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Abstract—In batch steganography, the sender distributes the
secret payload among multiple images from a “bag” to decrease
the chance of being caught. Recent work on this topic described
an experimentally discovered phenomenon, which we call the
“bag gain”: for fixed communication rate, pooled detectors
experience a decrease in statistical detectability for initially
increasing bag sizes, providing an opportunity for the sender
to gain in security. The bag gain phenomenon is universal in the
sense of manifesting under a wide spectrum of conditions. In this
paper, we explain this experimental observation by adopting a
statistical model of detector response. Despite the simplicity of
the model, it does capture observed trends in detectability as a
function of the bag size, the rate, and cover source properties.
Additionally, and surprisingly, the model predicts that in certain
cover sources the sender should avoid bag sizes that are too small
as this can lead to a bag loss.

I. INTRODUCTION

Batch steganography [11], [12], [14], [17], [9], [15], [19],

[21], [22], [20], [25], [24] deals with the situation when

the sender spreads her payload among multiple covers to

decrease the Warden’s chances of detecting the use of this

stealth communication channel. Intuitively, images that are

harder to steganalyze should receive a larger payload and vice

versa. If the sender intends to communicate a fixed payload,

she can make her bag size arbitrarily large to achieve her

desired security—an infinitely large bag would achieve perfect

steganography. To avoid such a degenerate (and uninteresting)

case, we will assume that the sender maintains a fixed com-

munication rate instead. For a fixed rate r expressed in terms

of bits per pixel (bpp), the sender will eventually be caught

due to the square root law (SRL) [13], [16].

This paper builds upon [23] where the authors reported

on an interesting phenomenon for batch senders maintaining

a positive rate. When pooling evidence from a bag of B
images the statistical detectability as a function of B initially

decreases with increasing B, then levels off, and eventually

increases as the SRL inevitably engages (see Figure 1). The

maximal drop in detectability, which we call the bag gain, has

been observed for all batch senders studied in [23] and for

all types of pooled detectors built upon various single-image

detectors in the form of rich models as well as convolutional

neural networks. It thus appears as a robust phenomenon. The

effect of bag size on security was also previously studied

in [22] within the context of Gaussian embedding extended

to batch senders. While the authors briefly note what appears

to be the bag gain in their experiments, it is not clear how and

whether their observation, which was obtained with a single-

image source detector, extends to a pooled detector. Indeed,

as argued below in this paper and as acknowledged by the

authors of [22], to properly assess the performance of batch

steganography with pooled detectors, one needs to consider

Bag size

w
A

U
C

1 BGain

1

Bag gain

Small bag
regime

Large bag
regime

Figure 1. The universal trend of a pooled detector’s performance (wAUC) as
a function of bag size B with fixed positive rate r. In the small bag regime,
it is possible for the steganographer to gain security by selecting a non-trivial
bag size. In the large bag regime, the detectability monotonically increases
with bag size.

the variability of images within bags, which necessitates

adopting a model of cover source diversity, an element missing

from [22]. Finally, we note that the bag gain did not manifest

in previous art [21] because all senders studied in this work

embed a variable payload per bag (the rate is maintained only

in expectation) based on tags assigned to all images from the

cover source computed from an infinitely large bag.

In this paper, we provide an explanation of the bag gain

by adopting a model for the soft output of a steganography

detector. By suitably simplifying the problem, we become

able to analytically study how the bag gain is affected by

the detector response, batch sender, cover source, bag size,

and communication rate. We argue that the bag gain is due to

the differences in how the square root law engages in small

and large bags. The bag gain phenomenon is important for

practitioners because the security gain can be significant and

it occurs for bag sizes that are likely to be used in practice.

In the next section, we describe the general setup for batch

steganography and pooled steganalysis as considered in this

paper. The purpose of Section III is to adopt suitable modeling

assumptions that allow us to derive a closed form expression

for the performance of Warden’s optimal pooled detector. We

also describe the batch sender analyzed in this paper. To

capture the diversity of images across bags, in Section IV we

adopt a model for the response of a single-image steganogra-

phy detector on stego images. This model is the key element

of our approach as it permits analytic study of the bag gain

in Section V, which holds the main bulk of our theoretical

results. In particular, we derive a closed-form expression for

statistical detectability as a function of the bag size and other
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parameters describing the cover source and detector response.

The derived formulas are contrasted with the performance of

a machine learning based pooled detector on real images in

Section VI. The model correctly predicts the initial drop in

detectability with increasing B. It also captures experimentally

obtained trends in detectability vs. the communication rate

(Section V-B3). The model additionally predicts a possible bag

loss for bag sizes that are too small, which is experimentally

confirmed in real datasets. In Section VII, we extend our

analysis to a parametrized family of batch senders to study

how the bag gain depends on how strongly the senders adapt

the payloads to images from the bag. In Section VIII, we

contrast our work with relevant prior art on adaptive bag size.

The paper is concluded in Section IX.

Throughout this paper, we use N (µ, σ2) to denote a

normal (Gaussian) distribution with mean µ and variance

σ2. The standard normal tail probability function is denoted

Q(x) =
∫∞
x

(2π)−1/2e−z2/2dz. Symbols P and E are used

for probability and expectation. For a logical statement P , the

indicator function, denoted 1P , is equal to 1 when P is true

and 0 when P is false. The operation of flooring (rounding to

the nearest integer k ≤ x) is denoted bxc.

II. BATCH STEGANOGRAPHY FORMULATION

Let X denote the set of all possible cover images of some

fixed size. A cover bag of size B, X = (X
(1)
0 , . . . , X

(B)
0 ),

is formed by independently selecting B cover images

X
(1)
0 , . . . , X

(B)
0 ∈ X according to some probability distribu-

tion over X .

To simplify our analysis and without loss on generality of

our conclusions, we will assume that each image from X can

be embedded at full capacity of log2 3 bits per pixel (bpp) with

a ternary steganographic scheme. In other words, we assume

that images do not contain “wet” pixels [7].

We assume that the steganographer maintains a fixed com-

munication rate r ∈ [0, log2 3] bpp. A batch spreading strategy

S is a mapping αr,S : XB → [0, log2 3]
B that determines

the relative payloads (in bpp) embedded in the B images.1

When r, S, and X are clear from context, we simply write

αi ∈ [0, log2 3] to denote the ith component of αr,S(X), i.e.,

the relative payload embedded in the ith image. The map

αr,S must satisfy the payload constraint
∑B

i=1 αi = rB.

