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Abstract

With the advent of 5G and technologies such as cloud computing, Internet-of-Things (IoT), etc,
future communication networks will consist of a large number of heterogeneous devices connected
together. A critical aspect will be ensuring that communication is not only fast and reliable, but also
secure. Motivated by this, we consider the problem of communicating a message reliably across a
binary erasure channel (BEC(g)) or a binary symmetric channel (BSC(q)) against an adversary actively
injecting additional erasures or flips at the channel’s input. The adversary has a total error budget equal
to a fixed fraction p of the codeword length and knows the transmission scheme agreed upon by the
communicating terminals. Further, he has the capability to causally snoop in on both the transmitter and
the receiver in real time, i.e., if x = (21, 22, -+, 2y) and y = (y1, Y2, - - -, Y ) denote the transmitted and
the received codewords respectively, at each time k&, he knows (z1, 2, -+, zx) and (y1,v2, -, Yk—1)-
The adversary is free to employ any attack using his side-information that respects his budget constraint.
We prove an information-theoretic tight capacity characterization as a function of p and ¢ for (i) the
erasure adversary with a BEC(gq) and (ii) the bit-flip adversary with a BSC(g). A unique feature of our
models is the compounding of stochastic and adversarial noise sources. Our analysis reveals the worst-
case adversarial attacks for both models and proves the existence of coding schemes that achieve rates
equal to the capacity for any adversarial attack. In the case of bit-flips, we show that, interestingly, when
p is below a certain threshold (that depends on ¢), the adversary is no worse than an i.i.d. memory-less

noise source.
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I. INTRODUCTION

Due to a massive increase in the number of devices connected together, security is a re-
emerging concern for wireless networks. There is a push from 3GPP, government and other
stakeholders to adopt zero-trust design principles for 5G networks and beyond [3], securing
systems from attackers both outside and within the network. From the zero-trust perspective,
designers must assume an open network where all network links can be intercepted by an attacker.
Furthermore, due to the ease-of-access of the wireless medium, designers must plan for attacks
at the physical layer, including denial-of-service (DoS) attacks (i.e., jamming) or other attacks
which can lead to network wide security vulnerabilities. Such attacks can come from untrusted
devices or compromised hardware (i.e., hardware Trojans) [4]-[6]. Trojans can use real time
information snooped from a link to design optimal attacks on error control systems — systems
which are not currently designed to defend against these attacks. In this article, we develop
secure error control coding techniques against such threats.

Specifically, consider the following situation depicted in Fig. 1. Alice wishes to communicate
a message reliably to Bob over a binary erasure channel (BEC(¢)) or a binary symmetric channel
(BSC(q)) in the presence of Calvin, who can introduce additional noise at the channel’s input
by erasing or flipping bits. Calvin assumes the role of an online adversary who has the ability
to spy on both terminals in real time. He may only impact a certain number of bits but can
otherwise freely corrupt parts of the transmission. Here, his budget is specified as a fraction
of the codeword length (pn erasures or flips where n is the codeword length). What is the
largest rate at which reliable communication is possible (i.e. channel capacity) in this setting?
Answering this question is the central goal of this paper.

Many of the channel models in information theory are broadly of two kinds. On one side are
stochastic models whose behavior is characterized by a probability law and errors get injected
independent of the communication scheme. Here, it is sufficient to deal with average-case errors.
On the other extreme are adversarial models where one must deal with the worst-case errors.
As expected, the latter often behave much differently from the former. In the case of adversarial
channels, the capacity generally depends strongly on what the adversary knows. An oblivious
adversary [7]-[11] is one who possibly knows the coding scheme agreed upon by Alice and
Bob but has no knowledge of the transmitted codeword. In complete contrast is the omniscient

adversary [12]-[14] who non-causally knows the entire length-n codeword chosen by Alice for
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Fig. 1. Channel models considered in this work - (a) BEC(q)-ADV(p)-FS and (b) BSC(q)-ADV(p)-FS. Calvin, who at each
time k knows (z1,x2, -, zx) and (y1,y2, -, Yk—1), and also knows the transmission scheme being employed by Alice and

Bob, is constrained such that he may only inject up to pn erasures or flips in total.

transmission. An intermediate model also considered in this paper is that of an online or causal
adversary [15]-[18] wherein at any point during the transmission, the adversary has access to
part of the codeword that is transmitted thus far, i.e., if x = (21, 29,---,x,) is the codeword
transmitted, Calvin at each time k& knows (z1,xs, - - -, xx). Another interesting set of models are
the delayed adversary model [19], [20] and the look-ahead adversary model [15] where Calvin at
each time k knows (z1, g, -, Txran), Where d is the delay (d < 0) or the look-ahead (d > 0)
parameter. Different from these is also the myopic adversary model [21], [22] where Calvin
knows only a noisy version of x.

Along with the adversary’s side information, another important criterion that affects the
capacity is whether Alice and Bob have any shared randomness between them that is unknown
to Calvin. In most cases, it turns out that the adversary in these settings is no worse than an
i.i.d. memory-less noise source [15], [23]-[25]. Moreover, from a practical perspective, today’s
wireless systems do not have physical layers based on such type of shared randomness. Therefore
in this paper, we do not allow any shared randomness between the terminals. However, we allow
Alice to employ stochastic encoding or randomized encoding using private random coins that
are shared neither to Bob nor Calvin.

Without Calvin’s presence, i.e. when p = 0, our models reduce to the classical BEC(q) or

the BSC(q). When there is no random channel present, i.e., ¢ = 0, the only source of noise is



adversarial for which a complete capacity characterization is given by [15]-[17]. Our models

differ from the ones considered previously in two ways:

« Mixing of random and adversarial noise: From Fig. 1, the noise in the received word
is affected by the random channel BEC/BSC as well as the actions of Calvin who is
erasing/flipping bits. For example in the erasure case, a bit not erased by Calvin can be
erased by the BEC. In the bit-flip case, the situation is harder because a bit flipped by Calvin
may even get “unflipped” by the BSC. Conceptually, we think of the stochastic channel as
the main channel through which Alice and Bob communicate, and Calvin as a malicious
entity who attempts to actively disrupt the transmission. Since we only deal with binary
channels, we refer to our models as binary stochastic-adversarial channels. Study of real
input-output channels such as the AWGN channel are left for future investigation.

« Feedback to adversary: In our setting, we will allow Calvin access to Bob’s reception
through feedback snooping, as shown in Fig. 1. This becomes important due to the presence
of the stochastic channel that also influences the bits received at Bob. Note that feedback

snooping is unnecessary when ¢ = 0.

We note that our models are in fact special cases of the more general framework of arbitrarily
varying channels (AVCs) [7], [26]. However, known results for AVCs do not imply the results
of this paper and therefore we do not pursue this connection. Our contributions are briefly

summarized as follows:

« We provide a complete characterization of capacity in the case of erasures (C*"**¢(p, q)) for
arbitrary budget parameter p € [0, 1] and erasure probability ¢ € [0, 1]. Our result implies
that the presence of the random channel BEC(q) in addition to causal adversarial erasures
scales the capacity expression of the ¢ = 0 case by a multiplicative factor.

« We also provide a complete capacity characterization in the case of bit-flips (C/'"(p, q))
for arbitrary budget parameter p € [0, 1] and flip probability ¢ € [0,1/2]. We show that for
every ¢ € [0,1/2), there is a threshold p, > 0 s.t. when p < p,, Calvin can do no better
than making flip decisions in an i.i.d. manner. In other words, an adversary when weak
enough is no worse than an i.i.d. memory-less noise source. Here, p, — 0 as ¢ — 1/2.

» For each model, we characterize the worst-case adversarial attacks and prove the existence
of coding schemes that allow Alice to transmit reliably at rates arbitrarily close to capacity,

no matter the adversary’s strategy.



A preliminary version of this work was presented at the 2021 IEEE International Symposium on
Information Theory [1]. An extended version of the ISIT conference paper with longer proofs is
available at [2]. In [1], [2], while the capacity for the erasure model was completely characterized,
only upper and lower bounds were given for the harder bit-flip model. In this work, we close
this gap and show that the converse sketched in [1], [2] is in fact tight. Inclusion of secrecy
constraints where Alice must not only convey her message reliably to Bob but also hide it from
Calvin, is not considered here and left for future investigation. The rest of the paper is organized
as follows. Section II formally defines the channel models and the capacity characterization
problem. In Section III, we state our main capacity results. Converse proofs are provided in
Section IV and proofs for achievability are provided in Section V. Finally, conclusions and

possible future research directions are discussed in Section VI.

II. PRELIMINARIES
A. Channel Models

The channel models are depicted in Fig.1. Encoding is done over a fixed block-length of n
channel uses, and the size of the message set at the transmitter is 2"/. Consider first the model for
the case of erasures. Alice (the transmitter) attempts to convey a message to Bob (the receiver)
over a BEC(q), in the presence of a p-limited causal adversary (Calvin) where the terms will be
clarified shortly. The input and output alphabets are X = {0,1} and ) = {0, 1, A} respectively,
where A denotes an erasure symbol. We allow stochastic encoding and assume the presence of
local randomness available only to Alice for this purpose. Denote x;, € X to be the bit selected
by the transmitter at channel use k. At time £, Calvin makes a decision on whether to erase x
based on his side-information to be specified. If Calvin erases xj, the received symbol at time
k at the receiver is an erasure, i.e., ¥ = A. If Calvin decides not to erase xj, then x; is erased
with probability ¢, i.e., y, = x; with probability 1 — ¢ and y, = A with probability ¢q. We now
specify the side-information available to Calvin:

o Knowledge of transmission scheme: Calvin has knowledge of the transmission scheme

agreed upon by Alice and Bob.

o Transmitter snooping: Calvin has causal access to symbols being transmitted by Alice,

i.e., at each channel use k, 1 < k < n, Calvin knows (z1,xs, -, z)) € XE.



