
Journal of Symbolic Computation 115 (2023) 409–426
Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

Machine learning the real discriminant locus

Edgar A. Bernal a, Jonathan D. Hauenstein b, Dhagash Mehta c, 
Margaret H. Regan d, Tingting Tang e

a FLX AI, Rochester, 14607, NY, USA
b Department of Applied and Computational Mathematics and Statistics, University of Notre Dame,
Notre Dame, 46556, IN, USA
c The Vanguard Group, Malvern, 19355, PA, USA
d Department of Mathematics, Duke University, Durham, 27708, NC, USA
e Department of Mathematics and Statistics, San Diego State University, Imperial Valley, 92231, CA, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 May 2021
Received in revised form 4 May 2022
Accepted 1 August 2022
Available online 11 August 2022

Keywords:
Discriminant locus
Machine learning
Deep learning
Numerical algebraic geometry

Parameterized systems of polynomial equations arise in many ap-
plications in science and engineering with the real solutions de-
scribing, for example, equilibria of a dynamical system, linkages 
satisfying design constraints, and scene reconstruction in com-
puter vision. Since different parameter values can have a differ-
ent number of real solutions, the parameter space is decomposed 
into regions whose boundary forms the real discriminant locus. 
This article views locating the real discriminant locus as a super-
vised classification problem in machine learning where the goal is 
to determine classification boundaries over the parameter space, 
with the classes being the number of real solutions. This arti-
cle presents a novel sampling method which carefully samples a 
multidimensional parameter space. At each sample point, homo-
topy continuation is used to obtain the number of real solutions to 
the corresponding polynomial system. Machine learning techniques 
including nearest neighbors, support vector classifiers, and neural 
networks are used to efficiently approximate the real discriminant 
locus. One application of having learned the real discriminant locus 
is to develop a real homotopy method that only tracks real solution 
paths unlike traditional methods which track all complex solution 
paths. Examples show that the proposed approach can efficiently 
approximate complicated solution boundaries such as those aris-
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ing from the equilibria of the N = 4 Kuramoto model which was 
previously intractable using traditional methods.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Systems of polynomial equations are a collection of multivariate nonlinear equations in which each 
equation is a multivariate polynomial. Such systems arise naturally in many areas of science and en-
gineering ranging from chemistry, particle physics, string theory, mathematical biology, phylogenetics, 
control theory, robotics, power systems, and computer vision (Bates et al., 2013; Cox et al., 1998, 2007, 
2020; Sommese and Wampler, 2005). In many of these applications, the coefficients of the equations 
depend upon one or more parameters yielding parameterized systems of polynomial equations. Both 
the solutions and the number of real solutions are functions of the parameters. Investigating the so-
lution structure as a function of the parameters is typically more difficult than solving the system for 
given values of the parameters.

Due to its ubiquity, many methods have been proposed to characterize the solution structure over 
the parameter space. Classically, the discriminant describes the boundary between regions where the 
solution structure changes (Gelfand et al., 2008). For example, the discriminant of

f (x;b, c) = x2 + bx + c (1)

is D = b2 − 4c. Since real parameters and the number of real solutions are of most interest in applica-
tions describing, for example, equilibria of dynamical systems and scene reconstruction in computer 
vision, this paper focuses on the boundary between regions where the number of real solutions 
change. Thus, from this perspective, we concentrate on the real discriminant locus associated with 
counting the number of real solutions.

Definition 1. Given a parametric polynomial system f (x; p) : Rn × Rk → Rn , its real discriminant 
locus is the boundary in the parameter space where the number of real solutions changes.

For Eq. (1), the solution set in R2 of D = 0 is the real discriminant locus, which forms the bound-
ary between the region in R2 with D > 0 where f = 0 has two real solutions and the region in R2

with D < 0 where f = 0 has no real solutions. In addition to just the number of real solutions, one 
could also be interested in additional structure related to the real solutions, e.g., geometric properties, 
which would then define a corresponding real discriminant locus. See Lazard and Rouillier (2007) for 
more details.

Comprehensive Gröbner basis computations (Weispfenning, 1992) can be used to symbolically 
compute the discriminant polynomial over the complex numbers whose solution set, i.e., algebraic 
variety, is called the complex discriminant locus. Since the discriminant actually defines the bound-
aries over the complex parameter space, one can develop specialized methods over the real numbers. 
Some examples include cylindrical algebraic decomposition (Basu et al., 2003; Hanan et al., 2010; 
Hernandez-Vargas et al., 2011; Lazard and Rouillier, 2007; Xia, 2007), Brouwer degree (Conradi et al., 
2017), and polyhedral methods (Bihan et al., 2018; Giaroli et al., 2019) which have been utilized for 
modest size systems. However, computational methods which depend upon Gröbner basis or other 
symbolic computations severely suffer from exponential complexity.

To mitigate these issues, global symbolic methods can be replaced by local, numerical approx-
imations to determine the discriminant locus. For larger systems, numerical methods based on 
a form of homotopy continuation (Allgower and Georg, 2012; Bates et al., 2013; Sommese and 
Wampler, 2005) have been employed in which one tracks the solution structure as the parameters 
are varied continuously. Several computational packages such as AUTO (Doedel, 1981) and MATCONT 
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(Dhooge et al., 2003) employ such techniques for parameterized differential equations. Rather than 
directly run into the real discriminant locus, a perturbed sweeping approach was presented in (Har-
rington et al., 2020). In particular, when all complex solutions over a general parameter point can 
be computed, homotopy continuation provides an approach to obtain global information about the 
solutions which, for example, can be used to obtain the number of real solutions at selected sample 
points in the parameter space (Bates et al., 2018; Chandra et al., 2017; Greene et al., 2013; He et al., 
2013; Martinez-Pedrera et al., 2013).

Our method aims to numerically approximate the real discriminant locus by viewing this as a 
classification problem in machine learning. The problem of approximating the real discriminant locus 
is posed as a problem of approximating the decision boundaries that separate data points according to 
their labels, where the input features are the parameters of the given parametric system and the target 
labels are the number of real solutions at the corresponding parameter values. Given a parameter 
point, homotopy continuation can be used to generate the labels, i.e., compute the number of real 
solutions. A novel approach for selecting sample points is developed by leveraging domain knowledge 
obtained from numerical algebraic geometry (Bates et al., 2013; Sommese and Wampler, 2005) to 
help guide the approximation of the decision boundaries.

