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Abstract. This paper revisits the parametric analysis of semidefinite optimization prob-
lems with respect to the perturbation of the objective function along a fixed direction. We
review the notions of invariancy set, nonlinearity interval, and transition point of the opti-
mal partition, and we investigate their characterizations. We show that the set of transition
points is finite and the continuity of the optimal set mapping, on the basis of
Painlevé–Kuratowski set convergence, might fail on a nonlinearity interval. Under a local
nonsingularity condition, we then develop a methodology, stemming from numerical alge-
braic geometry, to efficiently compute nonlinearity intervals and transition points of the
optimal partition. Finally, we support the theoretical results by applying our procedure to
some numerical examples.
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1. Introduction
Let Sn be the vector space of n × n symmetric matrices. Consider a parametric semidefinite optimization (SDO)
problem

(Pε) inf
X∈Sn

{〈C+ εC,X〉 : 〈Ai,X〉 � bi, i � 1, : : : ,m, X� 0},

(Dε) sup
(y,S)∈Rm×Sn

bTy :
∑m
i�1

yiAi + S � C+ εC, S� 0

{ }
,

where C,Ai ∈ S
n for i � 1, : : : ,m; b ∈ R

m; C ∈ S
n is a fixed direction; the inner product is defined as 〈C,X〉 :� tr(CX);

and X� 0 means that the matrix X is symmetric and positive semidefinite. Let v(ε) ∈ R
⋃{−∞,∞} denote the

optimal value of (Pε). This yields a function v : R→ R
⋃{−∞,∞}, which is the so-called optimal value function. Let

E :� {ε ∈ R : v(ε) > −∞} be the domain of v(ε).
The primal and dual optimal set mappings on E are defined as

P∗ : ε 	→ {X : 〈C+ εC,X〉 � v(ε), X ∈ P(ε)},
D∗ : ε 	→ {(y,S) : bTy � v(ε), (y,S) ∈D(ε)},

where P and D denote the primal and dual feasible set mappings:

P : ε 	→ {X : 〈Ai,X〉 � bi, i � 1, : : : ,m, X� 0},
D : ε 	→ (y,S) : ∑m

i�1
yiAi + S � C+ εC, S� 0

{ }
:

Note that P∗(ε) or D∗(ε) might be empty for some ε ∈ E. To avoid trivialities, we make the following assump-
tions throughout this paper.
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Assumption 1. The coefficient matrices Ai for i � 1, : : : ,m are linearly independent.

Assumption 2. The interior point condition holds for both (Pε) and (Dε) at ε � 0, that is, there exists a feasible
(X◦(0),y◦(0),S◦(0)) ∈ P(0) ×D(0) such that X◦(0),S◦(0) � 0, where

�

0 means positive definite.

Wemay assume Assumption 2 without loss of generality. In fact, the interior point condition is standard in the
literature of conic optimization, and it always holds for a self-dual homogeneous embedding form of an SDO
problem (de Klerk et al. [21, 22]). Assumption 2 implies that E is nonempty and nonsingleton (Todd [55, theorem
4.1]), and that v(ε) is proper and concave on E. The proof is analogous to Berkelaar et al. [11, theorem 11], where
the objective function is linear. The concavity of v(ε) yields that E is a closed, possibly unbounded, interval (see,
for example Berkelaar et al. [11, theorem 8]) and that v(ε) is continuous on int(E) (Bonnans and Shapiro [15, corol-
lary 2.109]), where int(·) denotes the interior of a set.
Remark 1. By Goldfarb and Scheinberg [27, lemma 3.1] and a theorem of the alternative, Cheung et al. [17,
lemma 12.6], Assumptions 1 and 2 imply that a strictly feasible solution (X◦(ε),y◦(ε),S◦(ε)) exists at every ε ∈
int(E).

Hence, for all ε ∈ int(E), Assumptions 1 and 2 ensure that strong duality holds and that the optimal sets P∗(ε)
and D∗(ε) are nonempty and compact (Todd [55, corollary 4.2]). In this paper, by strong duality we mean that the
optimal values of (Pε) and (Dε) are both attained and the duality gap is zero. In particular, the optimality condi-
tions for (Pε) and (Dε) can be written as

〈Ai,X〉 � bi, i � 1, : : : ,m,∑m
i�1

yiAi + S � C+ εC,

XS � 0,

X,S� 0, (1)
where XS � 0 denotes the complementarity condition. Furthermore, Assumption 2 guarantees the existence of a
so-called maximally complementary optimal solution for every ε ∈ int(E).
Definition 1. For any fixed ε ∈ int(E), an optimal solution (X∗(ε),y∗(ε),S∗(ε)) is called maximally complementary if

X∗(ε) ∈ ri (P∗(ε)) and (y∗(ε),S∗(ε)) ∈ ri (D∗(ε)),
where ri(·) denotes the relative interior of a set. A maximally complementary optimal solution (X∗(ε),y∗(ε),S∗(ε))
is called strictly complementary if X∗(ε) + S∗(ε) � 0.

For a given ε ∈ int(E), unless stated otherwise, (X∗(ε),y∗(ε),S∗(ε)) denotes a maximally complementary optimal
solution. Notice that rank(X∗(ε)) + rank(S∗(ε)) is maximal on P∗(ε) ×D∗(ε); see for example, de Klerk [20, lemma
2.3]. Even though a strictly complementary optimal solution may fail to exist, a maximally complementary opti-
mal solution always exists under Assumption 2.

In practice, given a fixed ε, (Pε) and (Dε) can be efficiently solved using a primal-dual path-following interior
point method (IPM); see Nesterov and Nemirovskii [45]. A primal-dual path following IPM generates a sequence
of solutions whose accumulation points are maximally complementary optimal solutions (Halická et al. [29]).

1.1. Optimal Partition
For SDO, the optimal partition information can be leveraged to establish sensitivity analysis results. The optimal
partition provides a characterization of the optimal set, and it is uniquely defined for any instance of an SDO
problem that satisfies strong duality (de Klerk [20]). For a fixed ε ∈ int(E), let (X∗(ε),y∗(ε),S∗(ε)) ∈ ri (P∗(ε) ×D∗(ε))
be a maximally complementary optimal solution, and let B(ε) :�R(X∗(ε)), N (ε) :�R(S∗(ε)), and T (ε) :�
(R(X∗(ε)) +R(S∗(ε)))⊥, where R(·) is the column space and ⊥ denotes the orthogonal complement of a subspace.
Then the 3-tuple (B(ε),T (ε),N (ε)) is called the optimal partition of (Pε) and (Dε). Note that the subspaces R(X∗(ε))
and R(S∗(ε)) are orthogonal by the complementarity condition in (1). Furthermore, the optimal partition
(B(ε),T (ε),N (ε)) is independent of the choice of a maximally complementary optimal solution (de Klerk [20,
lemma 2.3(i)]).
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1.2. Related Work
Sensitivity analysis along a fixed direction has been extensively studied in optimization theory and was origi-
nally introduced for linear optimization (LO) and linearly constrained quadratic optimization (LCQO) problems
by Adler and Monteiro [1], Berkelaar et al. [10], and Jansen et al. [36]. Sensitivity analysis of nonlinear optimiza-
tion problems was studied by Fiacco [24] and Fiacco and McCormick [26] using the implicit function theorem
(Dieudonné [23, theorem 10.2.1]). Their analyses were based on linear independence constraint qualification,
second-order sufficient condition, and the strict complementarity condition. Furthermore, Fiacco [24] showed
how to compute/approximate the partial derivatives of a locally optimal solution. Robinson [48] removed the
reliance on the strict complementarity condition by imposing a strong second-order sufficient condition. Kojima
[38] removed the dependence on the strict complementarity condition by invoking the degree theory of a contin-
uous map; see, for example, Ortega and Rheinboldt [47]. A comprehensive treatment of directional and differen-
tial stability of nonlinear conic optimization problems is given by Bonnans and Shapiro [14, 15]; see also Bonnans
and Ramı́rez [13] and Shapiro [52]. The reader is referred to Fiacco [25] for a survey of classical results.

The study of sensitivity analysis based on the optimal partition approach was initiated by Adler and
Monteiro [1] and Jansen et al. [36] for LO, and then extended to LCQO, SDO, and linear conic optimiza-
tion by Berkelaar et al. [10], Goldfarb and Scheinberg [27], and Yildirim [57], respectively. The optimal
partition approach fully describes the optimal set mapping and the optimal value function on the entire
int(E). In contrast to the optimal basis approach in LO (Jansen et al. [36]), which may produce inconsistent
results due to problem degeneracy, the results from the optimal partition approach are unique and invari-
ant with respect to any regularity condition for parametric conic optimization problems. Recently, the sec-
ond and fourth authors (Mohammad-Nezhad and Terlaky [42]) expanded on the optimal partition
approach and an invariancy interval in Goldfarb and Scheinberg [27] by introducing the concepts of a nonlinear-
ity interval and a transition point for the optimal partition of (Pε) and (Dε). An invariancy interval (see Definition
3) is an open maximal subinterval of int(E) on which the optimal partition is invariant with respect to ε. A nonli-
nearity interval (see Definition 4) is an open maximal subinterval of int(E) on which the rank of maximally com-
plementary optimal solutions X∗(ε) and S∗(ε) stay constant, while the optimal partition varies with ε. A transition
point (see Definition 5) is the boundary point of an invariancy or a nonlinearity interval that belongs to int(E).
Unlike a parametric LO problem (Jansen et al. [36]), the optimal value function of SDO consists of nonlinear
pieces (of not necessarily polynomial type) on nonlinearity intervals.

