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Abstract—We study reliable communication over point-to-
point adversarial channels in which the adversary can observe
the transmitted codeword via some function that takes the n-
bit codeword as input and computes an rn-bit output for some
given r ∈ [0, 1]. We consider the scenario where the rn-bit
observation is computationally bounded – the adversary is free to
choose an arbitrary observation function as long as the function
can be computed using a polynomial amount of computational
resources. This observation-based restriction differs from con-
ventional channel-based computational limitations, where in the
later case, the resource limitation applies to the computation of
the (adversarial) channel error. For all r ∈ [0, 1 −H(p)] where
H(·) is the binary entropy function and p is the adversary’s
error budget, we characterize the capacity of the above channel.
For this range of r, we find that the capacity is identical to the
completely obvious setting (r = 0). This result can be viewed
as a generalization of known results on myopic adversaries and
channels with active eavesdroppers for which the observation
process depends on a fixed distribution and fixed-linear structure,
respectively, that cannot be chosen arbitrarily by the adversary.

I. INTRODUCTION

Beginning with Shannon’s seminal paper [1], early chan-
nel coding research observed that fundamental coding limits
are highly sensitive to channel modeling assumptions. This
sensitivity is demonstrated by a gap in capacity between the
two classical models: the Shannon model in which channel
errors follow a known random distribution and the Hamming
model in which error patterns are worst-case for some fixed
number of bit errors. In the design of robust codes, the more
conservative Hamming model is particularly attractive as it
makes no assumptions about the channel distribution and thus
any resulting conclusion is robust against a wide variety of
channel imperfections. The downside of the Hamming model,
however, is that it admits a smaller capacity than the Shannon
model. In many cases, the gap in capacity is large [2].

A. Closing the gap

Recent research efforts have made progress in closing this
gap by considering settings in between the two classical
models. Ideally, the following two properties hold for a good
channel model:

Property 1: The channel is mild in the sense that its
capacity coincides with the Shannon model capacity.
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Property 2: The channel inherits conservative aspects of
the Hamming model. In particular, the channel may vary
in an arbitrary manner unknown to the communicating
parties.

In the following Section I-B, we focus on two different
approaches which have had success towards producing good
channel models. These approaches have been to 1) bound the
channel’s computing power (i.e., computational complexity)
[3], [4] and 2) bound the information known to the channel
about the communication scheme [5]–[13].

B. Complexity Bounded Channels and Oblivious Channels

Consider a transmitter Alice who wishes to communicate a
message m from a set of M possible messages over a noisy
channel to a receiver Bob. To protect the message from noise
corruption, Alice encodes m into an n bit codeword x of
rate R = (1/n) logM and transmits x over the channel.
The channel adds an n-bit error vector e to x, and Bob
receives the binary channel output y = x⊕ e. The channel is
controlled by an adversary who chooses e to prevent reliable
(unique) decoding by Bob. For an error budget p ∈ (0, 1/2),
the adversary can only induce pn bit flips, i.e., the Hamming
weight of e must be bounded above by pn.

In the computationally bounded model (first proposed by
Lipton [3]), the adversary computes e using limited compu-
tational resources, e.g., via an algorithm that takes a finite
number of computational steps. This model has the appeal of
sufficiently describing practical channels, including channels
with memory and channels governed by natural, but unknown
processes. However, the computationally bounded model can
be severe – an impossibility result of Guruswami and Smith
[4] is that the model’s capacity can be less than the Shannon
capacity, and can even be 0 when the latter is positive. Thus,
Property 1 does not hold for the computationally bounded
model.

Another existing approach is the partially oblivious model,
where the adversary chooses e using incomplete side-
information about the transmitted codeword x. This model
includes myopic channels, e.g., [5]–[7], causal channels, e.g.,
[8]–[10], channels with active eavesdroppers, e.g., [14], and
some arbitrarily varying channels (AVCs), e.g., [11], [12]. Al-
though the model can vary between works, the setting usually
has the following general structure: for r ∈ [0, 1] and some
(deterministic) observation function fn : {0, 1}n → {0, 1}rn,
the adversary makes an rn-bit observation fn(x) of codeword



x prior to choosing e.1 The special cases r = 0 and r = 1
correspond to no information (i.e., completely oblivious) and
perfect information (i.e., omniscient), respectively.