The steganographer produces the ith stego image X
(i)
αi by

embedding cover X
(i)
0 with payload of size αi bpp using a

ternary steganographic scheme.

Next, we provide a general formulation of pooled ste-

ganalysis. Given an intercepted bag of B images Y =
(Y (1), . . . , Y (B)), the Warden infers whether steganography is

being used by performing the following composite hypothesis

test:
H0 : r = 0

H1 : r > 0.
(1)

The Warden “pools” the evidence Y together by using a

pooled detector (or “pooler”). We assume the Warden’s de-

cision is solely informed by the collection of outputs of a

1Notice that the mapping is deterministic as we are not considering
randomized spreading strategies in this paper.

single-image detector, which is a mapping d : X → R that

assigns to each image a scalar referred to as the soft output

(or response) of the detector. Formally, the Warden’s pooler is

of the form π : RB → R, and she infers whether the sender

uses steganography by computing d(Y (i)) for all i = 1, . . . , B
and comparing π(d(Y (1)), . . . , d(Y (B))) against a threshold

determined by some application-dependent requirements, such

as controlling the false alarm.

In the next two sections, we simplify the formulation above

in order to study the bag gain phenomenon analytically. Our

approach is detector-centric in the sense that we

1) impose statistical models on the response of the detector

d on cover and stego images and let all actors share

information (next section)

2) model the diversity of bags with a suitably simplified sta-

tistical model of the so-called detector response curves

that express the dependence of the detector output on

message length (Section IV).

III. MODELING ASSUMPTIONS

This paper’s goal is to analytically capture and intuitively

explain the experimentally observed bag gain phenomenon.

This necessitates a rather significant simplification of the setup

described in the previous section in terms of what knowledge

is available to all actors and in terms of modeling assumptions

to facilitate an analytically tractable analysis. To this end,

we introduce the concept of acquisition oracle and make

specific assumptions about statistical properties of a single-

image detector when applied to cover and stego images. We

also introduce the batch sender studied in this paper.

Given a collection of cover images indexed by i = 1, . . . , B,

we consider the specific cover image X
(i)
0 used by the sender

as a sample from an acquisition oracle taking images of the

ith cover scene with the same acquisition device. Acquisition

noise and possibly small spatial shifts and rotations due to

camera shake contribute to the randomness. This oracle will

provide us with the means to narrow down the distribution of

d(Y (i)) under both hypotheses.

A. Gaussianity and local shift hypothesis

First, we take advantage of the fact that, for each i, the

distribution of the ith cover acquisition X
(i)
0 is concentrated on

a small subset of X . Since differentiable non-linear functions

are approximately linear on sufficiently small neighborhoods,

we can employ the central limit theorem (CLT) so that

d(X
(i)
0 ) ∼ N (µi, σ

2
i ), (2)

where µi and σ2
i are the expected value and variance of

d on cover images generated by the acquisition oracle for

the ith scene. Since stego schemes try to preserve statistical

properties of X
(i)
0 , the embedding process will also preserve

the concentration. Therefore, by the same argument we assume

that d(X
(i)
αi ) is also Gaussian2

d(X(i)
αi

) ∼ N (µi + si(αi), σ
2
i ) (3)

2The random variable X
(i)
αi

is generated by 1) sampling X
(i)
0 from the

oracle and 2) embedding a random message with a random stego key.
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with an additional assumption that only the mean is affected

by embedding but not the variance. This local shift hypothesis

is a much weaker assumption than the shift hypothesis [21]

about the global distribution of detector response which is not

satisfied for modern steganalyzers in the form of rich models

and CNNs (see Sec. 3.2 in [23]).

Technically, the variance of d(X
(i)
αi ) also depends on αi

because of the added randomness in the form of the stego

key selection and the message itself. We do not consider this

dependence in order to further simplify the modeling and also

because the acquisition noise dominates the statistical spread

because it is stronger than the stego noise.

Finally, to avoid modeling the distribution of the variances

σ2
i across images from X and the oracle itself, we assume all

variances are the same across scenes σ2
i = σ2.

B. Uniformity of response increase

The response curve (RC) for image X
(i)
0 and detector d is

the function %i : [0, log2 3] → R defined by

%i(α) = E[d(X(i)
α )|X(i)

0 ]. (4)

Given the payload size α and a fixed cover X
(i)
0 , %i(α) is the

expected value of the response d(X
(i)
α ) when embedding X

(i)
0

with random messages and stego keys.

Since the detector is trained to be sensitive to embedding

changes but not acquisition noise, we assume the expected

increase in detector response is uniform across all possible

acquisitions

%i(α)− %i(0) = si(α) (5)

for all realizations of X
(i)
0 . This assumption allows us to

compute the expected shift si(α) from a specific cover image,

which simplifies analysis and practical implementations.

C. Warden’s test

Equipped with a single-image detector d that adheres to the

assumptions above, the Warden’s hypothesis test (1) becomes:

H0 : d(Y (i)) ∼ N (µi, σ
2) for all i

H1 : d(Y (i)) ∼ N (µi + si(αi), σ
2) for all i,

(6)

where Y (i) are the images from a bag under inspection by the

Warden and αi is the payload residing in the ith image.

Assuming the parameters of the distributions in the hy-

pothesis test (6) are known to the Warden, the test becomes

simple and the Warden’s most powerful pooled detector is the

likelihood ratio test. The detectability of steganography in a

single bag is determined by the deflection coefficient

∆2(X) =

B
∑

i=1

s2i (αi)

σ2
=

B
∑

i=1

(%i(αi)− %i(0))
2

σ2
, (7)

where si(αi) can be computed via %i(αi) − %i(0) given any

oracle realization X
(i)
0 .

D. Minimum deflection sender

As a batch sender for our study, we selected the detector-

informed Minimum Deflection Sender (MDS) introduced

in [23] because it is the most amenable to analysis within the

context of a statistical model of the detector. As will be argued

in Section VII, the bag gain generally manifests for batch

senders that minimize the risk of being detected by assigning

larger payloads to images that are difficult to steganalyze and

smaller payloads to images in which the embedding is more

detectable. In particular, the bag gain has also been observed

for the detector-agnostic Image Merging Sender (IMS) [21]

and detector-aware Shift Limited Sender (SLS) [23].

The MDS makes use of a single-image detector, which we

will assume is the same as the one used by the Warden.

Given a bag of images X, the MDS selects payloads αi that

minimize the deflection (7). Formally, αi are found by solving

the following optimization problem

minimize ∆2(X),

s.t.