1.3. Contributions
Very little is known yet about the nonlinearity intervals and the topology of their optimal solutions for a para-
metric SDO problem. In particular, in contrast to a parametric LO problem, there is no procedure for the full
decomposition of int(E) into invariancy and nonlinearity intervals. Our main contribution is a numerical alge-
braic geometry procedure for the computation of nonlinearity intervals and transition points in int(E). To the
best of our knowledge, this is the first comprehensive methodology for the full decomposition of int(E) for a
parametric SDO problem.

The first part of this paper reviews the notions of invariancy set, nonlinearity interval, and transition point and
investigates their characterizations. We prove that the set of transition points is finite (see Theorem 1), and using
continuity arguments on the basis of Painlevé–Kuratowski set convergence, we provide sufficient conditions
under which a nonlinearity interval exists (see Lemma 1). We analyze the continuity of the optimal set mapping
and show that continuity may fail on a nonlinearity interval; see Example 1. Additionally, we show that even a
continuous selection (Rockafellar and Wets [51, chapter 5(J)]) through the relative interior of the optimal sets
might fail to exist; see Problem (9). The second part of this paper investigates the computation of nonlinearity
intervals and transition points of the optimal partition. Under a local nonsingularity condition (see Theorem 2),
we develop a methodology, Algorithms 3 and 4, to compute the boundary points of a nonlinearity interval and
identify a transition point. By assuming a generic global nonsingularity condition (see Proposition 5), we then
present a numerical procedure, Algorithm 1, which partitions int(E) into a finite union of invariancy intervals,
nonlinearity intervals, and transition points.

Because the maximal rank of optimal solutions is preserved on invariancy and nonlinearity intervals, our numeri-
cal procedure could be of great interest to the parametric analysis of matrix completion problems; see, for example,
Alfakih and Wolkowicz [2]. Besides sensitivity analysis purposes and their economical interpretations, the identifica-
tion of a nonlinearity interval is important from practical perspectives. For example, in order to approximate the opti-
mal value function on a neighborhood of a given ε, one needs to utilize samples from the same nonlinearity interval
containing ε. Cifuentes et al. [18] studied the local stability of SDO relaxations for polynomial and semialgebraic opti-
mization problems with emphasis on a notion similar to a nonlinearity interval.
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1.4. Organization of This Paper
The rest of this paper is organized as follows. In Section 2, we investigate the continuity of the feasible and
optimal set mappings at a given ε ∈ int(E) relative to int(E). In Section 3, we study the sensitivity of the opti-
mal partition with respect to ε. Furthermore, we use continuity and semialgebraicity arguments to character-
ize nonlinearity intervals and transition points, and we investigate the continuity of the optimal set mapping
on a nonlinearity interval. In Section 4, we present an algorithm to compute invariancy intervals, nonlinearity
intervals, and transition points in int(E). Our numerical experiments are presented in Section 5. Finally, we
present remarks and topics for future research in Section 6.

Notation. Throughout this paper, Sn+ denotes the cone of n × n positive semidefinite matrices, bd(·) represents
the boundary of a set, and ‖ · ‖2 denotes the ℓ2 norm of a vector. Associated with a symmetric matrix X, λmin(X)
denotes the smallest eigenvalue of X, Ker(X) is the null space of X, and svec(X) denotes a linear mapping stack-
ing the upper triangular part of a symmetric matrix, in which the off-diagonal entries are multiplied by

��
2

√
, that

is,

svec(X) :� (X11,
��
2

√
X12, : : : ,

��
2

√
X1n,X22,

��
2

√
X23, : : : ,

��
2

√
X2n, : : : ,Xnn)T: (2)

For brevity, we often use the notation A :� (svec(A1), : : : , svec(Am))T for a compact representation of the coeffi-
cient matrices. Finally, for any two square matrices K1 and K2 and a symmetric matrix H, the symmetric Kronecker
product, denoted by ⊗s, is defined as

(K1⊗sK2) svec(H) :� 1
2
svec (K2HKT

1 +K1HKT
2 );

see, for example, de Klerk [20] for more details.

2. Continuity of the Feasible Set and Optimal Set Mappings
This section investigates the continuity of the primal and dual feasible set mappings and the outer semicontinu-
ity of the primal and dual optimal set mappings for (Pε) and (Dε). We adopt the notions and definitions from
Rockafellar and Dontchev [50] and Rockafellar and Wets [51].

Let Rq and R
l be finite-dimensional Euclidean spaces. A mapping Φ : Rq ¶ R

l is called a set-valued mapping if it
assigns a subset of Rl to each element of Rq. The domain of a set-valued mapping Φ is dom(Φ) :� {ξ :Φ(ξ)≠ ∅},
and the range of Φ is defined as range(Φ) :� {ν : ∃ ξ s:t: ν ∈Φ(ξ)}.

The following discussion concisely reviews the continuity of a set-valued mapping on the basis of Painlevé–
Kuratowski set convergence; see Rockafellar and Wets [51, chapters 4 and 5] for more details. For a sequence {Ck}∞k�1
of subsets of Rl, the outer and inner limits are defined, respectively, as

limsup
k→∞

Ck :� ν : lim inf
k→∞

dist (ν,Ck) � 0
{ }

,

liminf
k→∞

Ck :� ν : limsup
k→∞

dist (ν,Ck) � 0

{ }
,

(3)

where dist(ν,Ck) � infx∈Ck ||ν− x||2. Let X be a subset of Rq containing ξ. A set-valued mapping Φ is called outer
semicontinuous at ξ relative to X if limsupξ→ξ Φ(ξ) ⊆ Φ(ξ) and inner semicontinuous at ξ relative to X if
liminfξ→ξΦ(ξ) ⊇Φ(ξ), where

limsup
ξ→ξ

Φ(ξ) :� ∪
X ⊇ξk→ξ

limsup
k→∞

Φ(ξk),
liminf
ξ→ξ

Φ(ξ) :� ∩
X ⊇ξk→ξ

lim inf
k→∞

Φ(ξk):

When X � R
q, we simply call Φ outer or inner semicontinuous at ξ.

Definition 2. A set-valued mapping Φ is Painlevé–Kuratowski continuous at ξ relative to X if it is both outer and
inner semicontinuous at ξ relative to X .

In our setting, outer and inner semicontinuity agree with the notions of closedness and openness of a point-to-
set map in Hogan [34]; see also Rockafellar and Wets [51, theorem 5.7(c)] and Hogan [34, corollary 1.1].

We show the continuity of the feasible set mapping and the outer semicontinuity of the optimal set mapping
relative to int(E). Trivially, P : R¶ S

n is continuous because it remains invariant with respect to ε. Furthermore,
the continuity of D : R¶ R

m × S
n relative to int(E) follows from Hogan [34, theorems 10 and 12], where D(ε) � ∅
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for every ε ∈ R \ E; see also Rockafellar and Wets [51, example 5.10]. For the sake of completeness, we provide a
proof for our special case here.

Proposition 1. Under Assumption 2, the set-valued mapping D is continuous relative to int(E).
Proof. For the sake of brevity, we define L(y) :� ∑m

i�1 yiAi. The outer semicontinuity of D is immediate from the
closedness of Sn+; see, for example, Rockafellar and Wets [51, example 5.8]. Hence, it only remains to show that D
is inner semicontinuous at every ε′ ∈ int(E), that is, given a sequence {εk}∞k�1 with εk → ε′ and an arbitrary
(ŷ, Ŝ) ∈D(ε′), there exists a convergent sequence (yk,Sk) → (ŷ, Ŝ) such that (yk,Sk) ∈D(εk) for all sufficiently large
k. To that end, let us define yk :� (1− αk)ŷ + αky and Sk :� C+ εkC − L(yk), where (y,S) ∈D(ε′) such that S

�

0. By
Assumption 2, such a (y,S) exists. We then need to construct a convergent sequence αk → 0 such that Sk � 0
holds. We assume that λmin(Ŝ) � 0, because otherwise, for any arbitrary sequence αk → 0, we always have Sk

�

0
when k is sufficiently large.

Notice that if 0 ≤ αk ≤ 1, then Sk � 0 is satisfied by requiring

(1− αk)λmin(C+ εkC − L(ŷ)) +αkλmin(C+ εkC − L(y)) ≥ 0,

which is equivalent to

αk ≥ μk :�
−λmin(C+ εkC − L(ŷ))

λmin(C+ εkC − L(y)) −λmin(C+ εkC − L(ŷ))
for sufficiently large k, because the denominator has to be positive. Letting αk :�max{μk, 0}, we get the desired
sequence. w

As a result of Proposition 1, we can show that P∗ : R¶ S
n and D∗ : R¶ R

m × S
n are outer semicontinuous rela-

tive to int(E); see, for example, Hogan [34, theorem 8] or Rockafellar and Dontchev [50, theorem 3B.5]. All this
implies that for any ε′ ∈ int(E) and any sequence εk → ε′, we have

liminf
k→∞

P∗(εk) ⊆ limsup
k→∞

P∗(εk) ⊆ P∗(ε′) and liminf
k→∞

D∗(εk) ⊆ limsup
k→∞

D∗(εk) ⊆D∗(ε′): (4)

However, P∗ and D∗ are not necessarily inner semicontinuous relative to int(E), as shown in Example 1, where
the optimal set is multiple valued at ε � 1

2 but single valued everywhere else in a neighborhood of 1
2. Never-

theless, the set of points at which P∗ or D∗ fails to be continuous relative to int(E) is of first category in int(E),
that is, it is the union of countably many nowhere dense sets in int(E); see, for example, Munkres [44]. This
directly follows from the outer semicontinuity of the optimal set mapping relative to int(E) and theorem 5.55
in Rockafellar and Wets [51]. All this yields the following result.