Although there has been a collection of papers, such as (Das and Seal, 2012; Huang, 2002, 2004; 
Huang and Chi, 2001; Huang et al., 2004, 2019; Perantonis et al., 1998), attempting to solve polyno-
mial equations and improving algorithms using neural networks, the approach closest to the present 
work is (Mourrain et al., 2006). That work uses a feed-forward neural network with one hidden layer 
to predict the number of real solutions for univariate polynomials. All the sample points, including 
training data and testing data are combinations of integer coefficients in the parameter space. The 
results indicate that the ability of an artificial neural network to generalize on the test sets is compa-
rable to its performance on the training sets. Employing several algorithms to train the network for 
high degree polynomials showed that the choice of training program impacts the performance of the 
network.

Other applications of deep networks for analyzing polynomial equations include (Andoni et al., 
2014a,b) which investigated the effectiveness of deep networks to learn a target function that is a low 
degree polynomial. A neural network which is used as a pre-training method for finding the number 
of real solutions and then used to design a neural network-like model to compute real solutions to 
univariate polynomial in parallel is provided in (Das and Seal, 2012). Finally, (Breiding et al., 2018) 
employed machine learning algorithms to learn the geometry and topology of the complex solution 
set of systems of polynomial equations.

This manuscript provides a novel approach to analyzing the real solution structure of parameter-
ized polynomial equations which are multivariate and depend upon many parameters. The specific 
contributions are as follows: (1) Transform the problem of computing the real discriminant locus of 
parameterized polynomial equations into a supervised classification problem in order to use machine 
learning constructs such as nearest neighbor, support vector classifiers, and deep learning techniques; 
(2) Devise a novel sampling technique that leverages domain knowledge from numerical algebraic ge-
ometry which can be thought of as a static active learning implementation where the desired training 
set is determined in advance; (3) Show that machine learning techniques can quickly approximate 
the real discriminant locus even when they contain cusps and other singular regions which, in turn, 
provides a decomposition of the parameter space into regions where the number of real solutions 
remains constant; (4) Demonstrate that the proposed method was able to break a ceiling in compu-
tational algebraic geometry as the new approach is able to analyze the N = 4 Kuramoto model which 
was previously intractable using traditional methods; (5) Design a real homotopy method that utilizes 
an approximation of the real discriminant locus to track only real solution paths and computes only 
real solutions, thus improving efficiency.

The rest of the paper is organized as follows. Section 2 provides background information on nu-
merical algebraic geometry, homotopy continuation, and parameterized systems. Similarly, Section 3
provides an overview of the machine learning techniques utilized: nearest neighbor, support vector 
classifiers, and deep learning. The novel sampling scheme that leverages domain knowledge from 
numerical algebraic geometry is presented in Section 4. Section 5 applies the proposed approach to 
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several examples. A real homotopy method is outlined in Section 6, which utilizes the learned real 
discriminant locus to track only real solution paths. The paper concludes in Section 7.

2. Numerical algebraic geometry

The following describes parameter homotopies and pseudowitness point sets, which are two topics 
in numerical algebraic geometry that will be used to learn the real discriminant locus. See (Bates et 
al., 2013; Sommese and Wampler, 2005) for more details regarding numerical algebraic geometry.

2.1. Parameter homotopies

For simplicity, we consider parameterized polynomial systems of the form

f (x; p) = f (x1, . . . , xn; p1, . . . , pk) =
⎡
⎢⎢⎣

f1(x1, . . . , xn; p1, . . . , pk)

.

.

.

fn(x1, . . . , xn; p1, . . . , pk)

⎤
⎥⎥⎦ (2)

such that, for a generic p∗ ∈ Ck , the algebraic variety defined by f (x; p∗) = 0 consists of finitely 
many points in Cn , say d, all of which are nonsingular. A solution x∗ of f (x; p∗) = 0 is nonsingu-
lar if J x f (x∗; p∗) is invertible where J x f (x; p) is the Jacobian matrix of f with respect to x. This 
is the typical situation for well-constrained parameterized polynomial systems arising in science and 
engineering applications. For reducing overdetermined parameterized systems to well-constrained pa-
rameterized systems adhering to Eq. (2), see (Hauenstein and Regan, 2018) and the references therein. 
One can also reduce to the nonsingular isolated case for parameterized systems which generically de-
fine a positive-dimensional algebraic variety using linear slicing and singular isolated solutions using 
deflation, e.g., see (Hauenstein and Wampler, 2013; Leykin et al., 2006).

A key consequence of this setup is that the real parameter space Rk contains open subsets where 
the number of real solutions to f (x; p) = 0 is constant. The boundaries of these open subsets form 
the real discriminant locus.

Example 1. The parameterized quadratic described by Eq. (1) generically has d = 2 solutions in C. For 
D = b2 − 4c, the two open subsets defined by D > 0 and D < 0 in R2 have a constant number of 
real solutions, namely 2 and 0. The real discriminant locus is the algebraic variety defined by D = 0
in R2.

The complex discriminant locus consists of the parameter points in Cp where f (x; p) = 0 does 
not have d nonsingular solutions. Since f (x; p) is well-constrained, the complex discriminant locus 
is either empty or is a hypersurface in Cp . Section 4 exploits this fact to generate sample points 
on the real discriminant locus, which is contained in the complex discriminant locus. The following 
illustrates this while showing that the real discriminant locus could have smaller dimension.

Example 2. Consider the following from (Hauenstein and Regan, 2020, Ex 2.1):

f (x; p) =
[

x2
1 − x2

2 − p1

2x1x2 − p2

]
.

The system of equations f (x; p) = 0 generically has d = 4 solutions with p2
1 + p2

2 = 0 in C2 defining 
the complex discriminant locus. Thus, the complex discriminant locus is a curve in C2, while the only 
point in R2 on this complex hypersurface is the origin. Moreover, for all p ∈R2 \ {(0, 0)}, f (x; p) = 0
has 2 real solutions showing that the real discriminant locus in R2 is {(0, 0)}.

