2201.12671v2 [math.CO] 17 May 2022

arxiv

The Gapped k-Deck Problem

Rebecca Golm}
ECE Department
University of lllinois
rgolm?2 @illinois.edu

Mina Nahvii
Department of Mathematics
University of lllinois
mnahvi2 @illinois.edu

Abstract—The k-deck problem is concerned with finding the
smallest positive integer S(k) such that there exist at least two
strings of length S(k) that share the same k-deck, i.e., the multiset
of subsequences of length k. We introduce the new problem
of gapped k-deck reconstruction: For a given gap parameter
s, we seek the smallest positive integer G;(k) such that there
exist at least two distinct strings of length Gs(k) that cannot
be distinguished based on a ‘“gapped” set of k-subsequences.
The gap constraint requires the elements in the subsequences
to be at least s positions apart within the original string. Our
results are as follows. First, we show how to construct sequences
sharing the same 2-gapped k-deck using a nontrivial modification
of the recursive Morse-Thue string construction procedure. This
establishes the first known constructive upper bound on G (k).
Second, we further improve this bound using the approach by
Dudik and Schulman [6].

Index Terms—Gapped subsequences, k-deck, Morse-Thue se-
quences, String reconstruction

I. INTRODUCTION

The problem of reconstructing strings based on evidence
sets of the form of subsequences, substrings or weights of
substrings has received significant attention from the theoret-
ical computer science, bioinformatics, and information theory
communities alike [1I], [3], [4], [8], [LO], [11], [13], [L5].
One special instance of this class of problems is the k-deck
problem [4], [6], [Z], [O], [L1Ol, [14], of interest due to its
connection to trace reconstruction [3], [5] and its applications
in DNA-based data storage [16].

For a string x of length n, the multiset of the (Z) subse-
quences (i.e., ordered collections of not necessarily adjacent
entries) of x of length k is called the k-deck of x. We say
that x is k-reconstructible if it is uniquely determined by
its k-deck, meaning that there exists no other string that has
the same k-deck as x. For example, (1,0,0,1) and (0,1, 1,0)
have the same 2-deck, and are hence not 2-reconstructible. A
simple counting argument shows that if two sequences x and
y have the same k-deck, they also have the same [-deck for
alll1 <I<k

Let S(k) be the smallest positive integer n such that
there exist two distinct strings of length n with the same k-
deck. Kalashnik [[10] raised the question of determining S(k).
Manvel, Meyerowitz, Schwenk, Smith and Stockmeyer [12]]
showed that 2k < S(k) < 2k. They proved the upper bound
as follows. For two strings x and y of length n, let xy be

The work was funded by NSF grant 2008125, Coded String Reconstruction
Problems in Molecular Storage. In the author list, } denotes equal contribution.

University of California, San Diego

Ryan Gabrys
Calit2

Olgica Milenkovic
ECE Department
University of lllinois

ryan.gabrys@gmail.com milenkov @illinois.edu

the string obtained by concatenating x and y (note that when
concatenating a single bit, say 0, and a string x, we also use
the notation (0, x)). If x and y have the same k-deck, then xy
and yx have the same (k + 1)-deck. The upper bound follows
immediately when coupled with the fact that (0,1) and (1,0)
have the same 1-deck. The construction is often referred to as
the Morse-Thue construction and the resulting strings are the
well-known Morse-Thue strings [2l]. Furthermore, the authors
of [12] also showed that in order to prove that every string
of length n is k-reconstructible, it is enough to prove that
every binary string of length n is k-reconstructible. Dudik
and Schulman [6] improved the above upper bound on S(k)
to exp (?{gg(l?)) log2 k). In the literature, both bounds on the
smallest k and n (for a given n and k, respectively) for unique
and nonunique k-deck reconstruction have been reported.

