband MIMO-OFDM channels:
the frequency-dependent AOAs/AODs could break the com-
mon support across subcarriers, which may harm the estima-
tion performance. This problem has not been investigated, and
will be studied in this paper.

To address the problem, we construct frequency-dependent
array response matrices based on the same AOA/AOD grid
to preserve the common channel support across the OFDM
subcarriers. To exploit the temporal correlation, we not only
consider the previous support for the recovery process but also
leverage the support to design the pilot signal and combining
matrix to enhance the estimation performance. We propose
a new channel training algorithm (MMV-LS-CS) for time-
varying channels with dual-wideband effect and a channel
refining algorithm to estimate the gains and time delays of the
dominant paths. Numerical results show that MMV-LS-CS im-
proves the channel estimation accuracy and spectral efficiency
on the slowly-varying dual-wideband MIMO-OFDM.

II. SYSTEM MODEL

First, we describe a time-varying dual-wideband MIMO-
OFDM channel model. Then, we introduce the signal model



of beam training, followed by the channel training protocol.

A. Channel Model

We consider a MIMO-OFDM system with bandwidth B,
carrier frequency fc, Ko subcarriers, a receiver employing a
uniform linear array (ULA) with Nr antennas, and a trans-
mitter employing a ULA with Nt antennas. We consider a
wideband geometric massive MIMO channel model with L
scattering paths: let ϕ` and υ` be the physical AOA and
physical AOD of the `-th path, and β` be its fading coefficient.
Given the antenna spacing d, the corresponding spatial AOA
θ` and spatial AOD φ` are θ` = d sinϕ`

λc
and φ` = d sin υ`

λc
,

where λc is the carrier wavelength. Due to the increasing scale
of antenna arrays, the propagation delay of waves traveling
across the array aperture is non-negligible, leading to the
spatial-wideband effect [10], [11]. The time delay of the `-th
path between the nt-th transmit antenna and nr-th receive
antenna is τ`,nr,nt = τ` + τdnr,nt

(θ`, φ`), where τ` is the
reference path delay of the `-th scattering path on the first
transmit and receive antenna pair (nr = nt = 1), and
τdnr,nt

(θ`, φ`) = (nr − 1) θ`fc − (nt − 1)φ`

fc
represents the

additional delay across the antenna aperture [16]. Given a
baseband signal xnt(t) transmitted at the nt-th antenna, the
baseband received signal at the nr-th antenna is derived as

rnr
(t) =

Nt∑
nt=1

L∑
`=1

β`xnt
(t− τ`,nr,nt

)e−j2πfcτ`,nr,nt .

By taking the continuous Fourier transform, the baseband
signal in the frequency domain is

Rnr (f)=

Nt∑
nt=1

L∑
`=1

α`e
−j2π(fc+f)τd

nr,nt
(θ`,φ`)e−j2πfτ`Xnt(f),

where we have defined the equivalent path gain α` =
β`e
−j2πfcτ` and Xnt(f) is the continuous Fourier transform

of xnt(t). By stacking up the MIMO signal on antennas, we
have an Nr × 1 receive signal vector

R(f) = H(f)X(f) + n(f),

where we have defined the transmit signal vector X(f) =
[X1(f), . . . , XNt(f)]> and the additive noise vector n(f) ∈
CNr×1. The frequency response of the baseband MIMO chan-
nel H(f) ∈ CNr×Nt is

H(f) =
√
NrNt

L∑
`=1

α`aR(θ`; f)aT (φ`; f)He−j2πfτ` , (1)

where the receive and transmit spatial-frequency steering vec-
tors are defined as

aR(θ; f) =
1√
Nr

[1, e−j2π(1+ f
fc

)θ, . . . , e−j2π(Nr−1)(1+ f
fc

)θ]>,

aT (φ; f) =
1√
Nt

[1, e−j2π(1+ f
fc

)φ, . . . , e−j2π(Nt−1)(1+ f
fc

)φ]>.

On a MIMO-OFDM system with Ko subcarriers, we de-
note the baseband frequency of the k-th subcarrier as
fk =

(
k − Ko+1

2

)
B
Ko
, k = 1, . . . ,Ko. Thus, the MIMO

channel on the k-th subcarrier is Hk = H(fk).

