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ABSTRACT

We study the problem of batch steganography when the senders use

feedback from a steganography detector. This brings an additional

level of complexity to the table due to the highly non-linear and

non-Gaussian response of modern steganalysis detectors as well

as the necessity to study the impact of the inevitable mismatch

between senders’ and Warden’s detectors. Two payload spreaders

are considered based on the oracle generating possible cover images.

Three different pooling strategies are devised and studied for a more

comprehensive assessment of security. Substantial security gains

are observed with respect to previous art ś the detector-agnostic

image-merging sender. Close attention is paid to the impact of the

information available to the Warden on security.
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1 INTRODUCTION

Steganography is the art of hiding information in innocuously look-

ing objects called covers while steganalysis aims to detect evidence

that steganography took place. The main bulk of work in this field

concerns digital images and focuses on designing embedding al-

gorithms and detectors that perform the best in a single image

for a fixed relative payload. In practice, however, the sender can
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adopt a smarter strategy and distribute the communicated message

across multiple covers to decrease the chances of being detected.

On the other hand, the Warden is also free to combine evidence

from multiple images to decide whether steganography is taking

place.

Batch steganography and pooled steganalysis have been origi-

nally introduced in [12] together with the so-called shift hypothesis,

which claims that the embedding rigidly shifts detector outputs by

an amount that depends on the embedded payload size. The first

batch strategies [13, 14, 17], which focused on non-adaptive hiding

schemes and quantitative detectors, concluded that the payload

should either be concentrated in as few covers as possible or spread

evenly.

In [14], the author studied pooled steganalysis under the as-

sumption that the Warden knows the chunk sizes but not their

assignment to individual images. In a different setup [16], a lo-

cal outlier factor was used to identify the steganographer from

among a large set of users. The topic of learning optimal pool-

ing functions appeared in [? ]. Batch steganography with modern

content-adaptive embedding algorithms and three ad hoc batch

algorithms was studied in [19]. Adversarial embedding [22] was

extended to batches of cover images in [18] but performed poorly

against an adversarial-aware Warden. In [10], the authors consid-

ered batch steganography in JPEG images of different qualities. The

optimal size of the bag for Gaussian batch embedding was studied

in [21] without considering pooled steganalysis.

The next section explains the reasoning for the setup of batch

steganography and pooled steganalysis studied in this paper. To fur-

ther motivate our work, in Section 3 we demonstrate that the often

adopted shift hypothesis is no longer valid for content-adaptive em-

bedding, a fact that holds for the previous generation of detectors

built around rich models and linear classifiers as well as modern

detectors built as Convolutional Neural Networks (CNNs). In the

same section, we show that detectors exhibit highly non-Gaussian

distribution on covers. Section 4 contains a formal mathematical

description of three pooled detectors considered in this paper. Two

novel detector-informed batch steganographic techniques are de-

scribed and theoretically analyzed in Section 5. The setup of our

experiments, including implementation details, is explained in Sec-

tion 6. The results of all experiments together with their interpreta-

tion and discussion appear in Section 7. The paper is concluded in

Section 8.



2 BASIC SETUP

In batch steganography, two actors, Alice and Bob, exchange mes-

sages hidden in digital images. To avoid being detected by an ad-

versary (the Warden), they use modern content-adaptive spatial-

domain steganography and adjust the payload size embedded in

each image to decrease the risk of being detected. The Warden com-

bines the outputs of a single-image detector applied to all images

exchanged by Alice and Bob in an effort to discover the use of a

steganographic channel and not necessarily identify which images

are cover and stego.

This problem of batch steganography and pooled steganalysis

may accept many different forms depending on what information

about the cover source, the steganographic method, the payload

spreading strategy, and possiblyWarden’s detector is available to all

actors. Following Kerckhoffs’s principle, we are mainly interested

in the situation when the Warden has full knowledge of algorithms

used by Alice and Bob but not any shared secret or specific data used

by the senders. In particular, we assume that the steganographers

and the Warden have access to the same source of covers, which

they can use in any way to design a payload spreading strategy

as well as build detectors. We will also assume that the Warden

knows the steganographic method that might be in use and the

payload-spreading strategy. For example, if the steganographers use

feedback from a detector to determine the size of payload chunks

embedded in each image, the Warden can train the same detector

architecture on her end but it will ultimately be a slightly different

detector because of different training data. Moreover, the payload

chunk sizes will also generally depend on the cover images to which

the Warden does not have access.

Having said this, we will at times consider a payload-aware

Warden that has access to the exact payload chunk sizes that Alice

sends as a form of a worst case scenario and to evaluate the impact

of the lack of such precise knowledge.

While the steganographers may opt for a spreading strategy that

is free of any assumptions about Warden’s detector, such as the

Image Merging Sender (IMS) and Detectability / Distortion Limited

Senders (DeLS / DiLS) considered in [19], they are free to guess and

make use of a detector that is likely to be used by the Warden or

any other detector. The specific assumptions made in this paper

will be clarified later based on discussions and other important

experimental facts concerning content-adaptive embedding and

modern steganalysis detectors.

3 NEW CONTEXT

The problem of batch steganography and pooled steganalysis has

been revisited many times throughout the history of this field. In

this section, we challenge some of the assumptions made in prior

art to motivate our approach.