We define the gapped k-deck of a binary string x as
the multiset of all subsequences of length < k that do not
include two consecutive entries in x. This definition can be
extended to larger gaps between entries in x: The s-gapped
k-deck of a binary string x is the multiset of all subsequences
(xil,...,xi[),l < ¢ < k, such that for all 1 < j < (-1,
we have ;11 > i; +s. With this definition, the gapped k-
deck reduces to the 2-gapped k-deck. The problem of interest
is to bound G;(k), the smallest positive integer n for which
there exist two binary strings that share the same s-gapped
k-deck. For simplicity, when s = 2, we write G(s) and refer
to the corresponding setting as the gapped k-deck. Note that
unlike the case without gaps, two strings x and y having
the same multiset of gapped subsequences of length k does
not imply that they also have the same multiset of gapped
sequences of length | for some I < k. For example, the
strings (0,1,1,1,0) and (1,0,0,0,1) have the same multiset
of gapped subsequences of length 2, but they clearly have
different multisets of gapped subsequences of length 1 (which
by definition, is the multiset of bits (composition) of the
strings). The gapped k-deck problem is of interest in molecular
storage systems for which readouts are based on nanopore
technologies, in which “gaps” in readouts arise due to skipping
effects [16].

We initiate the study of reconstruction limits of strings given
their s-gapped k-decks and present the first upper bounds
on Gg(k) and G(k) in particular. In Section [l we provide
necessary preliminaries, while in Section we describe a
nontrivial extension of a Morse-Thue type construction for

http://arxiv.org/abs/2201.12671v2

2-gapped k-decks. In Section we state the result for
general values of s but omit the proof. Section [IV] presents an
improvement of the upper bound for G(k) from Section [
based on an adaptation of the method described in [6].

II. PRELIMINARIES

For a string x = (x1,...,x,) € {0,1}", let

B(k)(x) = {(xil,xiz,...,xié) Z] = i]‘_l +2,0</< k} (1)

denote the multiset of all subsequences of x of length < k
such that the index of every entry used in a subsequence is
nonadjacent in the original string. Also, let

D(k)(x) = {(xil,xiz,.. "xik) : l] =

be the exact gapped k-deck of x. Here, we assume that
BO(x) = DO(x) = &. Clearly, B® (x) = (J5_, DO (x).
As mentioned in the introduction, unlike the class1cal (un-
gapped) case, the problem of reconstructing x from B*) (x)
differs from that of reconstructing x from D) (x). Our focus
is on finding G(k), the smallest integer n such that there exist
two distinct binary strings of length n with the same gapped
i-deck for all 1 < i < k. Alternatively, G(k) is the smallest
integer 1 such that there exist two distinct binary strings of
length 71, x and y, satisfying B*) (x) = B®)(y). It is worth
pointing out that if 7 is the smallest integer such that there exist
two strings x and y of length n with D®) (x) = D®)(y), then
n = 2k —1. We have n > 2k — 1 because a string of length
less than 2k — 1 has no gapped subsequence of length k. On
the other hand, for any string z = (z7 ... z) of length k, all the
strings of length 2k — 1 of the form (z1x120X7 . . . Zg_1Xk_12k)
have the same gapped k-deck because the only gapped k-
subsequence of x is z. This observation generalizes for s-
gapped k-decks and n = sk — 1.

In Section we prove that G(k) < 4(2¥ —1) —2. We
also provide an upper bound on G;(k), the smallest integer
n such that there exist two distinct strings of length n with
the same s-gapped i-deck for all 1 < i < k, where s > 2.
The bound reads as Gs(k) < (55 —2)2k~1 — 55 + 4, but the
accompanying proof is omitted due to space limitations. The
proof of our first bound on G(k) builds upon the next lemma.
[12] If x = (x1,x2, - ,%y) and y =
(y1,Y2,- -+ ,Ym) have the same k-deck, then the two con-
catenation strings xy = (X1, ,Xm, Y1, - ,Ym) and yx =
(Y1, ,Ym, X1, -+ , Xm) have the same (k + 1)-deck.