Considering the array geometry, the MIMO channel can be
formulated as an extended virtual representation [1]. Assume
the spatial AOAs (respectively, AODs) take values from a
uniform grid GR (GT ) of size Gr ≥ L (Gt ≥ L) on
[−1/2, 1/2), i.e.,

GR =

{
θgr = −1

2
+
gr − 1

Gr
, gr = 1, . . . , Gr

}
, (2)

GT =

{
φgt = −1

2
+
gt − 1

Gt
, gt = 1, . . . , Gt

}
. (3)

We construct the receive array response matrix on the k-th
subcarrier AR,k ∈ CNr×Gr by stacking the spatial-frequency
steering vectors with AOAs taking value on the uniform grid
GR,

AR,k(:, p) = aR (θp; fk) , θp ∈ GR. (4)

In the same manner, the transmit array response matrix on the
k-th subcarrier AT,k ∈ CNt×Gt is constructed as

AT,k(:, q) = aT (φq; fk) , φq ∈ GT . (5)

With this notation, the MIMO channel on the k-th subcarrier
can be expressed in an extended virtual representation as [1]

Hk = AR,kSkA
H
T,k, (6)

where Sk ∈ CGr×Gt is the beamspace channel matrix whose
non-zero elements are located in the positions corresponding
to the spatial AOAs/AODs of the propagation paths. Due to
the mismatch between the spatial AOAs/AODs and quantized
values, a grid-mismatch error may exist but can be diminished
if the grid sizes (Gr, Gt) are chosen sufficiently large. With
the compact antenna deployments and the limited scattering
of the mmWave channel environment, the MIMO channels
are spatially correlated and focus on certain spatial directions,
so that the beamspace channel matrix Sk tends to be sparse.
Therefore, we assume that Sk has at most L < GrGt non-zero
elements, and the remaining elements are negligible.

For the support set information, we define the beam-pair
support as Ω = {(gr, gt) : Sk(gr, gt) 6= 0} , which is the set
of indices corresponding to the dominant elements in Sk. Note
that Ω is independent of the subcarrier k because we construct
the array response matrices AR,k (AT,k) based on the same
uniform grid GR (GT ) containing the quantized spatial AOAs
(AODs). For massive MIMO systems, the beam-pair support
of the channel is mainly determined by the geometry (positions
and antenna topology) of the transmitter and receiver, and also
the scattering clusters in the environment, and may change
over time as a result of the dynamics in the propagation envi-
ronment [15]. Here, we use a block-fading model where the
channel remains fixed over the duration of a fading block, but
may change across subsequent blocks. We use the superscript
(i) to indicate the terms in the i-th fading block, e.g., Ω(i).
Due to temporal correlation, Ω varies slowly over time, so that
Ω(i−1) and Ω(i) share a common support. We assume that Lcm
is the minimum number of channel elements (common paths)
that remain fixed between the previous and current fading
blocks, hence are shared between Ω(i−1) and Ω(i), so that
|Ω(i)∩Ω(i−1)| ≥ Lcm, Given a fixed number of channel paths
L ≥ Lcm, there are at most L−Lcm paths changing from one



Fig. 1: The evolution of beamspace channel with (L,Lcm) = (5, 4) is
illustrated. Between two consecutive fading blocks, the green and red elements
represent the common and changing elements, respectively.

fading block to the next one. Fig. 1 illustrates an example of
the evolution of the beam index support, where the colored and
white elements denote the dominant (non-zero) and negligible
(zero) beamspace channel elements, respectively. Because of
the slow channel variation, the beam-pair support sets Ω(i−1)

and Ω(i) share Lcm = 4 common elements (shown in green),
so that only one path may change from one fading block to the
next (shown in red). This structure enables the use of the LS-
CS approach to reduce the channel training overhead, which
is discussed next.
B. Beam Training Scheme

