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Abstract—The growing need for reliable communication over
untrusted networks has caused a renewed interest in adversarial
channel models, which often behave much differently than
traditional stochastic channel models. Of particular practical use
is the assumption of a causal or online adversary who is limited
to causal knowledge of the transmitted codeword. In this work,
we consider stochastic-adversarial mixed noise models. In the set-
up considered, a transmit node (Alice) attempts to communicate
with a receive node (Bob) over a binary erasure channel (BEC)
or binary symmetric channel (BSC) in the presence of an online
adversary (Calvin) who can erase or flip up to a certain number
of bits at the input of the channel. Calvin knows the encoding
scheme and has strict causal access to Bob’s reception through
feedback snooping. For erasures, we provide a complete capacity
characterization with and without transmitter feedback. For bit-
flips, we provide converse and achievability bounds.

I. INTRODUCTION

A central endeavour in information theory is the study
of capacity and strategies for reliable communication over
different types of channels. Two different philosophies exist
on how channels are modeled. Channels in the Shannon world
are characterized by some stochastic process that injects errors
independently of the communication scheme, while channels
in the Hamming world are characterized by an adversary who
injects worst-case errors. Historically, adversarial channels
were studied under either full knowledge (omniscient adver-
sary) or no knowledge (oblivious adversary) of the transmitted
codeword. A number of recent works [2]–[9] instead consider
coding against online or causal adversaries wherein at any
point during the transmission, the adversary knows only part
of the codeword transmitted thus far.

As noted in [5], the causal adversary model lies in between
the stochastic and the omniscient adversary models. In this
work, we further bridge together the Shannon and the Ham-
ming worlds by studying a new model where both adversarial
and random sources of error are present. Specifically, Alice
attempts to send a message to Bob over a binary erasure
channel BEC(q) or binary symmetric channel BSC(q) in the
presence of a causal adversary Calvin who can erase or flip
a certain number of bits at the input of the channel. This is
depicted in Fig 1. Any transmission strategy must not only
overcome the noise due to the random channel but also from
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the adversary. We also assume that Calvin has access to Bob’s
reception, which we refer to as feedback snooping. The ability
to spy on both Alice and Bob aids Calvin in designing strong
attacks. Our goal is to characterize the capacity of this channel.

When there is no random channel present, i.e., q = 0 in Fig.
1, the only source of noise is adversarial. A complete capacity
characterization for this case is given in [5]–[7]. Our models
differ from the ones considered previously in two ways:
• Mixture of random and adversarial noise - The noise

in the received word is affected by the random channel
BEC/BSC as well as the actions of Calvin who is
erasing/flipping bits. For example in the erasure case,
a bit not erased by Calvin can be erased by the BEC.
Similarly, in the bit-flip case, a bit flipped by Calvin
may be “unflipped” by the BSC. Conceptually, we think
of the discrete memoryless channel (DMC) as the main
channel through which Alice and Bob communicate, and
Calvin as a malicious entity who attempts to disrupt the
transmission.

• Feedback to adversary - In our setting, Calvin is allowed
access to Bob’s reception through feedback snooping.
This becomes important due to the presence of the
stochastic channel. The adversarial attacks described in
[5], [6] if used directly do not provide the right distance
bounds needed to establish our converse results. These are
appropriately strengthened and crucially rely on Calvin’s
ability to snoop. Note that feedback snooping is unnec-
essary when q = 0.

Our contributions can be summarized as follows:
• We provide a complete characterization of capacity for

the case of erasures. Our result implies that the presence
of the random channel BEC(q) in addition to adversarial
erasures simply scales the capacity of the q = 0 case by
a multiplicative factor.

• For the case of erasures, we also characterize the capacity
when Alice has causal access to Bob’s reception and
encoding is closed-loop. In this scenario, we show that
Calvin gains no benefit from his ability to spy on Alice
or Bob. In fact, he can do no better than making erasure
decisions in an i.i.d. manner.

• Finally in the case of bit-flips, we prove non-trivial
converse and achievability bounds.

There are other adversarial models intermediate between the
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Fig. 1. Channel models considered in this work.

oblivious and omniscient models that have been considered in
the literature which we do not pursue here (e.g., [10]–[15]).
The problem of coding with feedback to the transmitter has
been studied by several authors such as [16]–[18]. Finally, we
note that our models can be cast under the more general frame-
work of (non-state-deterministic) arbitrarily varying channels
or AVCs [19], [20]. However, known results for AVCs do not
directly imply the results of this paper.