Proof: The following correspondence proves the claim:
Pick any subsequence z of xy of length at most k + 1. If z
is fully contained within the x (or y) substring, let ¢(z) be
the same subsequence in the x (or y) substring of yx. Now,
assume z = z1zp, where z; is a subsequence of x and z; is
a subsequence of y. Note that z; and z, have length at most
k, therefore there exists a subsequence w; of y that equals
z1, due to the fact that x and y have the same i-deck for all
1 < i < k. Similarly, x contains a subsequence w; that equals
zp. Now, let ¢(z) = wiw,. Therefore, xy and yx have the
same (k + 1)-deck. [|

ij—l + 2},

Lemma 1.

Using the strings x = (0,1), y = (1,0) and k = 1
to initialize the recursion, we can see that (0,1,1,0) and
(1,0,0,1) have the same 2-deck. Repeating the process, we
find that (0,1,1,0,1,0,0,1) and (1,0,0,1,0,1,1,0) have the
same 3-deck and so on. However, this construction does not
work for the gapped case. For example, (1,0) and (0,1) have
the same gapped 1-deck (i.e., composition), but (1,0,0, 1) and
(0,1,1,0) do not have the same gapped 2-deck. The reason
why the construction fails is that we cannot pick both xy,
and y; (as defined in Lemma when choosing a gapped
subsequence of xy. Hence, we need to “pad” the boundary
between the two concatenated strings in an adequate manner.

III. THE PADDED MORSE-THUE SEQUENCE APPROACH

We prove the existence of two strings x,y € {0, 1}"", where
n = 42K —1) — 2, that satisty B®(x) = B®(y), using
induction. We start with a few definitions. For a binary string

= (x1,...,xn) € {0,1}" let
B%k) (x) := B® (x2,%3,...,%Xn), 2)
BI({k) (x) = B(k) (xll x2/ . '/xnfl) 7 (3)
BR ()= B® (x5,...,x,_1). @)

Note that represents the multiset of all gapped subse-
quences formed by puncturing x on the left, (B) represents
the multiset of all gapped subsequences formed by puncturing
x on the right, while @) represents the multiset of all gapped
subsequences formed by puncturing x on both ends. We define
the sets Dék) (x), DI({k) (x), and Dg}g (x) analogously.

We initialize two strings for the “degenerate” case of k = 1,
corresponding to equal compositions, as follows:

x =(0,0,1,0), y¥ =(0,1,0,0). 3)

Puncturing the first bit from both xM) and y(l) produces
strings that still share the same gapped 1-deck. The same claim
holds for the case when one punctures the last bit from both
x1) and y(l). Finally, the claim is true when one punctures
both the first and the last bit from both strings. Hence, for
i=1,
BOGD) = B, Bi) =By ®
B) = By, BY) = BY (v
Let G*(k) be the smallest integer 7 such that there exist two
distinct binary strings of length n, x(®) and y(k), for which (@)
holds for the case i = k.

Theorem 2. With x(!) and y(l) defined as in (3)) and
*® — (0,x71,0,0,y1,0),)
y(k) = (0/ y(k_l)/ O/ 0/ x(k_l)/ 0) ’

defined recursively, we have that (6)) holds for all i. As a result,
G*(k) <42 —1) and G(k) < 42" —1) —2.

Proof: We split the proof into four subproofs, in order
to show that each of the four conditions in (6) hold for

i = k if they hold for i = k — 1. We do this by partitioning
each deck in (6) with respect to whether each padded O is
included in a subsequence or not, and by showing that there
exists a correspondence between each pair of decks. The
bound follows since the length of x(k) equals 4(2F — 1) and
G(k) < G*(k) — 2, given that one can remove the padded Os.

Part 1: Proof that ng (x(k)> = ng (y(k)).
By definitions and (@), this is equivalent to showing that
B (x(kfl)lol 0, y(kq)) _ g <y(k71)’01 le(kfl)).