Proposition 2. The set of points at which P∗ or D∗ fails to be continuous relative to int(E) has empty interior.

Proof. Because int(E) is a Baire subset of R (Munkres [44, lemma 48.4]), every first category subset of int(E) has
empty interior. w

As a consequence of Proposition 2, every open subset of int(E) contains a point at which both P∗ and D∗ are
continuous relative to int(E).

3. Sensitivity of the Optimal Partition
We briefly review the notions of an invariancy interval, nonlinearity interval, and a transition point from
Mohammad-Nezhad and Terlaky [42]. Let π(ε) :� (B(ε),T (ε),N (ε)) denote the subspaces of the optimal partition
at ε, and let (QB(ε),QT (ε),QN (ε)) be an orthonormal basis partitioned according to the subspaces of the optimal
partition.

Definition 3 (Goldfarb and Scheinberg [27], Mohammad-Nezhad and Terlaky [42]). An invariancy set is a maximal
subset I inv of int(E) on which π(ε) is invariant for all ε ∈ I inv.

Indeed, an invariancy set is proved to be either a singleton or an open, possibly unbounded, subinterval of
int(E); see Mohammad-Nezhad and Terlaky [42, lemma 3.3] and its preceding discussion. A nonsingleton I inv is
simply called an invariancy interval.

Remark 2. Even though the optimal partition of a singleton I inv is vacuously invariant on I inv, it differs from the
optimal partition of every neighborhood of I inv.
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The primal optimal set mapping P∗ is constant on an invariancy interval (Mohammad-Nezhad and Terlaky
[42, remark 3.1]). Furthermore, the boundary points of an invariancy set, containing a given ε, can be efficiently
computed by solving a pair of auxiliary SDO problems (Goldfarb and Scheinberg [27, lemma 4.1]):

αinv(βinv) :� inf(sup) ε

s:t:
∑m
i�1

yiAi +QN (ε)USQT
N (ε) � C+ εC,

US � 0, (5)
where we might have αinv � −∞, βinv �∞, or both. If αinv < ε < βinv holds, then ε belongs to an invariancy inter-
val. Otherwise, ε belongs to a nonlinearity interval, or it is a transition point, as formally defined in Definitions 4
and 5. Recall that (X∗(ε),y∗(ε),S∗(ε)) denotes a maximally complementary optimal solution.

Definition 4 (Mohammad-Nezhad and Terlaky [42, definition 3.6]). A nonlinearity interval is an open maximal subin-
terval Inon of int(E) on which both rank(X∗(ε)) and rank(S∗(ε)) are constant, whereas π(ε) varies with ε, that is,
ε1 ≠ ε2 implies π(ε1)≠ π(ε2) for all ε1,ε2 ∈ Inon.

Definition 5 (Mohammad-Nezhad and Terlaky [42, definition 3.5]). A point ε ∈ int(E) is called a transition point if for
every δ > 0, there exists ε ∈ (ε − δ,ε + δ) ∩ int(E) such that

rank (X∗(ε))≠ rank(X∗(ε)) or rank (S∗(ε))≠ rank (S∗(ε)):
Definition 5 is consistent with the one defined for a parametric LO problem (Jansen et al. [36]), as spelled out

in the following proposition.

Proposition 3. At a boundary point ε ∈ int(E) of an invariancy interval I inv and for some ε̂ ∈ I inv, we have

rank (X∗(ε̂))≠ rank (X∗(ε)) or rank (S∗(ε̂))≠ rank (S∗(ε)):

Before proving this statement, we need the following result.

Proposition 4. If P∗ and rank(S∗(ε)) are constant on [ε1,ε2], then so is π(ε).
Proof. Let us define εγ :� γε1 + (1− γ)ε2, where γ ∈ [0, 1]. Then, for every γ ∈ (0, 1), it is easy to verify that
(X(εγ),y(εγ),S(εγ)) is an optimal solution of (Pεγ) − (Dεγ), where

X(εγ) :� X∗(ε1), y(εγ) :� γy∗(ε1) + (1− γ)y∗(ε2), S(εγ) :� γS∗(ε1) + (1− γ)S∗(ε2), (6)

in which X(εγ)S(εγ) � 0 follows from the constancy of P∗. Let 0 < γ1,γ2 < 1. Notice from (6) and from the positive
semidefiniteness of S∗(ε1) and S∗(ε2) that for every q ∈ R

n, qTS(εγ1
)q � 0 implies

qTS∗(ε1)q � 0 and qTS∗(ε2)q � 0,

which in turn yield qTS(εγ2
)q � 0 by (6). Therefore, Ker(S(εγ1

)) ⊆ Ker(S(εγ2
)), and by switching the roles of γ1 and

γ2, we get Ker(S(εγ1
)) � Ker(S(εγ2

)). Furthermore, it is obvious from (6) that Ker(X(εγ1
)) � Ker(X(εγ2

)). Finally, we
can conclude from the constancy of the primal optimal set and rank(S∗(ε)) on [ε1,ε2] that rank(X(εγ)) �
rank(X∗(εγ)) and rank(S(εγ)) ≥ rank(S∗(εγ)) for all γ ∈ (0, 1), which in turn indicate that (X(εγ),y(εγ),S(εγ)) is max-
imally complementary. w

Proof of Proposition 3. In addition to Proposition 4, we need to recall from (4) that for any sequence
I inv ⊇ εk → ε, it holds that liminfk→∞P∗(εk) ⊆ P∗(ε), whereas lim infk→∞P∗(εk) � P∗(ε̂) follows from the constancy
of P∗ on I inv and Rockafellar and Wets [51, exercise 4.3(b)]. Consequently, P∗(ε̂) ⊆ P∗(ε), and exactly one of the
following holds: (a) P∗(ε̂) ⊆ bd(P∗(ε)) or (b) P∗(ε̂) ∩ ri(P∗(ε))≠ ∅. Case (a) leads to rank(X∗(ε̂)) < rank(X∗(ε)) by
the definition of a maximally complementary optimal solution, whereas case (b) implies ri(P∗(ε̂)) ⊆ ri(P∗(ε)) and
thus rank(S∗(ε̂))≠ rank(S∗(ε)) by the proof of Proposition 4. w

Remark 3. It is immediate from Proposition 4 that on a nonlinearity interval both the primal and dual optimal
sets must vary with ε.

A boundary point of an invariancy or a nonlinearity interval, if it belongs to int(E), must be a transition point by
Definition 4 and Proposition 3. On the other hand, the semialgebraic (Basu et al. [5]) property of Definitions 3 and 4
implies that the set of transition points is always finite (see Theorem 1), that is, a transition point must be a boundary
point of an invariancy or a nonlinearity interval. The idea of the proof is analogous to Mohammad-Nezhad and
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Terlaky [43, theorem 1] for the optimal partition of a parametric second-order conic optimization problem. For the
sake of completeness, we refer the reader to the appendix for a self-contained proof.

Theorem 1. The set of transition points is finite.

As a result of Theorem 1, int(E) can be always partitioned into the finite union of invariancy intervals, nonli-
nearity intervals, and transition points. The following example is adopted fromMohammad-Nezhad and Terlaky
[42, example 3.1] and shows the existence of nonlinearity intervals and transition points.

Example 1. Consider the following parametric convex optimization problem:

min (4ε − 2)x + (2 − 4ε)y − 2z :
1 x y
x 1 z
y z 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭, (7)

in which the feasible region is a 3-elliptope (Blekherman et al. [12]); see Figure 1. Because the perturbation
parameter ε appears only in the objective function, we can cast the parametric problem (7) into the primal form
(Pε)with X ∈ S

3 and m � 3 by introducing

A1 �
1 0 0
0 0 0
0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, A2 �

0 0 0
0 1 0
0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, A3 �

0 0 0
0 0 0
0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

C �
0 −1 1
−1 0 −1
1 −1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, C �

0 2 −2
2 0 0
−2 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, b � 1, 1, 1( )T:

For all ε ∈ − 1
2 ,

3
2

( )
(see Mohammad-Nezhad and Terlaky [42, example 3.1]), a strictly complementary optimal

solution is given by

X∗(ε) �
1

1
2
− ε ε− 1

2
1
2
− ε 1 1− 2 ε− 1

2

( )2
ε− 1

2
1− 2 ε− 1

2

( )2
1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, y∗(ε) �
−(2ε− 1)2

−1
−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, S∗(ε) �

(2ε− 1)2 2ε− 1 1− 2ε
2ε− 1 1 −1
1− 2ε −1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

whereas a maximally complementary optimal solution at ε � 3
2 is given by

X∗ 3
2

( )
�

1 −1 1
−1 1 −1
1 −1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, y∗

3
2

( )
�

−4
−1
−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, S∗

3
2

( )
�

4 2 −2
2 1 −1
−2 −1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠:

The eigenvalue decompositions of X∗(ε) and S∗(ε) reveal that

rank (X∗(ε)) �
2 ε ∈ −1

2
,
3
2

( )
,

1 ε � 3
2
,

rank (S∗(ε)) � 1, ε ∈ −1
2
,
3
2

( ]
:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Figure 1. (Color online) The feasible set of the parametric convex optimization Problem (7), being invariant with respect to ε.
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By definition, − 1
2 ,

3
2

( )
is a nonlinearity interval, and ε � 3

2 is a transition point of the optimal partition.
Because of unknown behavior of the optimal set mapping in a parametric SDO problem (see Remark 3), a gen-

eral existence condition for a nonlinearity interval or a transition point is still an open question. Nevertheless,
strict complementarity coupled with the continuity of the optimal set mapping at a given ε relative to int(E) pro-
vides sufficient conditions for the existence of a nonlinearity interval surrounding ε.