Property 1 can hold for the oblivious model when r is
sufficiently small.2 However, Property 2 does not hold for
many oblivious channels in the literature. For example, in the
myopic channel model, the adversary randomly draws fn from
a known distribution.3 For Property 2 to hold, however, we
must allow fn to be arbitrarily chosen and require Alice and
Bob to devise their communication scheme without knowledge
of fn. This is equivalent to the adversary choosing a worst-
case fn for a fixed r – a model studied by Langberg [13]
under the name of the (1−r)-oblivious channel. The capacity
of the (1 − r)-oblivious channel remains an open problem,
where the best known lower bound is given by [13] and will
be summarized in Section I-D.

C. This Work

In this paper, we consider a channel model that has qualities
of both the computationally bounded model and the partially
oblivious model. We do so by requiring the adversary to
observe x via an rn-bit observation function fn that is
computationally bounded.

Specifically, for fixed positive integers c and s, the adversary
chooses a sequence of observation functions fn(·), ∀n ≥ 1
that belongs to CPX(r, cns) – the set of observation functions
with n input bits and rn output bits that can be computed by
a Boolean circuit with at most cns gates. We allow the choice
of fn to be unknown to Alice or Bob. On the other hand, the
fn chosen by the adversary can depend on the codebook of
Alice but cannot depend on the actual message being sent.4

Using the observation function fn of its choice, the adversary
observes fn(x) and chooses e with no computational bound.
We refer to the above adversary as a CPX(r, cns)-oblivious
adversary. By construction, Property 2 holds for a channel
controlled by a CPX(r, cns)-oblivious adversary due to fn
being unknown to Alice or Bob..

Our imposed computational restriction is practical and suf-
ficiently models realistic adversarial channels. A channel con-
trolled by a CPX(r, cns)-oblivious adversary closely approx-
imates a (1 − r)-oblivious channel (i.e., a channel controlled
by a CPX(r,∞)-oblivious adversary) without weakening the
power of the adversary too much. Indeed, the adversary is quite
strong. To illustrate its strength, if for a sequence of functions
{fn}∞n=1 and for c, s ≥ 1 there exists a finite n0 such that for
all n ≥ n0 fn 6∈ CPX(r, cns), then the sequence is widely
regarded to be an infeasible computation [15]. The technical

1The error vector depends non-causally on the entire observation fn(x)
such that the adversary begins choosing e after observing all rn bits.

2This fact is an analog to a channel being sufficiently myopic (see [6]).
3In the myopic channels studied in [5]–[7], the adversary observes x

through a discrete memoryless channel (DMC), not through a function fn.
Regardless, the important thing to note is that the adversary’s observation
does in fact depend on a distribution known to Alice and Bob.

4If the adversary’s choice of fn can depend on the actual message, it is
as if it knows the entire message, which defeats the purpose of limiting the
observation to rn bits.
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Fig. 1. Capacity when r = 0.1. Herein the value p∗ satisfies
CShannon(p

∗) = r = 0.1.

value of the computational constraint is to bound the number
of observation functions that the adversary can choose from.

D. Results

We assume that Alice uses deterministic encoding and
we consider capacity under the diminishing average error
probability criterion in which the probability of decoding error
is averaged over the message set. Under the above model,
the Shannon capacity is CShannon(p) = 1 − H(p) where
H(p) = −p log p − (1 − p) log(1 − p) is the binary entropy
function [12], [13]. We remark that CShannon(p) is achievable
in our model if the CPX(r, cns)-oblivious adversary ignores
its observation fn(x) and naively chooses e randomly from
the set all possible error vectors with Hamming weight pn.

For p ∈ (0, 1/2), r ∈ [0, 1] and positive integers c, s,
let C(p, r, cns) denote the capacity of a channel controlled
by a CPX(r, cns)-oblivious adversary with error budget p.
Similarly, let C(p, r,∞) denote the capacity of (1 − r)-
oblivious channel. The following result shows that Property
1 holds for our model for a wide range of r.