B
∑

i=1

αi = rB, αi ∈ [0, log2 3] ∀i, (8)

where r ∈ [0, log2 3] is a chosen embedding rate in bpp. A

general solution is given in Appendix B.

Granting the Warden and the MDS access to the same

detector d makes the MDS the optimal batch sender—it

minimizes the power of the Warden’s most powerful detector.

E. Discussion

Our setup assumes the actors are omniscient. Among other

things, the Warden knows the steganographic method used by

the sender, the payloads αi possibly embedded in each image,

the communication rate r, and the bag size B. Moreover,

the sender and the Warden share the same single-image

detector. While it is certainly of interest to study more relaxed

setups and perhaps even probabilistic strategies within game

theory, such scenarios would require adopting and justifying

additional models on how accurately the Warden can estimate

the payloads αi, on the nature of the mismatch between the

detectors, etc. The fact that our conclusions regarding the bag

gain based on the simplified setup do capture trends observed

in real-life situations testify to their relevance.

Having said this, we wish to point out to the reader that

the bag gain has been observed in experiments under much

more relaxed conditions, including different pooling strategies,

mismatched and qualitatively different detectors built using

various machine-learning paradigms, and when the Warden

needs to estimate the embedded payloads from the images at

hand. The reader is advised to inspect Section 7 in [23] for

more details.

IV. RESPONSE CURVE MODEL

In order to analyze the trends of detectability w.r.t. the

bag size B and possibly the communication rate r, we must

somehow obtain a model of ∆2(X) over bags since X has an

underlying distribution. We must be careful with our modeling

assumptions to preserve the essential complexities of Eq. (1)
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so that the bag gain can properly manifest. Due to the form

of the deflection ∆2(X) (7), it is sufficient to model the

response curves across images, which is easier than modeling

natural images and also keeps a tighter connection between

the model and practice. In particular, we make the following

two assumptions about response curves.

A. Linear response curves

We first assume the response curves are linear in payload

%i(αi)− %i(0) = biαi, (9)

where αi ∈ [0, log2 3]. This significantly simplifies the prob-

lem, permitting a closed-form expression for the payloads αi

embedded by the MDS and its extension in Section VII. Even

though the response curves of typical detectors built with

machine learning are not linear (see, e. g., Fig. 3 in [23]),

they are approximately linear when %i(αi)− %i(0) is small.

B. Binomial model for slopes

Arguably, if all images from the cover source had similar

response curves, the MDS would spread payload nearly uni-

formly, at which point the detectability would need to increase

with B from the beginning due to the SRL. The reason for

the bag gain is source diversity and the fact that the counts

of images that contain very small payloads and those that

are embedded nearly fully fluctuate across bags. Thus, in

order to simplify the modeling but preserve the essence we

adopted a two-valued range for the response curve slopes bi:
P(bi = ε) = p and P(bi = 1) = 1 − p where 0 < ε � 1
and p ∈ [0, 1]. Let Cε denote the number of response curves

with slope ε in a bag of size B. Assuming the images are

drawn randomly from the cover source, Cε follows a binomial

distribution on {0, 1, . . . , B}.

It is easy to show that if all B images have uniform slope

b, the deflection
∑

b2α2
i is minimal when all images receive

uniform payload αi = α. In a bag of two images with

different slopes, they both start receiving non-zero payload

when embedding a message of any length. More generally via

a water filling algorithm (see Appendix B), with increasing

rate r all images in the bag start receiving payload until the

ones with slope ε saturate at log2 3. From there, the images

with slope 1 absorb the remaining payload.

C. Pooled detector performance measure

The deflection coefficient ∆2(X) (7), which depends on

ε, r, B, and Cε, informs us about the the performance of the

likelihood ratio detector in a specific bag of images. For fixed

ε, r, B, the Receiver Operating Characteristic curve (ROC) of

the pooled detector expressing the probability of correct stego

bag detection PD as a function of the probability of false alarm

PFA is the expectation over bags

PD(PFA) = E[Q(Q−1(PFA)−∆(X))] (10)

=

∞
∑

k=0

(−1)kck
k!

Q(k)(Q−1(PFA)− E[∆(X)]),

where ck is the kth central moment of ∆(X) ,
√

∆2(X) as

shown in Appendix A. Keeping only the terms up to k = 2 in

the sum provides a rather accurate approximation for typical

values of our modeling parameters (note that c1 = 0).

In this paper, our reasoning is based on the expecta-

tion of the deflection coefficient because it is significantly

easier to analyze than the ROC (10). While the expected

deflection informs us about the ROC over bags indirectly

(as seen from (10)), many qualitative properties observed

for the expected deflection do propagate to common scalar

ROC measures, such as the weighted Area Under the Curve

(wAUC) [4].

V. EXPLAINING THE BAG GAIN

In this section, we explain the performance trends using the

binomial linear model for response curves. We begin by simply

assuming that images can hold an arbitrarily large amount

of payload. As we progress through this section, we will

incorporate more realistic constraints in order to capture which

pieces of the model are responsible for certain phenomena we

observe in practice.

A. Unbounded embedding capacity

First, we analyze the case of unbounded embedding capacity

for all images from the bag. We believe it is useful to start

with this case as it 1) clearly captures important trends in the

small bag regime, 2) is analytically tractable, and 3) serves to

build the reader’s intuition as to why a bag gain should occur

in the first place. Studying the unbounded case will also help

underscore the impact of finite embedding capacity on the

observed trends later seen in Section V-B.

Based on Eq. (43) in Appendix B, the MDS payloads for

the unbounded case are given, for all i, by

αi =
rB

b2i
∑B

k=1
1
b2
k

=
rBε2

b2i (Cε + (B − Cε)ε2)
, (11)

since
B
∑

k=1

1

b2k
= Cεε

−2 + (B − Cε). (12)

Utilizing (11) and (12), the deflection simplifies to

∆2(X) =
1

σ2

B
∑

i=1

b2iα
2
i =

r2B2ε2

σ2(Cε + (B − Cε)ε2)
. (13)

In this case, the expected deflection becomes

E[∆2(X)] =
r2B2ε2

σ2

B
∑

k=0

(

B
k

)

pk(1− p)B−k

k + (B − k)ε2
, (14)

which can be further simplified using Stirling’s formula (see,

e. g., page 147 in [6]) as B → ∞
(

B

pB

)

∼ 2BH2(p)

⇒
(

B

pB

)

ppB(1− p)(1−p)B ∼ 2BH2(p) × 2−BH2(p) = 1

⇒ E[∆2(X)] ∼ r2ε2B

σ2(p+ ε2(1− p))
. (15)
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Here, H2 is the binary entropy function, and ∼ means the

ratio of both sides tends to 1 as B → ∞.