II. CHANNEL MODELS

Consider the channel depicted in Fig. 1. Alice (the trans-
mitter) attempts to convey a message to Bob (the receiver)
over a BEC(q), in the presence of a p-limited causal adversary
(Calvin) where the terms will be clarified shortly. The input
and output alphabets are X = {0, 1} and Y = {0, 1,Λ},
respectively, where Λ denotes an erasure symbol. Encoding
is done over n channel uses, and the size of the message set
is 2nR. We allow stochastic encoding and assume the presence
of local randomness available only to Alice for this purpose.
Denote xk ∈ X to be the symbol selected by Alice at channel
use k. At time k, Calvin makes a decision on whether to erase
xk based on his side-information to be specified later. If Calvin
erases xk, the received symbol at time k at the receiver is an
erasure, i.e., yk = Λ. If Calvin decides not to erase xk, then
yk = xk with probability 1 − q and yk = Λ with probability
q, i.e., xk is erased with probability q.

We assume that Calvin knows the codebook used at the
transmitter in the case of deterministic encoding or the dis-
tribution of codewords in the case of stochastic encoding.
Calvin is assumed to be causal, i.e., at each channel use
k, he knows only part of the codeword transmitted so far
(x1, x2, · · · , xk) ∈ X k. Calvin is neither aware of the message
nor future transmissions. However, he has access to Bob’s
reception (y1, y2, · · · , yk−1) ∈ Yk−1 through a delay-free and
noise-free strictly causal feedback link as shown in Fig. 1.

A power constraint is further imposed by enforcing Calvin
to be p-limited, meaning that he can erase at most a constant
fraction p of the bits, i.e., if a ∈ {0,Λ}n denotes the positions
where Calvin decides to erase symbols from (x1, x2, · · · , xn),
we must have weight(a) ≤ pn. We refer to this model as
the BEC causal adversarial channel with feedback snooping
(or BEC(q)-ADV(p)-FS). Note that the BEC block in Fig. 1
is slightly different from the classical BEC. If Calvin erases
xk to an erasure symbol Λ, we have yk = Λ, where Λ does
not carry any information.

Our aim is to characterize the capacity of this channel, i.e.,
the largest value of R such that Alice can reliably convey

one out of 2nR possible messages to Bob. Precise definitions
are given shortly. In Section IV, we also consider a related
channel by replacing the BEC(q) with a BSC(q) and letting
Calvin flip bits instead of erasing them, denoted henceforth as
BSC(q)-ADV(p)-FS.

Notation and Definitions: In this work, we only consider
fixed length encoding. The blocklength is denoted by n.
The transmitted message is denoted by the random vari-
able (r.v.) U chosen uniformly from the message set U =
{1, 2, 3, · · · , 2nR}. A deterministic code consists of a fixed
encoder map Φd : U → Xn and a decoder map Γd : Yn → U ,
where each message is associated to a unique codeword. In
case of stochastic encoding, a codeword x is selected for
a message u according to a chosen conditional distribution
Φ(.|u) defined on Xn. A stochastic code is fully specified
by defining all conditional distributions {Φ(.|u)}u∈U and a
decoder Γ : Yn → U . Without loss of generality, we assume
in proving converse results that no two distinct messages map
to the same codeword. The (maximum) probability of error is
then

Pe = max
u∈U

max
ADV(p)

∑
y

∑
x

P (y|x)Φ(x|u)1(Γ(y) 6= u) (1)

where 1(.) denotes the indicator function and ADV(p) denotes
a feasible strategy chosen by Calvin. Note that P (y|x) in (1)
is a function of both the stochastic channel and the chosen
adversarial strategy. We say that R > 0 is achievable if for
every δ > 0 and every sufficiently large n, there is a code
of rate R and blocklength n with Pe < δ. The capacity is
defined to be the supremum of all achievable rates. Let Ber(q)
denote a Bernoulli r.v. with success probability q and h2(x) =
−x log2(x)−(1−x) log2(1−x) be the binary entropy function.
For x, y ∈ [0, 1/2], let x ? y = x(1 − y) + y(1 − x) and
note that x ? y = 1/2 iff either x = 1/2 or y = 1/2 (or
both). Denote by d(x,y) the Hamming distance between x
and y. For s = (s1, s2, · · · , sn), we let s1 = (s1, s2, · · · , s`)
and s2 = (s`+1, · · · , sn), where ` is specified when proving
converse results.