Theorem 1. For p ∈ (0, 1/2), r ∈ [0, CShannon(p)), and
positive integers c and s, C(p, r, cns) = C(p, 0, cns) =
C(p, 0,∞) = CShannon(p).

We share a few remarks on the above theorem. When
r < CShannon(p) = 1 − H(p), Theorem 1 implies that the
adversary can do no better than to ignore its side-information
fn(x) and choose e randomly from the set of all n-bit vectors
with Hamming weight pn. Additionally, we note that the
largest known lower bound on C(p, r,∞) is 1 − r − H(p)

for r ∈ [0, 1−H(p)
3 ) [13]. Since C(p, r,∞) is a lower bound to

C(p, r, cns), Theorem 1 significantly sharpens the best known
lower bound of C(p, r, cns) to an exactly tight characteriza-
tion. For r > CShannon(p), an immediate lower bound of
C(p, r, cns) is given by the Gilbert-Varshamov (GV) bound
(i.e. C(p, r,∞) ≥ 1−H(2p)) [16], [17]. All results discussed
thus far are summarized in Fig. 1.

Theorem 1 generalizes a few known results on myopic
channels and channels with active eavesdroppers. For r <
CShannon, CShannon(p) is known to be the capacity of a



myopic channel where the adversary a) non-causally views x
through a binary erasure channel with erasure probability 1−r
(BEC(1−r)) then b) injects pn bit errors [6, Theorem III.12].
It is clear that this result is generalized by Theorem 1 after
observing that a CPX(r, cns)-oblivious adversary can choose
fn randomly in a way that simulates a BEC(1− r). Although
the results of [6] generalize to a number of channel models,
it remains an open problem whether the proof techniques of
[6] can be used to develop statements similar to Theorem 1
of this work. Similarly, for r < CShannon(p), CShannon(p) is
known to be the capacity of a wiretap channel with an active
eavesdropper where the adversary a) chooses rn indices in
{1, . . . , n} and observes rn-bits of x at the chosen indices
then b) injects pn bit errors [14, Theorem 4.2]. It is clear that
this result is generalized by Theorem 1 after observing that a
CPX(r, cns)-oblivious adversary can choose fn(x) to output
rn-bits of x. A detailed proof of Theorem 1 can be found in
the extended version of this paper [18].

II. CHANNEL MODEL

A. Notation

All vectors are in bold notation. Let d(z, z′) denote the
Hamming distance between two binary vectors z and z′. For
t > 0 and z ∈ {0, 1}n we define Bt(z) = {z′ ∈ {0, 1}n :
d(z, z′) ≤ t} to be the Hamming ball of radius t centered
around z. The functions log(·) and ln(·) denote the base 2 and
base e logarithm, respectively. For a number K ≥ 1, let [K]
denote the set {1, . . . , bKc}. For a blocklength n and rate R ∈
(0, 1], a [n,M ] codebook Cn is a function Cn : [M ]→ {0, 1}n.
When useful, we will think of Cn = {Cn(1), . . . , Cn(M)} as
a subset of {0, 1}n and the ith codeword Cn(i) is a vector in
{0, 1}n.

B. Channel Model

Alice’s Encoding: A transmitter Alice communicates over a
noisy channel with a receiver Bob in the following manner. For
a rate R ∈ (0, 1] and blocklength n, Alice randomly draws a
message m0 uniformly from a message set [M ] = [2Rn]. For
a [n,M ] codebook Cn, Alice encodes m0 into a codeword
x ∈ {0, 1} by computing x = Cn(m0). Since x = Cn(m0)
is a deterministic function of m0, we say that Alice is using
a deterministic encoding. Following encoding, Alice transmits
x into the channel.