In [19], an argument based on the Central Limit Theorem (CLT)

was made that, on cover images, the outputs of a single-image de-

tector that uses high-dimensional rich models and a linear classifier

is zero-mean Gaussian. Leveraging the shift hypothesis, the authors

further assumed that the embedding merely shifts this distribution

by an amount that depends on the embedded payload. The Gaus-

sianity and the shift hypothesis allowed the authors to derive an

optimal pooled detector in the form of a matched filter, which in
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Figure 1: Distribution of the soft detector output for SRNet,

EfN B4, Xu2, and SRM with LCLC trained on covers vs. uni-

form payload mixture of HILL.

practice correlates detector outputs with shifts estimated from near

embedding invariants and the payload itself. Within this context,

they studied the IMS and DeLS (DiLS), the last two spreading so

that the same level of detectability (distortion) is induced in every

image.

Below, we demonstrate that modern detectors not only exhibit

highly non-Gaussian behavior but also clearly fail to satisfy the

shift hypothesis. This is true for both non-adaptive and content-

adaptive steganography and detectors based on rich models as well

as CNNs. For better readability, the description of datasets and

detectors, including their training for all experiments commented

upon in this section is postponed to Section 6.

3.1 Non-Gaussian distribution on covers

Figure 1 shows the distribution of soft outputs of four detectors on

256 × 256 grayscale cover images from ALASKA II when training

them as binary detectors on cover versus stego images embedded

with a uniform mixture of payloads from {0.05, 0.1, 0.2, . . ., 1.4,

1.5} bpp. The soft output for the Spatial Rich Model (SRM) [8]

implemented with the Low Complexity Linear Classifier (LCLC) [4]

is the projection of the rich feature on the weight vector. For the

three CNNs, SRNet [2], Efficient Net B4, and SE-ResNet18 (Xu2

net), the output is the logit. The cover distribution for all detectors

is highly asymmetric and spiky. The distribution on covers is also

clearly non-Gaussian and bimodal for the networks with the left

łhumpž corresponding to łeasy covers.ž

While the fact that CNNs produce highly non-Gaussian outputs

on both cover and stego images is less surprising due to their inher-

ent non-linearity, rich model features are also non-linear functions

of the image since they are higher-order statistics (histograms) of

quantized and truncated noise residuals.

3.2 Failure of the shift hypothesis

Figure 2 shows the distribution of two of the above four detectors

on stego images embedded with a range of fixed relative payloads.

With increased payload size, the distribution gradually łmorphsž

to the right, affecting mostly the distribution tails, while the peak

at zero stays nearly stationary. In fact, in order to obtain a rigidly
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Figure 2: Distribution of detectors’ soft output on cover and

stego images embedded with HILL for a fixed relative pay-

load. Top: LCLCwith SRM, bottom: SRNet. Note that the dis-

tributions morph in a far more complex manner than a sim-

ple shift.

shifted distribution, one would need to adopt a non-trivial spread-

ing strategy (see Section 5). The shift hypothesis, as originally

conceived in [12], is likely limited to quantitative detectors since

their expected test statistic is the change rate (payload).

3.3 Complex response curves

Undoubtedly, the key element in considering the problem of spread-

ing payload across images is the response of the Warden’s detector

as a function of the payload size ś the detector’s response curve ś

which depends on the cover image and the steganographic method.

A cover image with a completely flat response curve would be ideal

for embedding a large payload as the embedding is łinvisiblež to

the detector. And this is true regardless of whether it is detected

as cover or stego. On the other hand, an image exhibiting a steep

response curve should hold a comparatively smaller payload.

Since embedding a secret message is a stochastic process, the

detector response naturally exhibits a statistical spread, which in-

creases with increased payload (see Figure 3). To eliminate this

source of randomness, we define the response curve (RC) for a

given cover image and detector as the expected value of the re-

sponse over embeddings with different stego keys (seeds for an

embedding simulator). In Figure 3, the RCs are rendered with thick

blue lines obtained by averaging over 100 embeddings for each pay-

load with the light blue shade used to depict the standard deviation.
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Figure 3: SRNet’s response curves (the logit as a function of

embedded payload size) for six selected images. The solid

line is the expectation over 100 embeddings with different

stego keys with the light blue shade used to depict the stan-

dard deviation. Detector: SRNet trained on uniform payload

mixture for HILL.

The diversity of these responses is responsible for the failure of the

shift hypothesis.

Note that RCs are mostly non-decreasing with the exception

of a few images for which the response decreases for very large

payloads (e.g., image 10518). Despite the slight drop, the final class

label is unlikely to flip because the logit values are still very large.

While we are not certain why this is happening, it might be due to

the fact that the content-dependent stego noise for large payloads

might start resembling sensor noise in some images. To simplify

our reasoning, we adopt the feasible assumption that all RCs are

non-decreasing for the entire payload range.

The RCs tell the tale of what is happening at detection. For image

14407, the RC is initially flat and then steeply bends upwards. This

is likely because the image contains some complex content where

the detection is difficult, and once the embedding łspills overž to

other parts of the image due to increased payload, it quickly starts

contributing to detectability. The flat curves of images 18259 and



0

5

10

15

10518 08150

0

5

10

15

18259 77793

0.0 0.5 1.0 1.5

0

5

10

15

14407

0.0 0.5 1.0 1.5

12250

SRNet

Xu2

B4

SRM

Figure 4: Response curves for the same six selected images

as in Figure 3 and four different detectors.

12250 mean that they can hold a very large payload without chang-

ing the detector’s output. Lastly, we point out the steep response

curves for images 10518, 77793, and 08150 with smooth content

where embedding quickly becomes very detectable. Note that for

image 08150, the maximal embeddable payload is only about 1.2

bpp because the image contains wet pixels [7].

Figure 4 shows the RCs for the same six images for four different

detectors. Note that while the network detectors are very different

deep architectures, the response curves exhibit qualitative similari-

ties. This justifies our choice to use detector output as feedback for

batch steganography.