III. RESULTS FOR ERASURES

A. No Transmitter Feedback

Denote by CE(p, q) the capacity of BEC(q)-ADV(p)-FS
when Alice has no side-information, i.e., encoding is restricted
to be open-loop. We prove the following result.

Theorem 1. The capacity CE(p, q) of BEC(q)-ADV(p)-FS is
given by

CE(p, q) =

(1− 2p)(1− q) for 0 ≤ p ≤ 1

2
, 0 ≤ q ≤ 1

0 otherwise
.

(2)

Remark. When there is no BEC, i.e., when q = 0, our model
reduces to the one studied in [6], [7]. Our result implies that in
the setting where both causal adversarial erasures and random
erasures are present, the capacity simply scales by a factor of
1− q.
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Proof (Sketch) of Converse : The proof is based on a wait
and snoop, then push attack inspired by, but different from,
an attack in [2], [6]. Let the transmitted codeword be denoted
by x. Fix ε > 0. Let R = (1− 2p)(1− q) + ε.
• Wait and Snoop: Calvin waits and does not induce any

erasures for the first ` = n
R− ε2
1−q channel uses. Instead,

Calvin simply snoops into Bob’s reception to determine
the erased/unerased bits and their positions. At the end
of this phase, Bob receives y1 containing some erased
and some unerased bits. Let {ij}mj=1 be the indices of
unerased symbols.

• Push: Calvin forms the set By1 of codewords consistent
with y1 as

By1
= {v ∈ Xn : ∃ũ ∈ U s.t. Φ(v|ũ) > 0 and

vik = xik k = 1, 2, · · · ,m}. (3)

He then samples a codeword x′ from By1
according to the

distribution PX|Y1=y1
(.|y1). In the push phase, Calvin

simply erases bit xi whenever xi 6= x′i. Recall that the
total erasure budget is pn. Hence, if x and x′ correspond
to different messages u and u′ and are sufficiently close
such that d(x2,x

′
2) < pn, there is no way for Bob to

distinguish between messages u and u′ under Calvin’s
attack. The proof relies on showing that this indeed occurs
with a positive probability independent of n.

Note that while the presence of the BEC(q) lowers the target
rate, Calvin adds no erasures for approximately n(1 − 2p)
channel uses which from [6], [7] is optimal when there is no
BEC(q). The main difference in attack when q 6= 0 is that
even though Calvin knows the entire prefix of the transmitted
codeword x1 = (x1, x2, · · · , x`), he forms his set in (3)
based only on the unerased bits. Thanks to feedback snooping,
Calvin exploits the additional equivocation induced by the
BEC(q) in the wait and snoop phase to pick a codeword that
is sufficiently close to the transmitted codeword, and which
corresponds to a message different from one that Alice chose.
Note also that while we give Calvin full causal access to Bob’s
reception, an alternate model where Calvin is allowed one-time
block feedback is sufficient - he would add no erasures for `
channel uses, retrieve through feedback the entire block y1

and then ‘push’.
The steps in the proof closely follow [6] accounting for

the addition of the BEC(q). In the push phase, let E2 be the
event {U 6= U′} and E3 be the event {d(X2,X

′
2) < pn}, and

note that when both E2 and E3 occur simultaneously, Calvin’s
budget of pn erasures is enough to cause a decoding error with
probability at least 1/2. Thus, to finish the proof, we need only
show a lower bound on P (E2, E3). Using techniques from [6],
it can be shown that

P (E2, E3) ≥ ε

4

ε

8p

( ε
5

) 9
ε−1

= εO(1/ε)

which holds independent of n as required. Details are provided
in [1].