Lemma 1. Let {ε} be a singleton invariancy set, and let (X∗(ε),y∗(ε),S∗(ε)) be a strictly complementary optimal solution
at ε ∈ int(E), at which both the primal and dual optimal set mappings are continuous relative to int(E). Then ε belongs to a
nonlinearity interval.

Proof. The strict complementarity condition yields
rank (X∗(ε)) + rank (S∗(ε)) � n:

Continuity of P∗ and D∗ at ε, along with the continuity of the eigenvalues, shows that rank(X∗(ε)) ≤
rank(X∗(ε)) and rank(S∗(ε)) ≤ rank(S∗(ε)) for all ε in a small neighborhood of ε; see also Rockafellar and
Dontchev [50, theorem 3B.2(b)]. Hence, the ranks of X∗(ε) and S∗(ε) remain constant on a sufficiently small
neighborhood of ε. w

Unfortunately, the converse of Lemma 1 is not necessarily true. In fact, the primal or dual optimal set
mapping might fail to be continuous on a nonlinearity interval. This can occur because the liminf of a
sequence of faces is not necessarily a face of the feasible set, that is, it might be a subset of the relative interior
of a face. A counterexample is Example 1, where the strict complementarity condition holds on a nonlinearity

interval − 1
2 ,

3
2

( )
. The primal optimal set mapping is single valued everywhere on − 1

2 ,
1
2

( )⋃ 1
2 ,

3
2

( )
; see

Mohammad-Nezhad and Terlaky [42, p. 204]. However, P∗ fails to be inner semicontinuous at ε � 1
2, because

P∗ is multiple valued at ε � 1
2, and

liminf
k→∞

P∗(εk) ⊂ ri P∗ 1
2

( )( )
for any sequence εk → 1

2.

Remark 4. The continuity condition in Lemma 1 can be relaxed by imposing the conditions

lim inf
k→∞

P∗(εk) ∩ ri(P∗(ε)) ≠ ∅ and lim inf
k→∞

D∗(εk) ∩ ri(D∗(ε)) ≠ ∅ (8)

for every sequence εk → ε, which, by (3) and the continuity of the eigenvalues, imply the existence of a nonlinear-
ity interval around ε; see also Mohammad-Nezhad and Terlaky [42, theorem 3.7]. However, even the weaker
condition (8) may not hold on a nonlinearity interval. For instance, by adding the inequality constraint x+ y+ z ≤ 1
to problem (7), we get

min (4ε− 2)x+ (2− 4ε)y− 2z :
1 x y
x 1 z
y z 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 0, x+ y+ z ≤ 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭, (9)

Figure 2. (Color online) The feasible set of the parametric convex optimization Problem (9).

Hauenstein et al.: On Computing the Nonlinearity Interval in Parametric SDO
8 Mathematics of Operations Research, Articles in Advance, pp. 1–21, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

74
.5

2.
29

] 
on

 1
9 

Se
pt

em
be

r 
20

22
, a

t 1
0:

40
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



which can be analogously cast into the primal form (Pε) with X ∈ S
4 and m � 7; see Figure 2. For all

ε ∈ (− 1
2 ,

3
2) \ 1

2

{ }
, we still have a unique strictly complementary optimal solution

X∗(ε) �

1
1
2
− ε ε− 1

2
0

1
2
− ε 1 1− 2 ε− 1

2

( )2
0

ε− 1
2

1− 2 ε− 1
2

( )2
1 0

0 0 0 2 ε− 1
2

( )2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, y∗(ε) � (−(2ε− 1)2, − 1, − 1, 0, 0, 0, 0 )T,

S∗(ε) �
(2ε− 1)2 2ε− 1 1− 2ε 0
2ε− 1 1 −1 0
1− 2ε −1 1 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠:

However, for any εk → 1
2, the sequence X∗(εk) converges to an optimal solution on the boundary of P∗(12). This

example shows that even a continuous selection (Rockafellar and Wets [51, chapter 5(J)]) through the relative
interior of the optimal sets might fail to exist on a nonlinearity interval. However, we do not know yet whether
(8) could fail at a boundary point of a nonlinearity interval.

4. Identification of the Optimal Partitions
This section proposes a methodology to compute the boundary points of nonlinearity intervals and identify tran-
sition points in int(E). By Theorem 1, the interval int(E) is the disjoint union of finitely many invariancy intervals,
nonlinearity intervals, and transition points. An invariancy interval can be efficiently computed by solving the
auxiliary SDO problems (5). In general, however, the identification of a nonlinearity interval around a given ε is
a nontrivial computational task, because the conditions of Lemma 1 may not be easily checked in practice. One
could try to simply solve (Pε) and (Dε) for various ε in a neighborhood of ε with the aim of finding the desired
nonlinearity interval. However, this approach could fail because the solutions of IPMs usually come with numer-
ical inaccuracy. Therefore, a positive eigenvalue of X∗(ε) or S∗(ε), which could be doubly exponentially small
(Mohammad-Nezhad and Terlaky [41, example 3.2]), may not be identified. On the other hand, because the set
of transition points is finite (see Theorem 1), the numerical inaccuracy could lead one to miss a transition point
when simply solving (Pε) and (Dε) at a given set of mesh points.

In order to compute the boundary points of nonlinearity intervals, we numerically locate the transition points
by reformulating the optimality conditions (1) as a system of polynomials. We then view the problem of finding
transition points through the lens of numerical algebraic geometry; see Bates et al. [9] and Sommese and
Wampler [53] for an overview of results regarding polynomial systems.

4.1. Algebraic Formulation
ForA :� (svec(A1),: : : , svec(Am))T, the optimality conditions (1) can be equivalently written as

F(V,ε) :�
Asvec(X) − b

ATy+ svec(S) − svec(C+ εC)
1
2
svec(XS+ SX)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 0, (10)

X,S� 0, (11)

where V :� (svec(X);y; svec(S)) is the vector of variables. Given a particular ε, the algebraic set of solutions satis-
fying (10) is denoted by

V(F(V,ε)) :� {V ∈ C
m+2t(n) : F(V,ε) � 0}, (12)

where t(n) :� n(n+ 1)=2. An algebraic set is the solution set of a system of polynomials over C. Following this
notation, a solution in V(F(V,ε)), an optimal solution, and a maximally complementary optimal solution of (Pε)
and (Dε) are denoted by V(ε), V(ε), and V∗(ε), respectively. Clearly, V(ε) is not necessarily an optimal solution of
(Pε) and (Dε) because it may be complex or fail to satisfy (11).
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The Jacobian matrix of (10) is given by

J(V, ε) :�
A 0 0
0 AT It(n)

S⊗s In 0 X⊗s In

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

where the symmetric Kronecker product ⊗s is as defined in Section 1.4. If the Jacobian is nonsingular at (V∗(ε),ε),
then V∗(ε) is the unique, nondegenerate (Alizadeh et al. [3, definitions 5 and 8]), and strictly complementary opti-
mal solution of (Pε ) and (Dε ).
Lemma 2 (Alizadeh et al. [4, theorem 3.1] and Haeberly [28, theorem 3.1]). The Jacobian J(V∗(ε),ε) is nonsingular if and
only if the optimal solution V∗(ε) is nondegenerate and strictly complementary.

Remark 5. We would like to note that nondegeneracy and strict complementarity at fixed ε and C are both
generic properties (Alizadeh et al. [3, theorems 14 and 15]). Therefore, the existence of a unique optimal solution
with a nonsingular Jacobian is also a generic property.

When the Jacobian is nonsingular, then the implicit function theorem (Dieudonné [23, theorem 10.2.1]) and
Lemma 1 describe the continuous behavior of V∗(ε) in a neighborhood of ε and induce the existence of an invari-
ancy or a nonlinearity interval around ε. Consequently, transition points and the points at whichP∗ orD∗ fails to be
continuous relative to int(E) are both subsets of singular points for polynomial system (10), that is, the set of points

{ε ∈ C : ∃V(ε) ∈V(F(V,ε))where the matrix J(V(ε),ε) is singular},
in which case V(ε) is called a singular solution. This inclusion might be strict as demonstrated by Example 1,
where ε � 1

2 is a singular nontransition point. If ε is not a singular point, then it is called a nonsingular point. Our
goal, as presented in Section 4.1.1, is to locate the singular boundary points of nonlinearity intervals in int(E) and
then identify the transition points among the singular points; see Section 4.1.2.