« Feedback snooping: Calvin has the capability to spy into Bob’s reception through a noise-
free strictly causal feedback link as shown in Fig. 1. At each channel use £k, 1 < k& < n,
Calvin knows (y1, ¥, -+, yr_1) € YL

Thus, Calvin’s decision on whether or not to erase x; is a function of the transmission rule,
(21,20, , %) € X*, and (y1,92, -+, yr_1) € Y*1. A power constraint is further imposed by
enforcing Calvin to be p-limited, meaning that he can erase at most a constant fraction p of
the bits, i.e., if a € {0,1}" denotes the positions where Calvin decides to erase symbols from
(1,29, -+, x,), We must have weight(a) < pn. We refer to this model as the BEC causal
adversarial channel with feedback snooping (or BEC(q)-ADV(p)-FS). Note that the BEC block
in Fig. 1(a) is different from the classical BEC. If Calvin erases xj to an erasure symbol A, we
have y, = A, where A does not carry any information.

We also consider a related and more interesting model (Fig. 1(b)) where Calvin can attempt
to flip up to pn bits and the stochastic channel is a BSC(q) instead of a BEC(q). The input
and output alphabets are revised to X = {0,1} and Y = {0,1}. At time k, Calvin produces
ar € A ={0,1} based on his side information which is the same as that for erasures, i.e., at
time k, he knows (21, x9, - - -, z), the transmission scheme, and (yi, ¥a, - - -, yx—1). The received
symbol at time k at the receiver is

T Pap®1  with prob. g

Y = )
Tk D ag with prob. 1 — ¢

where @ denotes mod-2 addition and ¢ € [0, 1/2]. Hence, a € {0, 1}" denotes the positions where
Calvin injects bit-flips and the constraint on the adversary can be expressed as weight(a) < pn.
Note that a flip-attempt of Calvin can now be undone by the BSC. This happens exactly at
positions where both Calvin and the BSC inject errors. This is in contrast to the case of erasures
where a bit erased by Calvin remains erased. This model is referred to as the BSC causal
adversarial channel with feedback snooping (or BSC(q)-ADV(p)-FS).

Our aim is to characterize the capacity of these channels, i.e., the largest value of R such
that Alice can reliably convey one out of 2% possible messages to Bob. The capacities of the
BEC(q)-ADV(p)-FS channel and the BSC(q)-ADV(p)-FS channel are denoted by C°"**¢(p, q)
and C/'P(p, q) respectively. Precise definitions to follow.

Definitions: The transmitted message is denoted by the random variable (r.v.) U chosen

uniformly from the message set Y = {1,2,3,---,2"%}. The Hamming distance between w



and z will be denoted by dy(w,z). We denote by C(n, R) a code of rate R and block-length n.
A deterministic code C = (®4,I"y) consists of an encoder map &, : U« — X" and a decoder map
I'y: Y* — U, where each message is associated to a unique codeword. In case of stochastic
encoding, a codeword x is selected for a message u according to a chosen conditional distribution
®(-|u) defined on X", A stochastic code C = (®,T') is fully specified by defining all conditional
distributions {é(-|u)}u€u and decoder I' : Y — U. Without loss of generality, we assume in
proving converse results that no two distinct messages map to the same codeword.

Denote the transmitted and received codewords by x and y respectively. A strategy & for
Calvin consists of (possibly stochastic) maps g1, g2, - - -, gn, Where his error injections are given
by

arp = ge(C,xV,y") k=1,2,---,n.

Equivalently, for each k, a; is a Bernoulli random variable whose success probability is a
function only of the transmission rule C, x¥ and y*~!. & is feasible only if for every C, x and y,
weight((ay,as, -+, a,)) < pn holds almost surely. The set of all feasible strategies for Calvin

is denoted by ADV(p). The (maximum) probability of error is then defined as

ueU SGEADV(p)

P.(®,T) =max max Y > P(y|x,&)®(x|u)Z(I(y) # u) (1)

where Z(.) denotes the indicator function.

When proving achievability results, we consider for analytical simplicity the following alternate
view of a stochastic code. Alice is endowed with a set S of private secrets or keys and the
stochastic code is defined by a deterministic map ¢ : &/ x § — X™. For a given message
u € U, the codeword ®(u,s) is selected by picking a secret s € S uniformly randomly.
As discussed in [16], this definition is essentially equivalent and does not change the ca-
pacity. In this case, the (maximum) probability of error from (1) is revised to P.(®,I') =
MaXy,cy MAXSADV(p) ‘?ﬂ > ses 2y P(y|®(u, s), &)Z(I'(y) # u). The probability of decoding er-
ror is averaged over all possible secrets available to Alice for encoding.

Rate & > 0 is achievable if for every ¢ > 0, there is a sequence of rate R — € codes
of increasing block-lengths {C(n, R — €)},, such that for any § > 0, there is an N so that
P.(C(n,R —€)) < 6 for any n > N. Capacity is defined to be the supremum of all achievable
rates. For x,y € [0,1/2], define x xy = z(1 — y) + y(1 — x). Note that z xy = 1/2 iff either
x=1/2 or y =1/2 (or both).



B. Simple Converse Bounds - The 1.1.D. Attack

We begin with simple converse bounds for both channel models. These follow from the
following adversarial attack for Calvin - he ignores his side information completely and simulates

an i.i.d. memory-less noise source while respecting his budget constraint.
Lemma 1. The capacity C*"**(p, q) of the BEC(q)-ADV(p)-FS channel satisfies the bound
Cr(p,q) < (1 =p)(1 —q). )

Proof. For § > 0, Calvin erases each bit z; independently with probability p—d. By the Chernoff

2(5*n) | Since the combination

bound, he does not exceed his budget with probability at least 1 —2~
of this attack with the BEC/(q) is the BEC(s) with s = p — 0 4+ ¢ — (p — 0)q, the capacity is

bounded as C°"***(p,q) < (1 —p+6)(1 — q). Letting 6 — 0 completes the proof. O
Lemma 2. The capacity C''%(p, q) of the BSC(q)-ADV(p)-FS channel satisfies the bound
C(p,q) <1 —ha(p*q). 3)

Proof. For 6 > 0, Calvin flips each bit z; independently with probability p — 9, staying within
his budget with probability at least 1 —2-%(*")_Since the effective channel is BSC((p—0)*q),
the capacity is bounded as C/'%(p, q) <1 — hy ((p — ) * q). Finally, let § — 0 to get (3). [

We will show that for the BEC(q)-ADV(p)-FS channel, the i.i.d. erasure attack in Lemma 1
is always sub-optimal, as one would expect. In contrast however, for the BSC(q)-ADV(p)-FS
channel, there are regimes where the i.i.d. bit-flip attack in Lemma 2 is optimal. Here, the side
information available to Calvin as specified in II-A proves to be of no benefit, and Calvin is no

worse than an i.i.d. Bernoulli memory-less noise source.

C. Effective number of erasures or flips

By the Chernoff bound, the BEC(¢)/BSC(q) when acting alone (i.e., with no adversary) induces
about gn erasures/flips. In our set-up, we also have Calvin who can introduce up to pn additional
erasures/flips. However, since Calvin is causal, his error pattern and the error pattern induced by
the random channel may have several overlapping error injections. The total number of errors

will thus be much less than pn + gn. Consider the following lemma.



Lemma 3. Let X, Xy, -+, X, be i.id. Ber(q) indicator random variables representing the
erasure sequence injected by a BEC(q). Let Y1,Y5, - --.Y,, be indicator random variables where,
for each j, Y; is Bernoulli distributed with a success probability that is possibly a function of
X1, Xo, -+, X520, Y1, Ys, - -+ Y4, subject to the constraint that the random variable Zj Y; is

almost surely less than or equal to pn. For 6 > 0, defining the event
E = {ZI(Xj =lorY;=1)< (p+q—pq)n+5n},
j=1
we have P(E) > 1 — 29",

Proof. By defining a suitable martingale, the proof is a simple application of Azuma’s inequality

(e.g. [27]). Let Z; = Z(X; = 1 or Y; = 1). Define for j = 1,2,---,n, P; = Z; — E(Z; |

X1, Xo, -, X1, Y1, Y5, -+ Y 4), and S; = i:1 Py. Clearly, S; is a martingale because
E(Sj41 | Xq,---,X;,Y1,---,Y;) = S;. Note that |S; — S;_;|= |P;|< 1 holds almost surely.

Thus, by Azuma’s inequality, Pr (|S,|> dn) < 2¢="2". The required result then follows from
the constraint » ; Y; < pn and the fact that for each j, X; and Y} are independent. O]

Using arguments similar to the proof of Lemma 3, we can also show the following Lemma.

Lemma 4. Let X1, X5, -+, X, be i.i.d. Ber(q) random variables representing the error sequence
injected by a BSC(q). Let Y1,Y5,---,Y, be random variables where, for each j, Y; is Bernoulli
distributed with a success probability that is possibly a function of Xy, -+, X;_1,Y1,--+,Y;_1,
subject to the constraint ;Y; < pn almost surely. For 0 > 0, defining the event F =
{Z?Zl(Xj ®Y;) < (pxq)n+ 5n}, we have P(E) > 1 — 2790n),

Let 0 > 0 be a small arbitrary constant. Lemmas 3 and 4 imply that under any strategy
employed by Calvin, we have the following:

« For the BEC(q)-ADV(p)-FS channel, the total effective number of erasures injected on to
the received codeword due to actions of both Calvin and the BEC(q) does not exceed
(p + q — pq + 0)n with probability at least 1 — 2-2(0°n),

« For the BSC(¢q)-ADV(p)-FS channel, the total effective number of flips injected on to the
received codeword due to actions of both Calvin and the BSC(q) does not exceed (pxq+d)n
with probability at least 1 — 9~ Q(#%n)



The above results imply that insofar as the total effective number of flips or erasures is concerned,
Calvin cannot use his side information to improve over an i.i.d. attack. Lemmas 3 and 4 will

also be essential to proving our achievability results.