Finally, we remark that the steganographers must select their

images randomly from their cover source as any cover selection

or rejection would skew the statistics of the cover source, a fact

that would be detected by the Warden who is testing whether her

detector’s outputs are consistent with the detector distribution

on covers. Thus, the best the sender can do is to minimize the

disturbance to the distribution of Warden’s test statistic. We come

back to this problem in the next section when we lay out a more

detailed formulation of our setup.

4 POOLED STEGANALYSIS

In this section, we describe three pooling strategies for the Warden

that will be used to assess security of batch steganography in this

paper.

We will assume that the steganographers maintain an average

payload per pixel 𝑟 ∈ [0, log2 3], the communication rate. By the

square root law [15], this means that, asymptotically, they will be

caught with near certainty. Our goal is not perfect or bounded

security, which would require the communication rate to taper off

to zero, but to minimize the detectability in each bag of images.

For simplicity, in the rest of this paper we assume that the Warden

knows 𝑟 and that the embedding method is fixed and known to all

actors.

Let X denote the set of all possible cover images of some fixed

size. A cover bag of size 𝐵, X = (𝑋
(1)
0 , . . . , 𝑋

(𝐵)
0 ), is formed by

selecting 𝐵 cover images 𝑋
(1)
0 , . . . , 𝑋

(𝐵)
0 ∈ X according to some

probability distribution over X. A spreading strategy 𝑆 induces

a unique mapping 𝛼𝑟,𝑆 : X𝐵 → [0, log2 3]
𝐵 that determines the

relative payloads (in bpp) embedded in the 𝐵 images using a ternary

steganographic scheme. When 𝑟 and 𝑆 are clear from context, we

simplywrite𝛼𝑖 ∈ [0, log2 3] to denote the 𝑖th component of𝛼𝑟,𝑆 (X),

i.e., the relative payload embedded in the 𝑖th image. The map 𝛼𝑟,𝑆
must satisfy the payload constraint

𝐵
∑︁

𝑖=1

𝛼𝑖 = 𝑟𝐵. (1)

A payload tag for rate 𝑟 is the relative payload 𝜏𝑟,𝑆 (𝑋
(𝑖)
0 ) that

the 𝑖th image receives for an infinitely large bag.

A single-image detector is a mapping 𝑑 : X → R that assigns to

each image a soft output from the detector. The soft outputs can be

thresholded for a hard cover / stego decision based on application-

dependent requirements, such as controlling the false alarm rate.

The response curve for image 𝑋
(𝑖)
0 and detector 𝑑 is the function

𝜚𝑖 : [0, log2 3] → R

𝜚𝑖 (𝛼) = E[𝑑 (𝑋
(𝑖)
𝛼 )] (2)

obtained as the expected value of 𝑑 on stego images 𝑋
(𝑖)
𝛼 when

embedding cover 𝑋
(𝑖)
0 with payload 𝛼 with random messages and

stego keys. To distinguish the mathematical objects used by the

Warden from those used by the steganographers, we will use the

superscript ’W’ for the Warden and ’S’ for the steganographers.

Pooled detectors will be denoted with the Greek letter 𝜋 .

Let 𝑓W0 denote the Warden’s detector distribution on covers (c.f.,

Figure 1). Given 𝐵 images 𝑌 (𝑖) , 𝑖 = 1, . . . , 𝐵, communicated by the

sender and under inspection by the Warden, Y = (𝑌 (1) , . . . , 𝑌 (𝐵) ),

the Warden computes 𝑑W (𝑌 (𝑖) ) for all images and infers whether

the sender uses steganography. In the absence of any other knowl-

edge about the spreading strategy or the communication rate, the

Warden would face a composite hypothesis test, namely testing for

a known distribution:

H0 : 𝑑W (𝑌 (𝑖) ) ∼ 𝑓W0 for all 𝑖

H1 : 𝑑W (𝑌 (𝑖) ) ≁ 𝑓W0 for some 𝑖 .
(3)



4.1 Correlator pooling

Since we assume that theWarden knows the spreading strategy and

the communication rate 𝑟 , she can test for an increase in the detector

response 𝑠𝑖 = 𝜚W
𝑖
(𝛼𝑖 ) − 𝜚W

𝑖
(0). However, since she does not have

access to cover images, she needs to estimate the response on the

cover, 𝜚W
𝑖
(0), or simply add it to the modeling error. Moreover, a

realistic Warden will also need to estimate the payloads 𝛼𝑖 from the

images at hand. In particular, she can obtain the estimated payload

𝛼𝑖 possibly embedded in 𝑌 (𝑖) by computing the 𝑖th component of

𝛼𝑟,𝑆 (Y). The statistical hypothesis testing problem thus becomes

H0 : 𝑑W (𝑌 (𝑖) ) = 𝜉𝑖 for all 𝑖

H1 : 𝑑W (𝑌 (𝑖) ) = 𝑠𝑖 + 𝜉𝑖 for all 𝑖,
(4)

where 𝑠𝑖 = 𝜚W
𝑖
(𝛼𝑖 ) − 𝜚W

𝑖
(0) is the estimated expected increase of

the detector output using a RC 𝜚W
𝑖
(𝛼) computed from the image

at hand 𝑌 (𝑖) , 𝜚W
𝑖
(𝛼) = E[𝑑W (𝑌

(𝑖)
𝛼 )], where 𝑌

(𝑖)
𝛼 is image 𝑌 (𝑖)

embedded with relative message 𝛼 , and 𝜉𝑖 is the modeling error.