Proof (Sketch) of Achievability: We resort to a random
coding argument to claim existence of a stochastic code that
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Fig. 2. Capacity of BEC(q)-ADV(p)-FS with (CE
f (p, q)) and without

transmitter feedback (resp. CE(p, q)) as a function of p for q = 0, 0.3, 0.6.
The cut-off value of p beyond which CE(p, q) = 0 is p = 1/2 independent
of q.

achieves (2). Our construction is a modification of the encoder
and decoder described in [7] which we first review. While
reviewing, we provide key insights into how this decoder
might fail once a BEC is added. Following the review, we
use our insights to modify the decoder in order to account for
the additional random noise when q > 0. Alice has a set of
private secrets S she uses for (stochastic) encoding. Fix ε > 0
and let R = (1 − 2p − ε)(1 − q), θ = ε

4 . The encoder and
decoder of [7] is constructed as follows (here, q = 0):
• Encoder: A message u is mapped to several sub-

codewords or chunks, each of size nθ, which are con-
catenated together to form the transmitted codeword.
Each chunk is obtained from a stochastic code where the
secrets between chunks are chosen independently. Further
technical details can be found in [7].

• Decoder: Decoding begins after Bob receives the entire
n-symbol channel output y. For some integer t∗, Bob
partitions y into 2 strings: y1 = (y1, . . . , yt∗) and
y2 = (yt∗+1, . . . , n). Decoding occurs in two sequential
phases. In the first phase, Bob performs list decoding
on y1 to create a list of messages L. In the second
phase, he refines the list by removing all messages in
L that are not consistent with y2. Here, a message
u′ is said to be consistent with y2 iff some codeword
corresponding to u′ agrees with y2 on the unerased
bits. If exactly one message, say û, remains in L after
refinement, the decoder outputs û. If the refined list does
not contain exactly one message, a decoding error is
declared. Decoding is successful if û = u.

Here, t∗ is chosen as a function of the number of (purely
adversarial since q = 0) erasures λat∗ observed in y up until
time t∗. Specifically, Bob chooses t∗ as the smallest integer
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that satisfies the so-called list-decoding condition

λat∗ ≤ t∗(1− θ)− ((1− 2p)− ε)n (4)

and the energy bounding condition

np− λat∗ ≤
(n− t∗)(1− θ)

2
. (5)

Condition (4) ensures the size of L is small (at most a constant)
while condition (5) ensures the fraction of erasures that occur
in y2 is small enough to perform list refinement.

Problems in this construction arise when q > 0. If the
decoder assumes that all erasures that he sees are adversarial
and performs decoding by selecting t∗ according to (4) and (5),
the maximum rate that can be achieved is CE(p+q−pq, 0) =
CE(p, q) − q which is strictly less than capacity. Therefore,
simply counting erasures without knowing (or estimating)
their source is no longer a viable strategy when q > 0.
To circumvent this issue, we modify conditions (4) and (5)
appropriately. Let λt denote the number of erasures observed
by Bob up until time t, which includes contributions both from
Calvin and the BEC(q). Then, Bob chooses t∗ as the smallest
integer that satisfies the modified list-decoding condition

λt∗ − qt∗ ≤ t∗(1− q)(1− θ)−Rn (6)

and the modified list refinement condition

np(1− q)− (λt∗ − qt∗) ≤
(n− t∗)(1− q)(1− θ)

2
. (7)

Note that if Calvin adds λat∗ erasures up until t∗, the total
number of erasures λt∗ that Bob observes is approximately
λt∗ ≈ λat∗+q(t∗−λat∗). On making this substitution we see that
t∗ satisfying (6) and (7) is nearly the same as that satisfying
(4) and (5) i.e. it is sufficient to choose t∗ only as a function
of pure adversarial erasures. However, since Bob has no way
of knowing this, he works with the quantity λt∗−qt∗ which is
an estimate of the number of adversarial erasures that do not
conincide with random erasures. Having selected t∗, Bob can
then finish decoding using the two-phase decoding process of
[7] to successfully recover the transmitted message. Further
details of the proof are in [1].

B. With Transmitter Feedback

Suppose now that Alice in addition to Calvin has access to
Bob’s reception perfectly through a separate causal feedback
link. This allows Alice to employ closed-loop encoding strate-
gies where the input xk at time k is possibly a function of both
the message and Bob’s reception thus far (y1, y2, · · · , yk−1),
i.e.,

Xk ∼ fk(U,Y1,Y2, · · · ,Yk−1) k = 1, 2, · · · , n (8)

where for each k, fk is either deterministic or, more gen-
erally, a probabilistic map defining a conditional distribution
PX|U,Y1,Y2,···,Yk−1

over X . Calvin is assumed to be causal.
He does not know the message but knows the closed-loop
encoding (possibly stochastic) maps {fk}nk=1 used by Alice.
Let the capacity in this case be denoted as CEf (p, q). We have
the following result.

