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Abstract

With the advent of 5G and technologies such as cloud computing, Internet-of-Things (IoT), etc,

future communication networks will consist of a large number of heterogeneous devices connected

together. A critical aspect will be ensuring that communication is not only fast and reliable, but also

secure. Motivated by this, we consider the problem of communicating a message reliably across a

binary erasure channel (BEC(q)) or a binary symmetric channel (BSC(q)) against an adversary actively

injecting additional erasures or flips at the channel’s input. The adversary has a total error budget equal

to a fixed fraction p of the codeword length and knows the transmission scheme agreed upon by the

communicating terminals. Further, he has the capability to causally snoop in on both the transmitter and

the receiver in real time, i.e., if x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) denote the transmitted and

the received codewords respectively, at each time k, he knows (x1, x2, · · · , xk) and (y1, y2, · · · , yk−1).

The adversary is free to employ any attack using his side-information that respects his budget constraint.

We prove an information-theoretic tight capacity characterization as a function of p and q for (i) the

erasure adversary with a BEC(q) and (ii) the bit-flip adversary with a BSC(q). A unique feature of our

models is the compounding of stochastic and adversarial noise sources. Our analysis reveals the worst-

case adversarial attacks for both models and proves the existence of coding schemes that achieve rates

equal to the capacity for any adversarial attack. In the case of bit-flips, we show that, interestingly, when

p is below a certain threshold (that depends on q), the adversary is no worse than an i.i.d. memory-less

noise source.
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I. INTRODUCTION

Due to a massive increase in the number of devices connected together, security is a re-

emerging concern for wireless networks. There is a push from 3GPP, government and other

stakeholders to adopt zero-trust design principles for 5G networks and beyond [3], securing

systems from attackers both outside and within the network. From the zero-trust perspective,

designers must assume an open network where all network links can be intercepted by an attacker.

Furthermore, due to the ease-of-access of the wireless medium, designers must plan for attacks

at the physical layer, including denial-of-service (DoS) attacks (i.e., jamming) or other attacks

which can lead to network wide security vulnerabilities. Such attacks can come from untrusted

devices or compromised hardware (i.e., hardware Trojans) [4]–[6]. Trojans can use real time

information snooped from a link to design optimal attacks on error control systems – systems

which are not currently designed to defend against these attacks. In this article, we develop

secure error control coding techniques against such threats.

Specifically, consider the following situation depicted in Fig. 1. Alice wishes to communicate

a message reliably to Bob over a binary erasure channel (BEC(q)) or a binary symmetric channel

(BSC(q)) in the presence of Calvin, who can introduce additional noise at the channel’s input

by erasing or flipping bits. Calvin assumes the role of an online adversary who has the ability

to spy on both terminals in real time. He may only impact a certain number of bits but can

otherwise freely corrupt parts of the transmission. Here, his budget is specified as a fraction

of the codeword length (pn erasures or flips where n is the codeword length). What is the

largest rate at which reliable communication is possible (i.e. channel capacity) in this setting?

Answering this question is the central goal of this paper.

Many of the channel models in information theory are broadly of two kinds. On one side are

stochastic models whose behavior is characterized by a probability law and errors get injected

independent of the communication scheme. Here, it is sufficient to deal with average-case errors.

On the other extreme are adversarial models where one must deal with the worst-case errors.

As expected, the latter often behave much differently from the former. In the case of adversarial

channels, the capacity generally depends strongly on what the adversary knows. An oblivious

adversary [7]–[11] is one who possibly knows the coding scheme agreed upon by Alice and

Bob but has no knowledge of the transmitted codeword. In complete contrast is the omniscient

adversary [12]–[14] who non-causally knows the entire length-n codeword chosen by Alice for
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Fig. 1. Channel models considered in this work - (a) BEC(q)-ADV(p)-FS and (b) BSC(q)-ADV(p)-FS. Calvin, who at each

time k knows (x1, x2, · · · , xk) and (y1, y2, · · · , yk−1), and also knows the transmission scheme being employed by Alice and

Bob, is constrained such that he may only inject up to pn erasures or flips in total.

transmission. An intermediate model also considered in this paper is that of an online or causal

adversary [15]–[18] wherein at any point during the transmission, the adversary has access to

part of the codeword that is transmitted thus far, i.e., if x = (x1, x2, · · · , xn) is the codeword

transmitted, Calvin at each time k knows (x1, x2, · · · , xk). Another interesting set of models are

the delayed adversary model [19], [20] and the look-ahead adversary model [15] where Calvin at

each time k knows (x1, x2, · · · , xk+d·n), where d is the delay (d < 0) or the look-ahead (d > 0)

parameter. Different from these is also the myopic adversary model [21], [22] where Calvin

knows only a noisy version of x.

Along with the adversary’s side information, another important criterion that affects the

capacity is whether Alice and Bob have any shared randomness between them that is unknown

to Calvin. In most cases, it turns out that the adversary in these settings is no worse than an

i.i.d. memory-less noise source [15], [23]–[25]. Moreover, from a practical perspective, today’s

wireless systems do not have physical layers based on such type of shared randomness. Therefore

in this paper, we do not allow any shared randomness between the terminals. However, we allow

Alice to employ stochastic encoding or randomized encoding using private random coins that

are shared neither to Bob nor Calvin.

Without Calvin’s presence, i.e. when p = 0, our models reduce to the classical BEC(q) or

the BSC(q). When there is no random channel present, i.e., q = 0, the only source of noise is
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adversarial for which a complete capacity characterization is given by [15]–[17]. Our models

differ from the ones considered previously in two ways:

• Mixing of random and adversarial noise: From Fig. 1, the noise in the received word

is affected by the random channel BEC/BSC as well as the actions of Calvin who is

erasing/flipping bits. For example in the erasure case, a bit not erased by Calvin can be

erased by the BEC. In the bit-flip case, the situation is harder because a bit flipped by Calvin

may even get “unflipped” by the BSC. Conceptually, we think of the stochastic channel as

the main channel through which Alice and Bob communicate, and Calvin as a malicious

entity who attempts to actively disrupt the transmission. Since we only deal with binary

channels, we refer to our models as binary stochastic-adversarial channels. Study of real

input-output channels such as the AWGN channel are left for future investigation.

• Feedback to adversary: In our setting, we will allow Calvin access to Bob’s reception

through feedback snooping, as shown in Fig. 1. This becomes important due to the presence

of the stochastic channel that also influences the bits received at Bob. Note that feedback

snooping is unnecessary when q = 0.

We note that our models are in fact special cases of the more general framework of arbitrarily

varying channels (AVCs) [7], [26]. However, known results for AVCs do not imply the results

of this paper and therefore we do not pursue this connection. Our contributions are briefly

summarized as follows:

• We provide a complete characterization of capacity in the case of erasures (Cerase(p, q)) for

arbitrary budget parameter p ∈ [0, 1] and erasure probability q ∈ [0, 1]. Our result implies

that the presence of the random channel BEC(q) in addition to causal adversarial erasures

scales the capacity expression of the q = 0 case by a multiplicative factor.

• We also provide a complete capacity characterization in the case of bit-flips (Cflip(p, q))

for arbitrary budget parameter p ∈ [0, 1] and flip probability q ∈ [0, 1/2]. We show that for

every q ∈ [0, 1/2), there is a threshold pq > 0 s.t. when p < pq, Calvin can do no better

than making flip decisions in an i.i.d. manner. In other words, an adversary when weak

enough is no worse than an i.i.d. memory-less noise source. Here, pq → 0 as q → 1/2.

• For each model, we characterize the worst-case adversarial attacks and prove the existence

of coding schemes that allow Alice to transmit reliably at rates arbitrarily close to capacity,

no matter the adversary’s strategy.
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A preliminary version of this work was presented at the 2021 IEEE International Symposium on

Information Theory [1]. An extended version of the ISIT conference paper with longer proofs is

available at [2]. In [1], [2], while the capacity for the erasure model was completely characterized,

only upper and lower bounds were given for the harder bit-flip model. In this work, we close

this gap and show that the converse sketched in [1], [2] is in fact tight. Inclusion of secrecy

constraints where Alice must not only convey her message reliably to Bob but also hide it from

Calvin, is not considered here and left for future investigation. The rest of the paper is organized

as follows. Section II formally defines the channel models and the capacity characterization

problem. In Section III, we state our main capacity results. Converse proofs are provided in

Section IV and proofs for achievability are provided in Section V. Finally, conclusions and

possible future research directions are discussed in Section VI.

II. PRELIMINARIES

A. Channel Models

The channel models are depicted in Fig.1. Encoding is done over a fixed block-length of n

channel uses, and the size of the message set at the transmitter is 2nR. Consider first the model for

the case of erasures. Alice (the transmitter) attempts to convey a message to Bob (the receiver)

over a BEC(q), in the presence of a p-limited causal adversary (Calvin) where the terms will be

clarified shortly. The input and output alphabets are X = {0, 1} and Y = {0, 1,Λ} respectively,

where Λ denotes an erasure symbol. We allow stochastic encoding and assume the presence of

local randomness available only to Alice for this purpose. Denote xk ∈ X to be the bit selected

by the transmitter at channel use k. At time k, Calvin makes a decision on whether to erase xk

based on his side-information to be specified. If Calvin erases xk, the received symbol at time

k at the receiver is an erasure, i.e., yk = Λ. If Calvin decides not to erase xk, then xk is erased

with probability q, i.e., yk = xk with probability 1− q and yk = Λ with probability q. We now

specify the side-information available to Calvin:

• Knowledge of transmission scheme: Calvin has knowledge of the transmission scheme

agreed upon by Alice and Bob.

• Transmitter snooping: Calvin has causal access to symbols being transmitted by Alice,

i.e., at each channel use k, 1 ≤ k ≤ n, Calvin knows (x1, x2, · · · , xk) ∈ X k.
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• Feedback snooping: Calvin has the capability to spy into Bob’s reception through a noise-

free strictly causal feedback link as shown in Fig. 1. At each channel use k, 1 ≤ k ≤ n,

Calvin knows (y1, y2, · · · , yk−1) ∈ Yk−1.

Thus, Calvin’s decision on whether or not to erase xk is a function of the transmission rule,

(x1, x2, · · · , xk) ∈ X k, and (y1, y2, · · · , yk−1) ∈ Yk−1. A power constraint is further imposed by

enforcing Calvin to be p-limited, meaning that he can erase at most a constant fraction p of

the bits, i.e., if a ∈ {0, 1}n denotes the positions where Calvin decides to erase symbols from

(x1, x2, · · · , xn), we must have weight(a) ≤ pn. We refer to this model as the BEC causal

adversarial channel with feedback snooping (or BEC(q)-ADV(p)-FS). Note that the BEC block

in Fig. 1(a) is different from the classical BEC. If Calvin erases xk to an erasure symbol Λ, we

have yk = Λ, where Λ does not carry any information.