In the simplest case of independent Gaussian noise samples 𝜉𝑖 ∼

N(0, 𝜎2
𝑖
), the optimal detector would be the generalized matched

filter (correlator) [11]. In our work, we experimented with several

different forms of the estimators, including the estimator used

in [19] that used near embedding invariants. In the end, the best

overall performance was achieved with a pooled detector in the

form of a correlator

𝜋COR (Y) =

𝐵
∑︁

𝑖=1

𝑑W (𝑌 (𝑖) )𝛾 (𝛼𝑖 ), (5)

where 𝑑W (𝑌 (𝑖) ) are detector outputs on the analyzed images and

𝛾 (𝛼) is a logistic fit to embedding shifts 𝜚W
𝑖
(𝛼) − 𝜚W

𝑖
(0) across a

dataset of cover images 𝑖 .

4.2 LRT pooling

Another possibility for the Warden is to test whether the detector

output for the 𝑖th image is consistent with the distribution of her

detector 𝑓W
𝛼𝑖

on stego images all embedded with the same relative

payload 𝛼𝑖 :

H0 : 𝑑W (𝑌 (𝑖) ) ∼ 𝑓W0 for all 𝑖

H1 : 𝑑W (𝑌 (𝑖) ) ∼ 𝑓W
𝛼𝑖

for all 𝑖
(6)

with the optimal pooled detector being the log-likelihood ratio

𝜋LRT (Y) =

𝐵
∑︁

𝑖=1

log
𝑓W
𝛼𝑖

(

𝑑 (𝑤) (𝑌 (𝑖) )
)

𝑓W0
(

𝑑 (𝑤) (𝑌 (𝑖) )
)
. (7)

4.3 Tag based pooling

We also consider the pooling strategy where the Warden makes use

of the tags 𝜏𝑖 = 𝜏𝑟,𝑆 (𝑋
(𝑖)
0 ) and trains her single-image detector as a

binary classifier between covers and stego images embedded with

tags. For large enough bags, this is the correct stego source from

which the sender draws their images. Note that the stego source

only depends on the spreading strategy 𝑆 and rate 𝑟 . We make an

argument that, for large bags and for images in the bags selected

randomly, the optimal pooling strategy is averaging the detector

logits. This is because all three deep learning architectures used in

this paper apply average pooling1 in the last convolutional layer

before the fully connected layer. If averaging the detector outputs

across all images in the bag was not the best strategy, one could

obtain a better single-image detector by splitting each image into

smaller tiles, applying the network to the tiles and learning a more

sophisticated strategy for combining the outputs. In summary, for

a tag-based single-image detector 𝑡W, our pooling strategy is

𝜋TAG (Y) =
1

𝐵

𝐵
∑︁

𝑖=1

𝑡W (𝑌 (𝑖) ). (8)

4.4 Average pooling

As the last option considered in this paper, we added a fourth

baseline pooling strategy in the form of a simple average of detector

outputs on analyzed images 𝑌 (𝑖) :

𝜋AVG (Y) =
1

𝐵

𝐵
∑︁

𝑖=1

𝑑W (𝑌 (𝑖) ) . (9)

We also experimented with the max pooling strategy 𝜋MAX (Y) =

max𝑖 𝑑
W (𝑌 (𝑖) ) but do not report on it because it performed very

poorly w.r.t. the other strategies.

Note that in this paper, we will consider both a payload-aware

Warden that knows the senders’ payloads 𝛼𝑖 as well as a realistic

Warden that needs to estimate both from the image at hand.2

5 BATCH STEGANOGRAPHY

In this section, we describe two types of detector-informed spread-

ing strategies depending on the adopted statistical model for the

cover source. We also provide theoretical analysis of both senders

under certain simplifying assumptions. This analysis will be used

to better understand and interpret the experimental results in Sec-

tion 7. The sender’s single-image detector will be denoted 𝑑S.

5.1 Shift limited sender

The Shift Limited Sender (SLS) enforces the shift hypothesis by

considering the impact of the embedding on the statistical distribu-

tion of detector outputs across cover images. To embed an average

communication rate 𝑟 in 𝐵 cover images 𝑋
(𝑖)
0 , the SLS sender finds

the smallest 𝛿 > 0 that leads to the same expected detector output

shift when embedding payload 𝛼𝑖 in 𝑋
(𝑖)
0 , satisfying

∑𝐵
𝑖=1 𝛼𝑖 = 𝑟𝐵,

and

𝛿 = 𝜚S𝑖 (𝛼𝑖 ) − 𝜚S𝑖 (0) (10)

for all 𝑖 for which 𝜚S
𝑖

(

𝛼max (𝑋
(𝑖)
0 )

)

−𝜚S
𝑖
(0) ≥ 𝛿 , where𝛼max (𝑋

(𝑖)
0 ) ≤

log2 3 is the maximal embeddable payload in 𝑋
(𝑖)
0 equal to the

relative number of non-wet pixels. For images that do not sat-

isfy this condition (images with flat response curves), we set 𝛼𝑖 =

𝛼max (𝑋
(𝑖)
0 ).

As explained in Section 6 in more detail, the SLS was imple-

mented numerically using unidirectional search for 𝛿 with the

image response curves.

1The word ’pooling’ not to be confused with pooling as used in pooled steganalysis.
2More on this appears in Section 7.2.



To obtain better insight, below we derive a closed form for the

payload by adopting a linear model for response curves:

𝜚S𝑖 (𝛼𝑖 ) − 𝜚S𝑖 (0) = 𝑏𝑖𝛼𝑖 , (11)

with 𝑏𝑖 > 0. This means that we essentially assume that the RCs

are not completely flat, and we ignore the upper bound on 𝛼𝑖 ≤

𝛼max (𝑋
(𝑖)
0 ).