Given p ∈Ck outside of the complex discriminant locus, the solutions to f (x; p) = 0 can be com-
puted using a parameter homotopy (Morgan and Sommese, 1989). In order to utilize a parameter 
homotopy, one first needs to know a parameter value p∗ ∈ Ck and a set S ⊂ Cn consisting of the d
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solutions to f (x; p∗) = 0. Obtaining this starting information is called the ab initio phase. See (Bates 
et al., 2013, Chap. 6) for more details.

Ab initio phase The input for a parameter homotopy is a parameter value p∗ ∈ Ck and the algebraic 
variety S ⊂Cn defined by f (x; p∗) = 0 consisting of d points. One can compute S by using a classical 
linear homotopy. For example, if ei = deg f i and gi(x) = xei

i − 1, then

H(x, t) = (1 − t) f (x; p∗) + γ tg(x) = 0

where γ ∈ C is generic is called a total degree homotopy consisting of 
∏n

i=1 ei paths. Clearly, the 
solutions of H(x, 1) = g(x) = 0 are trivial to compute providing the 

∏n
i=1 ei start points. For t ∈ (0, 1], 

the solution paths defined by H(x, t) = 0 are smooth and can be traversed using a variety of numerical 
methods (Bates et al., 2011, 2013). The d solution paths which have a finite limit as t approaches 0
converge to the d solutions of f (x; p∗) = 0. By assumption on the structure of f , the other solution 
paths will diverge to infinity. To possibly reduce the number of paths that diverge, one can select a 
different structure for g(x) such as based on the multihomogeneous structure of f or the monomial 
structure of f , e.g., see (Sommese and Wampler, 2005, Chap. 8).

Parameter homotopy phase With the ab initio phase complete, the “online” parameter homotopy phase 
can commence to solve f (x; p) = 0 for various p ∈Ck . One utilizes the parameter homotopy

H(x, t) = f (x;τ (t) · p∗ + (1 − τ (t)) · p) = 0 where τ (t) = γ t

1 + (γ − 1)t
(3)

such that t ∈ [0, 1] and γ ∈C. In particular, H(x, 1) = f (x; p∗) = 0 has known solutions S , computed 
in the ab initio phase, and one aims to compute the solutions to H(x, 0) = f (x; p) = 0. For generic 
values of the constant γ ∈ C, the arc τ (t) · p∗ + (1 − τ (t)) · p for t ∈ [0, 1] connects p∗ to p and 
avoids the complex discriminant locus. Thus, for t ∈ [0, 1], H(x, t) = 0 defines precisely d solution 
paths connecting the d points in S with the d solutions to f (x; p) = 0. As above, numerical methods 
can be used to track the paths and a certified count on the number of real and nonreal solutions can 
be obtained, e.g., see (Hauenstein and Sottile, 2012).

When p ∈ Rk , the number of complex solutions d can be significantly larger than the number of 
real solutions to f (x; p) = 0. Thus, Section 6 considers a real parameter homotopy aiming to only 
track real solution paths by trying to stay within each open subset of the parameter space where the 
number of real solutions is constant. In particular, if the real discriminant locus has smaller dimen-
sion, such as in Example 2, this is beneficial since it becomes easier to avoid intersecting the real 
discriminant locus. Therefore, our learning of the real discriminant locus in Section 3 and sampling 
scheme in Section 4 is only concerned with the codimension 1 boundaries in Rk .

2.2. Pseudowitness point sets

The key to the sampling method in Section 4 is to utilize domain knowledge from the com-
plex discriminant locus to select sample points to guide the learning of the real discriminant locus. 
Rather than computing a polynomial defining the complex discriminant locus, which can often be 
a computationally challenging problem, the method in Section 4 computes a pseudowitness point 
set (Hauenstein and Sommese, 2010, 2013) by intersecting the complex discriminant locus with a 
real line. This permits one to perform geometric computations on the complex discriminant locus 
without explicitly needing to compute its defining equation.

When all d solution paths remain finite when performing a parameter homotopy using Eq. (3) for 
every p ∈Ck , then one can compute a pseudowitness point set for the complex discriminant locus as 
follows. For f (x; p) as in Eq. (2), consider the system

F (x, p) =
[

f (x; p)

det J x f (x; p)

]
.
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Let V ⊂Cn+k be the algebraic variety defined by F (x, p) = 0, π(x, p) = p be the projection map onto 
the parameters, and L ⊂ Ck be a general line. Then, the pseudowitness point set for V with respect 
to the projection map π and line L is π(V ) ∩L. The number of points in π(V ) ∩L is the degree of 
the complex discriminant locus. One can treat the coefficients of the line L as parameters and utilize 
a parameter homotopy to deform the line L to compute a pseudowitness point set corresponding 
to other lines in Ck . Hence, this provides a method for sampling points on the complex discriminant 
locus. Note that a null space approach J x f (x; p) · w for w ∈Pn−1 may be used instead of det J x f (x; p)

(Bates et al., 2010).
If some solution paths of a parameter homotopy diverge to infinity, then one can projectivize the 

variables x to compactify the fiber over each parameter point p, e.g., see (Hauenstein and Sommese, 
2013, §3), and then proceed as above.

3. Machine learning

Parameter homotopies discussed in Section 2.1 provide a means for counting the number of real 
solutions corresponding to a given parameter value. Indeed, there are other options such as using 
Hermite matrices (Le and Safey El Din, 2022; Ayyildiz Akoglu and Szanto, 2020). Machine learning 
techniques can use the number of real solutions as labels and make predictions about previously un-
seen parameter points. This setup follows a supervised learning paradigm in machine learning since 
the labels are known for training data. Moreover, approximating the real discriminant locus is equiv-
alent to approximating the decision boundaries between different classes. Since Section 6 applies the 
learned boundaries to construct a real parameter homotopy which requires knowing the real solutions 
rather than just the number of them, we utilize parameter homotopies in our computations.

The following describes the leveraged machine learning techniques, namely k-nearest neighbors 
(k-NN), support vector classifiers (SVC) and feedforward neural networks.

3.1. k-Nearest neighbors

The underlying premise of a nearest neighbor classification algorithm is that the class to which 
a previously unseen data sample belongs can be inferred from the class to which the most similar 
samples in the training set belong. In our context, similarity will be measured in the form of the 
Euclidean distance using k samples in the training set nearest to the test sample thereby yielding the 
k-nearest neighbors. The label assigned to the previously unseen data sample is simply the class to 
which to the majority of the k-nearest neighbors belong.