We also consider a related and more interesting model (Fig. 1(b)) where Calvin can attempt

to flip up to pn bits and the stochastic channel is a BSC(q) instead of a BEC(q). The input

and output alphabets are revised to X = {0, 1} and Y = {0, 1}. At time k, Calvin produces

ak ∈ A = {0, 1} based on his side information which is the same as that for erasures, i.e., at

time k, he knows (x1, x2, · · · , xk), the transmission scheme, and (y1, y2, · · · , yk−1). The received

symbol at time k at the receiver is

yk =

xk ⊕ ak ⊕ 1 with prob. q

xk ⊕ ak with prob. 1− q
,

where ⊕ denotes mod-2 addition and q ∈ [0, 1/2]. Hence, a ∈ {0, 1}n denotes the positions where

Calvin injects bit-flips and the constraint on the adversary can be expressed as weight(a) ≤ pn.

Note that a flip-attempt of Calvin can now be undone by the BSC. This happens exactly at

positions where both Calvin and the BSC inject errors. This is in contrast to the case of erasures

where a bit erased by Calvin remains erased. This model is referred to as the BSC causal

adversarial channel with feedback snooping (or BSC(q)-ADV(p)-FS).

Our aim is to characterize the capacity of these channels, i.e., the largest value of R such

that Alice can reliably convey one out of 2nR possible messages to Bob. The capacities of the

BEC(q)-ADV(p)-FS channel and the BSC(q)-ADV(p)-FS channel are denoted by Cerase(p, q)

and Cflip(p, q) respectively. Precise definitions to follow.

Definitions: The transmitted message is denoted by the random variable (r.v.) U chosen

uniformly from the message set U = {1, 2, 3, · · · , 2nR}. The Hamming distance between w
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and z will be denoted by dH(w, z). We denote by C(n,R) a code of rate R and block-length n.

A deterministic code C = (Φd,Γd) consists of an encoder map Φd : U → X n and a decoder map

Γd : Yn → U , where each message is associated to a unique codeword. In case of stochastic

encoding, a codeword x is selected for a message u according to a chosen conditional distribution

Φ̃(·|u) defined on X n. A stochastic code C = (Φ̃,Γ) is fully specified by defining all conditional

distributions
{

Φ̃(·|u)
}
u∈U

and decoder Γ : Yn → U . Without loss of generality, we assume in

proving converse results that no two distinct messages map to the same codeword.

Denote the transmitted and received codewords by x and y respectively. A strategy S for

Calvin consists of (possibly stochastic) maps g1, g2, · · · , gn, where his error injections are given

by

ak = gk(C,xk1,yk−1
1 ) k = 1, 2, · · · , n.

Equivalently, for each k, ak is a Bernoulli random variable whose success probability is a

function only of the transmission rule C, xk1 and yk−1
1 . S is feasible only if for every C, x and y,

weight((a1, a2, · · · , an)) ≤ pn holds almost surely. The set of all feasible strategies for Calvin

is denoted by ADV(p). The (maximum) probability of error is then defined as

Pe(Φ̃,Γ) = max
u∈U

max
S∈ADV(p)

∑
y

∑
x

P (y|x,S)Φ̃(x|u)I(Γ(y) 6= u) (1)

where I(.) denotes the indicator function.

When proving achievability results, we consider for analytical simplicity the following alternate

view of a stochastic code. Alice is endowed with a set S of private secrets or keys and the

stochastic code is defined by a deterministic map Φ : U × S → X n. For a given message

u ∈ U , the codeword Φ(u, s) is selected by picking a secret s ∈ S uniformly randomly.

As discussed in [16], this definition is essentially equivalent and does not change the ca-

pacity. In this case, the (maximum) probability of error from (1) is revised to Pe(Φ,Γ) =

maxu∈U maxSADV(p)
1
|S|
∑

s∈S
∑

y P (y|Φ(u, s),S)I(Γ(y) 6= u). The probability of decoding er-

ror is averaged over all possible secrets available to Alice for encoding.

Rate R > 0 is achievable if for every ε > 0, there is a sequence of rate R − ε codes

of increasing block-lengths {C(n,R− ε)}n≥1 such that for any δ > 0, there is an N so that

Pe(C(n,R − ε)) < δ for any n > N . Capacity is defined to be the supremum of all achievable

rates. For x, y ∈ [0, 1/2], define x ? y = x(1 − y) + y(1 − x). Note that x ? y = 1/2 iff either

x = 1/2 or y = 1/2 (or both).
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B. Simple Converse Bounds - The I.I.D. Attack

We begin with simple converse bounds for both channel models. These follow from the

following adversarial attack for Calvin - he ignores his side information completely and simulates

an i.i.d. memory-less noise source while respecting his budget constraint.

Lemma 1. The capacity Cerase(p, q) of the BEC(q)-ADV(p)-FS channel satisfies the bound

Cerase(p, q) ≤ (1− p)(1− q). (2)

Proof. For δ > 0, Calvin erases each bit xi independently with probability p−δ. By the Chernoff

bound, he does not exceed his budget with probability at least 1−2−Ω(δ2n). Since the combination

of this attack with the BEC(q) is the BEC(s) with s = p − δ + q − (p − δ)q, the capacity is

bounded as Cerase(p, q) ≤ (1− p+ δ)(1− q). Letting δ → 0 completes the proof.

Lemma 2. The capacity Cflip(p, q) of the BSC(q)-ADV(p)-FS channel satisfies the bound

Cflip(p, q) ≤ 1− h2(p ? q). (3)

Proof. For δ > 0, Calvin flips each bit xi independently with probability p− δ, staying within

his budget with probability at least 1−2−Ω(δ2n). Since the effective channel is BSC((p− δ)?q),

the capacity is bounded as Cflip(p, q) ≤ 1− h2 ((p− δ) ? q). Finally, let δ → 0 to get (3).

We will show that for the BEC(q)-ADV(p)-FS channel, the i.i.d. erasure attack in Lemma 1

is always sub-optimal, as one would expect. In contrast however, for the BSC(q)-ADV(p)-FS

channel, there are regimes where the i.i.d. bit-flip attack in Lemma 2 is optimal. Here, the side

information available to Calvin as specified in II-A proves to be of no benefit, and Calvin is no

worse than an i.i.d. Bernoulli memory-less noise source.

C. Effective number of erasures or flips

By the Chernoff bound, the BEC(q)/BSC(q) when acting alone (i.e., with no adversary) induces

about qn erasures/flips. In our set-up, we also have Calvin who can introduce up to pn additional

erasures/flips. However, since Calvin is causal, his error pattern and the error pattern induced by

the random channel may have several overlapping error injections. The total number of errors

will thus be much less than pn+ qn. Consider the following lemma.
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Lemma 3. Let X1, X2, · · · , Xn be i.i.d. Ber(q) indicator random variables representing the

erasure sequence injected by a BEC(q). Let Y1, Y2, · · · , Yn be indicator random variables where,

for each j, Yj is Bernoulli distributed with a success probability that is possibly a function of

X1, X2, · · · , Xj−1, Y1, Y2, · · · , Yj−1, subject to the constraint that the random variable
∑

j Yj is

almost surely less than or equal to pn. For δ > 0, defining the event

E =

{
n∑
j=1

I(Xj = 1 or Yj = 1) ≤ (p+ q − pq)n+ δn

}
,

we have P (E) ≥ 1− 2−Ω(δ2n).

Proof. By defining a suitable martingale, the proof is a simple application of Azuma’s inequality

(e.g. [27]). Let Zj = I(Xj = 1 or Yj = 1). Define for j = 1, 2, · · · , n, Pj = Zj − E(Zj |

X1, X2, · · · , Xj−1, Y1, Y2, · · · , Yj−1), and Sj =
∑j

k=1 Pk. Clearly, Sj is a martingale because

E(Sj+1 | X1, · · · , Xj, Y1, · · · , Yj) = Sj. Note that |Sj − Sj−1|= |Pj|≤ 1 holds almost surely.

Thus, by Azuma’s inequality, Pr (|Sn|≥ δn) ≤ 2e−
δ2n
2 . The required result then follows from

the constraint
∑

j Yj ≤ pn and the fact that for each j, Xj and Yj are independent.

Using arguments similar to the proof of Lemma 3, we can also show the following Lemma.

Lemma 4. Let X1, X2, · · · , Xn be i.i.d. Ber(q) random variables representing the error sequence

injected by a BSC(q). Let Y1, Y2, · · · , Yn be random variables where, for each j, Yj is Bernoulli

distributed with a success probability that is possibly a function of X1, · · · , Xj−1, Y1, · · · , Yj−1,

subject to the constraint
∑

j Yj ≤ pn almost surely. For δ > 0, defining the event E ={∑n
j=1(Xj ⊕ Yj) ≤ (p ? q)n+ δn

}
, we have P (E) ≥ 1− 2−Ω(δ2n).

Let δ > 0 be a small arbitrary constant. Lemmas 3 and 4 imply that under any strategy

employed by Calvin, we have the following:

• For the BEC(q)-ADV(p)-FS channel, the total effective number of erasures injected on to

the received codeword due to actions of both Calvin and the BEC(q) does not exceed

(p+ q − pq + δ)n with probability at least 1− 2−Ω(δ2n).

• For the BSC(q)-ADV(p)-FS channel, the total effective number of flips injected on to the

received codeword due to actions of both Calvin and the BSC(q) does not exceed (p?q+δ)n

with probability at least 1− 2−Ω(δ2n).
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The above results imply that insofar as the total effective number of flips or erasures is concerned,

Calvin cannot use his side information to improve over an i.i.d. attack. Lemmas 3 and 4 will

also be essential to proving our achievability results.

III. MAIN RESULTS

A. Results for Erasures

Theorem 1. The capacity Cerase(p, q) of the BEC(q)-ADV(p)-FS channel is

Cerase(p, q) =

(1− 2p)(1− q), 0 ≤ p ≤ 1

2
, 0 ≤ q ≤ 1

0, otherwise
. (4)

When there is no BEC, i.e., when q = 0, our model reduces to the one studied in [15], [16].

Our result implies that in the setting where both causal adversarial erasures and random erasures

are present, the capacity expression is scaled by a factor of (1− q).

B. Results for Bit-flips

Theorem 2. For p ∈ [0, 1/4] and q ∈ [0, 1/2], the capacity Cflip(p, q) of the BSC(q)-ADV(p)-FS

channel is

Cflip(p, q) = min
x∈[0,p]

α(p, x)

(
1− h2

(
x(1− 2q)

α(p, x)
+ q

))
(5)

where α(p, x) = 1− 4(p− x). If p ≥ 1/4, we have Cflip(p, q) = 0.