We can partition BW (xk=1) 0,0, y(kfl)) depending on
which of the two Os, if any, is included in the subsequence:

1y (D) (x6D), D) (D))} K <k
2) { Dg(l) xk=1)) 0, DKk (y(k=D))} K < k—1;
3) {(DK) (x=D) 0, D) (y=D))} K < k-1,

where kq varies from 0 to K, for all K. First, we consider the
case where neither of the two Os is used and show that

(D5 (y0), DE) (D)) =
(D% (D), D) (y6D))y,

for any K < k. In this case, each string comprises k1 < K
symbols from x* 1) and K — k1 symbols from y(k_l), where
K < k denotes the length of the resulting string. When k1 =

or k1 = 0, (8) holds, since the subsequences x(kfl),y(k’l)
appear in both x(® and y(k). Otherwise, when 0 < k1 <
K, since the subsequences x(kfl),y(kfl) appear (and are

“nonadjacent”) in both x®) and y() D) (xk=1)) =
D(kl) (y(k_l)> and D(K_kl) (y(k_l) = D (K—k1) ()
(since both k1 < k and K — k; < k), it follows that (8) also

holds for 0 < k1 < K.

The multiset of subsequences covered by case 2 contains
strings that are formed by concatenating k; bits from xk=1),
the first 0 between the subsequences xk—1) and y(k_l) and
K — kq bits from y(k_l). Next, we show that

{(ng) (x(k—1)> .0, D(K=k1) (y(k—1)>>} _ 9)
{<D§{k1) (y(k—l)) 0, D(K=k) (x(k—l)))}

for K < k—1. Since K < k—1, we have DI({kl)(x(k_l)) =
DI({kl)(y(k_l)) and D(K_kl)(y(k_l)) D(K_kl)(x(k_l))’

which implies that we can form strings by concatenating kq

bits from y(k_l), the first 0 between the substrings y(k_l) and
x*=1) and K — k1 bits from x=1) Thus, @) holds.
Using the same approach, it can be shown that
{(’D(kl) (x(k—l)) 0, DgK_kl) <y(k—1)))} = (10

{ (D(kl) (y(k—l)) 0, D£1<—k1) (x(k—l))) y

for any K < k — 1. From (8), (@), and (10), it then follows
k k
that B%Ig (x(k)) = B£1g (y(k)).

Part 2: Proof that B’g() (x(k)) = Bg() (y(k)).
By definitions and (@), this is equivalent to showing that

B (x(k_l),O, 0, y(k_l),O) — Bk <y(k—1),0, 0, x(k_l),O))

We first partition ng) x (k) The
first contains subsequences that include the last (trailing) O
while the second contains those which do not (equivalent to

) into two multisets:

Bg;g (x())). The first multiset can be partitioned into three
classes:

D { D) ((k=1) ,D;K—kl) (y(k DY) o LK<k—1;
2) { Dl(zkl) x(k=1) O,D%K_kl) y(k_l) ,0)}L K<k—2;
3) {(DK) (xk=D) 0, D) (4 =1 o)}, K <k —2.

Using an almost identical argument as the one described in

Part 1, one can show that ng) (x(k)) = ng) (y(k)).

Part 3: Proof that BI({k) (x(k)) = BI({k) (y(k)).

The proof of this case follows by symmetry from Part 2.

Part 4: Proof that B®) (x(k)) = BK) (y(k)).
The final step in the proof is to show that

B® (o,x(k—1>,o, 0, y(k_l),O)
- BW (0, y*=1), 0,0, x1), 0)

Using a similar approach as before, we now partition the
subsequences in BK) (x(K)) according to whether they

1) contain the leading 0, but not the trailing 0;

2) contain the trailing 0, but not the leading 0;

3) contain neither the trailing nor the leading 0;

4) contain both the leading and the trailing O.

This is equivalent to:

1) Bl(zk) x() \ng x®));

2) B \BY) (x®));
3) Bg;g x(®));
4) B® (x0)\(BY (x(k>)u(8§") (x(k>)).