In addition to being easy to implement, a 1-nearest neighbor classification algorithm has desir-
able properties to our problem. In particular, the Bayes error rate is the lowest misclassification rate 
achievable by any classifier on the associated data (Fukunaga, 1990; Tumer and Ghosh, 1996). Since 
the labels are deterministic and the classes do not overlap for our problem, the Bayes error rate is 
equal to 0. This is summarized in the following.

Theorem 1. Provided the parameter space is sampled densely enough, no other classifier will outperform a 1-
nearest neighbor classification algorithm for determining the number of real solutions associated with a given 
parameter point.

Proof. The result follows from the fact that, as the number of training samples tends to infinity, the 
error rate of any given classifier is at worst its Bayes error rate (Cover and Hart, 1967; Ripley and 
Hjort, 1995) with the best possible error rate attainable by any classifier being 0. Since, in this case, 
the Bayes error rate is indeed 0 due to the non-overlapping nature of the classes, no other classifier 
can possibly improve upon the asymptotic behavior of the 1-nearest neighbor classifier. �

Clearly, Theorem 1 has significant practical limitations since both the complexity and the storage 
requirements of naive implementations, i.e., non-tree-based methods, for a 1-nearest neighbor classi-
fication algorithm are O(k�) when the parameter space is Rk and � is the cardinality of the training 
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set (Weber et al., 1998). Therefore, implementing a truly optimal version would be unfeasible. One 
approach to partially overcome these strict computational requirements is by implementing a sam-
pling technique that utilizes domain knowledge as described in Section 4 which can be viewed as a 
form of selective sampling (Dasgupta, 2012; Lindenbaum et al., 1999), a type of active learning (Ag-
garwal et al., 2014; Settles, 2009). This enables us to ameliorate the impact of the trade-off between 
the number of samples stored and algorithmic performance.

The techniques used in k-nearest neighbor algorithms belong to memory-based classification 
methods as they require the entire training set to be stored. The next two subsections discuss sparse 
kernel methods, which classify new inputs based on computations performed on a subset of the train-
ing set, followed by parametric methods, which learn a set of parametric classification rules based on 
the training data and perform decision-making based on the learned rules only without referring back 
to training samples.

3.2. Support vector classifiers

Perhaps the most popular instance of so-called kernel methods are support vector classifiers 
(Bishop, 2006a). The term kernel refers to a (typically) nonlinear mapping that is effected on the train-
ing data points, and classification is performed in the resulting nonlinear space. Kernel mapping has 
both computational and capacity-related advantages since it enables reasoning in a high-dimensional 
space (usually higher-dimensional than the original feature space) without explicitly computing the 
high-dimensional representation of data points. Rather, only inner products between kernel represen-
tations of the samples are involved (Theodoridis and Koutroumbas, 2008). Inter-class boundaries for 
SVCs are computed by maximizing the gap between the samples in the different classes.

In real-life scenarios, where it may be difficult to find a representation space in which classes are 
separable, overfitting less representative samples in the training data, in particular those that cross 
inter-class boundaries, typically results in poor generalization abilities of the network to classify un-
seen data. Since this is usually associated with excessive network capacity, regularization techniques 
are often implemented (Goodfellow et al., 2016). Commonly used regularization techniques include 
L1 (Lasso) and L2 (Ridge) regularization, dropout, and early stopping (Bengio et al., 2015; Bishop, 
2006b). We adopt a strategy that goes against this widely accepted principle. The reason for this is 
that we know a priori that the training data originated from counting the number of real solutions to 
a parameterized system of polynomial equations, which can be certifiably computed as discussed in 
Section 2.1. The benefit of knowing the provenance of the data is the awareness that the data in ques-
tion is separable. Therefore, in order to closely approximate the underlying structure of the training 
data, which closely follows the decision boundaries without inter-class overlap, we deliberately min-
imize the degree of regularization in our models. In the context of SVCs, this is achieved in practice 
by choosing a large inverse regularization parameter c.

3.3. Neural networks

Backed by the universal approximation theorem (Cybenko, 1989; Hornik et al., 1989), deep learning 
techniques (Bengio et al., 2015; LeCun et al., 2015) have garnered significant popularity in recent 
times based on success in a wide array of applications. In particular, the feedforward neural network, 
i.e., a multi-layer structure of compositions of activation functions, has been shown to be a universal 
approximator for any mildly-constrained target function provided that the network parameters (or 
weights) and the multilayer structure are chosen appropriately (Cybenko, 1989; Hornik et al., 1989). 
The layers of compositions of functions manifest the multilayer structure in a network where the 
depth refers to the number of composition levels.

A practical way to obtain a sensible model and its corresponding weights is to start with a large 
architecture (as a rule of thumb, as many weights as the number of training data points) and apply 
an optimization routine, e.g., stochastic gradient descent method, to achieve numerical values of the 
weights which best approximate the underlying function. As motivated above, we completely forego 
the use of regularization techniques in the training process of our neural networks.
415
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4. Sampling method

Given a compact subset of the parameter space Rk , one approach to generate sample points is 
to randomly, e.g., uniformly, select a parameter value and use a parameter homotopy to count the 
number of real solutions. Such an approach has been applied to a variety of problems, e.g., (Bates et 
al., 2018; Hauenstein and Sottile, 2012; Nam et al., 2020). Aiming to approximate the real discriminant 
locus (classification boundaries), the following uses domain knowledge via the complex discriminant 
locus to find sample points near the boundaries to guide the learning of the boundaries.

For a parameterized polynomial system f (x; p) as in Eq. (2), we start with parameter homotopies 
for solving f = 0 (see Section 2.1) and computing a pseudowitness point set for the complex discrim-
inant locus (see Section 2.2). The sampling method starts with a randomly selected parameter value 
p∗ ∈Rk , e.g., uniformly sampled in a compact subset � of the parameter space Rk . For simplicity, we 
assume that � is a rectangular box. The parameter homotopy for f = 0 is used to count the number 
of real solutions to f (x; p∗) = 0 thereby obtaining the label for p∗ .