When q = 0, i.e., there is no BSC, the channel model reduces to that considered in [15],

[16], and the capacity expression (5) matches with the result proved in [15], [16]. As shown in

Appendix B, the solution Cflip(p, q) to the optimization problem in (5) for any fixed q ∈ [0, 1/2)

is

Cflip(p, q) =


1− h2(p ? q) 0 ≤ p ≤ pq

1−4p
1−4pq

(1− h2 (pq ? q)) pq ≤ p ≤ 1/4

0 p ≥ 1/4

,

where pq is the unique solution in (0, 1/2) of the equation

4 + (1 + 2q) log2 (pq ? q) + (3− 2q) log2 (1− pq ? q) = 0. (6)

In Fig. 2, Cflip(p, q) is plotted as a function of p for various values of q, specifically, q =

0.0, 0.1, 0.2. We make the following observations:
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• From [15], [16], Cflip(p, 0) > 0 for p ∈ [0, 1/4). Here, we have Cflip(p, q) > 0 for all

q ∈ [0, 1/2) and p ∈ [0, 1/4). Thus, the addition of the BSC stochastic channel does not

change the support over p for which the a positive rate is achievable.

• For 0 ≤ p ≤ pq, Cflip(p, q) is convex and equal to 1 − h2(p ? q). This implies that when

0 ≤ p ≤ pq, the i.i.d. bit-flip attack strategy in Section II-B is optimal for the adversary. In

this regime, the knowledge of the encoding scheme or the ability to spy on Alice or Bob

buys Calvin no benefit.

• Solving (6), it can be seen, as q ↘ 0, pq ↗ p0 = 1
6

(
5− 4

3
√

19− 3
√

33
− 3
√

19− 3
√

33

)
,

and as q ↗ 1/2, pq ↘ 0. Thus, the regime over which a simple i.i.d. adversarial attack is

optimal (p ∈ [0, pq]) shrinks as the BSC gets noisier.

• For q ∈ [0, 1/2), Cflip(p, q), pq ≤ p ≤ 1/4, is a decreasing linear function in p that intersects

the p-axis at p = 1/4. Furthermore, Cflip(p, q), pq ≤ p ≤ 1/4, is in fact the tangent to the

curve 1 − h2(p ? q) at p = pq. The optimal attack for Calvin in this regime relies on his

snooping abilities and is based on a two-phase attack strategy described in section IV-B. The

first phase of this attack involves Calvin injecting random i.i.d. bit-flips where the length of

this phase is roughly nα(p, x). Therefore, (5) can be interpreted as an optimization over the

lengths of the two attack phases. The analysis in Appendix B implies that the minimizer

x∗ in (5) is such that

α(p, x∗) =

1, 0 ≤ p ≤ pq

1−4p
1−4pq

, pq ≤ p ≤ 1/4
.

This corresponds to our earlier comment that for p ∈ [0, pq], α(p, x∗) = 1, and it is optimal

for Calvin to inject random i.i.d. noise across the entire codeword.

IV. CONVERSE PROOFS

To prove the converse, we demonstrate an attack strategy for Calvin in each of our models

under which no rate larger than the claimed capacity expression is achievable. These attacks are

inspired by, but different from, the attacks in [16], [17], [28] which only work when the erasure

or the bit-flip probability is zero, i.e., q = 0. Specifically, our modified attacks rely crucially

on Calvin’s ability to snoop. We shall denote the transmitted and the received codewords as

x and y, respectively. The (stochastic) encoder and the decoder being used by Alice and Bob

are denoted as Φ̃(·|·) and Γ(·), i.e. transmission rule C = (Φ̃,Γ). Let xL = (x1, x2, · · · , x`) and
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Fig. 2. The capacity Cflip(p, q) of BSC(q)-ADV(p)-FS as a function of p. The cut-off value of p beyond which Cflip(p, q) = 0

is p = 1/4, independent of q.

xR = (x`+1, · · · , xn), where ` is chosen later for each model. Similarly, let yL = (y1, y2, · · · , y`)

and yR = (y`+1, · · · , yn).

A. Converse for BEC(q)-ADV(p)-FS

Our argument is based on a wait and snoop, then push attack. Suppose Alice attempts to

communicate at a rate R = Cerase(p, q) + ε = (1 − 2p)(1 − q) + ε. We will show that for

sufficiently large block-length n, the probability of decoding error under the proposed attack is

lower bounded by a constant that is only a function of ε (and independent of n). The attack

constitutes of the following two phases:

• Wait and snoop: In this phase, Calvin waits and does not induce any erasures for the

first ` = n
(
R− ε

2

1−q

)
channel uses. Instead, Calvin simply snoops into Bob’s reception to

determine the erased/unerased bits and their positions. At the end of this phase, Bob receives

yL = (y1, y2, · · · , y`) containing some erased and some unerased bits. Note that the erasures
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Fig. 3. In the push phase, if xR and x′R are sufficiently close (within distance pn), Calvin can make Bob completely uncertain

whether the transmitted codeword was x or x′.

in this phase occur purely due to the BEC(q) channel. Let {ik}mk=1 be the indices of symbols

in yL that remain unerased.

• Push: Calvin forms the set ByL of codewords consistent with yL as

ByL = {v ∈ X n : ∃ũ ∈ U s.t. Φ̃(v|ũ) > 0 and vik = xik k = 1, 2, · · · ,m}, (7)

where, as before, Φ̃(.|u) is the distribution of codewords selected when message u is to be

transmitted. In other words, ByL consists of all possible codewords that align with yL at

the positions that are unerased. Calvin then samples a codeword x′ from ByL according to

the distribution x′ ∼ PX|YL=yL(.|yL). In the push phase then, Calvin simply erases bit xi,

i = `+ 1, `+ 2, · · ·n whenever xi 6= x′i, until his budget of pn erasures runs out.

During the push phase, if codewords x and x′ correspond to distinct messages u and u′ and

we have d(xR,x
′
R) < pn, then there would be no way for Bob to distinguish between messages

u and u′ and a decoding error would occur with probability at least 1/2. This is illustrated in

Fig. 3. We shall argue that this indeed occurs with a positive probability independent of n to

settle the converse.

Analysis: The analysis is inspired from [17] where we also account for the presence of

the BEC(q) in our claims. Define the set A0 =
{
yL : H(U | YL = yL) > nε

4

}
and the event

E1 = {YL ∈ A0}. We have the following lemma.

Lemma 5. P (E1) ≥ ε
4
.

Proof. Since U → XL → YL is a Markov chain, by the data processing inequality, we have

I(U;YL) ≤ I(XL,YL) = `(1 − q) = n(R − ε/2). This holds since Calvin adds no erasures
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in the wait and snoop phase and the channel between XL and YL is a BEC(q). Now, since

H(U) = nR, we have H(U|YL) = EYL
H(U|YL = yL) = H(U) − I(U;YL) ≥ nε/2.. By

Markov’s inequality then, P (nR−H(U|YL = yL) > nR− nε/4) ≤ 1 − ε/4
R−ε/4 which gives,

P (E1) = P
(
H(U | YL = yL) > nε

4

)
≥ ε

4
as desired.

Now let E2 be the event {U 6= U′} and E3 be the event {d(XR,X
′
R) < pn}. First, we show

the following.

Lemma 6. For yL ∈ A0, P (E2, E3 | YL = yL) ≥ εO(1/ε).

Proof. Consider sampling t = 9
ε

codewords Ct =
{
X(1), · · · ,X(t)

}
from the set ByL where each

codeword is sampled independently according to the conditional distribution PX|YL=yL(.|yL).

Let the messages corresponding to the codewords be U1,U2, · · · ,Ut and let E4 be the event

that {U1,U2, · · ·Ut are all distinct}. We have from [17, A.2, Proposition 1] that for yL ∈ A0

and for sufficiently large block length n,

P (E4 | YL = yL) ≥
( ε

5

)t−1

. (8)

Now, the average Hamming distance between the suffixes of codewords in Ct is defined as

davg(Ct) =
1

t(t− 1)

∑
i 6=j

dH

(
X

(i)
R ,X

(j)
R

)
. (9)

Conditioning on E4, Plotkin’s bound dictates

davg(Ct) ≤
1

2

t

t− 1
(n− `) = n

t

t− 1

(
p− ε

4(1− q)

)
≤ n

9
ε

9
ε
− 1

(
p− ε

4

)
≤ np− n ε

8
.

Thus for yL ∈ A0, E(davg(Ct) | E4,YL = yL) ≤ np − nε/8. Now, since all of the X(i)’s are

picked independently, all pairs (X(i),X(j)) have identical distribution. Thus,

E(davg(Ct) | E4,YL = yL) = E(dH(X
(1)
R ,X

(2)
R ) | E4,YL = yL) = E(dH(XR,X

′
R) | E4,YL = yL).

By Markov’s inequality

P (dH(X
(1)
R ,X

(2)
R ) > np | E4,YL = yL) ≤ 1− ε

8p
. (10)

We have also that P (E2, E3 | YL = yL) = P (d(X
(1)
R ,X

(2)
R ) ≤ pn,U1 6= U2 | YL = yL) ≥

P (d(X
(1)
R ,X

(2)
R ) ≤ pn,E4 | YL = yL), where the last inequality holds because event E4 is a

subset of the event {U1 6= U2}. Finally, from (8) and (10), we conclude P (E2, E3 | YL = yL) ≥
ε

8p

(
ε
5

) 9
ε
−1

= εO(1/ε).
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Recall that E2 is the event that the message U′ picked by the adversary is different from

the one transmitted and E3 is the event that the corresponding codewords XR and X′R are

close enough so that Calvin’s push phase succeeds and Bob is completely uncertain whether the

message transmitted was U or U′. Hence when E2 and E3 occur, the probability of decoding

error is at least 1/2. To finish the proof, we need only show a lower bound on P (E2, E3). We

have indeed, P (E2, E3) ≥
∑

yL∈A0
P (E2, E3 | YL = yL)P (YL = yL) ≥ ε

4
ε

8p

(
ε
5

) 9
ε
−1, a lower

bound that is independent of n, hence settling the converse. We end this section with a few

additional observations:

• Feedback snooping helps: After the wait and snoop phase, even though Calvin knows the

entire prefix of the transmitted codeword xL = (x1, x2, · · · , x`), he forms his set ByL in (7)

based only on the unerased bits. Intuitively, thanks to feedback snooping, Calvin exploits

the additional equivocation induced by the BEC(q) to pick a random codeword from a larger

set ByL , so that this codeword with high probability is sufficiently close to the transmitted

codeword, and corresponds to a message different from the one that Alice chose.