4.1.1. Computation of Singular Boundary Points. Singular points of parameterized systems are well studied in
algebraic geometry, for example, Sylvester’s 19th century work in discriminants and resultants; see, for example,
Sylvester [54]. From a computational algebraic geometry viewpoint, the problem of computing singular bound-
ary points for a parametric SDO problem was studied by the first and third authors in Hauenstein and Tang [31]
in a more general context. Here, we present a simplified process to locate the boundary points of nonlinearity
intervals. Given an initial point ε ∈ int(E) with a nonsingular Jacobian J(V∗(ε),ε), the key idea is using Daviden-
ko’s [19] (see also Kalaba et al. [37]) ordinary differential equation (ODE)

J(V,ε)dV
dε

+ ∂F(V,ε)
∂ε

� 0 (13)

to track an optimal solution V(ε) from ε to a boundary point in each direction. Because solutions of (13) correspond
to level sets of F(V,ε), that is, {(V,ε) : F(V,ε) � c} for arbitrary constant c, using the initial condition V(ε) � V∗(ε)
yields the set of solutions to (10) and (11) for all ε in a neighborhood of ε. Hence, this approach utilizes the local
information provided by the Jacobian, when it is nonsingular, to obtain accurate approximations of the optimal solu-
tions nearby. The following theorem provides a summary of the solution (Hauenstein and Tang [31]).

Theorem 2. Let I reg ⊆ int(E) be an open interval containing ε such that J(V∗(ε),ε) is nonsingular for every ε ∈ I reg.
Then, V∗(ε) is analytic on I reg, and it is the unique solution of

dV
dε

� −J(V,ε)−1 ∂F(V,ε)
∂ε

, V(ε) � V∗(ε), ε ∈ I reg: (14)

Proof. See the appendix.
Using Theorem 2 and the results of Hauenstein et al. [33], we can track along I reg, on which the optimal solution

V∗(ε) is analytic by the implicit function theorem (Dieudonné [23, theorem 10.2.4]), until we reach the boundary
points of I reg. Thus, as the perturbation parameter approaches a singular boundary point of I reg, ill conditioning of
F(V,ε) � 0 or spurious numerical behavior will be detected numerically. Consequently, we can avoid jumping over a
transition point by using any reasonablemesh size that is sufficiently small for solving theODE system in Theorem 2.

Remark 6. Theorem 2 and the ODE system (13) serve as the basis of Algorithm 3 in Section 4.2.

4.1.2. Identification of Transition Points. At a singular boundary point ε̂, we examine the uniqueness of the cor-
responding optimal solution Va(ε̂), where Va(ε̂) is an accumulation point of the sequence of unique optimal
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solutions V∗(ε), obtained from (13), as ε↗ ε̂ or ε↘ ε̂. An accumulation point exists, by the outer semicontinuity
of P∗ and D∗ relative to int(E), and it belongs to P∗(ε̂) ×D∗(ε̂). Toward this end, we compute the local dimension
of the algebraic set V(F(V, ε̂)) at Va(ε̂) using a numerical local dimension test (Bates et al. [6], Wampler et al.
[56]). The local dimension is defined as the maximum dimension of the irreducible components of V(F(V, ε̂)),
that is, minimal algebraic subsets of V(F(V, ε̂)), which contain Va(ε̂); see Example 2. A detailed description of
algebraic sets and irreducible components can be found in Sommese and Wampler [53].

If V(F(V, ε̂)) has local dimension zero at Va(ε̂), then we can conclude from Lemma 1 that ε̂ is a transition point,
because Va(ε̂) turns out to be the unique optimal solution of (Pε̂) and (Dε̂). Otherwise, we need to examine the
change of rank at a maximally complementary optimal solution V∗(ε̂). Such a solution is generic on the irreduc-
ible component of V(F(V, ε̂)), which contains Va(ε̂), and it can be computed efficiently using numerical algebraic
geometry (Bates et al. [9]).

Example 2. For the system

F((x1, x2), ε) � x21 + x22 − ε
(x21 + x22 − 1)x1

( )
,

the Jacobian with respect to (x1, x2) is singular only at ε � 0, 1. It is easy to see that V(F((x1,x2), 0)) � {(0, 0)} with
local dimension zero, whereas V(F((x1,x2), 1)) � {(x1,x2) : x21 + x22 − 1 � 0} has local dimension one.

Remark 7. The local dimension test serves as the basis of Algorithm 4 in Section 4.2.

4.1.3. Topology of Singular Points. Although the set of transition points is always finite, in practice, the singular
points need not be isolated. A case with infinitely many real singular points is demonstrated in Section 5.1, where
every V∗(ε) in the only nonlinearity interval has a nonsingular Jacobian; see also Example 3. However, under the
existence of a generic nonsingular point in int(E), the algebraic formulation (10) shows that the set of singular
points must be an algebraic subset of C, leading to the following finiteness result.

Proposition 5. Assume that there exists a generic nonsingular point ε ∈ int(E). Then the set of singular points in int(E) is
finite. As a consequence, the set of points at which P∗ or D∗ fails to be continuous relative to int(E) is finite.
Proof. By definition, the set Υ of all (V(ε),ε)with a singular Jacobian satisfies

Υ :� {(V,ε) ∈ C
m+2t(n)+1 : F(V,ε) � 0, det( J(V,ε)) � 0}, (15)

where (15) is a basic constructible set (Basu et al. [5]) in C
m+2t(n)+1. Because the projection of a constructible set to

C is a constructible subset of C (Basu et al. [5, theorem 1.22]), it holds that

{ε ∈ C : ∃V ∈ C
m+2t(n) s:t: (V,ε) ∈ Υ} (16)

is either finite or the complement of a finite subset of C; see, for example, Basu et al. [5, exercise 1.2]. On the other
hand, it follows from the assumption and the implicit function theorem that the complement of (16) contains an
open neighborhood of ε. All this implies that the projection of Υ is finite, and thus it is an algebraic subset of C.
The finiteness result naturally holds when we restrict the set of singular points to R, in which our domain E is
defined. Consequently, there are only finitely many real singular points in int(E). w

Remark 8. As a consequence of Proposition 5 and Lee [40, theorem 5.12], the polynomial system (10) is zero-
dimensional at every nonsingular ε ∈ int(E); that is, V(F(V,ε)) has only finitely many solutions almost every-
where on int(E).

The condition of Proposition 5 is a global condition which requires that every solution of the algebraic set
V(F(V,ε)) at a generic ε ∈ int(E) has a nonsingular Jacobian. Notice that V(F(V,ε)) has a generic behavior over all
ε ∈ C. In particular, there are only finitely many points F ⊂ C that can have a different irreducible decomposition
than the generic case. Hence, for any open interval O ⊂ R, there are at most finitely many points that are not
generic. Therefore, ε ∈O is a generic nonsingular point if ε ∉ F and every solution of V(F(V,ε)) is nonsingular.

Recall from Lemma 2 that strict complementarity and nondegeneracy conditions at ε are necessary and suffi-
cient for the existence of a unique V∗(ε) with a nonsingular Jacobian. Therefore, the condition of Proposition 5 is
at least as strong as strict complementarity and nondegeneracy conditions. Interestingly, the following proposi-
tion indicates that for the polynomial system (10) with generic data, there exists a nonsingular point ε with prob-
ability one.

Proposition 6. The condition of Proposition 5 is a generic property with respect to all (A,b,C,C).

Hauenstein et al.: On Computing the Nonlinearity Interval in Parametric SDO
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Proof. Without loss of generality, we will simply consider when ε � 0. It follows from Nie et al. [46, theorem 7]
that for generic (A,b,C), all complex solutions of F(V, 0) � 0 are isolated and have nonsingular Jacobian. All this
implies that for generic (A,b,C), ε � 0 is a nonsingular point. w

Example 3. There are special cases where the solution set V(F(V,ε)) consists of isolated solutions or algebraic
subsets with positive dimension. For instance, for the system

F((x1,x2),ε) �
(x21 + x22 − 1)(x1 − x2)
(x21 + x22 − 1)(x1 − ε)

( )
,

there are two solution sets at ε≠6 1��
2

√ : a circle {(x1,x2) ∈ C
2 : x21 + x22 � 1} and an isolated solution (ε,ε).

4.2. Partitioning Algorithm
Based on the descriptions in Sections 4.1.1 and 4.1.2 and the auxiliary problems in (5), we present the outline of
our numerical procedure, Algorithm 1. Algorithm 1 consecutively calls the subroutines in Algorithms 2, 3, and 4
to compute invariancy intervals, nonlinearity intervals, and transition points in int(E). For the ease of exposition,
see Remark 10, we outline the pseudocodes by assuming, only in this section, the condition of Proposition 5. This
condition will enable us to decompose int(E) into the union of finitely many open intervals of maximal length by
locating their finitely many singular boundary points.

In our numerical procedure, Algorithm 2 computes the boundary points of an invariancy interval by solving
auxiliary problems (5) and then updates the set of transition points and the collection of invariancy intervals in
int(E). When Algorithm 2 fails to identify an invariancy interval, Algorithms 3 and 4 are subsequently called to
locate the boundary points of a nonlinearity interval, if they exist, or to conclude the existence of a transition
point. More specifically, this is done by locating the singular points in the remaining subinterval of int(E), as
described in Sections 4.1.1 and 4.1.2:

• Algorithm 3 tracks the optimal solution of (Pε) and (Dε) by solving the ODE system (13) using a predictor-
corrector tracking method (Butcher [16]) until it detects a singular boundary point.