Bob’s Decoding: At the channel output, Bob receives y =
x + e where e ∈ {0, 1}n is an error vector added by the
channel. For p ∈ (0, 1/2), we restrict e to have a Hamming
weight bounded above by pn, i.e., we restrict e ∈ Bpn(0).
Bob performs list decoding by creating a list L ⊆ [M ] of all
messages whose corresponding codewords are contained in the
ball Bpn(y). If L contains exactly one message, then Bob sets
m̂ equal to that message. Otherwise, Bob sets m̂ equal to an
error symbol (i.e., some symbol outside the set [M ]). We say
that a decoding error occurs if m̂ 6= m0. Note that Bob is
using the min-distance decoder.

Adversary: The channel is controlled by an adversary who
has side-information about Alice’s and Bob’s communication

scheme but not exact knowledge of the actual message m0.
In particular, the adversary knows Alice’s codebook Cn and
is partially oblivious to the transmitted codeword x. By
partially oblivious, we mean that for r ∈ [0, 1] and some
function fn : {0, 1}n → {0, 1}rn, the adversary observes
a realization ψ of the random variable Ψ = Ψ(m0) =
fn(Cn(m0)) = fn(x).5 Due to the adversary’s computational
bound, for positive integers c, s, the adversary chooses fn
from the set CPX(r, cns) (we provide a rigorous definition
of CPX(r, cns) is Section II-C) using its knowledge of Cn
but not the realization of m0.6 The chosen function fn is
not revealed to Alice or Bob. Finally, the adversary chooses
e ∈ Bpn(0) based on the knowledge of the codebook Cn and
the observation Ψ(m0). We refer to the above adversary as
the CPX(r, cns)-oblivious adversary with error budget p.

C. Adversary’s Complexity Constraint

For r ∈ [0, 1] and positive integers c, s, we precisely
define the set CPX(r, cns). Let Fn,r denote the set of all
Boolean functions of the form fn : {0, 1}n → {0, 1}rn. To
define CPX(r, cns), we first define the circuit complexity of
a function fn ∈ Fn,r.

A Boolean circuit Bn is an acyclic directed graph where
each node is either an input node (with in-degree 0) or a
logic gate (with in-degree 2). All nodes in Bn have out-degree
1 with unbounded fan-out and each logic gate computes an
arbitrary Boolean function from {0, 1}2 to {0, 1}. The size
of Bn is the total number of nodes in Bn (input nodes and
logic gates). Note that an observation function fn ∈ Fn,r
can be computed by some Boolean circuit that takes n bits
as input and produces rn bits as output. The circuit (size)
complexity of an observation function fn ∈ Fn,r is the size of
the smallest size Boolean circuit Bn that can compute fn. We
define CPX(r, cns) to be the set of all functions fn ∈ Fn,r
with a circuit complexity of at most cns. In modern complexity
theory, the study of circuit complexity is a common approach
to proving lower bounds on the complexity of certain problems
[15].

D. Capacity

For a fixed [n,M ] codebook Cn, the (average) probability
of decoding error P̄e(Cn) is defined as the maximum over all
fn ∈ CPX(r, cns) of the quantity

EΨ

[
max

e∈Bpn(0)
Pm0(m̂(e,m0) 6= m0|Ψ(m0) = ψ)

]
where the probability measure Pm0

(·) is w.r.t. the
distribution of m0, and the expectation EΨ[·] =∑
ψ∈{0,1}rn(·)P(Ψ(m0) = ψ). Given the above channel

model, we can define achievable rate in the usual way.

Definition 1 (Achievable Rate). For p ∈ (0, 1/2), r ∈ [0, 1],
and positive integers c, s, a rate R ∈ (0, 1] is said to be (c, s)-
achievable if for any εe > 0, there exists an n0 such that

5The fact that Ψ is a random variable follows from its dependency on the
random variable m0.

6However, the adversary knows that m0 is drawn uniformly from [M ].



for all n ≥ n0, there exists an [n,M ] codebook Cn such that
P̄e(Cn) ≤ εe.

For p ∈ (0, 1/2), r ∈ [0, 1], and positive integers c, s, we
define the capacity C(p, r, cns) as the supremum of (c, s)-
achievable rates.

III. PROOF OUTLINE, OVERVIEW OF PROOF TECHNIQUE

In this section, we outline the proof of Theorem 1 and
discuss an overview of our proof technique. A detailed proof
of Theorem 1 can be found in the extended version of this
paper [18].