• While we give Calvin full causal access to Bob’s reception, an alternate model where

Calvin is allowed one-time block feedback is sufficient - he would add no erasures for `

channel uses, retrieve through feedback the entire block yL and then ‘push’. Also note

that interestingly, while the presence of the BEC(q) lowers the target rate, Calvin adds no

erasures for approximately n(1 − 2p) channel uses which from [15], [17] is also optimal

when there is no BEC(q).

• Suppose Bob had access to an oracle who for each xk that is erased informs him whether

the erasure was due to Calvin, or the BEC(q), or both. It is straightforward to see that our

converse proof continues to hold in this case. Thus, knowing who caused an erasure does

not help Bob and the capacity is unchanged.

B. Converse for BSC(q)-ADV(p)-FS

Fix a x ∈ [0, p]. Suppose that for some ε > 0, the transmitter attempts to communicate at a

rate of R = α(p, x)
(

1− h2

(
x

α(p,x)
? q
))

+ ε. We show that for sufficiently large n, under the

proposed attack strategy for Calvin, the probability of decoding error in (1) is lower bounded

by εO(1/ε), a quantity independent of n. Since the same argument works for any x, the converse

in theorem 2 holds. Our proof is based on a babble and snoop, then push attack that consists

of the following two phases:
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• Babble and snoop: For the first ` = (α(p, x) + ε/2)n channel uses, Calvin injects random

bit-flips and monitors Bob’s reception - at channel use i, 1 ≤ i ≤ `, he flips bit xi with

probability xn/`. At the end of this phase, Calvin knows xL and yL.

• Push: Calvin samples a codeword x′ (corresponding to message u′) according to the

conditional distribution PX|YL=yL(.|yL). His goal is to confuse the receiver between x

and x′. At positions where xR and x′R agree, he does nothing. Positions j where xR and

x′R disagree, he flips xj with probability 1/2. This is illustrated in Fig. 4. This way,

the Bob cannot distinguish between x and x′ (even with the BSC(q)) due to the fact

that P (yR|xR) = P (yR|x′R). The proof relies on showing that with a small probability

independent of n, u, u′ are distinct and xR, x′R are sufficiently close.

Calvin’s attack requires knowledge of YL, i.e., the symbols received by Bob during the first

phase of the attack. Just like in the erasure model, the presence of the BSC(q) introduces

additional equivocation at the receiver which Calvin is able to exploit to cause a reduction

in rate. Here also, one-time block feedback (of entire block yL) after the first ` channel uses is

sufficient for the attack to succeed.

Analysis: In the babble and snoop phase, by the Chernoff bound, Calvin uses at most xn +

εn/64 flips with probability at least 1− e−Ω(ε2n). Let this be denoted as event E1. Conditioned

on E1, Calvin’s remaining budget in the push phase is atleast (p − x)n − εn/64. Define the

set A0 =
{
yL : H(U | YL = yL) > nε

4

}
. Denoting the event E2 = {YL ∈ A0}, we have the

following lemma.

Lemma 7. P (E2) ≥ ε/4.

Proof. The proof is similar to claim 4 in [16]. U → XL → YL is a markov chain and

hence, by the data processing inequality and Calvin’s actions in the babble phase, I(U;YL) ≤

I(XL;YL) = `
(
1− h2

(
xn
`
? q
))

. This is because the channel between XL and YL is a cascade

of BSC(xn/`) and BSC(q). Noting that ` = (α + ε/2)n, we have I(U;YL) ≤ n(α +

ε/2)
(

1− h2

(
x

α+ε/2
? q
))

. Since I(U,YL) = H(U)−H(U|YL) and H(U) = nR = nα
(

1−

h2

(
x
α
? q
) )

+ nε, we get, H(U|YL) ≥ nε
2

+ n
(

(α + ε/2)h2

(
x

α+ε/2
? q
)
− αh2

(
x
α
? q
))

. Now,

the function f(x) = xh2

(
x
x
? q
)

is increasing in x, for any fixed q ∈ (0, 1/2). Hence, we have

H(U|YL) = EYL
H(U|YL = yL) ≥ nε/2. Finally, by Markov’s inequality, P (nR−H(U|YL =

yL) > nR− nε/4) ≤ 1− ε/4
R−ε/4 which gives, P

(
H(U | YL = yL) > nε

4

)
≥ ε

4
.
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Fig. 4. In the push phase, if xR and x′R are sufficiently close, Calvin can make Bob completely uncertain whether the transmitted

codeword was x or x′ by injecting Ber(1/2) noise at positions where xR differs from x′R.

Next, define the events E3 = {U 6= U′} and E4 = {dH(XR,X
′
R) ≤ 2(p−x)n− εn/8}. E3 is

the event that the message picked by the adversary to confuse Bob in the push phase is different

from the one transmitted. Similarly, event E4 ensures that Calvin’s remaining flips are enough

to carry out his push attack. Using techniques from section A.2 of [17] and claim 6 in [16], we

can now show the following.

Lemma 8. For yL ∈ A0, P (E3, E4 | YL = yL) ≥ ε
48

(
ε
5

) 12
ε
−1

= εO(1/ε).

Proof. Consider sampling t = 12
ε

codewords Ct =
{
X(1),X(2), · · · ,X(t)

}
, each codeword sam-

pled according to the conditional distribution PX|YL=yL(.|yL). Let the messages corresponding to

the codewords be U1,U2, · · · ,Ut and let E5 be the event that {U1,U2, · · ·Ut are all distinct}

i.e. all of the codewords are distinct. We have from proposition 1, section A.2 from [17] that

for yL ∈ A0, for sufficiently large block length n,

P (E5 | YL = yL) ≥
( ε

5

)t−1

. (11)

Recall that ` = (1 − 4(p − x) + ε/2)n. Conditioning on E5, by Plotkin’s bound we have

davg(Ct) ≤ 1
2

t
t−1

(n− `) ≤ 2(p−x)n− εn/6, where davg(Ct) is defined in (9). Thus for yL ∈ A0,

E(davg(Ct) | E5,YL = yL) ≤ 2(p − x)n − εn/6. Now, since all of the X(i)’s are picked

independently, all pairs (X(i),X(j)) have identical distribution. Thus, E(davg(Ct) | E5,YL =

yL) = E(dH(X
(1)
R ,X

(2)
R ) | E5,YL = yL) = E(dH(XR,X

′
R) | E5,YL = yL). By Markov’s

inequality,

P (dH(X
(1)
R ,X

(2)
R ) > 2(p− x)n− εn/8 | E5,YL = yL) ≤ 2(p− x)n− εn/6

2(p− x)n− εn/8
≤ 1− ε

48
. (12)
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Following the arguments as in the proof of Lemma 6, (11) and (12) imply that for yL ∈ A0,

P (E3, E4 | YL = yL) ≥ ε
48

(
ε
5

) 12
ε
−1.

Now, in the push phase, Calvin injects Ber(1/2) noise at dH(XR,X
′
R) positions. Conditioned

on E1, Calvin has at least a budget of (p− x)n− εn/64 bit-flips that remain. If aR is the error

vector chosen by Calvin in the push phase, conditioned on E3 and E4 we have E(dH(aR,0)) =

(p−x)n−εn/16. Further by the Chernoff bound, with probability at least 1−2−Ω(ε2n), the distance

dH(aR,0) is within 3εn/64 of its expected value. Let this event be E5. Since E(dH(aR,0)) +

3εn/64 = (p− x)n− εn/64, the power constraint is respected w.h.p..

When events E1, E3, E4, E5 occur, the probability of decoding error is clearly at least 1/2 since

the receiver cannot distinguish between x and x′. Since P (E1) ≥ 1 − e−Ω(ε2n) and P (E5) ≥

1−e−Ω(ε2n), the bound in Lemma 8 together with the bound P (E2) ≥ ε/4 implies for sufficiently

large n, the maximum probability of error in (1) is at least of the order εO(1/ε), a quantity

independent of n and the proof is complete.

V. ACHIEVABILITY PROOFS

To prove achievability, we resort to a random coding argument. Unfortunately, the classical

random deterministic code ensemble where the (unique) codeword for each message is drawn

independently and uniformly randomly, does not work. A modification of Calvin’s attacks from

our converse proofs in section IV defeats such an attempt. Indeed, consider for instance the

BEC(q)-ADV(p)-FS channel with q = 0. The claimed capacity expression is Cerase(p, 0) = 1−2p.

Suppose Alice wants to transmit at rate R = 1− 2p− ε. Let Ψ denote the codebook containing

2nR length-n codewords. We argue that the probability a randomly chosen Ψ enables reliable

communication goes to 0 as n→∞. First, it can be shown that with probability approaching 1

as n→∞, randomly sampled Ψ satisfies the following : Ψ contains a codeword x for which

• At least 2nε/2 codewords other than x share the same prefix (x1, x2, · · · , xnR−nε).

• No other codeword has the prefix (x1, x2, · · · , xnR+nε).

For such a codeword, consider the following attack for Calvin:

• Wait: For the first R − ε channel uses, Calvin adds no erasures. Bob (and Calvin) narrow

down the transmitted codeword to a list L which is of size at least 2nε/2.

• Block: For the next subsequent 2εn channel uses, Calvin erase all of the bits. Calvin who

knows (x1, · · · , xnR+nε) determines the transmitted codeword x.
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• Push: Calvin picks x̃ ∈ L, x̃ 6= x that minimizes dH((xnR+nε+1, · · · , xn), (x̃nR+nε+1, · · · , x̃n)) =

dH(xP , x̃P ) and injects an erasure at channel use j if xj 6= x̃j , until his budget runs out.

Calvin succeeds in confusing Bob between x and x̃ if dH(xP , x̃P ) < pn− 2εn.

The length of the push phase is 2pn and |L|≥ 2nε/2. It can be shown that with probability

approaching 1 as n → ∞, 2nε/2 codewords of length 2pn picked uniformly randomly have

minimum distance less than pn− 2εn [29]. Thus, the random deterministic code ensemble does

not work. A similar argument can also be made for the BSC(q)-ADV(p)-FS channel.

Therefore, we will consider instead an ensemble of stochastic codes and show that with positive

probability, a stochastic code drawn randomly from the ensemble enables reliable communication

between Alice and Bob. For both channel models BEC(q)-ADV(p)-FS and BSC(q)-ADV(p)-FS,

we shall use the code ensemble from [15] with reduced rates as given in theorems 1 and 2

respectively. However, note that compared to the q = 0 case, the decoding procedure and analysis

will need to be modified greatly to deal with compounded adversarial and random errors.