III. MAIN RESULTS

A. Results for Erasures

Theorem 1. The capacity C**¢(p, q) of the BEC(q)-ADV(p)-FS channel is

1
(1-2p)(1—q), 0<p<;,0<qg<1
Cerase(p’ q) — 2 ) (4)
0, otherwise

When there is no BEC, i.e., when ¢ = 0, our model reduces to the one studied in [15], [16].
Our result implies that in the setting where both causal adversarial erasures and random erasures

are present, the capacity expression is scaled by a factor of (1 — ¢).

B. Results for Bit-flips

Theorem 2. For p € [0,1/4] and q € [0,1/2], the capacity C/'%(p, q) of the BSC(q)-ADV(p)-FS

channel is

C7"(p,q) = min a(p,z) (1 — hy <M - q)) (5)

z€[0,p] a(p,x)

where a(p,x) =1 —4(p —z). If p > 1/4, we have C/%(p, q) = 0.

When ¢ = 0, i.e., there is no BSC, the channel model reduces to that considered in [15],
[16], and the capacity expression (5) matches with the result proved in [15], [16]. As shown in
Appendix B, the solution C/!%(p, ) to the optimization problem in (5) for any fixed ¢ € [0,1/2)
is

1 — ho(p*q) 0<p<p,

fli _ _
Cpa) = 4 {5 (1= ha (pyxq) pg<p<1/4:

0 p>1/4
where p, is the unique solution in (0, 1/2) of the equation
44 (1+2q)log, (pg * q) + (3 — 2¢) logy (1 — pg * q) = 0. (6)

In Fig. 2, C/Y(p, q) is plotted as a function of p for various values of ¢, specifically, ¢ =

0.0,0.1,0.2. We make the following observations:



« From [15], [16], C/%(p,0) > 0 for p € [0,1/4). Here, we have C7(p ¢) > 0 for all
q €10,1/2) and p € [0,1/4). Thus, the addition of the BSC stochastic channel does not
change the support over p for which the a positive rate is achievable.

e For 0 < p < p,, C’P(p,q) is convex and equal to 1 — hy(p * ). This implies that when
0 < p < p,, the i.i.d. bit-flip attack strategy in Section II-B is optimal for the adversary. In
this regime, the knowledge of the encoding scheme or the ability to spy on Alice or Bob

buys Calvin no benefit.

« Solving (6), it can be seen, as ¢ \, 0, p, /" po = % (5 — ?’\/ﬁ — m),
and as ¢  1/2, p, \( 0. Thus, the regime over which a simple i.i.d. adversarial attack is
optimal (p € [0, p,]) shrinks as the BSC gets noisier.

« Forq e [0,1/2), C/"%(p,q), p, < p < 1/4, is a decreasing linear function in p that intersects
the p-axis at p = 1/4. Furthermore, C/"(p, q), p, < p < 1/4, is in fact the tangent to the
curve 1 — ho(p * q) at p = p,. The optimal attack for Calvin in this regime relies on his
snooping abilities and is based on a two-phase attack strategy described in section IV-B. The
first phase of this attack involves Calvin injecting random i.i.d. bit-flips where the length of
this phase is roughly na(p, x). Therefore, (5) can be interpreted as an optimization over the
lengths of the two attack phases. The analysis in Appendix B implies that the minimizer
x* in (5) is such that

. L, nggpq
a(p,x) =

1—4 '
T Pe<p<1/4

This corresponds to our earlier comment that for p € [0, p,|, a(p, z*) = 1, and it is optimal

for Calvin to inject random i.i.d. noise across the entire codeword.

IV. CONVERSE PROOFS

To prove the converse, we demonstrate an attack strategy for Calvin in each of our models
under which no rate larger than the claimed capacity expression is achievable. These attacks are
inspired by, but different from, the attacks in [16], [17], [28] which only work when the erasure
or the bit-flip probability is zero, i.e., ¢ = 0. Specifically, our modified attacks rely crucially
on Calvin’s ability to snoop. We shall denote the transmitted and the received codewords as
x and y, respectively. The (stochastic) encoder and the decoder being used by Alice and Bob

are denoted as ®(-|-) and T'(-), i.e. transmission rule C = (®,T"). Let x;, = (1, @y, - -, x¢) and
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Fig. 2. The capacity C¥'7(p, q) of BSC(q)-ADV(p)-FS as a function of p. The cut-off value of p beyond which C/**P(p,q) =0
is p = 1/4, independent of g.

xr = (Tp11,- -+, x,), Where £ is chosen later for each model. Similarly, let y, = (y1, 92, -, ye)

and YR = (yf-‘rlu U 7yn)

A. Converse for BEC(q)-ADV(p)-FS

Our argument is based on a wait and snoop, then push attack. Suppose Alice attempts to
communicate at a rate B = C*¢(p,q) + ¢ = (1 — 2p)(1 — q) + ¢. We will show that for
sufficiently large block-length n, the probability of decoding error under the proposed attack is
lower bounded by a constant that is only a function of € (and independent of n). The attack

constitutes of the following two phases:

« Wait and snoop: In this phase, Calvin waits and does not induce any erasures for the

first { = n (If_q?) channel uses. Instead, Calvin simply snoops into Bob’s reception to

determine the erased/unerased bits and their positions. At the end of this phase, Bob receives

v = (Y1, Y2, -+, ye) containing some erased and some unerased bits. Note that the erasures



Calvin injects erasures at these positions

/
y
" /
X . «

xp=[1|1[|0/ 1 0 (0|1 1|0/ 1 0]

ye=1[1 |A||A| 1 0 |A| 1 1|A|1 0]

x;?=[10i10111110]

Fig. 3. In the push phase, if xr and x; are sufficiently close (within distance pn), Calvin can make Bob completely uncertain

whether the transmitted codeword was x or x’.

in this phase occur purely due to the BEC(g) channel. Let {i;}*, be the indices of symbols
in y;, that remain unerased.

« Push: Calvin forms the set By, of codewords consistent with y;, as
By, ={veX":3uclst &v|a)>0and v;, =z;, k=1,2,---,m}, (7)

where, as before, ®(.|u) is the distribution of codewords selected when message u is to be
transmitted. In other words, By, consists of all possible codewords that align with y;, at
the positions that are unerased. Calvin then samples a codeword x’ from By, according to
the distribution x’ ~ Px|y, -y, (.|yz). In the push phase then, Calvin simply erases bit z;,
i=0+1,0+2,---n whenever x; # x}, until his budget of pn erasures runs out.

During the push phase, if codewords x and x’ correspond to distinct messages u and u' and
we have d(xg, X%) < pn, then there would be no way for Bob to distinguish between messages
u and ' and a decoding error would occur with probability at least 1/2. This is illustrated in
Fig. 3. We shall argue that this indeed occurs with a positive probability independent of n to
settle the converse.

Analysis: The analysis is inspired from [17] where we also account for the presence of
the BEC(g) in our claims. Define the set 4g = {y,: H(U| Y, =y.) > 2} and the event
Ey ={Y. € Ap}. We have the following lemma.

Lemma 5. P(E,) > §.

Proof. Since U — X — Y is a Markov chain, by the data processing inequality, we have

I(U;YL) < I(Xp,Yr) =41 —q) = n(R — €/2). This holds since Calvin adds no erasures



in the wait and snoop phase and the channel between X and Y is a BEC(g). Now, since
H(U) = nR, we have H(U|Y,) = Ey, HU|Y, = y.) = HU) — I(U;Y) > ne/2.. By
Markov’s inequality then, P (nR — H(U|Y, =yr) >nR —ne/4) < 1 — RE—/54/4 which gives,

P(Ey))=P(H(U|Y,=yy.) > %) > < as desired. (]

Now let E5 be the event {U # U’} and Ej5 be the event {d(Xg, X;) < pn}. First, we show
the following.

Lemma 6. For y; € Ay, P(E2, Es | YL =y1) > 00/e).