From the first three parts of the proof, we know that the first
three multisets are the same for x(*) and y(k). We only need
to prove that the fourth multiset is the same as well. Again
we partition the multiset of interest into three classes:

1 {(D(kl (x(k—l))lpéK—h) (y(k—l))lo)};
2) {(O, Dg}é) (x(k_l)) ,0, DI({K_kl) (y(k_l)) ,0)};

3 (0,0 (x61),0, D) (1), 0)1,
where for case 1, K < k— 2, and for cases 2 and 3, K < k — 3.
Using similar arguments as before completes the proof. []
Using a similar approach, we can extend the bound to the s-
gapped case to get Gs(k) < (5s —2)2K~1 — 55 4 4. This is

done by adding s — 1 Os on the outside and s Os between xy
and yx. We remove 2s — 2 Os for the bound since the s-gapped
k-deck does not need to satisfy the extra conditions required
by the recursive construction.

We numerically computed G(k) for k = 2,3, 4. The results
are displayed below, which clearly indicate that the upper

k| G(k) Confusable pairs (examples)

2 6 (0,1,0,0,1,1), (0,0,1,1,0,1)

3 13 1,1,0,1,1,1,1,0,1,0,1,1,1), (1,1,1,0,1,0,1,1,1,1,0,1,1)

4 24 (1,1,0,0,1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0),
(1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,1,0,1,0,0,1,1,0,0)

bound 4(2F — 1) — 2 is loose for larger values of k: For k = 4,
the bound equals 58 while the correct value is only 24. Also,
the exact values of G(k) are significantly larger than those for
the ungapped case, for which we know that S(k) = 4,7,12
(compared to G(k) = 6,13,24) for k = 2,3, 4, respectively.
We therefore turn our attention to improving the bound on
G(k) using more sophisticated counting arguments.

IV. IMPROVED UPPER BOUNDS FOR GAPPED k-DECKS

We find the following definitions and notation from [6]
useful for our subsequent derivations. Let I' = {X,Y} and
let | denote a “yildcard”. For integers 0 < 7 < k let

U, (k) ={we U(F U{J}) : w has exactly r non-] symbols}.

j=r
Fort>1and k; = - =k >, let
Ulky, ... k) = Uy (kp) u Us(ka) U - 0 Us(ke). (1)

We restrict our attention to U (k1,ky) = Uy (k1) u Uy (ky), the
set of all strings of length at most k; that have exactly one
non-J character and the set of strings of length at most ky that
have exactly two non-J characters.

When we refer to the multiplicity with which a string w that
contains wildcards (J’s) occurs as a subsequence of a string
p that contains no wildcards (denoted by N(w, p)), we map
each wildcard to either X or Y. For example, if w = (J, X)
and p = (Y, X,Y, X), we have N(w, p) = 4 because (X, X)
and (Y, X) occur as subsequences of p with multiplicity 1
and 3, respectively. Let p and g be two binary strings. We
write p ~U®) g if N(w, p) = N(w, q) for all w € U, (k). In
addition, we write p ~Uk1k2) g if N(w, p) = N(w, q) for
all w e U(k], kz)

Next, let Sy(k1) be the smallest integer m for which
there exist distinct strings p and g of length m such that
p ~Ur(k) q. Similarly, let Si;(kq, k) be the smallest integer
m for which there exist distinct strings p and g of length m
such that p ~ Uk ko) q. The following lemma is used in our
subsequent derivations.

Lemma3. [6] Letk; > ky > 2 andx = k3 + K3(ky — 1)/2.
Then Syy(k1, k) < x(lgx +1glgx +1) = (1 +0(1))x1gx.
Let Ng(w, x) be the number of times a string w appears as
a gapped subsequence of x (i.e., so that all indices in x are
nonadjacent). When N¢(w, x) = Ng(w, y) for all strings w of
length < k, then we write x ~© y, i.e. B® (x) = B® (y).