The key addition in the sampling scheme is to then select a random direction v∗ uniformly 
in Sk−1, the unit sphere in Rk . Let L∗ ⊂ Ck be the line parameterized by p∗ + λ · v∗ for λ ∈ C. 
Then, the parameter homotopy for computing a pseudowitness point set for the complex discrimi-
nant locus is used to compute the real points in the corresponding pseudowitness point set along L∗
inside of �, say p1 = p∗ + λ1 · v∗, . . . , p� = p∗ + λ� · v∗ . Without loss of generality, we can assume 
λ1 < λ2 < · · · < λ� . Compute λ0 and λ�+1 such that λ0 < λ1 < λ� < λ�+1 where p0 = p∗ + λ0 · v and 
p�+1 = p∗ + λ�+1 · v are the intersection points of L∗ with the boundary of �. We note that if one 
has access to the complex discriminant polynomial D , e.g., using Weispfenning (1992); Harris et al. 
(2021); Le and Safey El Din (2022), then an alternative to compute λ1, . . . , λ� would be via computing 
real roots of the univariate polynomial D(p∗ + λ · v∗).

Along L∗ , the complex discriminant locus yields that the number of real solutions is constant on 
the intervals (pi, pi+1) contained in L∗ for i = 0, . . . , �. Hence, the next step is to determine the 
number of real solutions associated with each interval (pi , pi+1). This is accomplished by selecting 
the midpoint of each interval, namely mi = p∗ + (λi + δi/2) · v for i = 0, . . . , � and δi = λi+1 − λi . The 
parameter homotopy for f = 0 is used to count the number of real solutions of f (x; mi) = 0.

Our sampling scheme takes the midpoints mi of each interval, which we call “near center” 
points in the corresponding cell. We add “near boundary” points as follows. Given α > 0, the 
near boundary points are bi, f = p∗ + (λi + 


f
i ) · v and bi,b = p∗ + (λi − 
b

i ) · v for i = 1, . . . , �
where 


f
i = min{α, δi/20} and 
b

i = min{α, δi−1/20}. Since bi, f ∈ (pi, pi+1) and bi,b ∈ (pi−1, pi), 
the number of real solutions of f (x; bi, f ) = 0 and f (x; bi,b) = 0 are known from the computation 
above.

The aim of the near center points is to provide a parameter point sufficiently in the interior of 
the region in Rk with the same number of real solutions. The aim of the near boundary points is 
to help learn the boundary by providing points on either side of the boundary. Of course, one could 
also explicitly force the learned boundary to pass through the sampled boundary points. However, 
they are not utilized in Section 5 since the near boundary points provide both interior points of the 
corresponding regions as well as guide the learning of the boundary.

In total, our sampling scheme utilized in Section 5 provides three different types of data points: 
uniform points, near center points, and near boundary points. Fig. 1 provides an illustration of these 
point categories based on a selected uniformly selected sample point (star) along a randomly selected 
line L∗ (dotted). The boundary points (circles), near center points (triangles), and near boundary 
points (diamonds) are also shown.

5. Computational setup and results

The sampling method in Section 4 utilizes domain knowledge about the location of the boundary 
to provide carefully chosen sample points to guide the learning of the boundary which is demon-
strated in the following four examples: two warm-up examples utilizing a quadratic and cubic fol-
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Fig. 1. Visual representation of the sampling scheme where the star is a uniform random sample point, circles are points on the 
boundary, triangles are midpoints, and diamonds are near boundary points. The points are color coded based on the number of 
real solutions. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

Table 1
Number of data points in each data set used for training/testing for each example.

Quadratic Cubic Kuramoto N = 3 Kuramoto N = 4

Uniform 10,000 10,000 972 8,995
Uniform (large) — — 8000 —
NearBoundary 12,934 12,022 5,192 54,040
NearBoundary+NearCenter 25,860 22,036 8,440 78,823

lowed by two examples involving the Kuramoto model (Acebrón et al., 2005; Dörfler and Bullo, 2014; 
Strogatz, 2000). The data sets for training and testing for these examples were generated using the 
sampling scheme and are summarized in Table 1. The computational time for developing the data 
sets was approximately 6 hours and 5 days for the 3-oscillator and 4-oscillator Kuramoto models, 
respectively, when computed using a single core of a 2.4 GHz AMD Opteron processor.

With these data sets, the computational setup for using the one nearest neighbor (1-NN) and SVC-
based classification was based on KNeighborsClassifier and svm.SVC in SciKit-Learn (Pedregosa et 
al., 2011), respectively, and performed on a laptop with a 2.50 GHz Intel processor and 12 GB RAM. 
Additionally, a feedforward network was utilized with computations performed on a laptop with a six-
core Intel i7 2.60 GHz processor, 32 GB RAM, and Nvidia Quadro P2000 GPU with 4 GB of video RAM. 
The code was implemented in PyTorch (Paszke et al., 2019) leveraging CUDA acceleration. Multi-
layer, fully connected feedforward networks with ReLU activation functions (Hahnloser et al., 2003) 
were used. A loss function based on multi-class cross-entropy without regularization was optimized 
during the learning process utilizing an adaptive learning rate scheme.

We note that the problems in this paper use relatively small data sets, the largest being 13.7 MB 
for the 4-oscillator Kuramoto model. In all instances, the classification of the test data points using the 
1-NN models, SVCs, and feedforward neural networks had a computational time of under 1 second. 
However, the time to train the SVCs and feedforward neural networks took much longer, ranging from 
seconds to hours and minutes to days, respectively. Due to this computational expense of training, the 
1-NN methods were found to be more efficient for the examples covered here.

5.1. Quadratic

Consider the quadratic f (x; b, c) = x2 + bx + c = 0 with parameters b and c. This toy system 
provides a demonstration of the method restricting the parameter space to [−1, 1]2. Of course, the 
boundary between f having 2 real solutions and 0 real solutions is defined by b2 − 4c = 0. Fig. 2(a) 
plots uniformly selected data in [−1, 1]2 with Fig. 2(b) showing the near boundary data.

Table 2 summarizes the performance of the different classifiers on various training and testing 
data sets. The results in Table 2 were obtained with a traditional 1-NN classifier, a two-class SVC 
classifier with a radial basis function (RBF) kernel and inverse regularization coefficient c = 106, and 
a feedforward, fully connected neural network with three hidden layers each with 20 neurons. We 
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Fig. 2. (a) Uniform random sampled data, (b) near boundary data, and (c) decision boundary from neural network trained on 
data from (b) for f (x; b, c) = x2 + bx + c. The blue region has 2 real solutions while the gold and red regions have 0 real 
solutions. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

Table 2
Accuracy rate for various testing data sets using various training data sets for the 1-NN method / SVC / feedforward neural 
network on f (x; b, c) = x2 + bx + c.