Random code distribution: Alice is endowed with a set of private keys or secrets for encoding,

S = {1, 2, · · · , 2nS}. The encoding procedure is carried out in chunks, each of size nθ where

θ < 1 is a quantization parameter. The values for S and θ are set specific to the coding rate

and the channel model during analysis later. Let Ξ be the uniform distribution over stochastic

codes C : U × S → X nθ, i.e., for each u ∈ U and s ∈ S , C(u, s) is picked independently and

uniformly randomly. Then each chunk i, 1 ≤ i ≤ 1
θ
, is associated to a stochastic code Ci drawn

independently from the distribution Ξ. The transmission rule is composed of maps C1, C2, · · · C1/θ

and a decoder.

Encoding procedure: For message u ∈ U and keys s1, s2, · · · , s 1
θ
, the codeword x selected

for transmission is x = C1(u, s1)◦C2(u, s2)◦ · · · C 1
θ
(u, s 1

θ
), where ◦ represents the concatenation

operator. We refer to Ci(u, si) as the ith sub-codeword or the ith chunk and the code Ci as the

ith sub-code. Each secret or key si for encoding with Ci is chosen uniformly randomly from S .

Decoding: The decoding is specific to each of the channel models and described shortly.

Definitions: Define the set T = {nθ, 2nθ, · · · , n− nθ} containing indices of the chunk ends.

For some t ∈ T where t = knθ, we refer to C1 ◦C2 ◦ · · · Ck as the left mega sub-code w.r.t. t and

Ck+1 ◦C2 ◦ · · · C 1
θ

as the right mega sub-code w.r.t. t. Accordingly, the concatenation of the first k

sub-codewords is be referred to as the left mega sub-codeword w.r.t. t, and that of the last 1
θ
−k

sub-codewords is referred to as right mega sub-codeword w.r.t. t. We shall also denote the key

sequences used to encode the left and the right mega-subcodewords as sleft = (s1, s2, · · · , sk)
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and sright = (sk+1, sk+2, · · · , s 1
θ
).

A. Achievability for BEC(q)-ADV(p)-FS

Fix ε′ > 0 and let R = (1− 2p)(1− q)− ε′ = (1− 2p− ε)(1− q), where ε = ε′/(1− q). We

show that R is achievable for the BEC(q)-ADV(p)-FS model. We set initially θ = ε
4

and S = θ3

8
.

Decoding procedure: A clean codeword x is said to be consistent with corrupted word y if

x and y agree on the unerased positions. The decoding procedure for the BEC(q)-ADV(p)-FS

channel is very simple. Bob decodes the received word y to the unique message û for which

there is at least one associated codeword that is consistent with y. If more than one such message

exists, a decoding error is declared. Mathematically, Bob forms the list of consistent messages

L = {u ∈ U : ∃ (s1, · · · , s1/θ) ∈ S1/θ s.t. C1(u, s1) ◦ · · · C1/θ(u, s1/θ) and y are consistent},

and decodes successfully when L has exactly one single message.

Analysis: For the analysis, we work with an alternate two-phase but equivalent view of the

decoding process. This also allows us to give a unified view of decoding for both channel

models. For some t∗ = k∗nθ, partition received word y into yt
∗

1 = (y1, . . . , yt∗) and ynt∗+1 =

(yt∗+1, . . . , n). Decoding can be split into two sequential phases.

• List decoding: Perform list decoding on yt
∗

1 to obtain the list of messages L that are

consistent with Bob’s reception yt
∗

1 .

L = {u ∈ U : ∃ (s1, · · · , sk∗) ∈ Sk
∗

s.t. C1(u, s1) ◦ · · · Ck(u, sk∗) and yt
∗

1 agree}.

• Unique decoding or list refinement: Refine the list by removing all messages in L that are

not consistent with ynt∗+1.

Lref = {u ∈ L : ∃ (sk∗+1, · · · , s1/θ) ∈ S1/θ−k∗ s.t.

Ck∗+1(u, sk∗+1) ◦ · · · C1/θ(u, s1/θ) and ynt∗+1 agree}.

If exactly one message, say û, remains in L after refinement, the decoder outputs û. If the

refined list Lref does not contain exactly one message, a decoding error is declared. Decoding

is successful if û = u∗, the true message transmitted by Alice.

The proof involves showing that there is a value of t∗ ∈ T that Bob can choose for which

decoding succeeds. When q = 0, as shown in [15], t∗ is chosen as a function of the number of
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(purely adversarial) erasures λat∗ observed in y up until time t∗. Specifically, Bob chooses t∗ as

the smallest integer that satisfies the so-called list-decoding condition

λat∗ ≤ t∗(1− θ)− ((1− 2p)− ε)n (13)

and the energy bounding condition

np− λat∗ ≤
(n− t∗)(1− θ)

2
. (14)

Condition (13) ensures the size of L is small (at most a constant) while condition (14) ensures

the fraction of erasures that occur in ynt∗+1 is small enough to perform list refinement. When

q > 0, we modify conditions (13) and (14) appropriately for the BEC(q)-ADV(p)-FS channel.

Choice of t∗ when q > 0: Let λat be the number of erasures injected adversarially by Calvin

up until t and let λt denote the number of erasures observed by Bob up until time t, which

includes contributions both from Calvin and the BEC(q). Bob chooses t∗ as the smallest integer

that satisfies simultaneously the modified list-decoding condition

λt∗ − qt∗ ≤ t∗(1− q)(1− θ)−Rn (15)

and the modified list refinement condition

np(1− q)− (λt∗ − qt∗) ≤
(n− t∗)(1− q)(1− θ)

2
. (16)

From Lemma 3, if Calvin adds λat∗ erasures up until t∗, the total number of erasures λt∗ that

Bob observes is approximately λt∗ ≈ λat∗ + q(t∗ − λat∗). On making this substitution we see that

t∗ satisfying (15) and (16) is nearly the same as that satisfying (13) and (14) i.e. it is sufficient

to choose t∗ only as a function of purely adversarial erasures. However, since Bob has no way

of knowing this, he works with the quantity λt∗ − qt∗. Note that since qt∗ is an estimate of the

number of erasures added by the BEC(q), we can interpret λt∗ − qt∗ to be an estimate of the

number of adversarial erasures that do not coincide with random erasures.

Having selected t∗, Bob can then finish decoding using the two-phase decoding process

described previously to successfully recover w.h.p. the transmitted message. We will now prove

this. First, by Lemma 3, for δ > 0, the total number of erasures that Bob observes at time

t = knθ satisfies λt ∈ [λat + (t − λat )(q − δ), λat + (t − λat )(q + δ)] with probability at least

1− 2−Ω(δ2n). Thus, Bob’s choice t∗ satisfies w.h.p.

λt∗ − qt∗ = λ̂t∗ ∈ [λat∗(1− q + δ)− δt∗, λat∗(1− q − δ) + δt∗]. (17)
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Let Z = [λat∗(1− q + δ)− δt∗, λat∗(1− q − δ) + δt∗]. By a similar analysis as in [15, Claim B.3],

we show in Lemma 9 that when δ > 0 is small enough, a t∗ ∈ T exists that satisfies both (15)

and (16), for any realization of λ̂t∗ ∈ Z . The proof of Lemma 9 can be found in Appendix A.

Lemma 9. We can choose a δ > 0 such that the following holds : for any strategy selected

by Calvin, with probability at least 1 − 2−Ω(δ2n), there exists a t∗ ∈ T such that both of the

following conditions hold:

λt∗ − qt∗ ≤ t∗(1− q)(1− θ)−Rn, and np(1− q)− (λt∗ − qt∗) ≤
(n− t∗)(1− q)(1− θ)

2
.

Calvin’s unused budget: We now give an upper bound on the number of adversarial erasures

that Calvin is left with to add on to the right mega sub-codeword. Since the total budget is

pn, the remaining number of erasures is pn − λat∗ . From (16) and (17), for any λ̂t∗ ∈ Z , we

have pn − λat∗ ≤
(n−t∗)(1−θ)

2
+

δ(t−λa
t∗ )

1−q . Since we are proving an achievability result and θ is

representative of the back-off from the capacity expression, we can choose θ as small as we

would like. Choosing θ sufficiently small so that for instance δ = 1
4

(1−q)θ2(1−θ)
1+2θ−θ2 ≤ 1

16
(1 − q)θ2,

we get the bound

pn− λat∗ ≤ (n− t∗)
(

1

2
− 7θ

16

)
. (18)

List decoding: We show that with probability at least
(
1− 1

n

)
over the code design, the size

of the list of messages L obtained by Bob in the list-decoding phase is at most a constant,

specifically, |L|< C/ε for some constant C.

Lemma 10. (Modified from [15, Claims B.5-B.7]) Let t∗ ∈ T where t∗ = k∗nθ. For sufficiently

large n, with probability at least
(
1− 1

n

)
over the code design, the left mega sub-code C1 ◦ C2 ◦

· · · Ck∗ is list decodable with list size L = O
(

1
ε

)
for λt∗ erasures where t∗ and λt∗ satisfy (15),

i.e., λt∗ − qt∗ ≤ t∗(1− q)(1− θ)−Rn.

Proof. The proof follows exactly the analysis in [15, Claims B.5-B.7]. The only additional step

is to verify if the bound 1− λt∗
t∗
− nR

t∗
− S

θ
≥ θ

2
holds. This is indeed the case as we have

1− λt∗

t∗
− nR

t∗
− S

θ
− θ

2

(a)
=

1

t∗
(1− λt∗ − nR)− θ2

8
− θ

2

(b)

≥ θ(1− q)− θ2

8
− θ

2

(c)

≥ 0,

where (a) follows from the substitution S = θ3

8
, (b) follows from (15) and (c) holds by choosing

θ sufficiently small.
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List refinement: For some chunk end t ∈ T where t = knθ, yt1 = (y1, y2, · · · , yt) and

ynt+1 = (yt+1, · · · , yn) are the left mega received word and the right mega received word w.r.t.

t respectively. Let u∗ be the true message chosen by Alice for transmission. Given any list of

messages L, we define L(u∗) to be the set of all possible right mega sub-codewords w.r.t t for

each message in L \ {u∗} i.e.

L(u∗) = {Ck+1(u, sk+1) ◦ · · · C 1
θ
(u, s 1

θ
) : u ∈ L, u 6= u∗, (sk+1, · · · , s1/θ) ∈ S

1
θ
−k}.

For convenience, we enumerate L(u∗) containing codewords of length-(n − t) as L(u∗) =

{w1,w2, · · · ,w|L(u∗)|}. The right mega-subcodeword for the true message is xnt+1(u∗, sright) =

Ck+1(u∗, sk+1)◦Ck+2(u∗, sk+2)◦ · · · C 1
θ
(u∗, s 1

θ
), which we emphasize is a function of the specific

realization of sright=(sk+1, · · · , s 1
θ
) during encoding. For any list such that |L|≤ O

(
1
ε

)
, we would

like our code design to satisfy the following distance condition

dH
(
xnt+1(u∗, sright),wj

)
≥ (n− t)

(
1

2
− 3θ

8

)
∀wj ∈ L(u∗). (19)

Equation (19) is a key property that guarantees successful decoding. It ensures that the right

mega sub-codeword for the transmitted message is sufficiently far in Hamming distance from the

right mega sub words for any of the other messages in list L that is obtained by Bob during list

decoding. We show that (19) indeed occurs w.h.p., for almost all possible sequence of secrets

sright.