Proof. Consider sampling t = 2 codewords C; = {X®), ... X"} from the set By, where each
codeword is sampled independently according to the conditional distribution Pxjy,—y, (.|yr)-
Let the messages corresponding to the codewords be Uy, Uy, ---, U, and let E£4 be the event
that {U,, Uy, - -- U, are all distinct}. We have from [17, A.2, Proposition 1] that for y, € A,
and for sufficiently large block length n,

€

PEy| YL =YyL) 2 <5>t1- 3)

Now, the average Hamming distance between the suffixes of codewords in C; is defined as

_ 1 (i) )
T C) = 375 ;dH (xR, x%). )

Conditioning on FE}, Plotkin’s bound dictates
1 ¢ t €

Aopo(Ct) < =——(n —¥) = n—ro — <

161 g0 =nit (- g ) <o

Thus for y;, € Ay, E(duwy(Ct) | E4, YL = y1) < np — ne/8. Now, since all of the X (@5 are

(p=7) <mp—ng
- = np —n-.
1 \P =np=ng

picked independently, all pairs (X, X)) have identical distribution. Thus,
E(duy(C:) | Es, Yi = y1) = E(dn(Xp), XE)) | B0, Y1 =y1) = E(dn(Xp. Xp) | B, Y = y1).
By Markov’s inequality

€
P(du(XY, X2 > np | B, YL =yr) <1- 5 (10)

We have also that P(Ey, Es | Y, = y;) = P(d(XY, X)) < pn, Uy £ Uy | Y, = yy) >
P(d(Xg),Xg)) < pn,E, | Y. = y), where the last inequality holds because event F, is a
subset of the event {U; # U, }. Finally, from (8) and (10), we conclude P(FEy, Es | Y, =y.) >
e (e\2-1 O(1/e)

(5" = o0, :

8p \5



Recall that F, is the event that the message U’ picked by the adversary is different from
the one transmitted and E3 is the event that the corresponding codewords Xy and X/, are
close enough so that Calvin’s push phase succeeds and Bob is completely uncertain whether the
message transmitted was U or U’. Hence when E5 and Fj3 occur, the probability of decoding
error is at least 1/2. To finish the proof, we need only show a lower bound on P(Es, E3). We
have indeed, P(E,, E5) > ZyLer P(Ey,Es | YL =y)P(YL =y1) > ZEISLp (g)%fl, a lower
bound that is independent of n, hence settling the converse. We end this section with a few
additional observations:

o Feedback snooping helps: After the wait and snoop phase, even though Calvin knows the
entire prefix of the transmitted codeword x;, = (z1, 2, - - -, z¢), he forms his set By, in (7)
based only on the unerased bits. Intuitively, thanks to feedback snooping, Calvin exploits
the additional equivocation induced by the BEC(q) to pick a random codeword from a larger
set By, , so that this codeword with high probability is sufficiently close to the transmitted
codeword, and corresponds to a message different from the one that Alice chose.

o While we give Calvin full causal access to Bob’s reception, an alternate model where
Calvin is allowed one-time block feedback is sufficient - he would add no erasures for ¢
channel uses, retrieve through feedback the entire block y; and then ‘push’. Also note
that interestingly, while the presence of the BEC(q) lowers the target rate, Calvin adds no
erasures for approximately n(1 — 2p) channel uses which from [15], [17] is also optimal
when there is no BEC(g).

« Suppose Bob had access to an oracle who for each x;, that is erased informs him whether
the erasure was due to Calvin, or the BEC(q), or both. It is straightforward to see that our
converse proof continues to hold in this case. Thus, knowing who caused an erasure does

not help Bob and the capacity is unchanged.

B. Converse for BSC(q)-ADV(p)-FS

Fix a « € [0, p]. Suppose that for some ¢ > 0, the transmitter attempts to communicate at a

rate of R = a(p, z) <1 — hy (ﬁ * q>> + €. We show that for sufficiently large n, under the

proposed attack strategy for Calvin, the probability of decoding error in (1) is lower bounded

by €9(1/¢)

, a quantity independent of n. Since the same argument works for any x, the converse
in theorem 2 holds. Our proof is based on a babble and snoop, then push attack that consists

of the following two phases:



« Babble and snoop: For the first £ = (a(p, ) + €¢/2)n channel uses, Calvin injects random
bit-flips and monitors Bob’s reception - at channel use 7, 1 < ¢ < /, he flips bit z; with
probability xn/¢. At the end of this phase, Calvin knows x; and y.

« Push: Calvin samples a codeword x’ (corresponding to message u’) according to the
conditional distribution Pxy,—y, (.|yz). His goal is to confuse the receiver between x
and x’. At positions where xp and x/, agree, he does nothing. Positions j where xp and
x, disagree, he flips x; with probability 1/2. This is illustrated in Fig. 4. This way,
the Bob cannot distinguish between x and x’ (even with the BSC(q)) due to the fact
that P(yr|xr) = P(yr|x%). The proof relies on showing that with a small probability

independent of n, u, v’ are distinct and xp, X, are sufficiently close.

Calvin’s attack requires knowledge of Y, i.e., the symbols received by Bob during the first
phase of the attack. Just like in the erasure model, the presence of the BSC(q) introduces
additional equivocation at the receiver which Calvin is able to exploit to cause a reduction
in rate. Here also, one-time block feedback (of entire block y;) after the first £ channel uses is
sufficient for the attack to succeed.

Analysis: In the babble and snoop phase, by the Chernoff bound, Calvin uses at most zn +
en/64 flips with probability at least 1 — e~ Let this be denoted as event ;. Conditioned
on Fj, Calvin’s remaining budget in the push phase is atleast (p — x)n — en/64. Define the
set Ap = {yr: H(U| Y, =y;) > “}. Denoting the event B> = {Y € Ay}, we have the

following lemma.
Lemma 7. P(E,) > ¢/4.

Proof. The proof is similar to claim 4 in [16]. U — X; — Y is a markov chain and
hence, by the data processing inequality and Calvin’s actions in the babble phase, I(U;Y,) <
I(Xp;Yp) =0(1 = hy (% %q)). This is because the channel between X, and Y is a cascade
of BSC(zn/l) and BSC(q). Noting that ¢/ = (a + €¢/2)n, we have I(U;Y.) < n(a +
¢/2) (1 ~ By (m *q)). Since 1(U,Y;) = H(U) — H(U|Y;) and H(U) = nR = na(1 -
ho (£ % q) ) + ne, we get, H(U[Y,) > % +n ((a +€/2)hs (ﬁe/z * q) — ahy (£ *q)). Now,
the function f(z) = why (% % ¢) is increasing in z, for any fixed ¢ € (0,1/2). Hence, we have
H(U|YL) =Ey, H(U|Y, =yL) > ne/2. Finally, by Markov’s inequality, P(nR— H(U|Y =

B
yi) >nR—ne/d) <1-— /4/ which gives, P (H(U | Y, =y) > %) > <. O




Calvin injects Ber(1/2) noise at these positions
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xp=[1 |1{|0| 1 0 |01 1|0[1 O]

yr=1I[1 |1||1] 1 0 |1/ 1 1|01 O]

x§3=[12110111110]

Fig. 4. In the push phase, if x and x’; are sufficiently close, Calvin can make Bob completely uncertain whether the transmitted

codeword was x or x’ by injecting Ber(1/2) noise at positions where xr differs from x’.

Next, define the events F3 = {U # U’} and Ey = {dg(Xg, X}) < 2(p—x)n —en/8}. Ey is
the event that the message picked by the adversary to confuse Bob in the push phase is different
from the one transmitted. Similarly, event F, ensures that Calvin’s remaining flips are enough
to carry out his push attack. Using techniques from section A.2 of [17] and claim 6 in [16], we

can now show the following.

Lemma 8. For y, € Ay, P(E3,Ey | Y =y) > £ (£) °

Proof. Consider sampling ¢ = 12

codewords C; = {XM X® ... X"} each codeword sam-
pled according to the conditional distribution Px|y, -y, (.|yz). Let the messages corresponding to
the codewords be Uy, Uy, ---, U, and let Es5 be the event that {U;, Us, - - - U, are all distinct}
1.e. all of the codewords are distinct. We have from proposition 1, section A.2 from [17] that

for y;, € Ay, for sufficiently large block length n,

1
P(Bs | Yi=y1) = (5) - (1

Recall that £ = (1 — 4(p — ) + ¢/2)n. Conditioning on Fs, by Plotkin’s bound we have
davg(Cr) < 575 (n—10) < 2(p—x)n —en/6, where dy.y(C,) is defined in (9). Thus for y, € Ay,
E(dawg(C:) | Es5, Y = y1) < 2(p — 2)n — en/6. Now, since all of the X@’s are picked
independently, all pairs (X, X)) have identical distribution. Thus, E(du,(C:) | E5, Y =
yi) = B(dn(Xy, X)) | B, Yy = yi) = E(dn(Xp, X}) | Es, Y, = yi). By Markov’s
inequality,

2(p—x)n—en/6<1_i (12)

P(d X(l) X(2) 2p — _ E-.Y; = < .
(da(XR", X5')>2(p—x)n—en/8 | E5, Y, YL)—Q(p—x)n—en/S_ 48




Following the arguments as in the proof of Lemma 6, (11) and (12) imply that for y;, € A,
P(Es, B | Yo=y1) > 5 (5)° m

Now, in the push phase, Calvin injects Ber(1/2) noise at dy(Xg, X5) positions. Conditioned
on Ey, Calvin has at least a budget of (p — z)n — en/64 bit-flips that remain. If ap is the error
vector chosen by Calvin in the push phase, conditioned on E3 and F; we have E(dy(ag,0)) =
(p—x)n—en/16. Further by the Chernoff bound, with probability at least 1 —2~<*")  the distance
di(ag,0) is within 3en/64 of its expected value. Let this event be Ej;. Since E(dy(ag,0)) +
3en/64 = (p — x)n — en /64, the power constraint is respected w.h.p..

When events F, E3, Ey, E5 occur, the probability of decoding error is clearly at least 1/2 since
the receiver cannot distinguish between x and x'. Since P(E;) > 1 — e <" and P(F;) >
1—e ") the bound in Lemma 8 together with the bound P(Fs) > /4 implies for sufficiently

O(1/e)

large n, the maximum probability of error in (1) is at least of the order ¢ , a quantity

independent of n and the proof is complete.