Figure 2 shows the expected deflection E[∆2(X)] as a

function of the bag size B with the dashed lines drawn to show

asymptotic trends. The figure also shows wAUC of Eq (10)

as a function of B. For small p, the detectability initially

grows due to the SRL because the bags are small and most

do not contain any images with slope ε. The growth is steep

because it is driven primarily due to payload embedded in

images with slope 1. As the bag size increases, however, the

detectability starts dropping since the bags are more likely

to contain images with small slopes which absorb most of

the payload with only a slight contribution to the deflection.

The deflection eventually levels off and then linearly increases.

This time, the growth is less steep because of the presence of

images with slope ε. Thus, the existence of the local maximum

and global minimum of expected deflection is fundamentally

a consequence of the SRL switching its growth rate.

As depicted in Figure 2, the unbounded capacity model

predicts two critical bag sizes that depend primarily on p and

ε. One is associated with a local maximum, Bmax, while the

other, Bmin, corresponds to minimal expected deflection. We

do not talk about these critical bag sizes as corresponding to

bag loss and bag gain yet because we define these concepts

for the more realistic bounded capacity case using an easily

interpretable performance measure (wAUC) in the next sec-

tion. The closed form for the expected deflection as a function

of bag size allows us to study the critical points and obtain

insight into the conditions under which the local maximum

and the minimum can occur and how they depend on ε and

p. Figure 2 tells us that we can then implicitly (but indirectly)

draw conclusions about wAUC since the relationships closely

transfer as visually portrayed.

Since our model is only defined for positive integers B ≥ 1
(actual bag sizes), we begin by simplifying the expression in

Eq. (14) by using Eq. (15) (the dominant term in the large bag

regime) along with the k = 0 term (the dominant term in the

small bag regime when ε is small) :

E[∆2(X)]
.
=

r2B

σ2

(

(1− p)B +
ε2

p+ ε2(1− p)

)

. (16)

Notice that Eq. (16) can be defined on the real numbers B ∈
R. Using mild simplifying assumptions, we can derive closed

form approximations for both critical bag sizes. Specifically,

using Eq. (16) and the fact that (1−p)B = eB ln(1−p), we can

approximate the optima by finding solutions to

∂

∂B
E[∆2(X)]

.
=

(

eB ln(1−p) +
ε2

p+ ε2(1− p)

)

(17)

+B ln(1− p)eB ln(1−p) = 0. (18)

Since ln(1−p) < 0, for small B the term proportional to ε2 is

small compared to the other two terms. Setting ε2

(p+ε2(1−p)) ≈
0, we obtain an approximate formula for the first critical bag
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Figure 2. Unbounded capacity model of pooled detector performance. Top
row is E[∆2(X)] as a function of B (dots) with the line (solid) drawn to
show asymptotic trends. Bottom row is wAUC of Eq. (10) as a function of B.
Left column shows trends w.r.t. p (ε = 0.05 fixed) and right column shows
trends w.r.t. ε (p = 0.4 fixed). We have r = 0.3 and σ2 = 1 fixed.

size corresponding to the local maximum3

0 = eB ln(1−p) (1 +B ln(1− p))

⇔Bmax
.
=

−1

ln(1− p)
. (19)

For larger bag sizes, the term proportional to ε2 cannot be

ignored. We rearrange the terms and take log of both sides

(keep in mind that ln(1− p) < 0)

ε2

(p+ ε2(1− p))
= −eB ln(1−p) (1 +B ln(1− p))

⇔ B ln(1− p) = ln

(

ε2

p+ ε2(1− p)

)

(20)

− ln (−1−B ln(1− p)) . (21)

Since the second term on the r.h.s. of this equation is small

with respect to the l.h.s., we obtain a first order approximation

for the second critical bag size4

Bmin
.
=

ln
(

ε2

p+ε2(1−p)

)

ln(1− p)
. (22)

From (19), we can deduce that the initial growth associated

with the local maximum ceases to manifest with sufficiently

large prior probability p of images with small slopes. In partic-

ular, Bmax < 1 for p ? 0.63 in approximate agreement with

Figure 2 when working with the exact expected deflection.

Additionally, Eq. (22) encapsulates how Bmin depends on p
and ε (it increases as ε or p decrease). This makes intuitive

3The fact that Bmax corresponds to a local maximum can be verified by
computing the second derivative.

4A more precise argument can be made here based on iterative root finding
for the equation B = f(B) by showing that |f ′(B)| < 1 for convergence.
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sense as smaller ε means the images can hold larger payload,

making the SRL take longer to finish switching its growth rate.

Similarly, with a smaller fraction p of such images, it takes

larger bags to see their effect on detectability.

B. Bounded embedding capacity

We now show the effect of bounding the embedding capac-

ity to A = log2 3 bpp and also formally define the bag loss

and bag gain. Images with bi = ε achieve embedding capacity

αi = A when (c.f. Eq. (11))

rB

Cε + (B − Cε)ε2
≥ A, (23)

which holds iff

T :=
r/A− ε2

1− ε2
B ≥ Cε. (24)

If T < Cε, then ∆2(X) is given by Eq. (13). However, if

T ≥ Cε, we have

αi =

{

rB−ACε

B−Cε
bi = 1

A bi = ε
(25)

and so

∆2(X) =
Cεε

2A2

σ2
+

(rB − CεA)
2

σ2(B − Cε)
. (26)

Thus, we have in expectation

E[∆2(X)] = E[∆2(X)1T<Cε
] + E[∆2(X)1T≥Cε

]

=
1

σ2



r2B2ε2
B
∑

k=bTc+1

(

B
k

)

pk(1− p)B−k

k + (B − k)ε2

+

bTc
∑

k=0

(

B

k

)

pk(1− p)B−k

×
(

kε2A2 +
(rB − kA)2

B − k

)]

. (27)

In Figure 3, we show the wAUC of Eq. (10) (instead of

expected deflection) for various combinations of ε, r, p since

we intend to contrast the performance of the model with real

life detectors.