Since the SLS requires 𝑏𝑖𝛼𝑖 = 𝛿 for all images𝑋 (𝑖) in the bag, the

payload constraint (1) implies that 𝛿 = 𝑟𝐵/
∑𝐵
𝑖=1 1/𝑏𝑖 , which gives

us the following expression for 𝛼𝑖

𝛼𝑖 =
𝑟𝐵

𝑏𝑖
∑

𝑘=1
1
𝑏𝑘

. (12)

5.2 Minimum deflection sender

TheMinimumDeflection Sender (MDS) considers a statistical model

for each scene rather than across images. The specific cover used

by the sender is a sample from an acquisition oracle taking images

of the same scene with the same acquisition device. Sensor noise

and possibly small spatial shifts and rotations due to camera shake

would contribute to the randomness.

The main advantage of this approach is that the detector output

on such cover images is well modeled by a Gaussian distribution due

to the fact that the detector can be linearized on the neighborhood of

the noise-free cover image. We assume that the embedding changes

the expectation of the detector output based on the response curve

but does not change the variance. Hence, the sender determines

the payloads to minimize the power of the most powerful detector

for the following hypothesis testing problem:

H0 : 𝑑S (𝑌 (𝑖) ) ∼ N (𝜇𝑖 , 𝜎
2
𝑖 ) for all 𝑖

H1 : 𝑑S (𝑌 (𝑖) ) ∼ N (𝜇𝑖 + 𝑠𝑖 , 𝜎
2
𝑖 ) for all 𝑖,

(13)

where 𝜇𝑖 is the expected value of 𝑑S on cover images generated

by the acquisition oracle for the 𝑖th image and 𝑠𝑖 is the expected

increase of detector response due to embedding payload 𝛼𝑖 . Note

that in (13) we assume that the acquisition variance dominates the

variance due to embedding a random message, hence the variances

are equal under both hypotheses. For a clairvoyant Warden who

uses the same detector 𝑑W = 𝑑S and knows 𝜇𝑖 and 𝜎
2
𝑖
, with cover

images drawn independently from the cover source, the most pow-

erful detector is the likelihood ratio test, which assumes the form

of a mean-shifted Gauss-Gauss problem. Thus, its performance is

determined by the deflection coefficient
∑𝐵
𝑖=1 𝑠

2
𝑖
/𝜎2

𝑖
.

For practical implementation, we will assume that 𝑑S (𝑋
(𝑖)
0 ) =

𝜚S
𝑖
(0) ≈ 𝜇𝑖 is approximately equal to the expected detector out-

put across all acquisitions. Hence, the MDS selects the 𝛼𝑖 to be

embedded in 𝑋
(𝑖)
0 that minimizes the deflection3

Δ
2 (X) =

𝐵
∑︁

𝑖=1

(

𝜚S
𝑖
(𝛼𝑖 ) − 𝜚S

𝑖
(0)

)2

𝜎2
𝑖

. (14)

While our assumptions about Warden’s access to 𝑑S and 𝜇𝑖 and

𝜎2
𝑖
are too idealistic, we can claim that the MDS considers the worst

3As explained in Section 6, for the MDS we use a logistic fit to the RCs instead of the
RCs to allow for a more efficient gradient descent based search algorithm.

case scenario. Since estimating the variances 𝜎2
𝑖
experimentally

using the acquisition oracle would be far too elaborate and even

infeasible in many cases, we further simplify the MDS by assuming

that the variances 𝜎2
𝑖
are all approximately the same. Experiments

on Monobase [1] with simulated acquisition at higher ISO (as in

Natural Steganography [1]) confirmed that the detector variance is

indeed rather stable across different scenes.

To obtain insight into how the MDS assigns payloads, we again

derive a closed form expression for 𝛼𝑖 using the linear model (11)

for the response curves 𝜚S
𝑖
(𝛼𝑖 ) − 𝜚S

𝑖
(0) = 𝑏𝑖𝛼𝑖 . To minimize the de-

flection Δ
2 (X) with equal variances 𝜎2

𝑖
= 𝜎2 subject to the payload

constraint (1), we find the stationary point of the Lagrangian

L =

1

2

𝑛
∑︁

𝑘=1

𝑏2
𝑘
𝛼2
𝑘
− 𝜆

(

𝑛
∑︁

𝑘=1

𝛼𝑘 − 𝑟𝐵

)

, (15)

which yields the closed form for MDS payloads

𝛼𝑖 =
𝑟𝐵

𝑏2
𝑖

∑𝐵
𝑘=1

1
𝑏2
𝑘

. (16)

6 IMPLEMENTATION

In this section, we list the details regarding our implementation of

the batch steganography algorithms as well as the detectors.

6.1 Datasets

The dataset is the ALASKA II split into three parts (Split 1, 2, and

3), each containing 25,000 images further split into 22k, 1k, and 2k

images for training, validation, and testing. The splits are used to

study the impact of a mismatched training set for trainingWarden’s

detector. The images were developed as in [5] without the final

JPEG compression step. Alice uses the test set of Split 1 to send

her secret messages in bags of size 𝐵 by sampling 𝐵 images with

replacement.

Because of the sheer amount of possible combinations of the

steganographer’s detector, the Warden’s detector, stego schemes,

communication rates 𝑟 , bag sizes, and spreading / pooling strategies,

we limit our exposition to the steganographic scheme HILL4 and

mainly the rate 𝑟 = 0.3 bpp. Instead of reporting the complete set

of results for all possible setups, we highlight the most interesting

and relevant findings.