A. Achievability Scheme
For our proof of Theorem 1, we construct a specific Cn.
Encoder Construction: Alice’s [n,M ] codebook Cn is

constructed as follows. Let ρ ∈ (R,CShannon(p)). Codebook
Cn is a concatenation of two codebooks: an outer [ρn,M ]
codebook Cout : [M ] → {0, 1}ρn and for N = 2ρn, an inner
[n,N ] codebook Cin : {0, 1}ρn → {0, 1}n. Encoding proceeds
as follows. First, Alice encodes m0 with Cout where we de-
note the resulting codeword as Cout(m0). Subsequently, Alice
encodes Cout(m0) with Cin where we denote the resulting
codeword as Cn(m0) = Cin(Cout(m0)). After encoding, Alice
transmits the codeword x = Cn(m0) over the channel.

Decoder Construction: Bob’s list decoder is constructed
as follows. Given the channel output y, Bob first performs
list decoding by forming a list Lin(m0, e, Cin) of all words
w ∈ {0, 1}ρn such that Cin(w) is contained in the ball
Bpn(y). After list decoding, Bob refines the list (i.e., Bob
performs disambiguation) by removing all wordsw ∈ Lin that
are inconsistent with Cout: we say that a wordw is inconsistent
with Cout if w 6= Cout(m) for any m ∈ [M ].

Denote the refined list as Lout. After Lin is refined to
Lout, a decoding decision is made according to the following
rules. If |Lout| = 1, then we have exactly one m ∈ [M ]
s.t. Cout(m) ∈ Lout, and the decoder outputs m̂ = m. If
Lout is empty or |Lout| > 1, then the decoder declares an
error by setting m̂ to an error symbol. We say that a decoding
error occurs if m̂ 6= m0. However, by the list decoding logic,
Cout(m0) is guaranteed to be in Lout, and so the only non-
trivial decoding error event occurs when |Lout| > 1.

Probability of Error: Given the above construction, the
probability of decoding error P̄e(Cout, Cin) can be written as

max
fn∈CPX(r,cns)

EΨ

[
max

e∈Bpn(0)
Pm0

(|Lout| > 1|Ψ(m0) = ψ)

]
which in turn is equal to the maximum over all fn ∈
CPX(r, cns) of the quantity

EΨ

 max
e∈Bpn(0)

Pm0
(

|Lin|⋃
i=1

{wi ∈ Im0
}|Ψ(m0) = ψ)

 (1)

where for i = 1, . . . , N we define7

wi(m0, e, Cin) = arg min
w∈Lin\{w1,...,wi−1}

d(y, Cin(w))

7We address the scenario where wi is not unique in the extended version
[18].

to be the word corresponding to the ith closest codeword in
Cin to y, and we define

Im0 = {z ∈ {0, 1}ρn : ∃m′ ∈ [M ],m′ 6= m0, z = Cout(m′)}
(2)

to be the set of words that are not inconsistent with Cout and
do not correspond to the true message m0.

B. Outline of the proof of Theorem 1

Random Coding Argument: In the sequel, for p ∈
(0, 1/2), r ∈ [0, 1−H(p)), positive integers c, s and for any
ερ, εR > 0, we set the outer-code rate ρ = CShannon(p)− ερ
and the inner-outer combined code rate R = ρ−εR. Thus, rate
R can be arbitrarily close to CShannon. To prove Theorem 1,
we show that the rate R is (c, s)-achievable. We show this by
using a random-coding argument in conjunction with the code
construction presented in Section III-A. The argument states
that for any fixed [ρn,M ] outer code Cout that is a 1:1 function
and for any εe > 0, if there exists some n0 such that for all
n ≥ n0 there exists some non-empty set G of [n,N ] codebooks
such that for any Cin ∈ G we have P̄e(Cin, Cout) ≤ εe, then
Theorem 1 holds.