1) Bag gain and bag loss: While the exact trend of wAUC

w.r.t. B depends on ε, r, and p, one can roughly say that

(ignoring for now the small oscillations commented upon in

the next section): 1) wAUC can either grow right from B = 1,

or 2) grow, reach a local maximum, decrease, reach a global

minimum (bag gain), and then increase, or 3) exhibit a global

minimum without the initial increase. Fundamentally, the local

maximum and the global minimum of wAUC are due to the

varying statistical makup of small bags as already commented

for the unbounded capacity case. Eventually, for large enough

B wAUC will approach 1. How fast this happens depends on

whether large enough bags contain enough images with small

slopes to avoid embedding substantial payload in images with

a large slope. This occurs approximately when p log2 3 > r, at

which point wAUC approaches 1 only very slowly, depending

on the value of ε. This is why the global minimum appears

quite shallow for some combinations of the parameters.

Formally, we define the bag gain γ as the maximum

decrease in a chosen detectability measure the batch sender

can enjoy by bagging. Since we use wAUC,

γ = max
B≥1

[wAUC(1)− wAUC(B)] , (28)

where wAUC(B) is the wAUC of the pooled detector on bags

of size B. Notice that the bag gain can be observed for most

combinations of the parameters in Figure 3 but disappears for

large enough rates and for larger ε. This is intuitively correct

as larger rates force the detectability to grow faster as do larger

values of ε.

Besides the global minimum corresponding to the bag gain,

wAUC as a function of B may exhibit a local maximum for

small bags (for p ≤ 0.3 in the figure). When the bag gain is

positive (γ > 0), we define bag loss as

ν = max
BGain>B≥1

[wAUC(B)− wAUC(1)] , (29)

where BGain is the bag size corresponding to the bag gain.5 In

words, bag loss is the increase in detectability when the sender

selects the worst bag size instead of the optimal BGain. Based

on our definition, bag loss is not defined if there is no positive

bag gain. Similar to the bag gain, bag loss may not manifest

for certain combinations of the parameters.

2) Local oscillations: As shown in Figure 3, the wAUC

experiences a transient oscillating / periodic behavior for

smaller bag sizes, which can be explained by analyzing

expected deflection. The oscillations appear when considering

images with bounded capacity and are ultimately due to the

quantization of T when computing the bounds for the sums

in Eq. (27). In particular, since ε2 is small, T ≈ rB/A
which implies bT c increments whenever B ≈ Ak/r for some

positive integer k. In other words, bT c is fixed for intervals

of length A/r. For example, for r = 0.3 we have A/r ≈ 5
which is approximately the period shown in the corresponding

plot in Figure 3. Within each interval, E[∆2(X)] (and wAUC)

changes in a continuous manner and may contain local optima

due to the upper sum E[∆2(X)1T<Cε
].

3) Trends w.r.t rate: In the unbounded case, we see that

the expected deflection is linearly proportional to r2 (15).

However, in the bounded capacity case, the rate has a non-

trivial affect on the performance curves (in terms of wAUC)

as seen in Figure 3 and, in particular, the location of BLoss

and BGain. For example, as r increases we see that BGain

decreases for ε = 0.06 and p = 0.2, but BGain increases for

ε = 0.02 and p = 0.4. Note that if T < 1, then approximately

rB < A which makes Eq. (27) degenerate to the unbounded

model Eq. (14).

VI. OBSERVING TRENDS IN REAL IMAGES

In this section, we contrast the trends in detectability w.r.t.

bag size from experiments with real images and detectors with

those obtained from the model. We measure the performance

with wAUC. First, we describe our experimental setup, includ-

ing the dataset and a single-image detector used by some batch

senders and for pooled steganalysis. As mentioned in [23],

5BLoss will denote the bag size corresponding to the bag loss.



7

10 20 30 40 50 60

0.6

0.65

0.7

0.75

ε = 0.02

w
A

U
C

p = 0.2

10 20 30 40 50 60

0.6

0.62

0.64

0.66

p = 0.3

10 20 30 40 50 60

0.6

0.62

0.64

p = 0.4

r = 0.1

r = 0.2

r = 0.3

r = 0.4

10 20 30 40 50 60

0.59

0.6

0.61

0.62

p = 0.7

10 20 30 40 50 60

0.6

0.65

0.7

0.75

0.8

ε = 0.06

w
A

U
C

10 20 30 40 50 60

0.6

0.62

0.64

0.66

0.68

10 20 30 40 50 60

0.6

0.62

0.64

0.66

10 20 30 40 50 60

0.6

0.62

0.64

10 20 30 40 50 60

0.6

0.65

0.7

0.75

0.8

ε = 0.1

Bag size B

w
A

U
C

10 20 30 40 50 60

0.6

0.65

0.7

Bag size B

10 20 30 40 50 60

0.6

0.62

0.64

0.66

0.68

0.7

0.72

Bag size B

10 20 30 40 50 60

0.6

0.62

0.64

0.66

0.68

Bag size B

Figure 3. Bounded capacity model of optimal pooled detector performance (wAUC) as a function of B for various combinations of ε, r, p. Rows correspond
to fixed ε, columns correspond to fixed p, and colors correspond to fixed r.

the embedding algorithm (whether cost-based or model-based)

does not have a significant effect on the bag gain manifesting,

so we limit our experiments to the cost-based HILL [18].

All experiments were done on the image dataset ALASKA

II [4] developed as in [4] without the final JPEG compression

step.6 We consider two disjoint subsets of ALASKA II images

denoted split1 and split2, containing 25,000 images each.

Split1 is used to train the shared single-image detector and

Warden’s pooled detector while split2 is used to assess the

performance of batch senders.

The detector-aware senders use a single-image detector d in

the form of an SRNet [2] pre-trained on ImageNet with the

binary task of steganalyzing J-UNIWARD [8] (the so-called

JIN pre-training exactly as described in [3]). The refinement

to detect HILL was done on a diverse stego source created

using split1 with relative payloads randomly drawn from the

uniform distribution on the set of relative payloads

P = {0.05, 0.1, 0.2, . . . , 1.4, 1.5}. (30)

In particular, split1 was partitioned into further subsets of

22k, 1k, and 2k images for training, validation, and testing,

6The authors note that the bag gain was observed on other datasets, such
as BOSSbase [5] and BOWS2 [1] (not shown in this paper).

respectively. The detector-aware senders use the logit as the

detector’s response.

The Warden is given the sender’s detector d for steganalysis.

She is also assumed clairvoyant and given the knowledge

of the payloads αi. The reader is referred to [23] for a

comprehensive analysis of the situation when the Warden

estimates αi from the images at hand and when she trains

her own single-image detector that is possibly different as

well as trained on a different dataset from the same source. In

particular, as shown in this prior art, the trends of detectability

vs. bag size appear to be robust and unaffected by Warden’s

choices.