6.2 Single-image detectors

For spreading, the sender uses a single-image detector 𝑑S in the

form of an SRNet (SRNet1) trained on Split 1. Splits 2 and 3 are used

by the Warden who will train 𝑑W as another instance of SRNet

(SRNet2) on Split 2, Xu2 on Split 2, EfN B4 on Split 3, and SRM on

Split 3. EfN B4 and Xu2 were modified by removing the average

pooling and strides from the first two layers as described in [23].

All network detectors are pre-trained on ImageNet, SRNet was

pre-trained on a binary task of steganalyzing J-UNIWARD [9] (the

so-called JIN pre-training exactly as described in [3]), while the

other networks were pre-trained on the ImageNet classification

task.5 Steganalysis training on HILL / MiPOD is done with relative

4In particular, since we observed qualitatively and quantitatively similar conclusions
for MiPOD, the results are not reported.
5Downloaded from https://github.com/rwightman/pytorch-image-models



payloads randomly drawn from the uniform distribution on the set

of relative payloads P = {0.05, 0.1, 0.2, . . ., 1.4,1.5}.

We also add another, qualitatively different single-image detector

based on the Spatial Rich Model (SRM) [8] and the LCLC, also

trained on payloads randomly uniformly drawn from P.

6.3 Pooled detectors

For the correlator pooling strategy, the Warden uses her test set

to fit a logistic curve to the embedding shifts 𝜚W
𝑖
(𝛼) − 𝜚W

𝑖
(0) to

obtain 𝛾 (𝛼). The logistic curve is defined as

𝑝 (𝑥) =
𝑎

1 + 𝑒𝑐 (𝑥−𝑚)
+ ℎ, (17)

with 0 < 𝑎,𝑚 < ∞, −∞ < 𝑐 < 0, ℎ ∈ R, and the fit is performed us-

ing non-linear least squares6 initialized at (𝑎,𝑚, 𝑐, ℎ) = (1, 1,−1, 0).

For the LRT pooling strategy, the Warden embeds her test set

with a set of relative payloads P = {0.05, 0.1, 0.2, . . ., 1.4,1.5}. Then

she proceeds to estimate the distribution of the detector’s output

𝑓W𝛼 for each 𝛼 ∈ P.7 To cover the entire range of possible payloads,

the Warden linearly interpolates between likelihoods evaluated at

the payload grid P.

For the tag-based poolers, theWarden fine-tunes her single image

detectors on a dataset embedded with tags computed by randomly

grouping all training images into bags of 𝐵 = 100. Note that the

Warden has to train a tag-based pooler for each spreading strategy

and average communication rate.

6.4 Senders

The IMS was implemented by considering a given bag of 𝐵 images

each with 𝑁 pixels as a single large image into which the total

payload of 𝑟𝐵𝑁 bits was embedded using an embedding simulator.

The costs were pre-computed from single images. We would like to

point out that this version of the IMS differs from the implementa-

tion used in [19]. There, the authors first pre-computed tags for all

images from their dataset and then simply selected 𝐵 images for a

given bag. Thus, the communication rate 𝑟 varied from bag to bag,

and was maintained across bags only in expectation. This difference

is rather important as will become apparent when studying the

detectability as a function of 𝐵.

The SLS was implemented by searching for the smallest 𝛿 satisfy-

ing (10) using unidirectional search. The SLS uses the RCs estimated

from 100 embeddings of the cover image as explained in Section 3.3,

and linearly interpolates between grid points to cover the entire

range of possible payloads.

The MDS makes use of the same logistic model as in (17), fit

to each RC. A projected gradient descent with momentum ini-

tialized with IMS payloads for each bag was used to search for

the payloads that minimize the deflection (14). To facilitate con-

vergence, the learning rate and momentum were updated accord-

ing to a one-cycle scheduler [? ]; the learning rate and momen-

tum fluctuated within the intervals [10−2, 102] and [.90, .99], re-

spectively. To comply with the payload constraint and bounds

0 ≤ 𝛼𝑖 ≤ 𝛼max (𝑋
(𝑖) ), at each step of the gradient descent the

vector of payloads was projected to the feasible set of points, a

6Using scipy’s curve_fit function
7Using scipy’s gaussian_kde function

hyperplane formed by (1) contained within the 𝐵-dimensional box

[0, 𝛼max (𝑋
(1) )]× . . . ×[0, 𝛼max (𝑋

(𝐵) )].

7 EXPERIMENTS

This section contains the results of all our experiments and their

discussion. In particular, the proposed detector-informed senders

are evaluated against the IMS with four pooling strategies. Sub-

stantial space is devoted to studying the impact of the information

available to the Warden as well as the effect of Warden’s choices

for the single-image detector.

7.1 Best spreading and pooling strategies

In this section, we compare the SLS and MDS and the previously

proposed IMS. We also evaluate all poolers to see which pooling

strategy is the best. We do so for a range of bags and one fixed setup

with 𝑟 = 0.3 bpp and HILL. The Warden uses the same architecture

as the senders, the SRNet, trained on Split 2 (SRNet2) because it is

not feasible to assume that the Warden has the same training set.

In this section, we give the Warden the exact payloads 𝛼𝑟,𝑆 (X) that

might be embedded in each bag. In reality, the Warden would have

to estimate the payloads for each bag, which is likely to decrease the

detectability. We simplify here because executing experiments at

scale with having to estimate the payloads is very time consuming

as the Warden needs to estimate the average response curves w.r.t.

her detector for all images in the bag. In Section 7.2, we show that

the effect of using the estimated payloads leads to only a small drop

in detection accuracy and thus does not affect the results or our

conclusions much.