•Algorithm 4 classifies singular points into transition and nontransition points.
Algorithm 3 is repeatedly called alongside Algorithm 2 until all invariancy intervals and singular points in

int(E) are identified. Finally, the collection of nonlinearity intervals are formed by removing the invariancy inter-
vals and transition points from int(E).

In order to completely cover the interval, the increment change Δε can be positive or negative to allow both left and
right movements from the starting point. Furthermore, we assume, for the simplicity of computation, that the domain
E is bounded, that is, E � [Emin,Emax], where |Emin |, |Emax |<∞. Accordingly, the optimal value of the auxiliary prob-
lems (5) is constrained to [Emin,Emax]. For the sake of brevity, Algorithms 1 through 4 present the computation of invari-
ancy intervals, nonlinearity intervals, and transition points only on the subinterval [ε,Emax), where ε is the initial point.

Remark 9. Our approach is in direct contrast with finding transition points through solving (Pε) − (Dε) on an
arbitrarily meshed interval. In the latter case, as mentioned at the beginning of Section 4, only very refined mesh
sizes may prevent the miscount of the transition points.

Computation of Singular Points and Invariancy Intervals. Theorem 2 specifies a systematic way to approximate
the boundary points of the interval I reg surrounding the given ε. The numerical detection of singular points is
described in detail in Hauenstein and Tang [31] with respect to several singularity criteria, for example, the
derivative of λmin(X∗(ε)) and λmin(S∗(ε)) with respect to ε, or the singularity of the Jacobian of (10). We omit the
details here and refer the reader to Hauenstein and Tang [31] for more information on the numerical implemen-
tation of the singularity criteria.

Once a singular point is identified, the numerical solution obtained from the ODE system (13) at the next mesh
point is most likely nonoptimal, because of the numerical instability or the infeasibility of the solution. Thus, we
invoke a primal-dual IPM in Algorithms 2 and 3 to compute the unique optimal solution at the first neighboring
mesh point in the remaining interval. In order to guarantee that every singular point is correctly identified, a
finer mesh pattern might be needed, and a higher precision might be required for the computation of singular
points, far beyond the double precision arithmetic.

Solution Sharpening. The process of increasing the algebraic precision of a singular point is known as the sharp-
ening process; see Algorithm 3. Because the singular points are algebraic numbers, they can be computed to arbi-
trary accuracy; see, for example, Hauenstein and Sommese [30]. More specifically, using a numerical approxima-
tion of a given singular point, which is indeed the nearest mesh point to the singular point, the theory of
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isosingular sets (Hauenstein and Wampler [32]) allows one to construct a new polynomial system where
Newton’s method would converge quadratically to the singular point.

Classification of Singular Points. The use of adaptive precision (see for example Bates et al. [8]) in Bertini (Bates
et al. [7, 9]) ensures that adequate precision is being used for reliable computations near the singular solutions. This
method enables one to compute a maximally complementary optimal solution near Va(ε̂) to arbitrary accuracy.
With the ability to refine the accuracy of a maximally complementary optimal solution, we can determine whether a
given singular point is a transition point. This can be done robustly by examining the ranks of X∗(ε) and S∗(ε) using
standard numerical rank-revealing methods, such as singular value decomposition. More specifically, by computing
the eigenvalues of an approximate maximally complementary optimal solution at various precisions, one can deter-
mine whether the least positive eigenvalues of X∗(ε) and S∗(ε) converge to zero as we increase the precision of com-
putation. This process accurately reveals the ranks of X∗(ε) and S∗(ε) at a singular point.
Remark 10. The sole purpose of imposing the condition of Proposition 5 in Algorithm 1 is to ensure finite
decomposition of int(E). Otherwise, Algorithm 3 can be individually applied to find a subinterval of the nonli-
nearity interval, even under a weaker condition than Proposition 5. More precisely, the existence of ε with a non-
singular J(V∗(ε),ε) is all we need in Theorem 2 to compute a subinterval of a nonlinearity interval containing ε;
see the proof of Theorem 2 in the appendix. Without the condition of Proposition 5, however, a full decomposi-
tion of int(E) may not be possible using Algorithm 1, because singular points need not be isolated in that case.

Algorithm 1 (Partitioning of int (E))
Global Input: Problem data:A, b, C, C, and the domain E � [Emin,Emax].
Local Input: An initial point εinit ∈ int(E) with a nonsingular Jacobian J(V∗(εinit),εinit), a positive increment
change Δε.
Output: U inv: union of invariancy intervals in (Emin,Emax).

Unon: union of nonlinearity intervals in (Emin,Emax).
U tran: set of transition points in (Emin,Emax).

Procedure:
• Set ε � εinit, U inv � ∅, Unon � (Emin,Emax), U tran � ∅, and Usin � ∅.

while ε < Emax do
repeat . Compute invariancy intervals

• Find invariancy intervals: Apply Algorithm 2 using the input Δε, ε, U inv, Unon, and U tran
(Algorithm 2 outputs αinv and βinv and updates input arguments ε, U inv, Unon, and U tran).

until αinv < βinv and ε < Emax

if ε < Emax then . Compute singular points
•Apply Algorithm 3 using the input Δε, ε, U inv, Unon, Usin, and U tran.

end if
end while
•Apply Algorithm 4 using the input Usin and U tran.
• Set Unon � Unon \U tran. . Form the nonlinearity intervals

Algorithm 2 (Computation of Invariancy Intervals)

Global Input: Problem data:A, b, C, C, and the domain E � [Emin,Emax].
Local Input: An increment change Δε, ε, U inv, Unon, U tran.
Output: (αinv,βinv) and updated ε, U inv, Unon, U tran.

Procedure:

• Compute the unique optimal solutionV∗(ε) using a primal-dual IPM.
• Compute the orthonormal basisQN (ε) fromV∗(ε).
• Using QN (ε) solve the pair of SDO problems (5) restricted to [Emin,Emax] to compute the boundary points αinv
and βinv.

if αinv < ε < βinv then . An invariancy interval exists

Hauenstein et al.: On Computing the Nonlinearity Interval in Parametric SDO
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• Update the union of invariancy intervals by adding the newly found interval (αinv,βinv) to the union of invari-
ancy intervals U inv: U inv � U inv

⋃(αinv,βinv).• Update the union of nonlinearity intervals by removing the invariancy interval (αinv,βinv) from the current
union of nonlinearity intervals: Unon � Unon \ (αinv,βinv).•Update the set of transition points by

U tran � U tran
⋃{αinv} αinv > Emin,

U tran
⋃{βinv} βinv < Emax:

{
•Move past a transition point by ε � βinv +Δε.
end if

Algorithm 3 (Computation of the Singular Points)

Global Input: Problem data:A, b, C, C, and the domain [Emin,Emax].
Local Input: Δε, ε, U inv, Unon, Usin, U tran.
Output: Updated ε, U inv, Unon, Usin, and U tran.

Procedure:
• Compute the unique optimal solutionV∗ :� V∗(ε) using a primal-dual IPM.

while Jacobian is nonsingular on [ε,ε+Δε] and ε+Δε ∈ (Emin,Emax) do . Check the singularity
• Proceed to the next mesh point by ε � ε+Δε.
• Compute the unique optimal solutionV∗(ε) by solving (13) with the initial pointV∗.

end while

if a singular point exists in [ε,ε+Δε] and ε+Δε ∈ (Emin,Emax) then . A singular point exists
•Use solution sharpening to compute the singular point ε̂ and set Usin � Usin

⋃{(Va(ε̂), ε̂)}.
•Move past the singular point by ε � ε̂ +Δε.

else
• Proceed to the next mesh point by ε � ε+Δε.

end if

Algorithm 4 (Classification of the Singular Points)

Global Input: Problem data:A, b, C, and C.
Local Input: Usin and U tran.
Output: Updated U tran.

Procedure:

for (V,ε) ∈ Usin do
• Calculate the local dimension d of the algebraic setV(F(V,ε)), defined in (12), atV.

if d � 0 then . A transition point exists
•Update the set of transition points by U tran � U tran

⋃{ε}.
else

•Use a polynomial solver to compute V∗(ε) in the irreducible component which contains V.

if the rank ofX∗(ε) or S∗(ε) changes then . A transition point exists
•Update the set of transition points by U tran � U tran

⋃{ε}.
end if

end if
end for

Hauenstein et al.: On Computing the Nonlinearity Interval in Parametric SDO
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5. Numerical Examples
In this section, using the approaches described in Section 4.2 and outlined by Algorithms 1 through 4, we conduct
numerical experiments on the computation of invariancy intervals, nonlinearity intervals, and transition points.
Section 5.1 demonstrates the convergence rate of computing the singular boundary points. Section 5.2 describes a
parametric SDO problem where the continuity of the dual optimal set mapping fails at a transition point. Section
5.3 computes the nonlinearity interval of the parametric SDO problem (9) where the Jacobian is singular at a non-
transition point. All numerical experiments are conducted on a PC with Intel Core i7-6500U CPU @ 2.5 GHz.