Three batch senders are tested: the Image Merging Sender

(IMS) and the detector-aware Shift Limited Sender (SLS) and

MDS. The IMS treats each bag as one big image and lets

the given stego algorithm decide what payload chunk each

image will hold. The SLS finds the payloads by requiring

that the embedding induces the same shift in the detector

response. The MDS, which is described in Section III-D, was

implemented using a projected gradient descent method to

find optimal payloads since response curves for real images

are non-linear. We refer the reader to the original publication

for more details [23]. We did not include the batch sender

proposed in [22] because it is equivalent to the IMS with an

embedding scheme adjusted as in Gaussian embedding.
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The optimal pooled detector described in Section III-C was

used to analytically study and explain the bag gain trends;

however, such a pooler is infeasible in practice due to the

difficulty of estimating the parameters of the distributions

in (6). Thus, all experiments on real images use the LRT

pooler, πLRT, as thoroughly studied in [23]. The Warden tests

whether the detector output for the ith image of the bag is

consistent with the distribution of the detector fαi
on stego

images all embedded with the same relative payload αi:

H0 : d(Y (i)) ∼ f0 for all i

H1 : d(Y (i)) ∼ fαi
for all i

(31)

with the optimal detector being the log-likelihood ratio

πLRT(Y) =

B
∑

i=1

log
fαi

(

d(Y (i))
)

f0
(

d(Y (i))
) . (32)

The distributions fαi
are estimated empirically using the test

set of split1.7 Both spreading and pooling is done on split2.

We note that [23] investigated three other pooled detectors,

including situations when the Warden trained the detector on

a different dataset and/or used a different neural architecture

or even a qualitatively different detector, such as a rich model.

The bag gain was generally observed under all circumstances.

For a comprehensive look at bag gain trends across poolers in

general, we refer the reader to [23].

A. Trends seen in ALASKA II

Our focus is on trends of detectability w.r.t. bag size B, rate

r and for multiple batch senders. Figure 4 shows the detection

performance of the LRT pooler πLRT. For each fixed B, r, and

sender, we independently form 2000 bags sampled without

replacement from split2. The wAUC is computed from the

ROC formed by the 2000 samples of bags.

First, notice that all senders exhibit a bag gain, including

the detector-agnostic IMS. The bag gain can manifest up to

a ~0.15 decrease in pooled detector performance, which can

significantly benefit the steganographer in practice. Second,

the initial decrease in performance engages quickly so even

using bags of size 5, e.g., as opposed to using a single-image

is signficiantly advantageous for the steganographer.

Despite the differences between response curves under the

binomial model and real image response curves, the trends

predicted by our model and shown in Figure 3 provide valuable

insight. In particular, the model correctly predicts that for large

enough payloads the bag gain disappears. Furthermore, the

optimal bag size BGain increases with decreased rate r except

for the smallest value of ε (cover source with images with

basically flat response curves). Our model additionally predicts

that this increase is smaller in cover sources with fewer hard-

to-steganalyze images (smaller p).

One of the clearest differences between IMS and the two

detector-aware senders that can be seen in Figure 4 is that

the SRL engages a lot sooner for IMS. The main contribut-

ing factor is that the two detector-aware senders are more

aggressive in utilizing difficult images by embedding them

7Using scipy’s gaussian_kde function
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Figure 4. Trends in the performance of πLRT across batch senders for
ALASKA II (top left IMS, top right SLS, bottom left MDS). For the lower
payloads of SLS and MDS, the SRL requires a much larger bag size to take
effect.

with larger payloads because they are aware of the impact on

detectability. Batch senders that are even less aggressive than

IMS will eventually not exhibit the bag gain. In the extreme

case of a batch sender that assigns the same payloads to all

images, the detectability will monotonically increase as per

the large bag regime’s SRL. In Section VII, we will explain

this behavior from a model by introducing a family of batch

senders parametrized by a scalar parameter (the Hölder sender)

that encompass the uniform sender, the SLS, and MDS.

Finally, as seen in Figure 3 for some combinations of ε, p,

and r our model predicts oscillations in wAUC for small bag

sizes and an initial bag loss (local maximum in wAUC) for

very small bag sizes. While these higher-order effects were

not observed in our experiments on ALASKA II, in the next

section we demonstrate that they are real phenomena that can

manifest in other datasets with the right diversity of images.

B. Bimodal ALASKA II

As commented on in the previous section, our binomial

model of slopes predicts that, for small bag sizes and certain

combinations of ε, p, and r, wAUC should exhibit a local

maximum, the bag loss, and oscillations that decay with

larger bag sizes. Such higher-order effects are not seen in our

experiments because the real distribution of response curves in

images from ALASKA II is not close enough to the binomial

model of slopes.

In order to investigate whether these phenomena can man-

ifest for real images, we construct multiple versions of “bi-

modal” ALASKA II consisting of two groups of images: 1)

easy-to-steganalyze images with steep response curves and 2)

hard-to-steganalyze images with almost flat response curves.

An approximately bimodal distribution can realistically occur,

for example, in a landscape photographer’s portfolio when the
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Table I
PARAMETERS FOR NARROW AND WIDE ε-M BINNING ON SPLIT2. THE #ε

AND #M ARE THE NUMBER OF RCS FROM SPLIT2 THAT QUALIFY AS

ε/M -TYPE. THE AVG ε AND AVG M ARE THE SAMPLE AVERAGES OF THE

’SLOPES AT α = 0’ FOR ε/M -TYPE RCS, RESPECTIVELY.

`ε uε `M uM #ε #M avg ε avg M
Narrow 0 0.08 0.8 3.2 873 1767 0.016 1.564
Wide 0 0.15 0.5 9.5 1358 9149 0.027 3.167

majority of the source is low ISO images, which would be the

case of images taken during daylight, while the remainder is

high ISO images taken during the night (astrophotography).

We propose the following stochastic procedure based on

rejection sampling to enforce a distribution of slopes on

ALASKA II that more closely matches our model. This will

also allow us to parameterize the dataset by p, a source

diversity parameter, so we can feasibly observe trends across

sources with a varying proportion of easy-to-steganalyze and

hard-to-steganalyze images.