Setup: In the sequel, we drop the dependency on Cout from
all notation due to the outer codebook being fixed. To apply
the random-coding argument, we first apply a simple union
bound to P̄e(Cin) and bound it above by P̄ube (Cin) defined as

max
fn∈CPX(r,cns)

N∑
i=1

EΨ

[
max

e∈Bpn(0)
qi(fn,ψ, e, Cin)

]
(3)

where for fn ∈ CPX(r, cns), ψ ∈ {0, 1}rn, e ∈ Bpn(0) and
i ∈ [N ] we define qi(fn,ψ, e, Cin) = P(wi ∈ Lin,wi ∈
Im0 |Ψ(m0) = ψ) to be the probability that wi results in a
decoding error.

To bound P̄ube , we leverage the list decodable properties of
the inner codebook.

Definition 2. For ` > 0, an [n,N ] codebook Cin is said to be
[`, p] list decodable if |Cin∩Bpn(y)| ≤ ` for every y ∈ {0, 1}n.

For each n large enough, to show that there exists an [n,N ]
codebook Cin such that P̄ube (Cin) ≤ εe, it is sufficient to show
that for some number L = O(1/ερ) (independent of n), the
probability (over the choice of inner codebook) that Cin is
not [L, p] list decodable or qi(fn,ψ, e, Cin) > εe/L for some
fn ∈ CPX(r, cns), ψ ∈ {0, 1}rn, e ∈ Bpn(0) and i ∈ [L]
(excluding, possibly, a few ψ ∈ {0, 1}rn that have a vanishing
probability over m0 of being observed by the adversary) is
strictly less than 1.8 We note the probability that Cin is not
[L, p] list decodable is vanishing as n→∞ following known
results on the list decodability of random codes (e.g., [8,
Claim A.15]), . Hence, following a union bound, we only need
to show that with probability bounded away from 1, we have
qi(fn,ψ, e, Cin) > εe/L for some parameters as described
above. When confusion can be avoided, we drop the notated

8Note that a [L, p] list decodable Cin implies that qi(·, ·, ·, Cin) = 0 for
L ≤ i ≤ N .



dependencies and subscripts of qi(fn,ψ, e, Cin) and simply
write q(Cin) to emphasize the dependency on Cin.

Analysis of q(Cin): We fix i ∈ [L], fn ∈ CPX(r, cns),
ψ ∈ {0, 1}rn and e ∈ Bpn(0) and for n = 1, 2, . . . we study
the concentration of measure of q(Cin) around its expectation
ECin [q] (here, the expectation is w.r.t. the distribution of
Cin). We do so by deriving concentration inequalities via the
logarithmic Sobolev inequalities, e.g., [19]. This derivation is
also known as the entropy method.

An example of a common inequality derived via the entropy
method is as follows. Define the variation of q(Cin) as
V (Cin) =

∑N
j=1 Ez|q(Cin) − q(Cin(j, z))|2 where codebook

Cin(j, z) is equal to Cin with the jth codeword replaced with
the codeword z uniformly distributed in {0, 1}n. The quantity
V (Cin) captures how smoothly q(Cin) varies for incremental
changes to Cin. For a > 0, we say that q is a-smooth if for
all [n,N ] codebooks Cin we have V (Cin) ≤ a.

Proposition 1 ( [19, Corollary 3]). Suppose there exists an
a = a(n) > 0 such that q is a-smooth. For λ > 0,

PCin(q − ECin [q] > λ) ≤ exp

{
λ2

4a

}
(4)

where the probability PCin is w.r.t. the distribution of Cin.9

To apply Proposition 1, one can first set λ = εe/L−ECin [q],
and then find a value of a small enough such that q is a-
smooth and the R.H.S. of the inequality (4) approaches 0 in
the limit n → ∞. In practice, this value of a is difficult to
find. The difficulty arises from the fact that for a small subset
of [n,N ] codebooks Cin, the variation V (Cin) is large. Thus,
Proposition 1 cannot be used directly.

Handling large variation: To address this issue, we take
the following bootstrapping approach. We first approximate
q(Cin) with a function q′(Cin) that is equal to q(Cin) with
high probability over the choice of Cin and has a small
variation V ′(Cin) for all [n,N ] codebooks Cin. We then imply
the concentration of q by showing that the approximation
q′ is concentrated via a entropy-method-type concentration
inequality that resembles Proposition 1.