Lemma 11. (Modified from [15, Claims B.11-B.14]) Let C > 0 be an arbitrary constant. Then,

there is a n0 such that for n > n0, with probability at least 1 − 2−n, a code drawn from our

random ensemble satisfies the following property : for every chunk end t ∈ T , for every message

u∗, and every list L of size at most C/ε, we have that (19) holds for at least a (1 − 2−nS/4)

portion of all possible secret sequences sright.

Proof. Fixing a sequence of secrets sright = (sk+1, · · · , s 1
θ
), message u∗ and list L, we first show

that (19) holds w.h.p.. Let radius r =
(

1
2
− 3θ

8

)
. We surround each word wj ∈ L(u∗) with a

Hamming ball of radius r and the union of all the balls is the so called forbidden region.

For (19) to hold, we must have that xnt+1(u∗, sright) is outside all these balls, i.e. outside the

forbidden region. Due to the code construction, xnt+1(u∗, sright) is uniformly distributed over all

possible binary vectors of length (n− t) and thus it is enough to bound the size of the forbidden
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region. If the size of the list L is L, the size of L(u∗) is at most L.2nS( 1
θ
− t
nθ ). Hence the number

of codewords in the forbidden region is at most

L.2nS( 1
θ
− t
nθ )

r∑
j=0

(
n− t
j

)
< 2(n−t)( log2 L

n−t +S
θ

+h2( 1
2
− 3θ

8 )).

From the Taylor expansion of function h2(x) in a neighborhood of 1/2, we can show h2

(
1
2
− 3θ

8

)
<

1− 9θ2

32 ln(2)
. Let η = θ2

4
. For sufficiently large n, we have(

log2 L

n− t
+
S

θ
+ h2

(
1

2
− 3θ

8

))
<

(
log2 L

n− t
+
S

θ
+

(
1− 9θ2

32 ln(2)

))
< 1− η.

Hence, the total number of codewords in the forbidden region is at most 2(n−t)(1−η) and we have

P
(
xnt+1(u∗, sright) is outside the forbidden region

)
>

2(n−t) − 2−(n−t)(1−η)

2n−t
= 1− 2−(n−t)η.

From here on, the rest of the steps in the proof follow claims B.12-B.14 in [15].

Success of decoding: From the preceding discussion, there exists a code in our random

ensemble that satisfies the following simultaneously (irrespective of Calvin’s strategy):

• For t∗ selected according to (15) and (16), the size of the list L obtained by Bob during

list decoding is at most C/ε for some constant C. Further, the transmitted message u∗ is

inside list L.

• For almost all possible realizations of secret sequences sright (at least a fraction 1− 2−nS/4

of them), the right mega codeword corresponding to message u∗ denoted xnt∗+1(u∗, sright),

is at least (n− t∗)
(

1
2
− 3θ

8

)
away in Hamming distance from any codeword in L(u∗).

Recall from (18) that with probability at least 1 − 2−Ω(δ2n), Calvin has at most pn − λat∗ ≤

(n − t∗)
(

1
2
− 7θ

16

)
erasures that remain. Consider any arbitrary codeword wj ∈ L(u∗) that is

associated with message u′ 6= u∗. Let Ic be the set of indices where wj and xnt∗+1(u∗, sright)

disagree. The only way that Bob is unable to distinguish between wj and xnt∗+1(u∗, sright) and

hence makes a decoding error of at least 1/2 is when indices Ic in ynt∗+1 are all erased due to

Calvin and the BEC(q). In other words, if J is the set of indices of erasures in ynt∗+1, we must

have J ⊃ Ic. An example is illustrated in Fig. 5.

Now clearly, if Calvin wishes to confuse Bob between wj and xnt∗+1(u∗, sright), his best

strategy is to add all erasures at positions Ic. However, this still leaves at least (n−t∗)
(

1
2
− 3θ

8

)
−

(n−t∗)
(

1
2
− 7θ

16

)
= (n−t∗) θ

16
positions where wj and xnt+1(u∗, sright) disagree but no adversarial

erasures are added. For Bob to be confused between wj and xnt+1(u∗, sright), the BEC(q) must

erase all of the (n − t∗) θ
16

bits that Calvin could not erase. However, this event occurs with
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Fig. 5. In (a), the set of indices in Bob’s observation ynt∗+1 where xnt∗+1 and wj differ are all erased. Therefore, Bob cannot

determine if Alice transmitted xnt∗+1 or wj . In (b), successful reception of even one bit where xnt∗+1 and wj disagree allows

Bob to disambiguate between xnt∗+1 and wj .

probability q(n−t∗) θ
16 ≤ 2−nΩ(θ2). Thus, the probability of the error event that Bob cannot

distinguish between ynt∗+1 and wj is exponentially small. Repeating the same argument for

any wj ∈ L(u∗), we have that a decoding error occurs with exponentially small probability.

Thus, Bob succeeds in determining the transmitted message u∗ and the proof is complete.

B. Achievability for BSC(q)-ADV(p)-FS

Let ε > 0 such that p′ = p+ ε2

16
< 1

4
. We also set θ = ε2(1−4p′)

4
, S = θ3

8
. To show that Cflip(p, q)

in Theorem 2 is the capacity, we let the rate be R = Cflip(p′, q)− ε and prove that for any δ > 0

and every sufficiently large block length n, a randomly sampled stochastic code C with rate R

satisfies Pe(C) < δ with a positive probability.

Decoding procedure: Recall that the received codeword can be written as y = x⊕a⊕z where

a = (a1, a2, · · · , an) is the adversarial error vector added by Calvin and z = (z1, z2, · · · , zn)

is the error vector produced by the BSC(q). In accordance to the power constraint, we have

dH(a,0) ≤ pn. Positions i where ai = zi = 1, symbols xi remain unflipped.

To describe the decoding process, we need to define certain quantities. For a chunk end t ∈ T ,
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let pt be the normalized number of bit-flip attempts used up by Calvin up until time t i.e.

pt =
weight{(a1, a2, · · · , at)}

t
.

Note that since pt only captures adversarial error injections, the word received up until time t

may have more or less effective bit-flips than tpt. For the purposes of decoding, Bob maintains

a reference p̂t which is approximately defined as follows: p̂t = n
t

(
p− 1

4

)
+ 1

4
for t ≥ n(1− 4p)

and p̂t = 0 for t < n(1− 4p). It can be seen that p̂t in increasing in t ∈ [n(1− 4p), n] reaching

p̂n = p as is expected. For a rigorous analysis, certain twiddle terms need to be added to this

definition as is explained later. We shall refer to pt as the true trajectory and p̂t as the reference

trajectory for adversarial bit-flip attempts.

The overall decoding process is iterative potentially involving several decoding attempts. For

some chunk end t ∈ T where t = knθ, yt1 = (y1, y2, · · · , yt) and ynt+1 = (yt+1, · · · , yn) are the left

mega received word and the right mega received word w.r.t. t. Similarly, xt1 = (x1, x2, · · · , xt) and

xnt+1 = (xt+1, · · · , xn) are the left mega transmitted codeword and the right mega transmitted

codeword w.r.t. t. A decoding attempt w.r.t t consists of two phases - a list-decoding phase

followed by a unique decoding phase.

List decoding: In the list decoding phase, Bob identifies the set of messages for whom there

is at least one associated codeword whose left mega sub-codeword w.r.t. t is within Hamming

distance t(p̂t ?q+δ1) from yt1, where δ1 = ε2

256
is a small constant. In other words, Bob performs

list-decoding on the left mega sub-code w.r.t. t, i.e. C1 ◦ C2 ◦ · · · Ck, with a list-decoding radius

equal to rlist = t(p̂t ? q + δ1). Let the list of messages obtained in this phase be denoted by L.

We have,

L = {u ∈ U : ∃ (s1, · · · , sk) ∈ Sk s.t. dH
(
C1(u, s1) ◦ · · · Ck(u, sk),yt1

)
≤ t(p̂t ? q + δ1)}.

Unique decoding: In the unique decoding phase, Bob forms the set A of all possible right

mega sub-codewords w.r.t. t (one for each possible sequence of secrets sk+1, sk+2, · · · , s1/θ) for

each message u in the list L, i.e.,

A = {Ck+1(u, sk+1) ◦ Ck+2(u, s2) ◦ · · · C 1
θ
(u, s 1

θ
) : u ∈ L, (sk+1, · · · , s1/θ) ∈ S

1
θ
−k}.

He then considers Hamming balls of radius runique = (n−t)
(

1−θ
4

+ q(1+θ)
2

)
= (n−t)

(
1
4
? q − θ(1−2q)

4

)
,

each centered at a right mega sub-codeword from A.

• If ynt+1 lies within exactly one of the balls, the decoder outputs the message u′ corresponding

to its center, i.e., Γ(y) = u′.
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• If ynt+1 lies in more than one ball, a decoding error is declared.

• If ynt+1 lies outside all the balls, Bob picks the next chunk end in T and re-attempts decoding.

As we will show, depending on the adversary’s attack strategy and the noise due to the BSC,

there is a value of t = t∗ for which the decoding-attempt successfully recovers the transmitted

message. However, Bob does know this value a priori. Bob begins by first identifying the smallest

value of t ≥ n(1 − 4p′) that coincides with a chunk end in T , denoted t0 ∈ T , and performs

a decoding attempt w.r.t t0. Clearly, t0 = min {t : t ≥ n(1− 4p′), t ∈ T } =
⌈

1−4p′

θ

⌉
nθ. If no

message is returned, he re-attempts decoding with the next chunk end, t = t0 + nθ, and so on,

each time picking a chunk end from the set T ′ = {t0, t0 + nθ, · · · , n − nθ} until a message is

returned. At any point in the decoding process, if ynt+1 during unique decoding lies in more than

one ball, a decoding error is declared and decoding terminates. If all decoding attempts fail to

return a message having reached the end of the codeword, again a decoding error is declared.

Analysis: We begin our analysis with the following useful lemma.

Lemma 12. Let p, q ∈ [0, 1/2) and γ be a small positive constant such that γ(1− 2q) < 1/16

and p+ γ < 1/2. Then, we have the inequality h2 ((p+ γ) ? q) < h2(p ? q) + 2
√
γ, where recall

x ? y = x(1− y) + y(1− x).