Training data Testing data

Uniform NearBoundary NearBoundary+NearCenter

Uniform 1 / 1 / 1 0.5392 / 0.9542 / 0.9559 0.7678 / 0.9770 / 0.9779
NearBoundary 0.9999 / 1 / 1 1 / 1 / 1 1 / 1 / 1
NearBoundary+NearCenter 0.9999 / 1 / 1 1 / 1 / 1 1 / 1 / 1

employed tanh as the activation function for the neurons and used a 2-neuron softmax layer as the 
output layer. A binary cross-entropy loss without regularization was used to train the network and 
implemented a variable learning rate scheme. Once trained, testing data was used where each of the 
data points was fed to the network and the classification decision recorded. Fig. 2(c) illustrates the 
decision boundary learned with training data shown in Fig. 2(b). This plot was obtained by densely 
and uniformly sampling the parameter region [−1, 1]2, feeding the resulting samples to the trained 
network, and color-coding the response of the network for each of the input values in the densely 
sampled region. The results indicate that including sample data points near the boundary for train-
ing produces highly accurate classification results. As points near the boundary are to be classified, 
the performance declines when training with uniform data particularly with the 1-NN classifier. We 
attribute the relative robustness of the SVC and neural network classifiers to the sampling method 
via inductive bias (Mitchell, 1980) as both of those classifiers tend to learn continuous classification 
boundaries. In contrast, the 1-NN classifier tends to inherently overfit the training data which often 
results in boundaries that are not smooth.

5.2. Cubic

Since the real discriminant locus for the quadratic in Section 5.1 was smooth, we increase the 
degree to have a cusp on the boundary. In particular, we consider the cubic f (x; b, c) = x3 +bx +c = 0. 
The boundary between f having 3 real solutions and 1 real solution is defined by 4b3 + 27c2 = 0
which has a cusp at the origin. Fig. 3(a) plots uniformly selected data in [−1, 1]2 with Fig. 2(b) 
showing the near boundary data zoomed in near the cusp.

Table 3 summarizes the results obtained by the same classifiers used in Section 5.1. As previously 
observed, including sample point data near the boundary for training yields higher accuracy. When 
uniform data is used for training, the accuracy declines when boundary data is included in the testing 
data set which is particularly evident for the 1-NN classifier. Unlike competing methods, the SVC fails 
to fully separate the training data due to the somewhat limited capacity of the method which, in 
turn, bolsters generalization capabilities in the uniformly sampled data case. Fig. 3(c) illustrates the 
boundary learned by the neural network trained on the data from Fig. 3(b).
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Fig. 3. (a) Uniform random sampled data, (b) near boundary data near the cusp, and (c) decision boundary from neural network 
trained on data from (b) for f (x; b, c) = x3 + bx + c. The blue region has 3 real solutions while the gold and red regions have 1 
real solution. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

Table 3
Accuracy rate for various testing data sets using various training data sets for the 1-NN method / SVC / feedforward neural 
network on f (x; b, c) = x3 + bx + c.

Training data Test data

Uniform NearBoundary NearBoundary+NearCenter

Uniform 1 / 1 / 1 0.5259 / 0.8614 / 0.7848 0.7259 / 0.9116 / 0.8689
NearBoundary 0.9999 / 1 / 1 1 / 0.9931 / 1 1 / 0.9951 / 1
NearBoundary+NearCenter 0.9999 / 1 / 1 1 / 1 / 1 1 / 0.9912 / 1

5.3. Kuramoto model

The Kuramoto model (Acebrón et al., 2005; Dörfler and Bullo, 2014; Strogatz, 2000) is a popular 
model to study synchronization phenomena observed in systems consisting of N coupled oscillators. 
We aim to learn the number of equilibria as a function of the parameters ω ∈ RN which are the 
natural frequencies of the N oscillators. The system can be simplified by noting that the sum of 
the natural frequencies must be zero to have equilibria and has rotational symmetry. The resulting 
parameterized polynomial system has 2(N − 1) polynomials and variables with N − 1 parameters:

F (c1, s1, . . . , cN−1, sN−1;ω1, . . . ,ωN−1)

=

⎡
⎢⎢⎣

ωi − 1

N

N∑
j=1

(sic j − s jci)

c2
i + s2

i − 1

i = 1, . . . , N − 1

⎤
⎥⎥⎦ = 0.

(4)

Moreover, if ωi /∈ [− N−1
N , N−1

N

]
, then Eq. (4) can have no real solutions so that the parameter space 

is naturally restricted to a compact subset of RN−1. Furthermore, the number of real solutions is 
invariant under permutations of the parameters. In particular, we do not label the axes in Figs. 4
and 5 since equivalent pictures hold for any labeling.

For generic parameter values, Eq. (4) has 2N − 2 solutions (Coss et al., 2018, Thm. 4.3). There are 
a maximum of 6 isolated real solutions for N = 3 and there are parameters for any possible even 
number of solutions, e.g., see Fig. 4(d). For N = 4, it was conjectured in (Xin et al., 2016) to have a 
maximum of 10 isolated real solutions by scanning over of a grid of the parameter space. This conjec-
ture was proven to be correct in (Harris et al., 2021, Thm. 8.1). However, a complete characterization 
of the parameter space based on the number of real solutions for the N = 4 case has proved to be 
a particularly difficult problem for traditional methods such as comprehensive Gröbner basis, cylin-
drical algebraic decomposition, and homotopy continuation. We note that the complex discriminant 
locus for the N = 3 and N = 4 cases is a curve of degree 12 and surface of degree 48, respectively, 
and both have singularities. In particular, the N = 4 Kuramoto model example highlights how the 
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Fig. 4. For the 3-oscillator Kuramoto model: (a) uniformly selected parameter values, (b) data perturbed from the boundary, (c) 
a zoomed view of data perturbed from the boundary, and (d) decision boundary from neural network trained on data from (b). 
For (d), the regions are colored based on the number of real solutions: red = 0, orange = 2, yellow = 4, and blue = 6. These 
same regions are part of (a), (b), and (c) with slightly different colors. (For interpretation of the colors in the figure, the reader 
is referred to the web version of this article.)