The channels are assumed constant in each fading block
with Tc consecutive subframes (channel uses), containing
Tp pilot subframes for the channel training, and the re-
maining Tc − Tp subframes for the data transmission, as
in Fig. 2. For the pilot transmission, we exploit Kp <
Ko subcarriers with a comb-type arrangement, i.e., P =
{k = 1 + (v − 1)∆k : v = 1, . . . ,Kp, ∆k = dKo/Kpe}. We
consider a hybrid precoder/combiner for MIMO-OFDM sys-
tems with NRF

t and NRF
r RF chains at the transmitter and re-

ceiver, respectively. We apply the frequency-flat beamforming
training scheme [9], [11]. At the u-th subframe, the transmitter
transmits the precoded signal xu = FAFD,usu, where FA ∈
CNt×NRF

t , FD,u ∈ CN
RF
t ×Nd , and su ∈ CNd×1. The receiver

combines the measurement signal at the q-th stream by the
combining vector wq = WAwD,q , where WA ∈ CNr×NRF

r

and wD,q ∈ CN
RF×1
r , yielding the measurement signal on the

k-th subcarrier denoted as

yq,u,k = wH
q Hkxu + wH

q nq,u,k, (7)

where nq,u,k ∈ CNr×1 is the additive noise vector. Assuming
the transmitter employs distinct precoded pilots at Tp succes-
sive subframes and the receiver combines the signal through
Qp ≤ NRF

r streams simultaneously, the Qp × Tp combined
signal on the k-th subcarrier is denoted as

Yk = WHHkX + Ñk,

where W = [w1 . . .wQp ] ∈ CNr×Qp is the measurement
combining matrix; X = [x1 . . .xTp ] ∈ CNt×Tp is the pilot
training matrix; Ñk is the Qp × Tp combined noise matrix.
C. Channel Training Protocol

We introduce the flow of the support tracking-based chan-
nel training. Initially, a conventional MIMO-OFDM channel
estimation is used since no prior channel knowledge is avail-
able. Afterwards, a support-tracking based channel estimation

Fig. 2: The flow of MMV-LS-CS in one fading block.

(MMV-LS-CS) is used to estimate the channel aided by the
previous support estimated in previous fading blocks. Then,
the current support derived from the estimated channel is fed
back to the transmitter for the next channel training. Note
that the performance of the support tracking-based approach
is related to the accuracy of the previous channel estimation.
With an inaccurate previous support, the performance of the
support tracking-based approach might deteriorate since the
training is wasted on incorrect beam directions. To address
this issue, we check the residual signal of the support-tracking
based channel training algorithm. We use a predefined thresh-
old that the remaining signal magnitude is compared to, and
we declare that support tracking has failed if the magnitude
exceeds the threshold.

III. PROPOSED LS-CS CHANNEL ESTIMATION

In this section, we propose a support-tracking based chan-
nel training on dual-wideband MIMO-OFDM. Section III-A
proposes a LS-CS channel estimation. Section III-B proposes
a channel refining algorithm to estimate the gains and time
delays of the dominant channel paths.

A. MMV-LS-CS Channel Estimation

Our goal is to design the combining matrix W and training
signal matrix X to reduce the overhead of the channel training
with the help of the previous beam-pair support Ωpr. We
estimate the AOAs/AODs of dominant paths, and then refine
the gains and time delays of the estimated paths. Here, we
introduce the MMV-LS-CS algorithm for the dual-wideband
MIMO-OFDM channel estimation. For a given training se-
quence length Tp, we separate the channel training into two
stages, orthogonal training and compressed training, as
in Fig. 2. The orthogonal training, of duration Td, exploits
the previous support learned in the previous fading block
to estimate the channel on few beam directions via a least
squares approach. Next, for the remaining duration Tp − Td
of channel training, the compressed training applies a CS-
based approach to estimate the residual channel, expected
to be sparse since most dominant channel elements have
been estimated in the orthogonal training phase. The pilot
signal structure can be expressed as X = [Xd Xs], where
Xd ∈ CNt×Td and Xs ∈ CNt×(Tp−Td). To exploit the support
information at the transmitter and receiver separately, given
the previous beam-pair support Ωpr, we define the previous
receive support as Ψpr

R = {gr : (gr, gt) ∈ Ωpr} , representing
the index set of the dominant receive steering vectors. The
previous transmit support is defined in the same manner as
Ψpr
T = {gt : (gr, gt) ∈ Ωpr} .