Let ' = {X,Y?} and let £ be an arbitrary alphabet. For a
finite-length string x over X, define x(to be the string obtained
by padding x with one 0 at both ends. For a finite-length string
p over I' and two finite-length strings x and y over X, let
hxy(p) be the string obtained from p by replacing each X
by the string xg and each Y by the string y. For example, If
p = (X,Y) and x (0,1,0,1) and y = (1,1,0,0), then
xo = (0,0,1,0,1,0), yy = (0,1,1,0,0,0) and hyy(p) =
(0,0,1,0,1,0,0,1,1,0,0,0). We are now ready to prove an
analogue of Lemma 9 from [6] for the case of gapped k-decks.
Lemmad4. Let x and y be two distinct strings in X" such

k@ (k) _ (k) _
that x 9y, B (x) B (y). Br’(x) By (y)
and Bg}g (x) Bg}{ (y). Let p and q be two distinct binary
strings in T™, such that for some o € {0,1,2}, we have
p ~U@kHek+0) g Then, hyy(p) and hy,y(q) are distinct and

we have hy,, (p)) hx,y(q). The same result holds when
puncturing hyy(p) and hy,y(q) on the left, right, and on both
sides by one bit.

Proof: Due to space limitations, we only provide a sketch
of the proof. Let w be a string of length at most 3k +
in X, and p = (p1,...,Pm). The idea of the original proof
[6] for the ungapped case is as follows: Each mapping that
takes w to iy (p) (as a subsequence) defines a splicing of
w of the form w = (wq,wy,..., wy), where w; is the
preimage of hy,(p;). Note that some w; strings may be
empty. Hence, we can write the set of all mappings which
take w to hy,y(p) as the union of direct products (see [6] for
the specific notation) | J,~ U; U, Hle N (wy ;, hx,y(pr(i))),
where t is the number of nonempty segments, the second
union is taken over all functions ! which partition w into
t nonempty segments for a fixed ¢, the third union is taken
over all functions r mapping the ¢ chosen nonempty segments
in w to t of the segments in hyy(p) (equivalently, each r
corresponds to a way in which we pick t out of m segments
of hyy(p)), and finally, N (w; ;, hx,y(Pr(i))) denotes the set
of mappings taking the i-th nonempty segment of w into the
corresponding chosen segment in /i,y (p). Note that for every
mapping f which takes w to hyy(p), there is a specific f,
I and r that correspond to f. Furthermore, f is the direct
product of ¢ mappings, each taking one of the f nonempty
segments of w to the corresponding segment of hy,(p)
(which is all uniquely determined by fixing £, I and r). Now,
by converting this expression into a corresponding sum, we
get N(w, huy(p)) = X120 20 H§=1 N(wy;, hx,y(Pr(i)))-
Since w has length at most 3k + ¢ < 3k + 2, it has at
most two segments of length > k. Therefore, we have three
types of I’s (i.e., ways of partitioning w into ¢ nonempty
segments for a fixed f): The ones with no segments of length
> k, the ones with one such segment and the ones with
two such segments. This means that N(w, hyy(p)) is a triple
sum. Since p ~ U@kt kte) q, after some calculations we get
N(w, hxy(p)) = N(w, hxy(q)).
To adapt this procedure for the gapped case, we need
to show that Ng(w,hyy(p)) = Ng(w,hyy(q)). The first
difference is that each gapped mapping that takes w to hy,(p)

(as a gapped subsequence) defines a splicing of w of the form
W = W1Z|WZ) ... 2Zy—1Wy, Where w; is the preimage of
hxy(p;) and z; is the preimage of the i-th pair of Os that we
added between the x and between the y strings and between
the x and y strings when constructing hy,(p). Again, note
that some w; and z; strings may be empty.

However, an important difference between the gapped and
ungapped case is that we need to consider different cases
based on whether z; is empty or not, for all indices i. This
is because if z1 is nonempty, for example, then we need to
make sure that we do not use the rightmost bit in /., (p,) (or
the leftmost bit in iy, (p,), depending on whether the gapped
mapping takes z{ to the first or second 0 from the pair of Os
in hy,y(p) that are positioned between hy,y (p) and hyy(p,)).
This case (zq nonempty) gives rise to several additional cases
that need to be considered, depending on which of the strings
Z5,23,...,2Zm—1 are empty. In other words, we can write
out hyy(p) = (0,51,0,0,52,0,0,..,0,0,54,0) where each
s; € {x,y}. Any gapped subsequence will then be of the form
(Jo,D 541 Y(s1), h, D 542)(52) J2sever Jn— 1,D§Z")(Sm) Jm) where
Ji € {0,} and a; € {J,L,R,LR}. Here, each J; repre-
sents a 0 in the padding and whether it is a part of the
subsequence or not. Then, depending on whether or not we
use the padding, we puncture s; on the left, right, both, or
neither. This is captured by the indices a;’s. We also have
that Z] 14+ Z] 11Jil < 3k + 0. Since by our assump-