5.1. Convergence Rate
Consider the following parametric convex optimization problem:

min −2εx1 − 2(1 − ε)x2

s:t:

1 x1 x2 0 0
x1 1 0 0 0
x2 0 1 0 0
0 0 0 x2 x1 − 1
0 0 0 x1 − 1 x2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠� 0, (17)

which can be cast into the primal form (Pε), where m � 13 and X ∈ S
5. The block structure of the matrix indicates

that (17) is indeed an SDO reformulation of a parametric second-order conic optimization problem with E � R;
see also Figure 3. For computational purposes, we choose a bounded domain − 1

4 ,
5
4

[ ]
and the initial point ε � 1

4,

where rank X∗ 1
4

( )( )
� 4, rank S∗ 1

4

( )( )
� 1, and J V∗ 1

4

( )
, 14

( )
is nonsingular.

Algorithm 2 identifies ε � 1
4 as a point belonging to a nonlinearity interval. We then invoke Algorithm 3 to track

the unique optimal solutions until we locate the boundary points ε � 0 and ε � 1. Algorithm 3 then computes a
sufficiently accurate approximation of the boundary points. Figure 4 demonstrates the exact and numerical
approximation of x1(ε) and the minimum modulus of the Jacobian eigenvalues versus ε. In particular, this track-
ing indicates that the Jacobian approaches singularity near ε � 0 and ε � 1.

Restarting at the first mesh point next to the boundary points, Algorithm 2 identifies the invariancy intervals

− 1
4 , 0

( )
and 1, 54

( )
and determines that ε � 0 and ε � 1 are indeed the transition points of the optimal partition.

Wepointout that theconditionofProposition5 fails in this case.More specifically, for every ε ∈ R, theblockdiago-
nal structure in (17) allows for infinitelymanyreal solutionsV(ε) � (svec(X(ε));y(ε); svec(S(ε))) for (10), such that

X(ε) �

1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, S(ε) �

ε+ ζ −ε− ζ 0 0 0
−ε− ζ ε+ ζ 0 0 0

0 0 0 0 0
0 0 0 2(ε− 1) ζ
0 0 0 ζ 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, ∀ζ ∈ R:

Nevertheless, because the Jacobian J(V∗(14), 14) is nonsingular, the weaker condition described in Remark 10
holds, and thus Algorithm 3 still correctly produces the boundary points of the nonlinearity interval.

Figure 3. (Color online) The feasible set of Problem (17).
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Using different patterns of mesh points, we demonstrate the convergence of x1(ε), computed by Algorithm 3,
when ε approaches the singular boundary points ε � 0 and ε � 1. To that end, we let initial Δε take values from
0:05 × 2−j for j � 0, : : : , 5 or 0:03 × 2−j for j � 0, : : : , 5, and we set ε � 1

4 as the initial point. Tables 1 and 2 summarize
the numerical results, where the L1 error between the exact and numerical approximation of x1(ε) on [14 , 1) and (0, 14],
the order of convergence, and the computation time are reported. The order of convergence is computed by

ρj+1 :� log2
Err(Δεj)
Err(Δεj+1)

( )
, j � 0, : : : , 4,

where Err(Δεj) denotes the L1 error associated with mesh pattern j. Notice the difference between ρj and the clas-
sical notion of the order of convergence in computational optimization.

In Table 1, the singular point ε � 1 is exactly identified by Algorithm 3, because the singular point coincides with
one of the mesh points. In general, however, it is unlikely that a singular point belongs to the mesh point set. This
can be observed in Table 2, where a fixed increment change 0:03 × 2−j for j � 0, : : : , 5 is utilized. In this case, the
approximate singular point is taken as the last mesh point before the minimum eigenvalues of X∗(ε) or S∗(ε),
obtained from the ODE system (13), become negative, or the first mesh point at which the minimummodulus of the
Jacobian eigenvalues drops below 10−5. As stated in Section 4.2, we can utilize numerical algebraic geometric tools
to compute a singular point to arbitrary accuracy, but at the expense of increasing computational time.

5.2. A Transition Point with Discontinuous Dual Optimal Set Mapping
We next consider the parametric convex optimization problem

min εx1 + (1 − ε)x2

s:t:

1 x1 x2 0 0 0
x1 1 0 0 0 0
x2 0 1 0 0 0

0 0 0 1
1
2
x1 x2

0 0 0
1
2
x1 1 0

0 0 0 x2 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 0, (18)

Figure 4. (Color online) (Left) The exact and numerical approximation of x1(ε) vs. ε and (right) theminimummodulus of the Jaco-
bian eigenvalues.

Table 1. Convergence of x1(ε) when ε approaches the singular point ε � 1.

j Δεj Approximate singular point Err(Δεj) ρj CPU (s)

0 0.05 1.00 4:1597 × 10−6 — 4.05
1 0:05 × 2−1 1.00 2:6520 × 10−7 3.971 6.56
2 0:05 × 2−2 1.00 1:6707 × 10−8 3.989 12.79
3 0:05 × 2−3 1.00 1:0484 × 10−9 3.994 26.14
4 0:05 × 2−4 1.00 6:5671 × 10−11 3.997 55.81
5 0:05 × 2−5 1.00 4:1090 × 10−12 3.998 125.27
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in which the feasible set is compact and E � R. Analogous to (17), this parametric problem can be cast into the
primal form (Pε) with m � 19 and X ∈ S

6. It can be verified that J(V∗(ε),ε) is nonsingular, rank(X∗(ε)) � 5, and
rank(S∗(ε)) � 1 at every ε ∈ E \ {0}. Because both the primal and dual problems have unique optimal solutions for
every ε ∈ E \ {0}, the dual optimal set mapping fails to be continuous at ε � 0.

For the purpose of numerical experiments, we consider the bounded domain −1, 32
[ ]

. When starting from initial
point ε � 1

2 with a fixed increment change 0.01, Algorithm 3 properly identifies ε � 0 as a singular boundary
point. Figure 5 demonstrates the exact optimal value function versus its numerical approximation obtained from
Algorithm 3. Upon refining the accuracy of the approximate singular point and obtaining the singular point ε �
0, we invoke Bertini solver in Algorithm 4 to compute the dimension of all irreducible components of V(F(V, 0)),
which contain Va(0). We observe that Va(0) lies on a one-dimensional irreducible component of V(F(V, 0)), and
there exists a generic solution V∗(0) such that rank(X∗(0)) � 4 and rank(S∗(0)) � 2. All this indicates that the ranks
of X∗(ε) and S∗(ε) change at ε � 0, and thus ε � 0 is a transition point. Consequently, we can partition (−1, 32) into
two nonlinearity intervals (−1, 0) and (0, 32) and the transition point {0}.

5.3. A Nontransition Point with a Singular Jacobian
Here, we apply Algorithm 1 to identify the singular points and the transition points of the parametric SDO prob-
lem (9) in a bounded domain [−1, 2]. We initialize Algorithm 1 with the initial point ε � 0 and the initial increment
change Δε � 0:005. While tracking forward, Algorithm 3 computes the numerical approximation of the unique
optimal solution until it locates the singular points ε � 1

2 and ε � 3
2. Then, restarting the solution tracking at 3

2+Δε,
Algorithm 2 identifies the invariancy interval (32 , 2) and the transition point ε � 3

2. In an analogous fashion, while
tracking backward, Algorithm 3 and Algorithm 2 identify the singular point ε � − 1

2 and the invariancy interval
(−1, − 1

2), respectively. Figure 6 illustrates the exact and numerical approximation of the optimal value function.
Applying Algorithm 4 to the singular point ε � 1

2, we can observe that Va(12) is not isolated, and it belongs to a
one-dimensional irreducible component of V(F(V, 12)). We then invoke the polynomial solver Bertini to compute a
generic solution

X∗ 1
2

( )
�

1 −0:0449 −0:0449 0
−0:0449 1 1 0
−0:0449 1 1 0

0 0 0 0:0898

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, y∗

1
2

( )
�

0
−1
−1
0
0
0
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, S∗

1
2

( )
�

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

in which rank (X∗(12)) � 3 and rank(S∗(12)) � 1. Given the ranks of X∗(ε) and S∗(ε) on (− 1
2 ,

1
2)

⋃(12 , 32), all this implies
that the singular point ε � 1

2 belongs to the nonlinearity interval (− 1
2 ,

3
2). Consequently, the domain (−1, 2) is

partitioned as

U inv � −1, − 1
2

( )⋃ 3
2
, 2

( )
, Unon � −1

2
,
3
2

( )
, U tran � −1

2
,
3
2

{ }
:

6. Concluding Remarks and Future Research
This paper utilized an optimal partition approach for the parametric analysis of SDO problems, where the objec-
tive function is perturbed along a fixed direction. In terms of continuity, we provided sufficient conditions for
the existence of nonlinearity intervals. Furthermore, we invoked the semialgebraicity of the optimal set to prove
the finiteness of the set of transition points. We showed that the optimal set mapping might fail to be continuous

Table 2. Convergence of x1(ε) when ε approaches the singular point ε � 0.

j Δεj Approximate singular point Err(Δεj) ρj CPU (s)

0 0.03 0.01 2:0415 × 10−7 — 2.85
1 0:03 × 2−1 0.01 1:2917 × 10−8 3.982 4.57
2 0:03 × 2−2 0.025 8:2444 × 10−10 3.970 8.52
3 0:03 × 2−3 0.0025 5:1677 × 10−11 3.996 17.73
4 0:03 × 2−4 0.000625 3:2461 × 10−12 3.993 34.90
5 0:03 × 2−5 0.000625 2:0302 × 10−13 3.999 72.34
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on a nonlinearity interval, and the sequence of maximally complementary optimal solutions may converge to the
boundary of the optimal set at an ε in a nonlinearity interval. Finally, under the local nonsingularity condition of
Theorem 2, we developed Algorithms 3 and 4 to compute nonlinearity intervals and identify transition points in
int(E). If we further assume the generic global nonsingularity condition of Proposition 5, Algorithm 1 efficiently
partitions int(E) into a finite union of invariancy intervals, nonlinearity intervals, and transition points. The com-
putational approach was demonstrated on several examples.