To approximate q(Cin), we first define a set T of typical
[n,N ] codebooks such that PCin(Cin 6∈ T ) is small. If Cin ∈
T , we define q′(Cin) = q(Cin). If otherwise Cin 6∈ T , we
define q′(Cin) such that for sufficiently small a > 0, q′ is
a-smooth.

Lastly, we briefly discuss the reasoning behind our choice
of code construction. We remark that our construction and
the resulting definition of q help us to show that V ′(Cin) is
sufficiently small when Cin 6∈ T . Concatenated coding and
list decoding/refinement allow us to isolate for i = 1, . . . , N
the effect of the ith codeword of Cin on P̄e(Cin) and show
V ′(Cin) = O(i) ∀Cin 6∈ T . Without the construction, for non-
typical codebooks, the function under analysis may have a
variation equal to O(2Rn) which is too large to apply our
concentration inequalities.

9Proposition 1 requires that each codeword of Cin be independently and
uniformly drawn from {0, 1}n.

Prior work: Our above approach is inspired by Langberg’s
framework [13] to study concentration of measure when the
function under analysis is non-smooth. The main technical
contribution of [13] is to carefully define the typical set T
based on the codebooks’ list decodable properties in way
where one can then apply Vu’s martingale-type concentra-
tion inequalities for non-smooth functions [20]. We follow
Langberg’s framework by also defining typicality in terms
of list decodability. However, we use entropy-method-type
concentration inequalities.

The major technical difference between our work and [13]
lies at the definition of smoothness. For a > 0, reference
[13] defines smoothness in terms of a-Lipschitz: for the quan-
tity W (Cin) = N maxj∈[N ],z∈{0,1}n |q(Cin) − q(Cin(j, z))|2,
q is a-Lipschitz if for all [n,N ] codebooks Cin we have
W (Cin) ≤ a.10 We remark that for a > 0, q is a-smooth
if q is a-Lipschitz, and thus a-Lipschitz is a stronger notion
of smoothness than the notion used in our work.

The advantage to characterizing smoothness using a-smooth
as opposed to a-Lipschitz is apparent in the following obser-
vation. Suppose that for aL > 0, q is aL-Lipschitz. Then one
can usually find a smaller value aS ∈ (0, aL) such that q is aS-
smooth, and in turn, leverage the aS-smooth criterion to apply
tighter concentration inequalities than those reliant on the aL-
Lipschitz criterion. Indeed, we take this approach to show that
the probability that q is not concentrated is at most 2−2

Ω(n)

,
whereas bounds on the order of 2−poly(n) are obtainable using
aL-Lipschitz together with the framework of [13]. The cost of
this approach is that finding a smaller value aS can require
significant effort compared to finding aL. Indeed, our proof of
Theorem 1 invests significant effort into finding aS .

Computational Bound: Lastly, we briefly discuss the
role that the adversary’s computational bound plays in our
random-coding argument. Recall that to show a rate R is
(c, s)-achievable, it is sufficient to show that there exists
one [n,N ] codebook Cin such that quantity (1) is small
for all fn ∈ CPX(r, cns). Showing the existence of this
codebook becomes difficult if the set CPX(r, cns) contains
many functions. We simplify our search for this codebook by
bounding the number of functions in the set CPX(r, cns). We
remark that the set CPX(r, cns) can be shown to have 2poly(n)

functions, and therefore, CPX(r, cns) is much smaller than the
set of functions CPX(r,∞) = Fn,r with unbounded circuit
complexity which has 2rn2

n

functions.

IV. CONCLUSION

In this work, we study the capacity of adversarial channels
in which the adversary can observe the transmitted codeword
via some computationally bounded process. We characterize
the capacity for certain parameters under deterministic encod-
ing and average probability of error criterion.

10In the definition of W (Cin), we include constant N and square the
absolute difference term to normalize W (Cin) with respect to V (Cin).
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