The detection performance of pooled detectors is reported us-

ing the weighted Area Under the ROC Curve (wAUC) as used in

ALASKA II [5]. We note that the pooled detector makes a binary de-

cision about each bag being either cover or stego. Figure 5 shows the

wAUC of four different poolers versus the bag size. Both detector-

aware senders offer much better security when compared to the

detector-agnostic IMS.

Note that for all senders, as the bag size grows, the detectabil-

ity initially decreases and eventually starts increasing due to the

Square Root Law since the senders maintain a positive communi-

cation rate 𝑟 . The initial drop, which is far more pronounced for

the two detector-aware senders, can be explained by considering

the response curves. If a bag contains an image with a nearly flat

response curve, it will be embedded close to its maximum capacity

while other images will receive smaller payloads. Taking a bag

of two as an example, it is more advantageous for the sender to

embed payload 0.6 bpp in one of the images rather than 0.3 in each.

The spreading thus initially helps decrease detectability to a point

when the SRL starts engaging and the bags provide more data to

reach a more reliable decision about the use of steganography. Note

that this result is in stark contrast with the behavior of the IMS

from [19] because the IMS there worked with fixed tags attached

to all images and only embedded a given relative payload in each

bag on average. Thus, it was unable to utilize the effect discussed

above. Our concept of batch steganography in bags is more flexible

and makes better use of the available cover images especially for

small bags.
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Figure 5: Detection accuracy of Warden’s SRNet2 in terms

of wAUC versus the bag size for IMS, SLS, and MDS (top to

bottom) with four different pooling strategies.
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Figure 6: Distribution of relative payloads across the train-

ing dataset for IMS, SLS, and MDS for bag size 𝐵 = 100. Note

that the new detector-informed senders are far more aggres-

sive in assigning payloads to imageswithmost images either

being embedded with small payloads and a significant frac-

tion embedded fully.

Continuing our discussion of Figure 5, we now comment on

which poolers are the most effective in detecting batch steganogra-

phy across the same range of bag sizes and for all three senders.

For large bags, the best detection is obtained with the tag-based

detector across all three senders because it is trained on the clos-

est stego source. The correlator 𝜋COR and the LRT 𝜋LRT typically

provide similar performance and are significantly better than the

simple average 𝜋AVG. This difference is most striking for the MDS

because the simple average is essentially a correlator with uniform

payloads. Thus, the more non-uniform the payload distribution is

the larger the difference (see, e.g., the performance of 𝜋AVG versus

𝜋COR across the senders).

The poor performance of the tag-based pooler for small bag sizes

is understandable because, as a binary detector on stego images

embedded with tags, it performs poorly (and is also more difficult

to train) as less than 14% of images have payload larger than 0.05

bpp with a high number of images with extremely small payloads.

It starts being effective only for larger bag sizes, which are more

likely to contain almost fully embedded images.

In Figure 6, we display the histogram of payloads embedded in

images from the training set for all three senders, 𝐵 = 100, and

𝑟 = 0.3 bpp. The SLS and MDS are clearly much more aggressive

in using certain images close to their maximal embedding capacity

than the IMS. This is because these senders are aware of the fact

that the embedding is łinvisiblež to the sender’s SRNet. Understand-

ably, this leads to a large gain in security at least as long as the

Warden uses the same type of single-image detector. If the Warden

uses a different detector for pooled steganalysis, the almost fully

embedded images may become detectable if their response curves

are not as flat as the sender’s. We take a look at this important

aspect in Section 7.3.

Figure 6 also shows that MDS is slightly more aggressive than

SLS in allocating very large or very small payloads. This can be un-

derstood from Eqs. (12) and (16) showing the payloads as functions

of the RC slopes. The payload of the MDS is inversely proportional

to the square of the slope, making this sender more agressive when
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Figure 7: SRNet’s response curves for a bag of 8 images
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marked on the 𝑥-axis.

allocating the payload than the SLS. Figure 7 compares the three

senders IMS, SLS, and MDS for a given bag of 8 images. For im-

ages 50571, 38163, and 29092, which have a flat response curve, the

detector-aware senders embed larger payloads than the detector-

agnostic IMS. For images with an increasing RC, such as 30928 and

25597, SLS and MDS are more conservative than IMS and allocate

a smaller payload.

As the last experiment of this section, we include a study of the

effect of the average communication rate 𝑟 on the optimal bag size.

We limit our study to the SLS and SRNet2 as Warden’s detector.

Figure 8 shows wAUC of the best pooler as a function of the bag

size for four rate 𝑟 . Note that with increased rate the dip becomes

shallower and also starts moving towards smaller bag sizes.

7.2 Effect of estimating the payloads

In any realistic scenario, the Warden may know the algorithms

used to embed and spread the payloads but not Alice’s data. All

three senders compute the payload size to be embedded in each

image from the cover image itself. The Warden, however, will need

to estimate the payloads from the images at hand. The embedding
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Figure 8: Detection accuracy of the best pooler of SRNet2 for

SLS versus the bag size 𝐵 and four communication rates 𝑟 .

changes themselves may skew the estimated payload size should

the Warden estimate from a stego image. For the IMS, the effect

of the embedding changes on computing the embedding costs (or

Fisher information for model-based steganography) is known to be

practically negligible [6, 20]. For the new detector-aware senders,

however, the payloads are also determined from the cover response

curves, which are more sensitive to the embedding itself. For an

image that receives a large payload, the Warden may end up with a

very different response curve. Thus, even if she knows the spreading

strategy, the communication rate, and the type of the detector

used by the senders, the payloads that potentially reside in the

images will be subject to an estimation error and lower the detection

accuracy. We study this effect in this section.