Proof. Note h2 ((p+ γ) ? q)
(a)
< h2(p?q)+2γ(1−2q) log2

(
1

2γ−4γq

) (b)
< h2(p?q)+2

√
γ(1− 2q)

(c)

≤

h2(p ? q) + 2
√
γ, where (a) follows from the inequality h2(a+ b) < h2(a) + 2b log2

(
1
b

)
(see for

example [15, Lemma A.5] for a proof), (b) follows from the fact that x log2

(
1
x

)
<
√
x when

x < 1
16

and (c) is true because (1− 2q) ∈ (0, 1].

Reference trajectory p̂t: We now give an exact definition of p̂t, the reference trajectory for

adversarial bit-flip attempts. It suffices to use the same p̂t as defined in [15] where no BSC was

present (q = 0) i.e. the decoder sets p̂t independent of q.

Definition 1. (Definition of p̂t) Let t ∈ T be some chunk-end and recall p′ = p + ε2

16
. Define,

xt = p′ − (n−t)
4n

. For t < n(1− 4p′), p̂t = 0. For t ≥ n(1− 4p′), p̂t is defined to be

p̂t =
xt

α(p′, xt)
+

ε2

16α2(p′, xt)
,

where α(p′, xt) = 1− 4(p′ − xt) = t
n

.

In the following lemma, we prove that p̂t satisfies two key technical conditions, the so-called

list decoding condition given by (20), and the energy bounding condition given by (21).
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Lemma 13. (Modified from [15, Claim A.6]) For any t ∈ T such that t ≥ n(1 − 4p′), the

reference trajectory p̂t satisfies

t (1− h2 (p̂t ? q))−
nε

2
≥ nR (20)

and

pn− tp̂t ≤ (n− t)
(

1

4
− ε2

16

)
. (21)

Proof. Note that (21) follows directly from [15, Claim A.6] as it does not involve q. We only

need to verify that (20) holds. Diving (20) by n and noting that α(p′, xt) = t/n, we need to

show that α(p′, xt) (1− h2 (p̂t ? q))− ε
2
≥ R. Substituting in the value of p̂t, we have

α(p′, xt)

(
1− h2

((
xt

α(p′, xt)
+

ε2

16α2(p′, xt)

)
? q

))
− ε

2

(a)

≥ α(p′, xt)

(
1− h2

(
xt

α(p′, xt)
? q

)
− 2

√
ε2

16α2(p′, xt)

)
− ε

2

= α(p′, xt)

(
1− h2

(
xt

α(p′, xt)
? q

))
− ε

≥ min
xt∈[0,p′]

α(p′, xt)

(
1− h2

(
xt

α(p′, xt)
? q

))
− ε = C(p′, q)− ε = R,

proving the result, where inequality (a) follows from Lemma 12.

Correct decoding point t∗: From [15, Section A.3], for any trajectory pt chosen by Calvin,

Bob’s reference trajectory p̂t intersects pt at some point before the second to last chunk end. In

particular, there is a t∗ ∈ T ′ = {t0, t0 + nθ, · · · , n− nθ} such that

∀t ∈ {t0, t0 + nθ, · · · , t∗ − nθ}, pt > p̂t, (22)

pt∗ ≤ p̂t∗ , (23)

and

∀t ∈ {t0, · · · , t∗}, pn− tpt ≤ (n− t)
(

1

4
− ε2

16

)
. (24)

As we will argue later, t∗ defined above turns out to be the correct decoding point, where the

two phase decoding attempt succeeds in finding the true message.

Key code properties: We now show that a code drawn at random from our ensemble satisfies

with a positive probability two key properties.

List decoding property: This property will be used to prove that the size of the list obtained

by Bob in a decoding attempt is at most a constant O(1/ε). We state it as the following lemma.
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Lemma 14. (Modified from [15, Claims A.15-A.16]) Suppose t ∈ T ′ = {t0, t0 +nθ, · · · , n−nθ}

where t = knθ satisfies (20), i.e. t (1− h2 (p̂t ? q)) − nε
2
≥ nR. Then, for sufficiently large n,

with probability at least
(

1− 1
np

)
over the code design, the left mega sub-code C1 ◦ C2 ◦ · · · Ck

is list decodable with radius r = t
(
p̂t ? q + ε2

256

)
and list size L = O

(
1
ε

)
.

Proof. The proof follows the analysis in [15, Claims A.15-A.16]. The only additional step is to

verify the bound

1− h2

(
p̂t ? q +

ε2

256

)
− nR

t
− nS

tθ
≥ ε

4
.

Since θ = ε2(1−4p′)
4

, S = θ3

8
, from Lemma 12 and given that (20) is true, we have

1− h2

(
p̂t ? q +

ε2

256

)
− nR

t
− nS

tθ
≥ nε

2t
− nθ2

8t
− 2

√
ε2

256
≥ ε

4

as desired.

Distance property: For a decoding attempt at t ∈ T , consider the list of messages L obtained

by Bob in the list-decoding phase. Let u∗ be the true message chosen by Alice for transmission

and recall, L(u∗) is the set of all possible right mega sub-codewords w.r.t t for each message in

L \ {u∗} i.e. L(u∗) = {Ck+1(u, sk+1) ◦ · · · C 1
θ
(u, s 1

θ
) : u ∈ L, u 6= u∗, (sk+1, · · · , s1/θ) ∈ S

1
θ
−k}.

Enumerate L(u∗) containing codewords of length (n−t) as L(u∗) = {w1,w2, · · · ,w|L(u∗)|}. The

right mega-subcodeword for the true message is xnt+1(u∗, sright) = Ck+1(u∗, sk+1)◦· · · C 1
θ
(u∗, s 1

θ
).

We would like our code to satisfy the following distance condition

dH
(
xnt+1(u∗, sright),wj

)
≥ (n− t)

(
1

2
− θ

2

)
∀wj ∈ L(u∗). (25)

Equation (25) is a key property that guarantees successful decoding. It ensures that the right

mega sub-codeword for the transmitted message is sufficiently far in Hamming distance from

the right mega sub words for any of the other messages in list L. From [15, Claims A.20-A.23],

(19) indeed occurs w.h.p., for almost all possible sequence of secrets sright. We state this as the

following lemma.

Lemma 15. ( [15, Claims A.20-A.23]) Let C > 0 be an arbitrary constant. Then, there is a n0

such that for n > n0, with probability at least 1−2−n, a code drawn from the random ensemble

satisfies the following property : for every chunk end t ∈ T , for every message u∗, and every

list L of size at most C/ε, we have that (25) holds for at least a (1 − 2−nS/4) portion of all

possible secret sequences sright.
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Success of decoding procedure: We are now ready to argue that the iterative decoding

process succeeds in finding the true message with high probability. Fix a stochastic code C =

C1 ◦ C2 ◦ · · · C1/θ for which both the list decoding property and the minimum distance property

are satisfied, which we can do thanks to Lemmas 14 and 15. We will show that t = t∗ as defined

by (22), (23) and (24) is in fact the correct decoding point i.e. at t∗, the list L obtained in the list

decoding phase contains the true message which is then returned in the unique decoding phase.

Success of list decoding: When t = t∗, we have p̂t∗ ≥ pt∗ . Thus, the number of adversarial bit-

flip attempts injected onto yt
∗

1 , the left mega received word w.r.t. t∗ is at most t∗p̂t∗ . From Lemma

4 then, we have that dH(xt
∗

1 ,y
t∗
1 ) ≤ t∗

(
p̂t∗ ? q + ε2

256

)
with probability at least 1−2−Ω(ε4n). Since

the list-decoding radius is selected to be rlist = t∗
(
p̂t∗ ? q + ε2

256

)
, the transmitted message is

indeed in the list L with high probability as required.

Also note that when t < t∗, i.e., for t ∈ {t0, t0 + nθ, · · · , t∗ − nθ}, we have by the definition

of t∗ that pt > p̂t. By a similar martingale argument as in Lemma 4 then, yt1, the left mega

received word w.r.t. t, lies w.h.p. outside the Hammming ball B(xt1, rlist). In other words, when

t < t∗, the transmitted message u∗ is w.h.p. not in the list L obtained by Bob.

Success of unique decoding: For t0 ≤ t ≤ t∗, our code for almost all key sequences sright

satisfies

dH
(
xnt+1(u∗, sright),wj

)
≥ (n− t)

(
1

2
− θ

2

)
∀wj ∈ L(u∗), (26)

where recall that wj’s are the right-mega subcodewords corresponding to messages in L ex-

cluding u∗. Further, we have that Calvin has at most (n − t)
(

1
4
− ε2

16

)
bit-flip attempts left

to inject onto xnt+1. Recall also that Bob considers Hamming balls of radius runique = (n −

t)
(

1
4
? q − θ(1−2q)

4

)
that are each centered at right-mega subcodewords in L.

When t0 ≤ t < t∗, the true message u∗ /∈ L while at t = t∗ we have that u∗ ∈ L. At

t = t∗, from Lemma 4, we have that for any adversarial strategy, d(xnt∗+1,y
n
t∗+1) ≤ (n −

t∗)
((

1
4
− ε2

16

)
? q + γ1

)
, with probability at least 1 − 2−Ω(γ21n). Choosing γ1 = p′ε2

8
(1 − 2q),

we have d(xnt∗+1,y
n
t∗+1) ≤ runique. Thus, ynt∗+1 is indeed w.h.p. inside the Hamming ball

B(xnt∗+1, runique). Next, consider any t0 ≤ t ≤ t∗ and wj from the set L(u∗). We argue that

as required, no matter what Calvin does, ynt+1 is outside B(wj, r). Let I be the set of indices

where wj and xnt+1(u∗, sright) agree and Ic be the set of indices where they disagree. For a

vector v, let (v)I denote v restricted to indices from I. We have that

dH(xnt+1,y
n
t+1) = dH

(
(xnt+1)I , (y

n
t+1)I

)
+ dH

(
(xnt+1)Ic , (y

n
t+1)Ic

)
(27)
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and

dH(wj,y
n
t+1) = dH

(
(wj)I , (y

n
t+1)I

)
+ dH

(
(wj)Ic , (y

n
t+1)Ic

)
. (28)