V. ACHIEVABILITY PROOFS

To prove achievability, we resort to a random coding argument. Unfortunately, the classical
random deterministic code ensemble where the (unique) codeword for each message is drawn
independently and uniformly randomly, does not work. A modification of Calvin’s attacks from
our converse proofs in section IV defeats such an attempt. Indeed, consider for instance the
BEC(q)-ADV(p)-FS channel with ¢ = 0. The claimed capacity expression is C"**¢(p, 0) = 1—2p.
Suppose Alice wants to transmit at rate R = 1 — 2p — e. Let ¥ denote the codebook containing
2"% length-n codewords. We argue that the probability a randomly chosen W enables reliable
communication goes to 0 as n — oo. First, it can be shown that with probability approaching 1
as n — oo, randomly sampled W satisfies the following : ¥ contains a codeword x for which

« At least 2"¢/2 codewords other than x share the same prefix (21,2, , TnRr_ne)-

« No other codeword has the prefix (21,2, , TnRine)-

For such a codeword, consider the following attack for Calvin:
o Wait: For the first R — ¢ channel uses, Calvin adds no erasures. Bob (and Calvin) narrow
down the transmitted codeword to a list £ which is of size at least 2"/,
« Block: For the next subsequent 2en channel uses, Calvin erase all of the bits. Calvin who

knows (z1,- -, Tprine) determines the transmitted codeword x.



« Push: Calvin picks X € £, X # x that minimizes dy ((Zpr1nes1s " > Tn)y (TnRinesly,  * Tn)) =
di(xp,Xp) and injects an erasure at channel use j if z; # Z;, until his budget runs out.
Calvin succeeds in confusing Bob between x and x if dy(xp,Xp) < pn — 2en.

The length of the push phase is 2pn and |£]|> 27¢/2. It can be shown that with probability
approaching 1 as n — oo, 2"/? codewords of length 2pn picked uniformly randomly have
minimum distance less than pn — 2en [29]. Thus, the random deterministic code ensemble does
not work. A similar argument can also be made for the BSC(¢)-ADV(p)-FS channel.

Therefore, we will consider instead an ensemble of stochastic codes and show that with positive
probability, a stochastic code drawn randomly from the ensemble enables reliable communication
between Alice and Bob. For both channel models BEC(q)-ADV(p)-FS and BSC(q)-ADV(p)-FS,
we shall use the code ensemble from [15] with reduced rates as given in theorems 1 and 2
respectively. However, note that compared to the ¢ = 0 case, the decoding procedure and analysis
will need to be modified greatly to deal with compounded adversarial and random errors.

Random code distribution: Alice is endowed with a set of private keys or secrets for encoding,
S = {1,2,---,2"}. The encoding procedure is carried out in chunks, each of size nf where
f < 1 is a quantization parameter. The values for S and 6 are set specific to the coding rate
and the channel model during analysis later. Let = be the uniform distribution over stochastic
codes C: U x S — X", ie., for each u € U and s € S, C(u, s) is picked independently and
uniformly randomly. Then each chunk 7, 1 <7 < %, is associated to a stochastic code C; drawn
independently from the distribution =. The transmission rule is composed of maps Cy,Ca, -+ Cy 9
and a decoder.

Encoding procedure: For message v € U and keys s1,S9,---,S 1 the codeword x selected
for transmission is x = Cy(u, s1) 0Ca(u, s3)0 - - -C%(u, s%), where o represents the concatenation
operator. We refer to C;(u, s;) as the i sub-codeword or the i'* chunk and the code C; as the
i'" sub-code. Each secret or key s; for encoding with C; is chosen uniformly randomly from S.

Decoding: The decoding is specific to each of the channel models and described shortly.

Definitions: Define the set 7 = {nf,2n0,---,n —nf} containing indices of the chunk ends.
For some t € T where t = knf), we refer to C; 0Cy0---Cy, as the left mega sub-code w.r.t. t and
Cyy10Co0---C 1 as the right mega sub-code w.r.t. £. Accordingly, the concatenation of the first k
sub-codewords is be referred to as the left mega sub-codeword w.r.t. ¢, and that of the last % —k
sub-codewords is referred to as right mega sub-codeword w.r.t. t. We shall also denote the key

sequences used to encode the left and the right mega-subcodewords as si.p;; = (s1, S2, - - - , Sk)
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).

and s,igp = (3k+17 Skt2,7 "5 S1

A. Achievability for BEC(q)-ADV(p)-FS
Fix ¢ >0andlet R=(1—-2p)(1—¢q¢) —€¢ =(1—2p—¢€)(1 —q), where e =€'/(1 —q). We
show that R is achievable for the BEC(q)-ADV(p)-FS model. We set initially ¢ = ; and S = %.
Decoding procedure: A clean codeword x is said to be consistent with corrupted word y if
x and y agree on the unerased positions. The decoding procedure for the BEC(q)-ADV(p)-FS
channel is very simple. Bob decodes the received word y to the unique message @ for which
there is at least one associated codeword that is consistent with y. If more than one such message

exists, a decoding error is declared. Mathematically, Bob forms the list of consistent messages
L={uecl:3(s1,",518) €S s.t. Ci(u,s1) 0 Cisp(u,s19) and y are consistent},

and decodes successfully when £ has exactly one single message.

Analysis: For the analysis, we work with an alternate two-phase but equivalent view of the
decoding process. This also allows us to give a unified view of decoding for both channel
models. For some t* = k*nf, partition received word y into yi' = (y,...,y) and y» =
(Y¢41, - - - ,n). Decoding can be split into two sequential phases.

o List decoding: Perform list decoding on y! to obtain the list of messages £ that are

consistent with Bob’s reception y!.
L={uclU:3 (s1, -, 8) €S st Ci(u,81) 0 Cplu,s-) and y! agree}.

« Unique decoding or list refinement: Refine the list by removing all messages in £ that are

not consistent with yp. ;.

L ={ueL:3 (spe11, -, 510) € SYI7F sit.
Cro+1(u, spet1) © -+ Cryo(u, s1/9) and yj. ., agree}.

If exactly one message, say 4, remains in £ after refinement, the decoder outputs . If the
refined list £¢/ does not contain exactly one message, a decoding error is declared. Decoding
is successful if & = u*, the true message transmitted by Alice.

The proof involves showing that there is a value of t* € 7 that Bob can choose for which

decoding succeeds. When ¢ = 0, as shown in [15], ¢* is chosen as a function of the number of
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(purely adversarial) erasures A\{. observed in y up until time ¢*. Specifically, Bob chooses t* as

the smallest integer that satisfies the so-called list-decoding condition
AL <t (1—0)— ((1—2p) —e)n (13)

and the energy bounding condition

(n—t*)(1 — «9)'

np — A\ < 5

(14)

Condition (13) ensures the size of £ is small (at most a constant) while condition (14) ensures
the fraction of erasures that occur in yj. , is small enough to perform list refinement. When
q > 0, we modify conditions (13) and (14) appropriately for the BEC(q)-ADV(p)-FS channel.
Choice of t* when ¢ > 0: Let A\? be the number of erasures injected adversarially by Calvin
up until ¢ and let \; denote the number of erasures observed by Bob up until time ¢, which
includes contributions both from Calvin and the BEC(q). Bob chooses t* as the smallest integer

that satisfies simultaneously the modified list-decoding condition

and the modified list refinement condition

(n—t)(1 - g)(1 - 0)

5 (16)

np(l —q) — (A= —qt") <

From Lemma 3, if Calvin adds A{. erasures up until ¢*, the total number of erasures A that
Bob observes is approximately A\ ~ A% + ¢(t* — A% ). On making this substitution we see that
t* satisfying (15) and (16) is nearly the same as that satisfying (13) and (14) i.e. it is sufficient
to choose t* only as a function of purely adversarial erasures. However, since Bob has no way
of knowing this, he works with the quantity \;« — ¢t*. Note that since ¢t* is an estimate of the
number of erasures added by the BEC(q), we can interpret \;x — ¢t* to be an estimate of the
number of adversarial erasures that do not coincide with random erasures.

Having selected t*, Bob can then finish decoding using the two-phase decoding process
described previously to successfully recover w.h.p. the transmitted message. We will now prove
this. First, by Lemma 3, for § > 0, the total number of erasures that Bob observes at time
t = knf satisfies Ay € [N + (t — AY)(q — 6), \¢ + (t — A¢)(q + 0)] with probability at least
1 — 2720°") Thus, Bob’s choice ¢* satisfies w.h.p.

A — qt* = Mo € [ML(1— g+ 6) — 68", M8 (1 — g — &) + 0t*]. (17)
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Let Z = [M\a(1—q+ ) — 0t*, A& (1 — ¢ — §) + 0t*]. By a similar analysis as in [15, Claim B.3],
we show in Lemma 9 that when 0 > 0 is small enough, a t* € T exists that satisfies both (15)

and (16), for any realization of A\ € Z. The proof of Lemma 9 can be found in Appendix A.

Lemma 9. We can choose a 0 > 0 such that the following holds : for any strategy selected
by Calvin, with probability at least 1 — 2-n)  there exists a t* € T such that both of the

following conditions hold:

—t")(1—-q)(1—-14
Aee — qt* <t°(1 = q)(1 = 0) — Rn, and np(1 — q) — (A — qt") < =X 2 208,
Calvin’s unused budget: We now give an upper bound on the number of adversarial erasures
that Calvin is left with to add on to the right mega sub-codeword. Since the total budget is
pn, the remaining number of erasures is pn — Af. From (16) and (17), for any 5\,5* € Z, we
("_t*;(l_e) + é(tl__/\f*). Since we are proving an achievability result and 6 is

representative of the back-off from the capacity expression, we can choose 6 as small as we

have pn — A\ <

would like. Choosing 6 sufficiently small so that for instance § = }L% < 11—6(1 —q)6?,
we get the bound
1 70
— A% < -t =—=]. 18
st <00 (3 1¢) (13)

List decoding: We show that with probability at least ( — %) over the code design, the size

of the list of messages £ obtained by Bob in the list-decoding phase is at most a constant,

specifically, |£|< C/e for some constant C.