First, the orthogonal training (MMV-LS) seeks to estimate
the beamspace channel on the beam directions corresponding
to the combination of previous support (Ψpr

R ,Ψ
pr
T ). To con-

struct the training signal and combiner, we pick the array
response matrix on the middle frequency of the bandwidth,
and then concentrate the beam training on the directions
corresponding to the previous support. The receive combiner
is designed as

Wd =
(
AR,Ko+1

2

)
[INr

]Ψpr
R
∈ CNr×|Ψpr

R |, (8)

where [INr ]Ψpr
R

is the submatrix consisting of the columns of
INr

indicated by the indices in Ψpr
R ; the training matrix is

Xd =
(
AT,Ko+1

2

)
[INt

]Ψpr
T

X̃d ∈ CNt×Td , (9)

where X̃d ∈ CTd×Td is a known orthonormal matrix having
the length Td = |Ψpr

T |, satisfying X̃H
d X̃d = PtITd

with the
average transmit power Pt. The received signal on the k-th
subcarrier is derived as

YLS
k = WH

d HkXd + ÑLS
k

= (AH
R,kWd)

HSLSk (AH
T,kXd) + ÑLS

k .

Using the relationship vec(ABC) = (C> ⊗ A)vec(B), we
have the vectorization of YLS

k as

yLSk = Θks
LS
k + ñLSk , (10)

where ñLSk = vec(ÑLS
k ), sLSk = vec(SLSk ), the dictionary

matrix is Θk = (AH
T,kXd)

> ⊗ (AH
R,kWd)

H , and ⊗ is
the Kronecker product. The MMV-LS greedily collects the
columns of Θk leading to the minimum residual error after
orthogonalization, expressed as

Γ := Γ ∪ argj min
Λ=Γ∪j
j∈Q\Γ

∑
k∈P

‖yLSk − [Θk]Λ[Θk]+ΛyLSk ‖2F ,

where Q = {(gt − 1)Gr + gr : gt ∈ Ψpr
T , gr ∈ Ψpr

R } is the
set of indices in Θk corresponding to the previous support.
(·)+ stand for the pseudo-inverse of a matrix. Even with the
frequency-dependent dictionary matrices Θk, the beamspace
channel vectors share a common support, enabling the MMV
problem to estimate the dominant paths. The greedy collection
is terminated when |Γ| = Lcm. With the collected indices of
estimated paths, we derive the gains and time delays by the
channel refining algorithm (Algorithm 2 in Section III-B), and
then reconstruct the channel ĤLS

k .

Secondly, in the compressed training phase (MMV-CS),
we apply the CS-based approach on the residual received
signal obtained by subtracting the effect of the MMV-LS
estimated channel ĤLS

k . We design the combining matrix as

Ws = ΦW ∈ CNr×Qp , (11)

where Qp ≤ NRF
r , and the pilot training matrix as

Xs = ΦX ∈ CNt×(Tp−Td), (12)

where ΦW and ΦX are the measurement matrices satisfying
the successful sparse recovery condition, e.g., RIP condition
[17]. The combined signal matrix on the k-th subcarrier is

Algorithm 1 MMV-LS-CS Channel Estimation.

Input: measurement (YLS
k ,YCS

k ), combining and pilot train-
ing matrices (Wd,Xd,Ws,Xs), the set of pilot subcar-
riers P , previous support information (Ψpr

R ,Ψ
pr
T )

Output: Ĥrec
k , Ψ̂R, Ψ̂T

1: %%%% MMV-LS aided by previous support %%%%
2: Calculate Θk = (AH

T,kXd)
> ⊗ (AH

R,kWd)
H , k ∈ P;

3: yLSk = vec(YLS
k ), k ∈ P; Γ = ∅;

4: Q = {(gt − 1)Gr + gr : gt ∈ Ψpr
T , gr ∈ Ψpr

R };
5: while |Γ| < Lcm do
6: Γ := Γ ∪ argj min

Λ=Γ∪j
j∈Q\Γ

∑
k∈P
‖yLSk − [Θk]Λ[Θk]+ΛyLSk ‖2F ;