First, we perform what we call “ε-M binning” on ALASKA

II. Given four non-negative constants `ε ≤ uε ≤ `M ≤ uM ,

we say image X has an ε-type RC %X if for all α ∈ P ,

`εα ≤ %X(α)−%X(0) ≤ uεα. Similarly, we say image X has

an M -type RC if for all α ∈ P , `Mα ≤ %X(α) − %X(0) ≤
uMα. These response curves can be thought of as having a

kind of “Lipschitz” condition on their derivatives since the ε-

type, e.g., are contained within the cone formed by `εα and

uεα. Next, when Alice is forming her bag from this artificial

ALASKA II source, she samples (uniformly) an image with

ε-type RC with probability p and samples an image with M -

type RC with probability 1− p. In the previous sections, our

binomial model had M = 1 fixed for notational simplicity in

the derivations; note that the equations in Section V can be

easily generalized to consider arbitrary M > ε.

As seen in Figure 6, if we take ε (and M ) as the sample

average of the ’RC slopes at α = 0’ of the ε/M -type RCs

where the slope is estimated using the first three points

b̂X =
1

2

(

%X(0.05)− %X(0)

0.05− 0
+

%X(0.1)− %X(0)

0.1− 0

)

, (33)

we observe similar behaviors in the size of the bag gain (the

maximal drop in detectability) and even the frequency of local

oscillations, and the value of B where the SRL regime roughly

begins (seen by the decay of the amplitude oscillations and

increase in detectability for increasing B). See the values of

’avg ε/M ’ in Table I for these sample averages of slopes.

In Figure 7, observe that there is still a bag loss even

when the rejection sampling uses much wider ε/M bins.

This confirms the robustness of a bag loss occurring even

in a source that contains a diverse spectrum of real image

response curves (which is very different from binomial linear

response curves). If easy-to-steganalyze images are common

and hard-to-steganalyze images are rare in an image source, it

is important to be aware that a bag loss will likely manifest.

VII. GENERALITY OF THE BAG GAIN

In order for the bag gain to occur, the batch sender must

prefer embedding more payload in hard-to-steganalyze im-

ages and less payload in easy-to-steganalyze images. In the
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Figure 5. Example of narrow ε-M binning (30 randomly sampled example
response curves) and the histograms of initial slopes at α = 0 in bimodal
ALASKA II. Top row is M -type and bottom row is ε-type.

case of the binomial model, this is equivalent to the batch

sender putting more payload in images with near flat response

curves. This property holds true for the detector-agnostic IMS,

Distortion-Limited Sender (DiLS), and Detectability-Limited

Sender (DeLS) studied in [21], as well as the detector-aware

SLS and MDS. The IMS / DiLS / DeLS are not as extreme

as the detector-aware senders since they are not designed

to explicitely make use of response curves. However, their

spreading still correlates with this preference since content-

adaptive steganographic schemes put more payload in regions

of complex content which give difficulty to detectors. In situ-

ations where the steganographers and Warden are knowledge

limited as in [23], even a weak preference to embed more in

hard-to-steganalyze images (w.r.t. the Warden’s detector) can

cause the bag gain to manifest.

In this section, we introduce a parametrized family of

senders with the parameter controlling how aggressively the

sender assigns the payload based on the response curves,

including the case when the payload is spread uniformly

across all images. By varying this parameter, we can show

that the bag gain eventually disappears for sufficiently weak

preferences for embedding more payload in harder images.

The Hölder sender can be thought of as a generalization of

the MDS (11) as it assigns the following payloads to images:

αi =
rB

bqi
∑B

k=1
1
bq
k

, (34)

where q ∈ R is a parameter. For q = 2 and q = 1, this sender

corresponds to the MDS and SLS, respectively. When q = 0,

the payload is spread uniformly across all images.

Following the same steps as in Section V-B, the deflection
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binning. A bag loss still occurs even for wider bins pointing to the robustness
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coefficient for the Hölder sender is

∆2(X) =







r2B2ε2

σ2

(

Cε+ε2q−2(B−Cε)
(Cε+εq(B−Cε))2

)

Tq < Cε

Cεε
2(log

2
3)2

σ2 + (rB−Cε log
2
3)2

σ2(B−Cε)
Tq ≥ Cε

(35)

where Tq = rB
(1−εq) log

2
3 − εqB

1−εq . Substituting (35) into

Eq. (10), we can compute the bag gain γ as given by Eq (28).

Figure 8 shows γ as a function of the exponent q for a range

of the parameters p (left) and ε (right). As q decreases from

q = 2 (MDS), the payload assignment is less polarized and

the bag gain starts decreasing. It eventually becomes zero and

is always zero for uniform spreading (q = 0).

VIII. RELATIONSHIP TO PRIOR WORK

In this section, we contrast our contribution with previous

work [22] that studies optimal bag size in batch steganography.

We do so in order to highlight the differences and also

to briefly discuss possible future directions by combining

both approaches. The authors of [22] extended Gaussian

Embedding (GE) to batch steganography. Granting the Warden

the knowledge of the underlying distributions, a closed-form

expression has been derived for the performance of Warden’s

likelihood ratio test in a specific collection of bags of images.

This was used to implement a batch sender with an adaptive

batch size called adaBIM.

The first and the main difference between their work and

this paper is the lack of pooled steganalysis. As formulated in
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Figure 8. Bag gain measured in wAUC of the bounded capacity model across
the family of Hölder spreaders for q ∈ [0, 2] and various p and ε. The left
figure has ε = 0.07 fixed and the right figure has p = 0.5 fixed. Both have
r = 0.3 bpp.

the original work of Ker [11], if the steganographer is allowed

to spread payload to multiple images, the steganalyst is free

to pool evidence from the same multitude of images to reach

the conclusion about whether steganographic communication

is taking place. In other words, batch steganography needs

pooled detectors for proper security assessment. The authors

use a performance measure, which is the minimal total de-

tection error PE under equal priors of a single-image detector

that distinguishes between the cover source and a stego source

whose images contain variable payload “tags” determined by

partitioning the dataset into batches and applying GE version

of an existing embedding algorithm to the union of all images

from the bag to obtain the tags. A pooled detector needs

to consider the variability of images in bags, which would

necessitate adopting a meta-model on the source. In the case

of the GE, it would likely have to be a distribution on the
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product of cover pixel variances, which opens the possibility

to use a similar binomial model within the context of GE. We

plan to investigate this direction in the future.

Furthermore, the effect of bag size in [22] is only studied in

asymptotic limits of zero or infinite payloads (Theorem 2). For

small payloads, the optimal single-image source detector has

highest detection error PE when the bag size is equal to the

entire image dataset. For large payloads, the highest PE occurs

when payloads are assigned using bag size 1. This theorem

thus only hints at the existence of optimal bag size w.r.t. PE

and a fixed set of bags. The optimal bag size w.r.t. a single-

image detector observed in experiments is merely discussed

in words without quantitative results.