Table 4
Accuracy rate for various testing data sets using various training data sets for the 1-NN method / SVC / feedforward neural 
network on the 3-oscillator Kuramoto model.

Training data Test data

Uniform NearBoundary NearBoundary+NearCenter

Uniform 1 / 0.9856 / 1 0.4921 / 0.4962 / 0.5027 0.6525 / 0.6381 / 0.6554
Uniform (large) using 1-NN 1 0.5306 0.6973
NearBoundary 1 / 0.9804 / 1 1 / 0.7867 / 1 0.9985 / 0.8551 / 0.9861
NearBoundary +NearCenter 1 / 0.8533 / 1 1 / 0.7736 / 1 1 / 0.9928 / 1

proposed method can be used to understand the parameter space based on the number of real solu-
tions even when the real discriminant locus contains a positive-dimensional set of singularities in a 
reasonable time frame.

5.3.1. 3-Oscillators
For N = 3, we consider (ω1, ω2) ∈ [−1, 1]2. The outcome of a uniform sampling process is provided 

in Fig. 4(a), near boundary data points in Fig. 4(b), and a zoomed in version of near boundary points in 
Fig. 4(c). Table 4 includes results achieved by the different classifiers on this data. For the 1-NN clas-
sifier, and due to the increasing difference in size of the data sets, tests were completed to determine 
whether training with a much smaller data set and testing with a data set on the order of ten times 
larger impacted the accuracy results. To achieve this, the original uniform data set of approximately 
1,000 data points as well as a uniform data set of 8,000 data points were used for training while data 
sets of approximately 1,000 (Uniform), 5,000 (NearBoundary), and 8,000 (NearBoundary+NearCenter) 
were used for testing. As summarized in Table 4, the accuracy does not drastically change when the 
size of data sets is comparable. Most importantly, it does not change the conclusion that includ-
ing near boundary data in the training data set yields highest accuracy across all testing data sets. 
A multi-class SVC with RBF kernel and inverse regularization parameter c = 1010 was implemented. 
A feedforward, fully connected neural network with five hidden layers each with 20 neurons was 
used. We employed the ReLU activation function for the neurons in the hidden layers and used a 
4-neuron softmax layer as the output layer since this is a 4-class classification task corresponding to 
0, 2, 4, and 6 real solutions. In this case, the limited capacity of SVCs prevented fully learning the de-
cision boundary while the competing methods perform similarly. As before, performance is lackluster 
on boundary data in algorithms trained only using uniform data.

5.3.2. 4-Oscillators
Similar computations were performed on the 4-oscillator Kuramoto model, which has a three-

dimensional parameter space. Following the theoretical bounds, we only considered sample points in 
[−3/4, 3/4]3. Fig. 5(a) shows a two-dimensional slice of the parameter space using uniformly selected 
points, while Fig. 5(b) illustrates some of the near boundary data. Table 5 summarizes the results 
when using the classifiers from the previous section.
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Fig. 5. For the 4-oscillator Kuramoto model: (a) uniformly selected parameter values on a 2D slice, and (b) some of the data 
perturbed from the boundary colored based on the number of real solutions: black = 0, gold = 2, red = 4, green = 6, blue = 8, 
and magenta = 10. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

Table 5
Accuracy rate for various testing data sets using various training data sets for the 1-NN method / SVC on the 4-oscillator 
Kuramoto model.

Training data Test data

Uniform NearBoundary NearBoundary+NearCenter

Uniform 1 / 0.9901 0.4630 / 0.5556 0.5911 / 0.6539
NearBoundary 0.9782 / 0.9730 1 / 0.7505 0.9901 / 0.8059
NearBoundary+NearCenter 0.9869 / 0.9901 1 / 0.7537 1 / 0.8190

In our experiment, it became apparent that the neural network was unable to fully separate the 
data samples with correct labels for some of the near boundary points. We hypothesize that, although 
learning converged, it likely reached a local minimum in the optimization landscape. As the dimen-
sionality of the data and the number of training data points grow, the complexity of the optimization 
landscape increases which makes it less likely to reach the global minimum or at least one that is 
truly optimal. This scenario is worsened by the absence of a regularization term where it is empiri-
cally known (Mehta et al., 2018) that the number of local minima in the optimization landscape of a 
network decreases as stronger regularization is enforced.

6. Real parameter homotopy leveraging learned boundaries

The examples presented in Section 5 show that machine learning techniques coupled with the 
sampling scheme from Section 4 produce accurate results for classifying, i.e., predicting the number 
of real solutions, over the parameter space. Often in science and engineering applications, one is not 
only interested in the number of real solutions, but actually computing the real solutions. Typically, for 
these applications, the number of real solutions is significantly smaller than the number of complex 
solutions, so developing a parameter homotopy that only tracks real solution paths can drastically 
reduce the computational time. The key to developing such a real parameter homotopy is to track 
along a segment in the parameter space which does not intersect the real discriminant locus. Thus, 
after learning, one can develop a robust and efficient real parameter homotopy setup as follows that 
we demonstrate on the 3-oscillator and 4-oscillator Kuramoto model.

Given a real parameter p ∈ Rk , the real parameter homotopy method uses the nearest neighbor 
method to select the closest parameter point p∗ to p in the sampled (training) data set. Since the real 
solutions for f (x; p∗) = 0 have already been computed, one only tracks the solutions paths starting 
at real solutions for the homotopy defined by

H(x, t) = f (x; t · p∗ + (1 − t) · p) = 0,
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Fig. 6. Illustration of two segments added to Fig. 4(d), one (black) which is guaranteed to succeed while the other (purple) may 
fail since it intersects the real discriminant locus. See the caption of Fig. 4 for a description of the color convention used. (For 
interpretation of the colors in the figure, the reader is referred to the web version of this article.)

Table 6
Average computation time for finding all real roots for the 3-oscillator Kuramoto model using 
a machine-learning-assisted real parameter homotopy method.