Lemma 10. (Modified from [15, Claims B.5-B.7]) Let t* € T where t* = k*nf. For sufficiently
large n, with probability at least (1 — %) over the code design, the left mega sub-code Cy o Cy o
-+ - Ci is list decodable with list size L = O (%) for \i« erasures where t* and )\« satisfy (15),

e, \po —qt* <t*(1 —q)(1—6) — Rn.

Proof. The proof follows exactly the analysis in [15, Claims B.5-B.7]. The only additional step

is to verify if the bound 1 — % — 7:—5” — % > g holds. This is indeed the case as we have
)\t* nR S 0 (a) 1 92 6 ® 62 6 ©
l-———— - =—=—(1- X —-nR)———=-2>201—-¢)———=2>0
e U S T S A s

where (a) follows from the substitution S = %, (b) follows from (15) and (c) holds by choosing

6 sufficiently small. O
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List refinement: For some chunk end ¢t € T where ¢t = knf, y. = (y1,y2,---, ) and
Yii1 = (Y41, -, yn) are the left mega received word and the right mega received word w.r.t.
t respectively. Let u* be the true message chosen by Alice for transmission. Given any list of
messages £, we define £(u*) to be the set of all possible right mega sub-codewords w.r.t ¢ for

each message in £\ {u*} i.e.

L(u*) = {Crs1(u, Sp41)0--C (u,s%) cu € LouF ut, (Spqr, 00, 81/0) € S%_k}.

1
For convenience, we enumerate £(u*) containing codewords of length-(n — ) as L(u*) =
{w1, W2, -, W@ }. The right mega-subcodeword for the true message is X}, (u*, Spight) =
Cra1(u*, Spr1) 0Crao(u®, Sgio) o -C%(u*, s%), which we emphasize is a function of the specific
realization of s,g~(sk+1, -, s1) during encoding. For any list such that [£|< O (¢), we would

like our code design to satisfy the following distance condition

1 30
di (X1 (U", Spight), Wj) > (n —t) (5 - §> Vw; € L(u"). (19)

Equation (19) is a key property that guarantees successful decoding. It ensures that the right
mega sub-codeword for the transmitted message is sufficiently far in Hamming distance from the
right mega sub words for any of the other messages in list £ that is obtained by Bob during list

decoding. We show that (19) indeed occurs w.h.p., for almost all possible sequence of secrets

Sright-

Lemma 11. (Modified from [15, Claims B.11-B.14]) Let C' > 0 be an arbitrary constant. Then,
there is a ngy such that for n > ng, with probability at least 1 — 27", a code drawn from our
random ensemble satisfies the following property : for every chunk end t € T, for every message
u*, and every list L of size at most C/e, we have that (19) holds for at least a (1 — 27"5/4)

portion of all possible secret sequences S,igh:.

Proof. Fixing a sequence of secrets s,;gnt = (Sg+1,- -, S 1 ), message u* and list £, we first show
that (19) holds w.h.p.. Let radius r = (3 — 22). We surround each word w; € L£(u*) with a
Hamming ball of radius 7 and the union of all the balls is the so called forbidden region.

For (19) to hold, we must have that X}, ; (u*, s,4n:) is outside all these balls, i.e. outside the
forbidden region. Due to the code construction, X}, (u*, Syign¢) is uniformly distributed over all

possible binary vectors of length (n —t) and thus it is enough to bound the size of the forbidden
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region. If the size of the list £ is L, the size of £(u*) is at most £.25(5%9). Hence the number
of codewords in the forbidden region is at most

L.29Ga) 3 (" - t) < o-0(S2Eha(3-2))

J

Jj=0

#) <

From the Taylor expansion of function h () in a neighborhood of 1/2, we can show hs (3

962
L= 32In(2)

logy L S 1 30 logy L S 96>
(n—t+9+h2<2 8>)<(n—t+9+ L)) <t

Hence, the total number of codewords in the forbidden region is at most 2(*~91=" and we have

Let n = %. For sufficiently large n, we have

9(n—t) _ 9—(n—t)(1-n)
P(x,ﬁrl(u*, Sright) 18 outside the forbidden regi0n> > I =1 —2 (=0,

From here on, the rest of the steps in the proof follow claims B.12-B.14 in [15]. O

Success of decoding: From the preceding discussion, there exists a code in our random

ensemble that satisfies the following simultaneously (irrespective of Calvin’s strategy):

o For t* selected according to (15) and (16), the size of the list £ obtained by Bob during
list decoding is at most C'/e for some constant C. Further, the transmitted message u* is

inside list L.

« For almost all possible realizations of secret sequences s,q,: (at least a fraction 1 — 2—ns/4

of them), the right mega codeword corresponding to message u* denoted X} | (4", Sright ),

is at least (n — t*) (3 — 22) away in Hamming distance from any codeword in £(u*).

Recall from (18) that with probability at least 1 — 9-%n)  Calvin has at most pn — A <

(n —t%) (% — %) erasures that remain. Consider any arbitrary codeword w; € L(u*) that is
associated with message u' # u*. Let Z° be the set of indices where w; and X} (u*, s,ignt)
disagree. The only way that Bob is unable to distinguish between w; and x}. | (u*, Spigne) and
hence makes a decoding error of at least 1/2 is when indices Z¢ in yj._, are all erased due to
Calvin and the BEC(g). In other words, if 7 is the set of indices of erasures in y;. ,, we must
have J D Z¢. An example is illustrated in Fig. 5.

Now clearly, if Calvin wishes to confuse Bob between w; and xj. H(u*,sm-ght), his best
strategy is to add all erasures at positions Z¢. However, this still leaves at least (n—t*) (% — %9) —
(n—t*) (3 = %) = (n—t*)L positions where w; and X}, | (u*, s,;41:) disagree but no adversarial
erasures are added. For Bob to be confused between w; and X?H(u*, Sright), the BEC(q) must

erase all of the (n — t*)% bits that Calvin could not erase. However, this event occurs with
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Fig. 5. In (a), the set of indices in Bob’s observation y;x ; where xi% ; and w; differ are all erased. Therefore, Bob cannot
determine if Alice transmitted x% ; or w;. In (b), successful reception of even one bit where xjx ; and w; disagree allows

Bob to disambiguate between x;x 1 and w;.

probability q(”_t*)l% < 27m%") Thus, the probability of the error event that Bob cannot
distinguish between y;. , and w; is exponentially small. Repeating the same argument for
any w; € L(u*), we have that a decoding error occurs with exponentially small probability.

Thus, Bob succeeds in determining the transmitted message u* and the proof is complete.

B. Achievability for BSC(q)-ADV(p)-FS

Let € > 0 such that p’ = p+% < 1. We also set 6 = Lflp/), S = %. To show that C7%(p, q)
in Theorem 2 is the capacity, we let the rate be R = C/(p/, q) — € and prove that for any 6§ > 0
and every sufficiently large block length n, a randomly sampled stochastic code C with rate R
satisfies P.(C) < § with a positive probability.

Decoding procedure: Recall that the received codeword can be written as y = x$adz where
a = (a1, a9, - ,a,) is the adversarial error vector added by Calvin and z = (21,22, -, 2p)
is the error vector produced by the BSC(q). In accordance to the power constraint, we have

dy(a,0) < pn. Positions ¢ where a; = z; = 1, symbols z; remain unflipped.

To describe the decoding process, we need to define certain quantities. For a chunk end ¢t € T,
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let p, be the normalized number of bit-flip attempts used up by Calvin up until time ¢ i.e.

weight{(ay,as,---,a;)}
Pt = ; .

Note that since p; only captures adversarial error injections, the word received up until time ¢
may have more or less effective bit-flips than ¢p;. For the purposes of decoding, Bob maintains
a reference p; which is approximately defined as follows: p, = % (p — i) + }l for t > n(1 — 4p)
and p, = 0 for ¢t < n(1 —4p). It can be seen that p; in increasing in t € [n(1 — 4p), n| reaching
pn = p as is expected. For a rigorous analysis, certain twiddle terms need to be added to this
definition as is explained later. We shall refer to p; as the true trajectory and p; as the reference
trajectory for adversarial bit-flip attempts.

The overall decoding process is iterative potentially involving several decoding attempts. For
some chunk end t € 7 where t = knf, yi = (y1, v, -, y) and y7,; = (Yes1, - -+, Yn) are the left
mega received word and the right mega received word w.r.t. ¢. Similarly, x} = (z1, 29, - -, x;) and
X1 = (%441, -+, xy,) are the left mega transmitted codeword and the right mega transmitted
codeword w.r.t. £. A decoding attempt w.r.t £ consists of two phases - a list-decoding phase
followed by a unique decoding phase.

List decoding: In the list decoding phase, Bob identifies the set of messages for whom there

is at least one associated codeword whose left mega sub-codeword w.r.t. ¢ is within Hamming

=

distance t(p; ¢+ 01) from y!, where §; = 5=

is a small constant. In other words, Bob performs
list-decoding on the left mega sub-code w.r.t. ¢, i.e. C; 0 Cy 0 - - - Ci, with a list-decoding radius
equal to 75 = t(py % ¢ + 01). Let the list of messages obtained in this phase be denoted by L.

We have,
L={uel:T(s1,",5) € S* s.t. dp (Cl(U, s1)0 - 'Ck(quk%}’D <t(pexq+1)}

Unique decoding: In the unique decoding phase, Bob forms the set A of all possible right

mega sub-codewords w.r.t. £ (one for each possible sequence of secrets si1, Sg42, ", S1/0) for

each message u in the list £, i.e.,

A= {Cri1(u, sps1) 0 Cryo(u,s9) 0+ -C (u,s%) cu € L, (Skq1, 00, 51/0) € S%_k}.