7: end while
8: Reconstruct ĤLS

k by Algorithm 2 with (YLS
k ,Θk,Γ);

9:
10: %%%% MMV-CS %%%%
11: Calculate Ξk = (AH

T,kXs)
> ⊗ (AH

R,kWs)
H , k ∈ P;

12: ỸCS
k = YCS

k −WH
s ĤLS

k Xs, k ∈ P;
13: rk = ỹCSk = vec(ỸCS

k ), k ∈ P;
14: Υ = ∅; J = {1, . . . , GrGt};
15: while |Υ| < L− Lcm do
16: Υ := Υ ∪ arg max

j∈J\Υ

∑
k∈P
|Ξk(:, j)Hrk|2;

17: ĝk = arg ming‖ỹCSk − [Ξk]Υg‖2F , k ∈ P ;
18: rk = ỹCSk − [Ξk]Υĝk, k ∈ P ;
19: end while
20: Reconstruct ĤCS

k by Algorithm 2 with (ỸCS
k ,Ξk,Υ);

21:
22: Ĥrec

k = ĤLS
k + ĤCS

k , k = 1, . . . ,Ko;
23: Derive (Ψ̂LS

R , Ψ̂LS
T ) from Γ, and (Ψ̂CS

R , Ψ̂CS
T ) from Υ;

24: Ψ̂R = Ψ̂LS
R ∪ Ψ̂CS

R and Ψ̂T = Ψ̂LS
T ∪ Ψ̂CS

T ;

YCS
k = WH

s HkXs + ÑCS
k . Given the estimated ĤLS

k , the
residual signal matrix is

ỸCS
k = YCS

k −WH
s ĤLS

k Xs

= (AH
R,kWs)

H S̃CSk (AH
T,kXs) + ÑCS

k ,

where S̃CSk is expected to be sparse because most elements
of dominant channel paths have been estimated in ĤLS

k . The
vectorization of ỸCS

k is expressed as

ỹCSk = Ξks̃
CS
k + ñCSk , (13)

where ñCSk = vec(ÑCS
k ), s̃CSk = vec(S̃CSk ), and the dictio-

nary matrix is Ξk = (AH
T,kXs)

> ⊗ (AH
R,kWs)

H . The sparse
recovery problem on the pilot subcarriers is formulated as

arg min
s̃CS
k

∑
k∈P

‖s̃CSk ‖1, s.t. ‖ỹCSk −Ξks̃
CS
k ‖2 ≤ ε, k ∈ P ,

where ε > 0 is a constant threshold. Therefore, the sparse
signal s̃CSk can be estimated from ỹCSk using the sparse
recovery. Among many available sparse recovery algorithms
used to exploit the common channel support across subcarriers,
we adopt the simultaneous OMP algorithm (SOMP) [18].
Similarly, with the collected indices of estimated paths, the
gains and time delays of these paths are derived using the



Algorithm 2 Channel Refining Algorithm.

Input: measurement Yk, dictionary matrix Dk, support set Γ
Output: Ĥk, k = 1, . . . ,Ko

1: Derive (iθ,`, iφ,`) from Γ, ` = 1, . . . , L′;
2: Derive q̂k by solving (14), k = 1, . . . ,Kp;
3: Derive ẑ` by solving (15), ` = 1, . . . , L′;
4: Derive α̂` by solving (16), ` = 1, . . . , L′;

5: Ĥk=
√
NrNt

L′∑̀
=1

α̂`(ẑ`)
k−Ko+1

2 AR,k(:, iθ,`)A
H
T,k(:, iφ,`);

channel refining algorithm (Algorithm 2), and the MMV-
CS channel ĤCS

k is reconstructed. Finally, the MIMO-OFDM
channel is Ĥrec

k = ĤLS
k + ĤCS

k . The proposed MMV-LS-CS
algorithm is shown in Algorithm 1.