Theorem 2. The capacity CEf (p, q) of BEC(q)-ADV(p)-FS
with causal feedback to the transmitter is

CEf (p, q) = (1− p)(1− q) ∀ 0 ≤ p ≤ 1, 0 ≤ q ≤ 1. (9)

Remark. If Calvin were to simply erase each symbol with
probability p, the rate is limited to1 (1 − p)(1 − q) which
matches with the expression in (9). This implies that the
optimal attack for the adversary is to simply cause i.i.d.
erasures. The knowledge of the (closed-loop) encoding scheme
or the ability to snoop into Bob’s reception does not buy Calvin
any benefit.

Proof (Sketch) of Converse : Fix ε > 0. Calvin simply
erases each symbol with probability p− ε

1−q . By the Chernoff
bound, the probability that Calvin will run out of his budget
of pn erasures is at most 1 − 2−Ω(ε2n). The combined effect
of the adversary and the BEC(q) then is a BEC with erasure
probability s = p + q − pq − ε. Hence, CEf (p, q) ≤ 1 − s =
(1− p)(1− q) + ε.

Proof (Sketch) of Achievability : Fix ε > 0. The achiev-
ability scheme is essentially an ARQ scheme - transmit each
of the k bits in the message repeatedly until it is successfully
received. If eΛ is the total number of erasures (a random
quantity) that occur due to both the actions of Calvin and
the BEC(q), Alice needs n = k + eΛ channel uses for this
scheme to succeed. Note that at channel use t, since Calvin
does not know whether the BEC(q) will introduce an erasure
or not, we have that P (eΛ > ((p+ q − pq) + ε)n) is at most
1− 2−Ω(ε2n) and hence, CEf (p, q) ≥ (1− p)(1− q)− ε.

In Fig. 2, we plot CE(p, q) and CEf (p, q) as a function of
p for q = 0, 0.3, 0.6.

IV. RESULTS FOR BIT-FLIPS

In this section, we assume that Calvin can attempt to flip
up to pn bits and the random channel is a BSC(q) instead of
a BEC(q). The input and output alphabets are X = {0, 1} and
Y = {0, 1}. At time k, Calvin produces ak ∈ A = {0, 1}
based on his side information which is the same as before,
i.e., he knows (x1, x2, · · · , xk), the codebook or the codeword
distribution, and (y1, y2, · · · , yk−1). The received symbol at
time k at the receiver is yk = xk ⊕ ak ⊕ 1 with probability q
and yk = xk⊕ak with probability 1−q where ⊕ denotes mod-
2 addition and q ∈ [0, 1/2]. The constraint on the adversary
can be expressed as weight(a1, a2, · · · , an) ≤ pn. In contrast
to the erasure case, note that a flip-attempt of Calvin can
now be undone by the BSC. No feedback to the transmitter
is assumed. For this model denoted BSC(q)-ADV(p)-FS, we
prove an upper bound and use the result of [7] to provide
a simple achievable rate. The gap between the bounds gets
larger when q gets larger. Eliminating this gap and proving a
tight capacity characterization is left as future work.

1For a vanilla DMC such as the BEC, the capacity is the same under
deterministic and stochastic encoding [20].
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Fig. 3. Upper bound C(p, q) and lower bound C(p, q) on the capacity of
BSC(q)-ADV(p)-FS as a function of p. The cut-off value of p beyond which
C(p, q) = 0 is p = 1/4 independent of q.

A. An Upper Bound C(p, q)

Theorem 3. The capacity C(p, q) of BSC(q)-ADV(p)-FS is
bounded as C(p, q) ≤ C(p, q) where

C(p, q) = min
p̄:p̄∈P

α(p, p̄, q)

(
1− h2

(
p̄

α(p, p̄, q)
? q

))
, (10)

α(p, p̄, q) = 1− 4(p− p̄) , P = {p̄ : 0 ≤ p̄ ≤ p}

when p < 1
4 . When p ≥ 1

4 , C(p, q) = 0.

Remark. When q = 0, i.e., there is no BSC, the channel
model reduces to that considered in [5], [7], and the capacity
expression (10) matches with the result proved in [5], [7].