First, it is hard to imagine that it would be advantageous for

the Warden to intentionally mismatch the payloads potentially

embedded in the images. Thus, the Warden should estimate them

using a detector that is as close to the senders’ detector as possible.

As our first experiment, in Table 1 we compare the accuracy of the

pooled detectors for a Warden who trains

(1) SRNet2 on her dataset for 𝑑W but uses the knowledge of the

exact payloads 𝛼𝑟,𝑆 (X).

(2) SRNet2 on her dataset for𝑑W and uses SRNet2 for estimating

the payloads from the images at hand 𝛼𝑟,𝑆 (Y).

Note that Case 1 corresponds to the setup assumed in the previous

section. In Figure 9, we show the ROCs corresponding to two se-

lected entries of Table 1. While estimating the payloads leads to a

performance drop, the effect is minimal because most images in the

bag hold small payloads and thus their response curves are close

to the response curves of the corresponding covers. For images

embedded with medium to large payloads, which however form

a small portion of each bag, the estimated payloads may be very

different. Figure 10 shows the the relative payloads used by the

sender as determined from her version of SRNet1 versus payloads

estimated using SRNet2 by the Warden from a HILL stego bag for

SLS and MDS for 𝐵 = 16 and 𝑟 = 0.3 bpp.



𝜋LRT 𝜋COR
𝐵 16 64 16 64

SLS .719 / .718 .750 / .746 .706 / .707 .745 / .756

MDS .742 / .735 .771 / .757 .733 / .737 .780 / .768

Table 1: Accuracy (wAUC) ofWarden’s detectors for two senders, two bag sizes, and twopooling strategieswith exact / estimated

payloads. Warden’s single-image detector is SRNet2, HILL 0.3 bpp.
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Figure 9: ROCs of pooling strategies usingWarden’s SRNet2

with exact and estimated payloads; 𝜋LRT for SLSwith bag size

16 (top) and 𝜋COR forMDSwith bag size 64 (bottom) for HILL

at 𝑟 = 0.3 bpp.
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Figure 10: Payloads estimated by the Warden using SRNet2

versus the true embedded payloads as determined by the

senders using SRNet1 for the SLS (top) and MDS (bottom).

Bag size 16, HILL, 𝑟 = 0.3 bpp.
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Figure 11: Accuracy (wAUC) of the best detector and best

pooling strategy versus the bag size for IMS, SLS, and MDS.

The best detector for each setting is highlighted using a dif-

ferent marker.

7.3 Devious Warden

Since the SLS and MDS use feedback from a detector, while being

more powerful than IMS when the Warden uses the same type

of detector for pooling, they could potentially become vulnerable

when the Warden intentionally or unintentionally mismatches the

single-image detector. In this section, we study such a devious

Wardenwho trains a different architecture (or a completely different

single-image detector) on her training set. Since the effect of using

payloads estimated from the images at hand instead of exact ones

is small, we give the Warden the exact same payloads for pooling.

This has been adopted for simplicity due to excessive computational

cost of having to estimate the average response curves. Moreover,

it helps us isolate the effect of the mismatched detector for pooling.

The experiments were carried out for the SLS, MDS and IMS with

SRNet2, EfN B4, Xu2, and SRM for a range of bag sizes. The results

displayed in Table (2) show that the Warden indeed may gain from

mismatching the detector. The gain is, however, quite small, and

the detector-aware senders still exhibit a much better security than

the IMS. In Figure (11), we show wAUC of Warden’s best detector

from among 16 different possibilities (four pooling strategies and

four single-image detectors) as a function of the bag size. The new

spreading strategies perform significantly better than IMS, even

when considering different CNN architectures, training sets, and a

very different detector (SRM) than what Alice uses.

8 CONCLUSIONS

When communicating using steganography, the sender can be

clever and choose to split the desired secret message among a bag

of cover images to avoid being detected. In this paper, we determine

the sizes of the payload chunks by inspecting how each image in

the bag reacts to embedding in terms of changing the soft output

of a steganography detector as a function of the payload size, the

image’s łresponse curve.ž Two such detector-informed senders are

investigated for spatial-domain steganography: 1) a sender that

makes sure that all images in the bag experience the same shift

in the detector response and 2) a sender that minimizes the sum

of squares of the shifts, which can be interpreted as a deflection

coefficient for a binary test distinguishing stego images from covers

naturally corrupted by acquisition noise.

Using feedback from a detector indeed brings substantial im-

provement over the previously proposed image-merging sender

that considers the bag as a single large image. The detectability as

a function of the bag size for a fixed secret communication rate ini-

tially decreases, because the sender makes better use of all available

covers, and then starts increasing due to the square root law since

a fixed rate is maintained. We experimentally determined that the

optimal bag size is 8ś16 images per bag depending on the average

communication rate.

On the detection side, we study three different strategies for

the Warden to pool the outputs of her single-image detector: 1)

correlator of the outputs with the expected detector output increase,

2) likelihood ratio test based on actual models of the detector output,

and 3) detector trained on payload tags that the images would

receive for sufficiently large bags. The likelihood ratio was the best

pooling strategy for small to moderate bag sizes up to 16 while the

tag based detector performed better for bag sizes larger than 16.

Using feedback from a detector for spreading can potentially

backfire as the Warden may use a different detector for pooling. We

looked into this issue in great detail by training alternative deep

learning architectures as well as older rich-model based detectors.

We discovered that doing so increases the Warden’s accuracy, but

not substantially and the detector-aware senders are still much

more secure than the IMS.

In the future, we intend to further investigate the problem of

optimal bag size by modeling the statistical collection of response

curves. We also intend to explore the JPEG domain.
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