tions D()(p]) = D()(q]) forall i < k, 1 < j < m,
aj € {J,L,R, LR}, we have an equivalence between hy,y(p)
and hy,y(q) for each i; < k. By the summation constraint, there
are at most two indices j such that i; > k + 1. Let us consider
the case when there is exactly one such j, denoted by j*. In
this case we have to pick fewer than 2k + ¢ of the remaining
characters to obtain the final subsequence. We can also divide
hx,y(p) into subblocks of the form (0, s;,0), i.e., we can splice
w into a collection of w;’s, where w; is the string mapped to
one of the blocks and |w;| < k for j # j*. The multiplicity of
w can be seen to b.e Ny (w s, (s]-*),xj*) [T Ng.(w]-, (%)a;)s
where a once again depends on whether the bit used for
padding is included in the subsequence. By our assumption
we have N(JAJ%2,p) = N(J"AJ%,q), where J™ is a
sequence of a7 concatenated wildcard characters, A € {x,y},
a; +ay < 2k + 0. Hence, there are equally many Sjx’s in
hxy(p) and hyy(q). Using similar arguments and the fact
that N(J"AJ2B]%,p) = N(J"AJ"2BJ"%,q) we can also
prove the equivalence for the case of two indices j for which
ij = k+ 1. This leads to Ng(w, hxy(p)) = Ng(w, hxy(q))-
|
The lemma gives rise to the following important Corollary.

Corollary 5. For every o € {0,1,2}, one has G*(3k + 0) <
(G*(k) +2)(Sy(2k + 0,k + 0)).

Combining the above corollary with Lemma 3] and Lemma
leads to an upper bound for G(k) as follows. First, we set

K= 2k+0)?+ (k+0)2(k+0-1)/2,

which equals
1
5(03 + (3k 4+ 1)0? + 30 (k> + 2k) +
=(§ +o(1) k3,
in Lemma 3] to obtain

Su(k+o,k+0) <

(1+7/k)k%)

C(k)k’logsk, (12)

where C(k) = 312—g3 + 0(1). We also have that C(k) < 10
for k > 9, C(k) < 3 for k > 3% [6]. Using the inequality
from Corollary [3] and'(l]__ZI), we set kg = k and for i > 0,
ki = |ki_1/3] < k/3'. We stop the recursion with i = i,
where ki, <4 (so G*(k;,) < 4(2* —1) = 60) and get
i
G*(k) < G*(kiy) | [Su(2ki + 03, ki + 07) (13)
i=1
io i
+2 > [[Su(@ki + 07, ki +).
i=1j=1

Combining the above bound with that on Si; we obtain

G*(k) < G*(k;, 1‘[C(k;)(k;)*logs (k;)
+2 Z H C(k;)(k;)*logs (k;)
i=1j=1
< 31083(60)+%; 10g3(k/4)][O(1)+3(logs k—i)+log, (logs k—i)]
[logs (k/4)]

31085 2+ [0(1) +3(logy k) +logs (log k)]

)
i=1
— 30(1)+0(logz k) +0(log3 k)+0(log, klog; log, k)

+0(log, (k))3O(l)+O(log3 k)+0(log3 k) +0(log; k log, log; k)
= O(log, (k))3°0os3 &)

Since we have G(k) < G*(k) — 2, we also have G(k) <
O(log3(k))3o(1°g§ k). By bounding G* (k) we also obtain
G(k) < (4(2° —1) + 2)C(K/3)(k/3) log, (k/3) -
< 4/27 % 2K/% « kP log, (k/3) + C(k/3) —