Proof (Sketch): Fix any p̄ ∈ [0, p] and ε > 0. Suppose
that the transmitter attempts to communicate at a rate of R =

α(p, p̄, q)
(

1− h2

(
p̄

α(p,p̄,q) ? q
))

+ε. We show a lower bound
on the probability of error. Our proof is based on a babble and
snoop, then push attack inspired in part from [5]. Let x and
y denote the transmitted and received words.
• Babble and Snoop: For the first ` = (α + ε/2)n

channel uses, Calvin injects random bit-flips and monitors
Bob’s reception - he flips each bit xi independently
with probability p̄n/`. By the Chernoff bound, Calvin
uses at most p̄n + εn/64 flips with probability at least
1 − e−Ω(ε2n). Let this be event E1. At the end of this
phase, Calvin knows x1 and y1.

• Push: Calvin samples a codeword x′ (corresponding to
message u′) according to the conditional distribution
PX|Y=y1

(.|y1). His goal is to confuse the receiver be-
tween x and x′. At positions where x2 and x′2 agree,
he does nothing. Positions j where x2 and x′2 disagree,
he flips xj with probability 1/2. This way, Bob cannot
distinguish between x and x′ (even with the BSC(q)) due

to the fact that p(y2|x2) = p(y2|x′2). The proof relies on
showing that with a small probability independent of n,
u, u′ are distinct and x2, x′2 are sufficiently close.

As was the case with erasures, the presence of the BSC(q)
introduces additional equivocation at the receiver which Calvin
is able to exploit thanks to his ability to snoop. Here also,
one-time block feedback (of entire block y1) after the first `
channel uses is sufficient for the attack to succeed.

Conditioned on E1, Calvin’s remaining budget in the
push phase is at least (p − p̄)n − εn/64. Letting A0 ={
y1 : H(U | Y1 = y1) > nε

4

}
, it can be shown that P ({Y1 ∈

A0}) ≥ ε/4. Define the events E2 = {Y1 ∈ A0}, E3 =
{U 6= U′} and E4 = {d(X2,X

′
2) ≤ 2(p − p̄)n − εn/8}.

Using techniques from Section A.2 of [6], we can show for
y1 ∈ A0,

P (E3, E4 | {Y1 = y1}) ≥
ε

48

( ε
5

) 12
ε −1

= εO(1/ε). (11)

The bound in (11) together with the bounds P (E1) ≥ 1 −
e−Ω(ε2n), P (E2) ≥ ε/4 implies that the probability of error
under the proposed attack strategy is at least εO(1/ε) which is
independent of n. Details are given in [1].

In Fig. 3, we plot C(p, q) as a function of p for q =
0, 0.1, 0.2. For a fixed q, there is a p̃q such that for p ≤ p̃q ,
C(p, q) is convex and equal to (1 − h2(p ? q)), which is
the capacity when BSC(p) and BSC(q) are in cascade. Thus
when p ≤ p̃q , the babble, snoop, and push strategy outlined
here provides no benefit over a simpler adversarial strategy of
injecting i.i.d. Ber(p) bit-flips.

B. An Achievable Rate C(p, q)

Theorem 4. The capacity C(p, q) of BSC(q)-ADV(p)-FS is at
least C(p, q) = C ((p ? q), 0).

Proof (Sketch): From [5], [7], C(s, 0) is a tight charac-
terization of the capacity when there is no BSC present and
Calvin has a total budget of sn bit-flips. Since at channel use
k, Calvin does not know if the BSC will cause a bit-flip, it
can be shown that the total number of bit-flips is at most
((p ? q) + ε)n with probability at least 1 − e−Ω(nε2). If we
now assume that all of the ((p ? q) + ε)n flips are chosen in
an adversarial manner by Calvin, a rate of C((p ? q) + ε, 0) is
achievable.

In Fig. 3, we also plot achievable rates C(p, q) for q =
0, 0.1, 0.2. As noted before, the gap between upper and lower
bounds increases with q.

V. CONCLUSION

In this work, we considered communicating over a stochas-
tic channel (BEC/BSC) in the presence of a powerful adversary
who can spy on both communicating terminals and inject
further erasures/bit-flips at the input of the channel. For
erasures, we gave a complete capacity characterization and
for bit-flips, we proved interesting converse and achievability
bounds. Future work includes characterizing capacity tightly
for bit-flips with and without transmitter feedback. Another
interesting direction is to characterize capacity in the case
where the adversary has no feedback snooping.
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