1
7
He then considers Hamming balls of radius 7ynigue = (n—t) (% + @) = (n—t) <i *xq — @) ,
each centered at a right mega sub-codeword from A.

o If y},, lies within exactly one of the balls, the decoder outputs the message v’ corresponding

to its center, i.e., ['(y) = v’
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o If y’; lies in more than one ball, a decoding error is declared.

o Ify , lies outside all the balls, Bob picks the next chunk end in 7 and re-attempts decoding.
As we will show, depending on the adversary’s attack strategy and the noise due to the BSC,
there is a value of ¢ = ¢t* for which the decoding-attempt successfully recovers the transmitted
message. However, Bob does know this value a priori. Bob begins by first identifying the smallest
value of t > n(1 — 4p’') that coincides with a chunk end in 7, denoted ¢, € 7, and performs
a decoding attempt w.r.t ¢y. Clearly, to = min{t: ¢t >n(l —4p'),t € T} = P_T‘lpﬂ nf. If no
message is returned, he re-attempts decoding with the next chunk end, ¢ = 5 + nf, and so on,
each time picking a chunk end from the set 7' = {to,to + nf,---,n — nf} until a message is
returned. At any point in the decoding process, if y,; during unique decoding lies in more than
one ball, a decoding error is declared and decoding terminates. If all decoding attempts fail to

return a message having reached the end of the codeword, again a decoding error is declared.

Analysis: We begin our analysis with the following useful lemma.

Lemma 12. Let p,q € [0,1/2) and ~ be a small positive constant such that v(1 —2q) < 1/16
and p+~ < 1/2. Then, we have the inequality hy ((p +v) * q) < ha(p*q) + 2./7, where recall
vxy=2z(l—y)+y(l—2).

(a) (b) (©)
Proof. Note hy ((p+7) *xq) < ha(pxq)+27v(1—2¢) log, <m> < ha(p*q)+2/v(1 — 2q) <
ha(p*q) + 2,/7, where (a) follows from the inequality ho(a +b) < ha(a) + 2blog, (1) (see for
example [15, Lemma A.5] for a proof), (b) follows from the fact that x log, (1) < +/x when

xT

x < 1z and (c) is true because (1 —2¢) € (0, 1]. O

Reference trajectory p,: We now give an exact definition of p,, the reference trajectory for
adversarial bit-flip attempts. It suffices to use the same p; as defined in [15] where no BSC was

present (¢ = 0) i.e. the decoder sets p, independent of q.

Definition 1. (Definition of p;) Let t € T be some chunk-end and recall p’ = p + %. Define,

=9 — %. For t < n(1 —4p'), p, = 0. For t > n(1 — 4p’), p, is defined to be

Tt 62

+ ;
Oé(p,,ﬂft) 16052(]?,,1'15)

~

Dt =

where a(p',z;) =1 —4(p' — x;) = 2

E.
In the following lemma, we prove that p, satisfies two key technical conditions, the so-called

list decoding condition given by (20), and the energy bounding condition given by (21).
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Lemma 13. (Modified from [15, Claim A.6]) For any t € T such that t > n(1 — 4p'), the

reference trajectory p, satisfies

R n
t(L=ha(pexq)) = 5 2 nR (20)
and
n—tp, < (n—t) roe 1)
b= the = 17 16)

Proof. Note that (21) follows directly from [15, Claim A.6] as it does not involve ¢q. We only
need to verify that (20) holds. Diving (20) by n and noting that a(p’,z;) = t/n, we need to
show that a(p', z¢) (1 — ha (py * q)) — 5 > R. Substituting in the value of p;, we have

2
Tt €
/ 1—h -
ole', 2 ( i <(a(P’7$t) i 16@2(]?’,%)) *q>)
(a) x € ‘
S / 1—h ot 2% =] — =
= o ( 2 (a<p',xt> *q> 16a2<p’7ft>> ’

> min ap', z;) <1—h2 (%*q)) —e=C(p,q) —e=R,

2+ €[0,p'] p/a th)

proving the result, where inequality (a) follows from Lemma 12. [

N

Correct decoding point ¢*: From [15, Section A.3], for any trajectory p; chosen by Calvin,
Bob’s reference trajectory p, intersects p; at some point before the second to last chunk end. In

particular, there is a t* € T’ = {tg,to + nb,---,n — nb} such that

Vit € {t07t0+n67"'7t* _n9}7 Dt >ﬁt7 (22)
D < Pprs 23)
and
" 1 €2
vt € {to, -, t"}, pn—tp, < (n—1t) 1716/ (24)

As we will argue later, t* defined above turns out to be the correct decoding point, where the
two phase decoding attempt succeeds in finding the true message.

Key code properties: We now show that a code drawn at random from our ensemble satisfies
with a positive probability two key properties.

List decoding property: This property will be used to prove that the size of the list obtained

by Bob in a decoding attempt is at most a constant O(1/¢). We state it as the following lemma.
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Lemma 14. (Modified from [15, Claims A.15-A.16]) Suppose t € T' = {to,to+nb,--- , n—nbh}
where t = kn0 satisfies (20), i.e. t (1 — hy (P * q)) — % > nR. Then, for sufficiently large n,
with probability at least (1 — %p) over the code design, the left mega sub-code C10Cy o0 ---C
is list decodable with radius r =t (ﬁt *q + %) and list size L = O (%)

Proof. The proof follows the analysis in [15, Claims A.15-A.16]. The only additional step is to

2
1_h2(pt*q+6_)_n_R_ﬁ>g

verify the bound

256 t 0 — 4
Since 0 = 62(%%’”, S = %, from Lemma 12 and given that (20) is true, we have
1—h2<ﬁt*9+6—2>—n—R—@ZE—n—02—2 iZE
256 t to 2t 8t 256 — 4
as desired. []

Distance property: For a decoding attempt at ¢t € 7, consider the list of messages £ obtained
by Bob in the list-decoding phase. Let ©* be the true message chosen by Alice for transmission

and recall, £(u*) is the set of all possible right mega sub-codewords w.r.t ¢ for each message in

L\ A{u*} ie. L(u*) = {Cry1(u, Sg41) 0" ~C%(u, 35) cu € Lou# u, (Spy1, 05 51/0) € S+,
Enumerate £(u*) containing codewords of length (n—t) as L(u*) = {wq, Wa, -+, Wiz }. The
right mega-subcodeword for the true message is X7, ; (u*, Syight) = Ci1(U*, Spp1)0- - Cs (u*, s%).

We would like our code to satisfy the following distance condition

1

6
di (X1 (U*, Spignt), Wj) > (n —t) (5 - 5) Vw; € L(u"). (25)

Equation (25) is a key property that guarantees successful decoding. It ensures that the right
mega sub-codeword for the transmitted message is sufficiently far in Hamming distance from
the right mega sub words for any of the other messages in list £. From [15, Claims A.20-A.23],
(19) indeed occurs w.h.p., for almost all possible sequence of secrets s,;4,.. We state this as the

following lemma.

Lemma 15. ( [15, Claims A.20-A.23]) Let C' > 0 be an arbitrary constant. Then, there is a ng
such that for n > ng, with probability at least 1 — 27", a code drawn from the random ensemble
satisfies the following property : for every chunk end t € T, for every message u*, and every
list L of size at most C/e, we have that (25) holds for at least a (1 — 27"5/*) portion of all

possible secret sequences S,ign.
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Success of decoding procedure: We are now ready to argue that the iterative decoding
process succeeds in finding the true message with high probability. Fix a stochastic code C =
CioCyo0---Cyyg for which both the list decoding property and the minimum distance property
are satisfied, which we can do thanks to Lemmas 14 and 15. We will show that ¢ = ¢* as defined
by (22), (23) and (24) is in fact the correct decoding point i.e. at t*, the list £ obtained in the list
decoding phase contains the true message which is then returned in the unique decoding phase.

Success of list decoding: When ¢ = t*, we have p;. > ps+. Thus, the number of adversarial bit-

flip attempts injected onto y* , the left mega received word w.r.t. t* is at most * . From Lemma
4 then, we have that dy (x!,y!") < t* (ﬁt* *xq+ %6) with probability at least 1 —2~2(")_Since
the list-decoding radius is selected to be 7, = t* <g§t* *q + %), the transmitted message is
indeed in the list £ with high probability as required.

Also note that when t < t*, i.e., for ¢t € {to,to +nb,---,t* —nf}, we have by the definition
of ¢* that p; > p;. By a similar martingale argument as in Lemma 4 then, y!, the left mega
received word w.r.t. ¢, lies w.h.p. outside the Hammming ball B(x}, 7). In other words, when
t < t*, the transmitted message u* is w.h.p. not in the list £ obtained by Bob.

Success of unique decoding: For t; < t < ¢*, our code for almost all key sequences s,gn

satisfies

1 6

dy (X?H(u*, smght),wj) > (n—t) (5 - 5) Vw; € L(u"), (26)

where recall that w,’s are the right-mega subcodewords corresponding to messages in L ex-
cluding u*. Further, we have that Calvin has at most (n — t) (}1 — %) bit-flip attempts left
to inject onto x}', ;. Recall also that Bob considers Hamming balls of radius runigue = (n —
t) (% *q— @) that are each centered at right-mega subcodewords in L.