Number of data points Number of paths Average time (in seconds) Success rate

249 2 0.077 100%
26 4 0.081 100%
17 6 0.086 100%

which is simply Eq. (3) with γ = 1. Therefore, if the line segment [p∗, p] does not intersect the real 
discriminant locus, then there is a bijection between the real solutions of f (x; p) = 0 and f (x; p∗) = 0, 
and every real solution path of H = 0 is smooth for t ∈ [0, 1]. Using sample points via the sam-
pling scheme in Section 4 on either side of the boundary aims to increase the chance the segment 
between p and the nearest sample point p∗ is contained in the same region and thus this real param-
eter homotopy method succeeds. Fig. 6 is Fig. 4(d) with two added segments. One segment (black) is 
within the same region so that the real parameter homotopy method would succeed. Although the 
other segment (purple) has endpoints with the same region, there is no guarantee of success since it 
intersects the real discriminant locus.

6.1. 3-Oscillators

As an illustration, consider the 3-oscillator Kuramoto model. Since, from Section 5.3, the generic 
number of complex solutions is 6, one of courses can easily track all 6 complex solution paths using 
a classical parameter homotopy in Eq. (3). In our experiment, using a single core of a 2.4 GHz AMD 
Opteron Processor, this took on average 1.33 seconds. Nonetheless, we utilize this as a test case to 
show some improvement as well as analyzing the success rate which was determined by comparing 
using a classical parameter homotopy with this machine learning assisted real parameter homotopy. 
Table 6 shows that, on average, the real parameter homotopy took less than 0.1 seconds and was 
successful on every randomly selected parameter value tested. One reason for the order of magni-
tude reduction in computational time is that, by selecting the closest parameter value, the homotopy 
solution paths are much shorter and thus faster to track.

6.2. 4-Oscillators

Following a similar setup, we also applied the method to the 4-oscillator Kuramoto model. In this 
case, the generic number of complex solutions is 14, but the maximum number of real solutions is 
10 showing that there will always be wasted computational effort when computing the real solutions 
using a classical parameter homotopy. In our experiment, the average time for tracking the 14 com-
plex solution paths using a classical parameter homotopy was 3.40 seconds. Table 7 summarizes the 
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Table 7
The average computation time for finding all real roots for the 4-oscillator Kuramoto model 
using a machine learning assisted real parameter homotopy method.

Number of data points Number of paths Average time (in seconds) Success rate

30504 2 0.114 98.2%
17088 4 0.121 98.8%
9041 6 0.126 99.2%
4383 8 0.128 98.0%
345 10 0.132 100%

results that again show over an order of magnitude reduction in computational time with a success 
rate in accordance with the classification accuracy in Table 5.

7. Outlook and conclusions

This paper provides a novel viewpoint on the mathematical problem of identifying the boundaries, 
called the real discriminant locus, of the parameter space that separate the regions corresponding to 
different number of real solutions to a parameterized polynomial system. Although there is a dis-
criminant polynomial which vanishes on the real discriminant locus, it can be difficult to compute, 
facilitating the need to numerically approximate it. Our approach is based on the correspondence be-
tween the real discriminant locus and decision boundaries of a supervised classification problem in 
machine learning. By utilizing domain knowledge from numerical algebraic geometry, we developed 
a sampling strategy for selecting points near the boundary to assist the machine learning techniques 
in providing an accurate approximation of the boundary. With a parameter homotopy, one is able to 
accurately label the data so that there is no noise in the data. Hence, no regularization techniques 
need to be utilized, which would have forced the algorithm to strictly learn only smooth boundaries, 
which is important since singularities often arise as illustrated in Section 5.

One challenge with using deep networks to learn a real discriminant locus is how to properly 
select the number of layers and neurons within each layer needed to develop an accurate approxima-
tion. We utilized hyperparameter optimization to search for reasonable choices along with stochastic 
gradient descent methods to determine weights to fit the data. Another challenge is the presence of 
singularities which seem to make training more difficult for deep networks. Therefore, these types 
of problems provide a unique benchmarking opportunity for multi-class machine learning algorithms 
as the ground truth regarding both labels and classification boundaries can be explicitly computed 
for some examples, such as univariate polynomials as in Sections 5.1 and 5.2. We overcome some 
of these difficulties by developing a sampling scheme that produces significantly more points near 
the boundaries than in other areas of the parameter space so that one is able to quickly obtain an 
accurate approximation of the real discriminant locus.

When deep networks can take an inordinate amount of time to train, one can utilize local approx-
imation methods such as k-nearest neighbor classification algorithm. In fact, as shown in Theorem 1, 
no classifier can outperform the 1-nearest neighbor classification algorithm provided that the param-
eter space is sampled densely enough. The examples in Section 5 show that deep networks can be 
useful and comparable to the 1-NN methods. However, the data confirms the effectiveness of the 1-
NN methods, especially in the case of the N = 4 Kuramoto model when the deep network did not 
converge to the global minimum.

Although our proposed sampling method can be viewed as active learning, one can also employ a 
more explicit active learning approach where an algorithm interactively queries the parameter space 
and samples more densely near singularities such as cusps and other difficult regions. One could also 
attempt to first construct an algorithm to remove ε neighborhoods surrounding all singularities, learn 
the remaining parameter space and real discriminant locus, and then take ε → 0. These approaches 
will be explored in the future.

The curse of dimensionality hampers most computational methods, including machine learning. 
In computational algebraic geometry, the actual dimension where problems become intractable is 
strictly problem specific. When identifying the real discriminant locus for parameterized polynomial 
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systems, this brings in its own difficulties that are different from other applications such as those 
in computer vision and natural language processing where the curse of dimensionality may kick in 
at much larger dimensions. The previous best works (Chandra et al., 2017; Harrington et al., 2020) 
proposed an approach based on homotopy continuation which could analyze the N = 3 Kuramoto 
model, while the N = 4 case was still out of reach. In the present work, we have now broken this 
ceiling with the combination of machine learning and homotopy continuation.

A real parameter homotopy method that tracks only real solution paths was developed in Sec-
tion 6 as an application of learning the real discriminant locus. Even for relatively small problems, 
this method reduced the computational time by over an order of magnitude. After generating sample 
data “offline,” this method is easy to implement in an “online” solver which could drastically im-
prove the computation of real solutions. With proper adjustments, this method is extensible to other 
situations involving rational, exponential, logarithmic, trigonometric, and piecewise functions.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relation-
ships that could have appeared to influence the work reported in this paper.

Acknowledgements

The paper is a result of exploratory and fundamental research, and statements made in it are 
Dhagash Mehta’s and his co-authors’ personal views which do not represent The Vanguard Group’s 
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