Now, Bob decodes ynt+1 incorrectly to wj when dH(xnt+1,y
n
t+1) > runique and dH(wj,y

n
t+1) ≤

runique. Calvin’s desire is then to inject his remaining bit-flip attempts in such a way that ynt+1 is

as far away as possible from xnt+1, and at the same time, as close as possible to wj . Clearly, the

best strategy is to only inject bit-flip attempts onto (xnt+1)Ic . Then, since (xnt+1)I only suffers

corruption due to the BSC(q), by the Chernoff bound we have

|I|(q − η1) ≤ dH
(
(xnt+1)I , (y

n
t+1)I

)
≤ |I|(q + η1) (29)

with probability at least (1− 2−Ω(η21n)). By Lemma 4 for Ic, we also have

dH
(
(xnt+1)Ic , (y

n
t+1)Ic

)
≤ |Ic|

(n− t∗)
(

1
4
− ε2

16

)
|Ic|

 ? q + η2

 (30)

with probability at least (1− 2−Ω(η22n)). By definition of I and Ic, (29) and (30) then imply that

dH
(
(wj)I , (y

n
t+1)I

)
≥ |I|(q − η1) (31)

and

dH
(
(wj)Ic , (y

n
t+1)Ic

)
≥ |Ic|

1−

(n− t)
(

1
4
− ε2

16

)
|Ic|

 ? q − η2

 . (32)

Consider the worst case when (26) holds with equality, i.e. |Ic|= (n − t)
(

1
2
− θ

2

)
, and |I|=

(n− t)
(

1
2

+ θ
2

)
. Since (n− t)

(
1
4
− ε2

16

)
< |Ic|

2
, there is a constant δ1 > 0 that is only of ε, q and

p such that
(n−t)

(
1
4
− ε

2

16

)
|Ic| ? q =

1
4
− ε

2

16
1
2
− θ

2

? q =
(

1
2
− δ1

)
. We have then from (28) that dH(wj,y

n
t+1) ≥

|I|(q − η1)+|Ic|
(

1
2

+ δ1 − η2

)
. We have also from (29) and (30) that dH(xnt+1,y

n
t+1) ≤ |I|(q + η1)+

|Ic|
(

1
2
− δ1 + η2

)
. Now, choosing for instance η1 = η2 = δ1/4, it is easy to check |I|(q + η1) +

|Ic|
(

1
2
− δ1 + η2

)
< runique < |I|(q − η1) + |Ic|

(
1
2

+ δ1 − η2

)
which implies that w.h.p., we

will have dH(xnt+1,y
n
t+1) ≤ runique and dH(wj,y

n
t+1) > runique. The argument holds for any

wj ∈ L(u∗). Summarising, we have that w.h.p., no matter the strategy selected by Calvin,

• when t0 ≤ t < t∗, the transmitted message u∗ is not in the list obtained by Bob, and

d(ynt+1,wj) > runique for all wj ∈ L(u∗).

• when t = t∗, the transmitted message u∗ is indeed in the list obtained by Bob. Further, we

have d(ynt+1,x
n
t+1) ≤ runique and d(ynt+1,wj) > runique for all wj ∈ L(u∗).

Thus, the iterative decoding procedure used by Bob succeeds in finding the true message u∗.
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VI. CONCLUSION

Motivated by security aspects for 5G networks and beyond, we considered the problem of

communicating a message reliably through a BEC(q) or a BSC(q) with an adversary present

who causally snoops in on both communicating parties and injects up to pn additional erasures

or flips respectively. We gave a tight capacity characterization for each case. There are several

interesting questions that remain open. Our achievability results prove only the existence of

capacity-achieving stochastic codes. It is not even known whether stochastic codes are necessary

to achieve capacity. In either case, it is desirable to find practical coding schemes with efficient

encoding and decoding. One interesting research direction also is to characterize capacity when

Calvin cannot snoop on Bob, i.e., feedback snooping is absent. Another is to characterize capacity

when Alice has feedback and employs closed-loop encoding.
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APPENDIX A

PROOF OF LEMMA 9

From (17), we have that with probability at least 1−2−Ω(δ2n), λ̂t∗ = λt∗−qt∗ ∈ [λat∗(1−q+δ)−

δt∗, λat∗(1−q−δ)+δt∗]. We prove the lemma by showing that a small enough δ > 0 can be set so
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that a t∗ satisfying both conditions (15), (16) exists at the extremes λ̂t∗ = λat∗(1−q)−δ(t∗−λat∗)

and λ̂t∗ = λat∗(1− q) + δ(t∗ − λat∗). In the first case, we need to prove existence of t∗ such that

n(1− 2p− ε) + λat∗

(
1 +

δ

1− q

)
+ θt∗ ≤ t∗

(
1 +

δ

1− q

)
(33)

and

np− λat∗ ≤
(n− t∗)(1− θ)

2
− δ

1− q
(t∗ − λat∗). (34)

First, choose a t∗ ≤ n−nθ in T such that t∗ ≥ n(1−2p−ε)+λat∗
(

1 + δ
1−q

)
+
(
θ − δ

1−q

)
(n−nθ).

This ensures that (33) holds. Rearranging (34), we also require t∗ ≤ n(1− 2p
1−θ )+

2λa
t∗

1−θ (1+ δ
1−q )

1+ 2δ
(1−q)(1−θ)

. Hence,

to prove existence of t∗ simultaneously satisfying both required conditions, it is sufficient to show

that
(
n(1− 2p

1−θ )+
2λa
t∗

1−θ (1+ δ
1−q )

1+ 2δ
(1−q)(1−θ)

)
−

(
n(1− 2p− ε) + λat∗

(
1 + δ

1−q

)
+
(
θ − δ

1−q

)
(n− nθ)

)
≥ nθ.

Multiplying by 1 + 2δ
(1−q)(1−θ) and simplifying, the coefficient of λat∗ in the above inequality

becomes
(

1 + δ
1−q

)(
2

1−θ − 1− 2δ
(1−q)(1−θ)

)
which is positive when δ < 1

2
(1 + θ)(1 − q). For

such a choice of δ, it is sufficient to show

p ≤ 1

2

(
1− θ
θ

)(
ε− 2θ + θ2 +

δ

1− q

[
1− θ − 2

1− θ

])
. (35)

Since ε = 4θ, choosing δ < min
{

(θ2−θ3)(1−q)
1+2θ−θ2 , 1

2
(1 + θ)(1− q)

}
, we will have

(
1−θ
θ

) (
ε− 2θ +

θ2 + δ
1−q [1− θ −

2
1−θ ]

)
> 1 so that (35) always holds for any p ∈ [0, 1/2) and we are done. In

the second case, we need to prove existence of t∗ such that

n(1− 2p− ε) + λat∗

(
1− δ

1− q

)
+ θt∗ ≤ t∗

(
1− δ

1− q

)
(36)

and

np− λat∗ ≤
(n− t∗)(1− θ)

2
+

δ

1− q
(t∗ − λat∗). (37)

Proceeding like earlier, choose a t∗ ≤ n−nθ in T such that t∗ ≥ n(1−2p−ε)+λat∗
(

1− δ
1−q

)
+(

θ + δ
1−q

)
(n− nθ), ensuring (36) holds. For (37) to hold, we need t∗ ≤ n(1− 2p

1−θ )+
2λa
t∗

1−θ (1− δ
1−q )

1− 2δ
(1−q)(1−θ)

.

Since the denominator 1− 2δ
(1−q)(1−θ) > 0 for δ < 1

2
(1−θ)(1−q), we will require that n

(
1− 2p

1−θ

)
+

2λa
t∗

1−θ

(
1− δ

1−q

)
−

(
n(1 − 2p − ε) + λat∗

(
1− δ

1−q

)
+
(
θ + δ

1−q

)
(n − nθ)

)
> nθ. Now, the

coefficient of λat∗ in the above expression is 1+θ
1−θ

(
1− δ

1−q

)
, which is always positive. Thus, we

only need p ≤ 1
2

(
1−θ
θ

) (
ε− 2θ + θ2 − δ

1−q (1− θ)
)

. Proceeding exactly like before and choosing

δ < (1 − q) θ2

1−θ , this inequality always holds. Backtracking the proof steps, if we choose δ =

1
4

(1−q)θ2(1−θ)
1+2θ−θ2 , all of the required conditions are satisfied and the proof of this lemma is complete.
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APPENDIX B

FORM OF Cflip(p, q)

Fix a q ∈ [0, 1/2). The optimization problem (5) in Theorem 2 is min0≤x≤p f(x) where

f(x) = (1− 4p+ 4x)
(

1− h2

(
x

1−4p+4x
? q
))

. When p = 1/4, f(x) = 0 at x = 0 and hence

Cflip(p, q) = 0 when p = 1/4. Differentiating the objective function f(x) we get 4 + (2q +

1) log2

(
x(1+2q)+q(1−4p)

1−4p+4x

)
+ (3− 2q) log2

(
1−4p+4x−x(1+2q)−q(1−4p)

1−4p+4x

)
= 0. Solution x∗ has the form

x∗ = 1−4p
α−3

where α satisfies 4 + (1 + 2q) log2

(
1−q(1−α)

1+α

)
+ (3− 2q) log2

(
α+q(1−α)

1+α

)
= 0. Since

0 ≤ x ≤ p, we must have 1−4p
α−3
≤ p =⇒ p ≥ 1

1+α
= pq. Thus, for p ∈ [pq, 1/4], x∗ = (1−4p)pq

1−4pq

where pq satisfies

4 + (1 + 2q) log2 (pq ? q) + (3− 2q) log2 (1− pq ? q) = 0, (38)

and the capacity expression becomes Cflip(p, q) = 1−4p
1−4pq

(1− h2(pq ? q)). Thus, Cflip(p, q), pq ≤

p ≤ 1/4 is a straight line that intersects the p-axis at p = 1/4. For p ∈ [0, pq], the minimizer is

x∗ = p and the capacity expression is Cflip(p, q) = 1−h2(p?q). Next we show that, Cflip(p, q),

pq ≤ p ≤ 1/4 is in fact the tangent to the curve 1 − h2(p ? q) at p = pq. Consider the line

L(p) that is tangent to 1− h2(p ? q) and passes through (1/4, 0). Its equation can be written as

L(p) = γ(1 − 4p) where γ is a constant. Suppose that L(x) intersects 1 − h2(p ? q) at p = p̃q.

To complete the proof, it suffices to show that p̃q = pq i.e. p̃q satisfies (38). Since L(p) is the

tangent to 1− h2(p, q) at p = p̃q, we have d
dp
L(p)

∣∣∣
p=p̃q

= d
dp

(1− h2(p ? q))
∣∣∣
p=p̃q

, which gives

−4γ = (1− 2q) log2

(
p̃q ? q

1− p̃q ? q

)
. (39)

We also have

L(p̃q) = 1− h2(p̃q ? q) = γ(1− 4p̃q). (40)

Eliminating γ from (39) and (40), p̃q satisfies the equation (1−2q) log2

(
p̃q?q

1−p̃q?q

)
= −4

(
1−h2(p̃q?q)

1−4p̃q

)
.

Rearranging the terms, this simplifies to 4+(1+2q) log2 (p̃q ? q)+(3−2q) log2 (1− p̃q ? q) = 0

which is the same as (38). Hence, pq = p̃q and we are done.