When t, < t < t*, the true message u* ¢ £ while at t = ¢* we have that u* € L. At
t = t*, from Lemma 4, we have that for any adversarial strategy, d(xj,,,y% ) < (n —
t*) ((}l - i—;) *q+ 71>, with probability at least 1 — 27201 Choosing ~; = 1%62(1 — 2q),
we have d(x%.,,¥%11) < Tunigue- Thus, yii., is indeed w.h.p. inside the Hamming ball
B(X}. 1 s Tunique)- Next, consider any ¢, < ¢ < t* and w; from the set L(u*). We argue that
as required, no matter what Calvin does, y7,, is outside B(w,,r). Let Z be the set of indices

where w; and X}, ;(u*, Srign¢) agree and Z°¢ be the set of indices where they disagree. For a

vector v, let (v)z denote v restricted to indices from Z. We have that

dH<X?+17 Y?H) =dpn ((X?-&-l)Iv (Y?H)I) +dy ((X?-i-l)fc? (Y?H)ZC) (27)
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and

dg(wj,yi) = dg (W))z, (yi)z) + da (W))ze, (¥70)ze) - (28)

Now, Bob decodes y7,, incorrectly to w; when dp (X} 1, ¥ 1) > Tunique and dg(W;,y7,1) <
Tunique- Calvin’s desire is then to inject his remaining bit-flip attempts in such a way that y}', , is
as far away as possible from x7', ;, and at the same time, as close as possible to w;. Clearly, the
best strategy is to only inject bit-flip attempts onto (x},)ze. Then, since (x}' ;)7 only suffers

corruption due to the BSC(q), by the Chernoff bound we have

Z1(q = m) < dir ((<Fi1)z. (¥70)7) < 1ZI(g+m) (29)

with probability at least (1 — 2-%(7i")). By Lemma 4 for Z¢, we also have

(n—t) (1 -%)
Z-]

dg ((X?H)ZC» (Y?H)IC) < |Z°| *q + 12 (30)

with probability at least (1 — 2_9(’75")). By definition of Z and Z¢, (29) and (30) then imply that

dy ((Wj)L (Y?H)I) > |Z|(q —m) (31

and

E2
(et (t-%)
— *
|Z¢|

dir (W))ze, (Yi1)ze) = |T°] g—n | . (32)

Consider the worst case when (26) holds with equality, ie. [Z°= (n —t) (3 — £), and |Z|=

(n—1t) (3 +9). Since (n—1t) <% - %) < 1. there is a constant §, > 0 that is only of ¢, ¢ and

p such that %*q = %__é *q = (% — 51). We have then from (28) that dyy(w;,y}", ) >
Z|(q — m)+|Z°| (3 + 61 — 772).2\7\23 have also from (29) and (30) that dpr (X}, 1, y71) < |Z](g +m)+
1Z| (3 — 61 + 12). Now, choosing for instance 7, = 15 = 01 /4, it is easy to check |Z|(g + m) +
|IC|(% — 01 + 772) < Tunigue < |Z|(q—m) + |IC|(% + 1 — 7]2) which implies that w.h.p., we
will have dy (X}, 1, ¥ 1) < Tunigue and dg(W;, ¥ 1) > Tunique. The argument holds for any
w; € L(u*). Summarising, we have that w.h.p., no matter the strategy selected by Calvin,

o when t; < t < t*, the transmitted message u* is not in the list obtained by Bob, and

d(y7i1, Wj) > Tunique for all w; € L(u*).
o when ¢t = t*, the transmitted message u* is indeed in the list obtained by Bob. Further, we

have d(y7. 1, %X} 1) < Tunique and d(y7, 1, W;) > Tunique for all w; € L(u*).

Thus, the iterative decoding procedure used by Bob succeeds in finding the true message u*.
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VI. CONCLUSION

Motivated by security aspects for 5G networks and beyond, we considered the problem of

communicating a message reliably through a BEC(q) or a BSC(g) with an adversary present

who causally snoops in on both communicating parties and injects up to pn additional erasures

or flips respectively. We gave a tight capacity characterization for each case. There are several

interesting questions that remain open. Our achievability results prove only the existence of

capacity-achieving stochastic codes. It is not even known whether stochastic codes are necessary

to achieve capacity. In either case, it is desirable to find practical coding schemes with efficient

encoding and decoding. One interesting research direction also is to characterize capacity when

Calvin cannot snoop on Bob, i.e., feedback snooping is absent. Another is to characterize capacity

when Alice has feedback and employs closed-loop encoding.
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APPENDIX A

PROOF OF LEMMA 9

From (17), we have that with probability at least 1—2-20*) X, = \p. —gt* € [\% (1—q+6)—

It*, M (1—q—6)+6t*]. We prove the lemma by showing that a small enough § > 0 can be set so
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that a ¢* satisfying both conditions (15), (16) exists at the extremes A = AL (L—q)—=0(t" =A%)

and A\ = AL(1—q) + (¢ — A%). In the first case, we need to prove existence of ¢* such that

0 )
nl—2p—e)+ Ao (1+—— | +0"<t" 1+ —— (33)
l—¢q l—¢q
and
(n—1t*)(1—0) 0
-2\ < — t— AL). 34
First, choose a t* < n—nf in T such that t* > n(1—2p—e)+ A% (1 - q) (6 - —q) (n—nf).
2 27%
This ensures that (33) holds. Rearranging (34), we also require t* < n(i- i)t L (+e) . Hence,

T+ —20
(1-q)(1-0)
to prove existence of ¢* simultaneously satisfying both required conditions, it is sufficient to show

n _ 2p 2Ag* 5
that ( (1 11iM+1q)> — (n(l —2p—¢€)+ N\ (1 + ﬁ) + <9 - ﬁ) (n — n@)) > nb.
. . 25
Multiplying by 1 + T8

and simplifying, the coefficient of A%, in the above inequality

1-6)
becomes (1 + %q) (ﬁ —1- %) which is positive when § < £(1 4 6)(1 — g). For
such a choice of ¢, it is sufficient to show
1/1-6 ) 2
< - —— 204+ 607+ —— |1 -0 - ——| ). 35
res (557) (- i [0 5) o
Since € = 46, choosing § < min {%, s(1+0)(1— q)}, we will have (132) (e — 20 +
6 + —[1 —0— ]) > 1 so that (35) always holds for any p € [0,1/2) and we are done. In
the second case, we need to prove existence of ¢t* such that
(1-2 )+ AL (1 0 +O0tr <t (1 0 (36)
n(l—2p—e 1= — - —
P ' 1—¢ - 1—¢
and
n—t)(1-40 o
np — Af < ( ;( ) + l_q(t*—)\f;). 37)

Proceeding like earlier, choose a t* < n—n# in T such that t* > n(1—2p—e)+ A% (1 - L) +

(0 2;) (n = ), ensuring (36) holds. For (37) to hold, we need t* < n(1-2)+ 25 (1o 58)

-
> 0 for§ < 1(1—6)(1—¢q), we will require thatn (1 — 2&)+

) . 25
Since the denominator 1— (==

1-0
2,\a “

(1 — —q) - (n(l —2p —€) + A\ (1 — %q) + (9—1— %q) (n — n9)> > nf. Now, the
coefficient of A\{. in the above expression is 1+9 (1 — —> which is always positive. Thus, we
only need p < 1 (15%) <e — 20 + 6% — —(1 — 9)) Proceeding exactly like before and choosing

b < (1-— q) 5 this inequality always holds. Backtracking the proof steps, if we choose § =

(1-)0*(1-0)

% Trag—gz - all of the required conditions are satisfied and the proof of this lemma is complete.
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APPENDIX B
FORrRM OF C/'"(p, q)

Fix a ¢ € [0,1/2). The optimization problem (5) in Theorem 2 is ming<,<, f(z) where
f(z) = (1 —4p+ 4x) (1 — ho (%*q)). When p = 1/4, f(z) = 0 at x = 0 and hence
C/%(p, q) = 0 when p = 1/4. Differentiating the objective function f(z) we get 4 + (2¢ +
1) log, (W) + (3 —2¢) log, (1_4”“%_1(1“‘7)_‘1(1_4@) = 0. Solution z* has the form

1—-4p+4x 1-4p+dzx
z* = =2 where « satisfies 4 + (1 + 2g) log, (1?&1;&)) + (3 —2q) log, (aJr;]E:;a)) = 0. Since
0 <z < p, we must have =2 < p = p> Tia = Pq- Thus, for p € [py, 1/4], 2" = %
where p, satisfies
44 (1 +2q)log, (pg * q) + (3 — 2q) log, (1 — pg* q) = 0, (38)

and the capacity expression becomes C/1(p, q) = 11:4212 (1 = ha(py x q)). Thus, C¥(p, q), p, <
p < 1/4 is a straight line that intersects the p-axis at p = 1/4. For p € [0, p,|, the minimizer is
x* = p and the capacity expression is C/%(p, q) = 1 — hy(p*q). Next we show that, C/1"?(p, q),
pg < p < 1/4 is in fact the tangent to the curve 1 — hy(p % q) at p = p,. Consider the line
L(p) that is tangent to 1 — ho(p % ¢) and passes through (1/4,0). Its equation can be written as
L(p) = v(1 — 4p) where ~ is a constant. Suppose that L(z) intersects 1 — hao(p * q) at p = p,.

To complete the proof, it suffices to show that p, = p, i.e. p, satisfies (38). Since L(p) is the

tangent to 1 — ha(p, q) at p = p,, we have %L(p))p:p~ = dip(l — ha(p*q)) s’ which gives
Dg*q
—4y=(1—-2q)1 — . 39
v=(1-2q) 0g2<1_p~q*q> (39)
We also have
L(pg) =1 = ha(pg * q) = v(1 — 4py). (40)

Eliminating -y from (39) and (40), p, satisfies the equation (1—2¢) log, <%> =—4 (%W).

Rearranging the terms, this simplifies to 4 + (1+2¢) log, (p, * ¢) + (3 —2¢) log, (1 — p; *q) =0

which is the same as (38). Hence, p, = p, and we are done.