Since in this case C(k/3) < 10, we arrive at

G(k) < 1.4821.26" + k> log, (k/3) — (14)
In comparison, the general bound for the ungapped case,
derived in [[6], reads as

S(k) < 1.2T(log, k) 3(3/2) logs k—(1/2)logs k . > g5
The bounds are summarized in the tables below.
k Bound
2-4 Exact values: 6,13,24
5-27 42K —1)
> 27 || 1482 % 1.26F x kP log, (k/3) —
K 28 [29 [30 | 3l [32 | 33

I |
[Gk) < || 42742211 | 60773950 | 86039831 | 121319982 | 170424514 | 238563374 ||

REFERENCES

[1] J. Acharya, H. Das, O. Milenkovic, A. Orlitsky, and S. Pan,
String reconstruction from substring compositions, SIAM Jour-
nal on Discrete Mathematics 29, no. 3 (2015): 1340-1371.

[2] J-P. Allouche and J. Shallit, “The ubiquitous Prouhet-Thue-
Morse Sequence,” In Sequences and their Applications, pp. 1-16.
Springer, London, 1999.

[3] T. Batu, S. Kannan, S. Khanna, and A. McGregor, Recon-
structing strings from random traces, Departmental Papers (CIS)
(2004): 173.

[4] Z. Chase, Separating words and trace reconstruction, In Proceed-
ings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, (2021) 21-31.

[5] M. Cheraghchi, R. Gabrys, O. Milenkovic, and J. Ribeiro,
“Coded trace reconstruction,” IEEE Transactions on Information
Theory, 66, no. 10, pp. 6084-6103, 2020.

[6] M. Dudik and L.J. Schulman, Reconstruction from subse-
quences, Journal of Combinatorial Theory, Series A 103(2)
(2003), 337-348.

[7] J. Chrisnata, H. M. Kiah, S. Rao, A. Vardy, E. Yaakobi, A.
Yao, “On the number of distinct k-decks: Enumeration and
bounds,” 19th International Symposium on Communications and
Information Technologies (ISCIT) (2019) 519-524.

[8] R. Gabrys and O. Milenkovic, “Unique reconstruction of coded
strings from multiset substring spectra,” IEEE Transactions on
Information Theory 65, no. 12 (2019): 7682-7696.

[9] R. Gabrys and O. Milenkovic, “The hybrid k-deck problem:
Reconstructing sequences from short and long traces,” IEEE
International Symposium on Information Theory (ISIT) (2017)
1306-1310.

[10] L.O. Kalashnik, The reconstruction of a word from fragments,
Numerical mathematics and computer technology (1973), 56—
57.

[11] H. M. Kiah, G. J. Puleo, and O. Milenkovic, Codes for DNA
sequence profiles, IEEE Transactions on Information Theory 62,
no. 6 (2016): 3125-3146.

[12] B. Manvel, A. Meyerowitz, A. Schwenk, K. Smith and P.
Stockmeyer, Reconstruction of sequences, Discrete Mathematics
94(3) (1991), 209-219.

[13] D. Margaritis and S. S. Skiena, Reconstructing strings from
substrings in rounds, In Proceedings of IEEE 36th Annual
Foundations of Computer Science (1995) 613-620.

[14] A. D. Scott, Reconstructing sequences, Discrete Mathematics
(1997) 175 1-3 231-238.

[15] E. Ukkonen, Finding approximate patterns in strings, Journal
of Algorithms, 6, no. 1 (1985): 132-137.

[16] S.M.H. Yazdi, R. Gabrys and O. Milenkovic, “Portable and error-free
DNA-based data storage,” Scientific Reports 7, no. 1 pp. 1-6, 2016
(online) / 2017 (print).

	I Introduction
	II Preliminaries
	III The Padded Morse-Thue Sequence Approach
	IV Improved Upper Bounds for Gapped k-Decks
	References