B. Path Gain And Time Delay Refinement
Here, we propose an approach to refine the gains and

time delays of the estimated paths, to compensate the beam
squint effect. We assume that the received signal matrix
Yk is measured by the combining matrix W and pre-
coding matrix X on the set of pilot subcarriers P =
{k = 1 + (v − 1)∆k : v = 1, . . . ,Kp, ∆k = dKo/Kpe}. The
optimization problem for the effective path gain vector is

arg min
qk

‖yk − [Dk]Γ qk‖2F , k ∈ P , (14)

where yk = vec(Yk), and Dk = (AH
T,kX)> ⊗ (AH

R,kW)H

is the dictionary matrix on the k-th subcarrier. The set Γ
contains the indices of columns in Dk corresponding to
the estimated paths. Assuming |Γ| = L′, the vector qk =
[γ1,k, . . . , γL′ ,k]> is the effective path gain vector, where
γ`,k =

√
NrNtα`e

−j2πfkτ` . This is a least squares problem,
which can be solved by q̂k = ([Dk]Γ)

+
yk. With the generator

{z` = e−j2π
B
Ko

τ`}, the effective path gain can be expressed as
γ`,k =

√
NrNtα`(z`)

k−Ko+1
2 . Therefore, given the estimated

q̂k = [γ̂1,k, . . . , γ̂L′ ,k]>, the estimation of z` is formulated as

arg min
z`

Kp−1∑
v=1

(
z` −

(
γ̂`,1+v∆k

γ̂`,1+(v−1)∆k

)1/∆k
)2

, (15)

which is solved by ẑ` = 1
Kp−1

∑Kp−1
v=1 (

γ̂`,1+v∆k

γ̂`,1+(v−1)∆k

)
1/∆k .

The refined time delay τ̂` is derived by τ̂` = − Ko

2πB]ẑ`, where
]ẑ` is the phase angle of ẑ`. Given ẑ`, we then estimate the
gains α` by the following optimization problem

arg min
α`

∑
k∈P

(
γ̂`,k −

√
NrNtα`(ẑ`)

k−Ko+1
2

)2

, (16)

which can be solved by the least square approach, and the
refined path gains α̂` are derived. Note that we could have the
indices of estimated AOAs/AODs as (iθ,`, iφ,`), ` = 1, . . . , L′,
corresponding to the indices in Γ. Given the refined version
of gains and time delays accompanied with the estimated
AOAs/AODs, we reconstruct the MIMO channel by

Ĥk =
√
NrNt

L′∑
`=1

α̂`(ẑ`)
k−Ko+1

2 AR,k(:, iθ,`)A
H
T,k(:, iφ,`).

IV. NUMERICAL RESULTS

A. Experiment Setting

We consider a single-user MIMO scenario with fc =
60 GHz and B = 1 GHz, employing half wave-length antenna
spacing ULAs with array sizes Nr = Nt = 64. The number
of receive and transmit RF chains are NRF

r = NRF
t = 8.

The transmitter uses precoded pilots with Tp = 14 subframes
and the receiver combines the signal through Qp = 8 streams
simultaneously. The number of subcarriers is Ko = 128,
among which Kp = 10 subcarriers with a comb-type ar-
rangement are selected for the pilot transmission. We consider
the wideband geometric channel model with L = 6 channel
paths, whose physical AOAs and AODs follow i.i.d. U(0, 2π);
the delay spreads follow i.i.d. U(0, 100 ns); the gains α` are
i.i.d. CN (0, 1). The matrices AR,k/AT,k are constructed as
in (4) and (5) with the uniform grids GR/GT of sizes Gr =
Gt = 256. To model the slow channel variation, we assume
the number of common paths is Lcm = 5, which means that
one channel path (among L = 6 paths in the previous fading
block) disappears and another randomly selected path appears.
The signal-to-noise ratio (SNR) is defined as

SNR =

∑
k‖Yk − Ñk‖2F∑

k‖Ñk‖2F
,

where Yk is the received signal matrix, and Ñk is the
combined noise matrix.