In contrast, the approach taken in this paper allowed us to

relate all essential aspects of a steganographic channel—the

cover source diversity, detector response, payload, and bag

size—to security under pooled steganalysis. We also believe

that working with detector output models leads to a tighter

correspondence between the detectability derived from the

model and the one obtained experimentally. After all, the

model correctly predicts completely new phenomena, such as

the bag loss and local oscillations in the small bag regime.

IX. CONCLUSIONS

In batch steganography, the secret payload is spread among

multiple cover images forming a bag. Within the context

of content-adaptive steganography, many batch senders were

proposed and studied in the past, such as the image merg-

ing sender [21], [22] and the deflection/distortion limited

senders [21], as well as two detector-aware senders, the shift

limited sender and the minimum deflection sender [23]. When

a fixed relative payload is communicated in each bag, batch

senders that embed larger payloads in difficult-to-steganalyze

images and smaller payloads in easy images exhibit similar

trends in terms of detectability vs. the bag size. In this paper,

we analyze these trends from the simplest model that captures

their essence by considering only two types of images that are

“easy” and “difficult” to steganalyze. While the trends depend

on the cover source diversity, detector response characteristics,

batch sender, and the communication rate, our work offers a

simple intuitive explanation.

Assuming that difficult images that can hold large payloads

are rare, as the bag size increases, initially the detectability

as measured with pooled detectors increases due to square

root law because only a small fraction of bags contains

the difficult images that can carry large payloads without

triggering a detector – the square root law thus engages based

on embedding primarily in easy images. Once the bag size

becomes large enough to contain difficult images with high

probability, they hold most of the payload and the detectability

begins to decrease. Due to the square root law, the detectability

eventually levels off, reaching a global minimum, and once

more increases but at a speed slower than the initial rise

depending on the ratio of easy and difficult images in the

cover source and the communication rate. The maximum

initial rise in detectability is called the bag loss while the

global minimum corresponds to a bag gain. Both phenomena

essentially manifest because the average statistical make up of

bags differs between small and large bags, which affects how

the square root law engages.

While the bag gain was observed experimentally in previ-

ous art [23], it was a mere experimental fact that was left

unexplained. Our work provides theoretical insight into the

manifestation of the bag gain and quantifies how it depends

on cover source diversity, detector response, batch sender, and

communication rate. The predicted trends closely match exper-

iments with real images. The predicted bag loss, together with

some higher-order oscillations, are experimentally confirmed

in datasets with suitable diversity. Furthermore, we provide

evidence that these phenomena manifest for batch senders that

generally assign payloads based on detectability of embedding

in individual images sufficiently strongly as bag loss and gain

are not observed for uniform batch senders.
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APPENDIX

A. ROC for pooled detector

A pooled detector makes a decision on bags—either it

contains cover or stego images. Since the images from each

bag are randomly selected from a cover source, some bags

will be easier to detect than others, depending on the value

of the deflection coefficient ∆2. In this section, we derive an

expression for the ROC of the pooled detector over bags based

on the distribution of the deflection coefficient.

For a fixed false-alarm PFA, the probability of correct stego

bag detection is

PD(PFA) = E[Q(Q−1(PFA)−∆)], (36)

the expectation taken over bags. In this paper, ∆ is dis-

crete, attaining values from a finite set D. The derivation

below, however, is also valid for a continuous-valued ∆. Let

p∆(x), x ∈ D, be the probability mass function of ∆ and

let µ = E[∆]. Then, using Taylor expansion of Q(x) at

Q−1(PFA) − µ with the Lagrange form for the remainder,

the expected ROC (36) can be written as

PD(PFA) =
∑

D
Q(Q−1(PFA)− x)p∆(x)

=
∑

D

[

n−1
∑

k=0

(µ− x)k

k!
Q(k)(Q−1(PFA)− µ)

+
(µ− x)n

n!
Q(n)(Q−1(PFA)− x∗)

]

p∆(x)

=

n−1
∑

k=0

(−1)kck
k!

Q(k)(Q−1(PFA)− µ) +Rn (37)

where ck is the kth central moment of ∆, x∗ ∈ (µ, x), and

Rn =
(−1)ncn

n!
Q(n)(Q−1(PFA)− x∗) (38)
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is the Lagrange remainder. Note that Q(n)(x) =
1√
2π

pn(x)e
−x2/2 with pn(x) being the statistician’s

Hermite polynomial (the physicist’s Hermite polynomial

is Hn(x) = 2n/2pn(
√
2x)). Using Cramér inequality [10]

for Hermite function defined using physicist’s Hermite

polynomials Ψn(x) = (2nn!
√
π)−1/2e−x2/2Hn(x) ≤ π−1/4

for all x and all n, it is straightforward to show that

|Rn| ≤
cn
n!

√

n!

2π
=

cn√
2πn!

. (39)

B. General form of the MDS

Let r ∈ [0, log2 3] be a chosen embedding rate in bpp.

Optimal payloads for the MDS are found by minimizing

∆2(X) s.t.
∑B

i=1 αi = rB and αi ∈ [0, Ai] ∀i where

Ai ≤ log2 3 is the embedding capacity of the ith image

(accounting for wet pixels [7]). The Lagrangian has the form

L =

B
∑

i=1

b2iα
2
i − λ

(

B
∑

i=1

αi − rB

)

−
B
∑

i=1

`iαi −
B
∑

i=1

ui(αi −Ai), (40)

where `i and ui are KKT multipliers that satisfy the lower

and upper inequality constraints on αi, respectively. To be a

stationary point, the tuple (α1, . . . , αB) must satisfy

αi = 0,
λ

2b2i
, or Ai ; ∀i. (41)

Let L and U denote the sets of indices for which αi =
0 or Ai, respectively. Let I = (L∪U)c be the set of remaining

indices where 0 < αi < Ai. From the payload constraint

rB =
∑

k∈L
0 +

∑

k∈I

λ

2b2k
+
∑

k∈U
Ai

⇒ λ =
rB −∑k∈U Ai

1
2

∑

k∈I
1
b2
k

⇒ αi =
rB −∑k∈U Ai

b2i
∑

k∈I
1
b2
k

, (42)

for all i ∈ I. The optimal payload is found numerically by

searching over the combinations of L, I, and U .

Note that when Ai = ∞ for all i (unbounded embedding

capacity), we have U = L = ∅ and (42) simplifies to

αi =
rB

b2i
∑B

k=1
1
b2
k

. (43)
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