It is worth mentioning that our optimal partition approach is particularly useful in the context of reoptimiza-
tion of SDO problems, for example, matrix completion problems, when the maximal rank of optimal solutions is
concerned. Given the lack of efficient warm-start procedures for IPMs, our approach avoids the need to reapply
IPMs after a small perturbation of the objective function, if the given ε belongs to a nonlinearity interval. We
should note, however, that quadratic convergence of IPMs is impaired by the failure of strict complementarity or
nondegeneracy conditions (Alizadeh et al. [4]), which is always the case at a transition point. Therefore, it would
be also interesting to see how the computational complexity of IPMs varies on the closure of nonlinearity inter-
vals, for example, when ε is perturbed from/to a transition point to/from a point in a nonlinearity interval. This
is in fact the continuation of the work in Mohammad-Nezhad and Terlaky [42, section 4], where we provided
bounds on the distance between central solutions and approximations of the optimal partitions of the original
and perturbed SDO problems.

We conjecture that Condition (8) could fail at a boundary point of a nonlinearity interval. It is worth providing
a counterexample or sufficient conditions, which guarantee the validity of (8) at a boundary point of a

Figure 5. (Color online) (Left) The feasible set of Problem (18) and (right) the exact and numerical approximation of the optimal
value function for Problem (18) on [−1, 32].

Figure 6. (Color online) The exact and numerical approximation of the optimal value function for Problem (9) on [−1, 2].
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nonlinearity interval. Furthermore, we still do not know whether the subspaces (B(ε),T (ε),N (ε)) vary continu-
ously on a nonlinearity interval. These topics are subjects of future research.
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Appendix. Proofs of Theorems

Proof of Theorem 1
Recall that given ε ∈ int(E) and a maximally complementary optimal solution (X∗(ε),y∗(ε),S∗(ε)), the ranks of X∗(ε) and
S∗(ε) are maximal on P∗(ε) ×D∗(ε). Hence, the set of all ε with an optimal partition associated with a fixed rank (θ,σ)
can be defined as

S(θ,σ) :� {ε ∈ R : ∃(X,y,S) ∈ ri(P∗(ε) ×D∗(ε)), rank(X) � θ, rank(S) � σ, ε ∈ int(E)},
which in turn implies

int(E) � ⋃
θ,σ∈{0, : : : ,n}

θ+σ≤n

S(θ,σ), (A.1)

where (θ,σ) is a pair of integers. In what follows, we prove that ε is a transition point if and only if ε ∈ bd(S(θ,σ)) ∩ int(E)
for some nonnegative integer (θ,σ) with θ+ σ ≤ n, and that S(θ,σ) is a semialgebraic subset of R. Then the finiteness follows
from the fact that S(θ,σ) has only a finite number of boundary points (Basu et al. [5, theorem 5.22]).

Equivalency of Boundary Points and Transition Points. By Definition 5, it is clear that if ε̂ ∈ int(E) is a boundary
point of S(θ,σ), then ε̂ must be a transition point. More specifically, by the definition of a boundary point,

• if ε̂ ∉ S(θ,σ), then every neighborhood of ε̂ contains an ε′ ∈ S(θ,σ), which implies that eitherrank (X∗(ε′))≠ rank(X∗(ε̂)),
rank(S∗(ε′))≠ rank(S∗(ε̂)), or both holds;

• if ε̂ ∈ S(θ,σ), then every neighborhood of ε̂ contains an ε′′ ∈ int(E) \S(θ,σ), which implies that either rank (X∗(ε′′))≠
rank(X∗(ε̂)), rank(S∗(ε′′))≠ rank(S∗(ε̂)), or both holds.

From both cases, it is immediate that ε̂ is a transition point. Conversely, by (A.1), a transition point ε belongs to S(θ,σ)
for some nonnegative integer (θ,σ) with θ+ σ ≤ n. If ε ∈ int(S(θ,σ)), then the ranks of X∗(ε) and S∗(ε) would be constant on
a neighborhood of ε, which is a contradiction. Therefore, we must have ε ∈ bd(S(θ,σ)) (see for example Munkres [44, p.
102]), which completes the first part of the proof.

Semialgebraicity of S(u,s). We proceed with the proof of semialgebraicity in three steps. For the ease of exposition
and by using the isometry (2), we sometimes identify the optimal solutions by column vectors V � (x;y; s), where x and s
are obtained from the upper triangular entries of X and S, respectively.

Step 1. Given a fixed ε, P∗(ε) ×D∗(ε) is the set of all vectors V satisfying (10) and (11), where (11) is equivalent to 2(2n − 1)
polynomial inequalities, enforcing all principal minors of X and S to be nonnegative. Therefore, P∗(ε) ×D∗(ε) is a semialgebraic
subset of Rm+2t(n); that is, P∗(ε) ×D∗(ε) is defined by a Boolean combination of polynomial equalities and inequalities (Basu et al.
[5, p. 57]).

Step 2. Because P∗(ε) ×D∗(ε) is convex (see, for example Rockafellar [49, Theorem 6.4]), the relative interior of P∗(ε) ×D∗(ε) is
the set of all V satisfying

∀V ∈ P∗(ε) ×D∗(ε), ∃γ > 0 s:t: V+ γ(V−V) ∈ P∗(ε) ×D∗(ε),
which, by semialgebraicity of P∗(ε) ×D∗(ε), can be expressed by a quantified formula Ψ (a formula with quantifiers from
the set {∀ ,∃}) in the language of ordered fields; see for example Basu et al. [5, proposition 3.1]. A formula (Basu et al. [5,
p. 13]) is the Boolean combination of polynomial equalities and inequalities with real coefficients. Because the R-realization
of Ψ, that is, the set of all real solutions satisfying Ψ, is a semialgebraic subset of Rm+2t(n) (Basu et al. [5, theorem 2.77]),
we just showed that ri(P∗(ε) ×D∗(ε)) is also a semialgebraic subset of Rm+2t(n).

Step 3. The set {x ∈ R
t(n) : rank(x) � θ} is equal to

{x ∈ R
t(n) : rank(x) � θ} � {x ∈ R

t(n) : rank(x) ≤ θ} ∩ (Rt(n) \ {x ∈ R
t(n) : rank(x) ≤ θ− 1}),

where {x ∈ R
t(n) : rank(x) ≤ θ} � {x ∈ R

t(n) : all minors of x of size θ+ 1 are zero } (see for example Horn and Johnson [35, p.
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12]) is an algebraic set, as minors of x are polynomials in terms of the entries of x. This also implies that Rt(n) \ {x ∈ R
t(n) :

rank(x) ≤ θ− 1} is a semialgebraic subset of Rt(n) (Basu et al. [5, p. 57]).
Using the arguments in (2) and (3), and given a fixed (θ,σ), the set

{(V,ε) ∈ R
m+2t(n)+1 : V ∈ ri(P∗(ε) ×D∗(ε)), rank(x) � θ, rank(s) � σ, ε ∈ int(E)} (A.2)

is a semialgebraic subset of Rm+2t(n)+1, because it is the R-realization of a quantified formula. As a result, the projection of
(A.2) to R, that is, S(θ,σ) is a semialgebraic subset of R (Basu et al. [5, theorem 2.76]), which completes the second part of
the proof. w

Proof of Theorem 2
By Lemma 2, V∗(ε) is the unique optimal solution of (Pε) − (Dε) with a nonsingular Jacobian for every ε ∈ I reg. Thus, by
the analytic implicit function theorem (Dieudonné [23, theorem 10.2.4]), V∗(ε) is analytic on I reg. On the other hand,
because V∗(ε) satisfies (10) pointwise, it is easy to see, by taking the derivatives of the equations in (10), that V∗(ε) is an
analytic solution of the ODE system (14).

Now, let us consider a differentiable mapping V(ε) :� (X(ε),y(ε),S(ε)) as an arbitrary solution of (14). Then V(ε) solves
(10) pointwise, V(ε) � V∗(ε), and J(V(ε),ε) is nonsingular on I reg, because the right-hand side of (14) must be bounded on
I reg. By invoking the nonsingularity of J(V∗(ε),ε) and using the analytic implicit function theorem, we can immediately
see that V(ε) � V∗(ε) on a neighborhood of ε. However, if we further take into account the nonsingularity of J(V(ε),ε) on
I reg and apply the analytic implicit function theorem again, then V(ε) must be analytic on I reg as well. Therefore, as a
result of Krantz and Parks [39, corollary 1.2.6], V(ε) � V∗(ε) holds globally on I reg. This completes the proof of uniqueness
of V∗(ε). w
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