We compare MMV-LS-CS with the existing works SCPD
[11] and DWE-SCPD [11]. SCPD neglects the spatial-
wideband effect. DWE-SCPD is designed for the dual-
wideband MIMO-OFDM, but the temporal correlation is not
exploited; in contrast, the proposed MMV-LS-CS exploits
the temporal correlation to provide a more accurate channel
estimation for the dual-wideband MIMO-OFDM. In addition,
we consider two baseline schemes as follows: Genie-aided
LS assumes the current channel support is known, with the
training on the subspace of the support, and the channel
refining algorithm is applied. MMV-CS estimates the channel
without previous support by the MMV-CS in Algorithm 1.

B. Estimation Accuracy

To evaluate the channel estimation accuracy, we define the
normalized mean square error (NMSE) of the channel as

NMSE =

∑Kp

k=1‖Hk − Ĥk‖2F∑Kp

k=1‖Hk‖2F
.

In Fig. 3, we plot the NMSE of the channel versus the SNR.
Genie-aided LS attains NMSE = 0.04 when SNR ≥ 10 dB,
which provides a lower bound for NMSE. For an SNR =
20dB, MMV-LS-CS attains NMSE = 0.15, as opposed to 0.43
for DWE-SCPD, 0.45 for SCPD, and 0.89 for MMV-CS.
The NMSE of MMV-LS-CS outperforms the state-of-the-art
approach (DWE-SCPD) in the moderate and low SNR regions.
DWE-SCPD is susceptible to noise since its beam training
procedure is not performed jointly on pilot subcarriers; in
comparison, MMV-LS-CS does the channel estimation based
on the measurements on all pilot subcarriers.
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C. Spectral Efficiency

Here, we first define the achievable transmission rate as

R=

Ko∑
k=1

B

Ko
log2 det

(
INs

+
Pt
Ns

R−1
n̂k

ŴH
k HkF̂kF̂

H
k HH

k Ŵk

)
,

where Pt is the average transmit power for each transmission.
The number of data streams is assumed as Ns = 6. The
combiner Ŵk (or precoder F̂k) is derived by the direc-
tions of eigenvectors of ĤkĤ

H
k (or ĤH

k Ĥk). The post-
processing noise covariance matrix is Rn̂k

= E[n̂kn̂
H
k ], where

n̂k = ŴH
k n with the additive complex Gaussian noise n. We

assume the length of training sequence Tp = 14, so the fraction
of time for data transmission is identical for all schemes. Thus,
we define the spectral efficiency as R

BNs
(bit/s/Hz/stream). In

Fig. 4, we evaluate the spectral efficiency versus the SNR.
Full CSI attains the largest spectral efficiency because its
Ŵk/F̂k are derived from the perfect CSI. Genie-aided LS
has almost the same performance as Full CSI, showing that
the channel refining algorithm accurately estimates the gains
and time delays if the correct AOAs/AODs of channel paths
are given. For an SNR = 15 dB, the spectral efficiency of
MMV-LS-CS is 6.24 bit/s/Hz/stream, which outperforms the
state-of-the-art (DWE-SCPD) by 0.73 bit/s/Hz/stream, SCPD
by 0.74 bit/s/Hz/stream, MMV-CS by 3.99 bit/s/Hz/stream.
Although DWE-SCPD has better spectral efficiency in the high
SNR regime (SNR > 20dB), MMV-LS-CS is more robust to
noise due to the low NMSE in this configuration as in Fig. 3.

V. CONCLUSION

In this work, we proposed a CS-aided training for time-
varying channels in dual-wideband MIMO-OFDM. We con-
structed the frequency-dependent array response matrices
based on the same grid to maintain the common channel
support across OFDM subcarriers, and then recovered the
sparse signal from multiple observations sharing a common
support. We developed a novel channel estimation procedure
that leverages slow variations in the beam support, termed
MMV-LS-CS, which applies MMV-LS on the measurements
based on the previous support, and MMV-CS on the residual
error to estimate time-varying components. We proposed a
channel refining algorithm to reconstruct the channel by esti-
mating the gains and time delays from the measurements on
pilot subcarriers. Numerical results showed that MMV-LS-CS
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provides more robust and accurate channel estimation and
improved spectral efficiency than the state-of-the-art approach
in the time-varying dual-wideband MIMO-OFDM.
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