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Abstract
There are a number of situations in which rescaled interacting particle systems have
been shown to converge to a reaction diffusion equation (RDE)with a bistable reaction
term, see e.g., Cox et al. (Astérisque 349:1–127, 2013), Durrett (Ann Appl Prob
19:477–496, 2009, Electron J Probab 19:1–64, 2014), Durrett and Neuhauser (Ann
Probab 22:289–333, 1994). These RDEs have traveling wave solutions. When the
speed of thewave is nonzero, block constructions have been used to prove the existence
or nonexistence of nontrivial stationary distributions. Here, we follow the approach
in a paper by Etheridge et al. (Electron J Probab 22:1–40, 2017) to show that in
a wide variety of examples when the RDE limit has a bistable reaction term and
traveling waves have speed 0, one can run time faster and further rescale space to
obtain convergence to motion by mean curvature. This opens up the possibility of
proving that the sexual reproduction model with fast stirring has a discontinuous
phase transition, and that in Region 2 of the phase diagram for the nonlinear voter
model studied by Molofsky et al. (Theoret Pop Biol 55(1999):270–282, 1999) there
were two nontrivial stationary distributions.

Keywords Voter model perturbation · Fast sirring · Sexual reproduction model ·
Nonlinear voter model

Mathematics Subject Classification Primary 60K35

1 Introduction

The literature onmotion bymean curvature is extensive, so wewill only cite the papers
most relevant to our research. In 1992Evans et al. [11] established that suitably rescaled
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490 X. Huang, R. Durrett

versions of the Allen–Cahn equations converge to motion by mean curvature, in the
sense that the solution converges to an indicator function of a region whose boundary
evolves as the mean curvature flow. The big breakthrough made in this paper was that
the limiting result was valid for all time despite the possible occurrence of geometric
singularities. See the first four pages of [11] for the physical motivation and references
to previous work.

In 1995 Katsoulakis and Souganidis [18] used the results developed in [11] to prove
that stochastic Ising models with long range interactions, called Kac potentials, when
rescaled converge to motion by mean curvature. The interaction kernel for their Ising
model on Z

d is{
Kγ (x, y) = γ d J (γ |x − y|)
J : Rd → [0,∞) has compact support and is symmetric, i.e.,J (x) = J (|x |).

(1.1)
The weighted sum of spins seen by x is

hγ (x) =
∑
y �=x

Kγ (x, y)σ (y).

This formula is used to define the Gibbs measure with inverse temperature β

μ(σ) = 1

Z(β)
exp

(
−β
∑
x

hγ (x)σ (x)

)
,

where Z(β) is a normalization to makeμ a probability measure. For this formula to be
meaningful we have to restrict to a finite box� = [−L, L]d with boundary conditions
imposed outside of � and then let L → ∞. See Chapter 6 of Liggett [19] for more
details. hγ is also used to define the rates at which σ(x) flips to −σ(x),

cγ (x, σ ) = exp(−βhγ (x)σ (x))

exp(−βhγ (x)) + exp(βhγ (x)).

This is one in the large collection of flip rates for which Gibbs states are reversible
stationary distributions. Again, see Chapter 6 of [19].

A very basic question is to understand the behavior of the process as γ → 0.
DeMasi et al. [4–6] studied the limits as γ → 0 of the averaged magnetization of the
system

mγ (x, t) = Eγ
μγ σt (x), (x, t) ∈ Z

d × R
+,

where Eγ
μγ is the expectation starting from the measure μγ . To state the result in [4]

we need the mean-field equation

∂m

∂t
+ m − tanh(J ∗ m) = 0 in Rd × R

+, (1.2)
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Motion by mean curvature in interacting particle systems 491

where J ∗ m denotes the usual convolution in R
d . Let Zd

n = {x̄ = (x1, . . . , xn) ∈
(Zd)n|x1 �= · · · �= xn}.
Theorem 1.1 [Theorem 2.1 in [18]]. Assume that the initial measure is product mea-
sure μγ with

Eγ
μγ σ (x) = m0(γ x), x ∈ Z

d ,

where m0 is Lipschitz continuous and (1.1) holds. Then for any fixed n and x̄ ∈ Z
d
n ,

lim
γ→0

∣∣∣∣Eγ
μγ

(
n∏

i=1

σt (xi )

)
−

n∏
i=1

m(γ xi , t)

∣∣∣∣ = 0

where m is the unique solution of (1.2) with initial condition m0.

In words, the distribution of the particle system at time t is almost a product measure
in which the probabilities are given by m(γ x, t). To prove convergence to motion by
mean curvature [18] use a lengthy argument to examine the asymptotics of the mean-
field equation (1.2) as t → ∞ and space and time are rescaled. Since the publication
of [18] a number of similar results have been proved. [1,15,16,22,23] is a small sample
of the papers that can be found in AMS subject classification 60.

1.1 Amore probabilistic approach

Soon after the publication of [11], Chen [2] generalized much of this work and simpli-
fied the proofs. Etheridge et al. [10] use his paper as their primary source of information
about motion by mean curvature, so we will as well. The object of study in [2] is the
reaction diffusion equation (RDE)

{
∂u
∂t = �u − 1

ε2
f (u), (x, t) ∈ R

d × R
+,

u(x, 0) = p(x), x ∈ R
d ,

(1.3)

where ε is a small rescaling parameter, p is a bounded continuous function in Rd and
f is the derivative of a bistable potential. Chen gives general conditions on f in (1.3)
of his paper [2] that guarantee motion by mean curvature will appear in the limit as
ε → 0,

f ∈ C2(R), f has exactly three zeros: u− < u0 < u+
f (u) < 0, for u ∈ (−∞, u−) ∪ (u0, u+)

f (u) > 0, for u ∈ (u−, u0) ∪ (u+,∞)

f ′(u−) > 0, f ′(u+) > 0, f ′(u0) < 0.

Wewill restrict our attention to the case in which f is a third or fifth degree polynomial
that is anti-symmetric around its central root u0, i.e., f (u0 − x) = − f (u0 + x).
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492 X. Huang, R. Durrett

In the case of a cubic, the 1/ε2 in front of the reaction term suggests that when ε

is small the values of the solution will be close to one of the three fixed points (u−,
u0 and u+) across most of the space. Chen’s results prove this and give quantitative
estimates when ε is small.

To explain the phrase “motion bymean curvature”,wenote that under some assump-
tions that we state later, he proved that the set of points {x ∈ R

d : u(x, t) = u0} can
be written as a family of parameterized hyper-surfaces 	t : Sd−1 → R

d where Sd−1

is the unit sphere in Rd , and 	t evolves by

∂	t (θ)

∂t
= κt (θ)nt (θ), θ ∈ Sd−1, (1.4)

where nt (θ) is the vector normal to the hypersurface and κt (θ) is the mean curvature,
i.e., the sum of the principal curvatures. We refer to 0 = {	t : t ≥ 0} as the mean
curvature flow.

Etheridge et al. [10] used Chen’s results to show that the spatial �-Fleming-Viot
process with selection against heterozygosity when suitably rescaled in space and time
converges to motion by mean curvature. We refer the reader to [10] for the description
of the process. Their first step was to study the behavior of the PDE in d ≥ 2,

∂vε

∂t
= �vε + 1

ε2
vε(1 − vε)(2vε − 1), vε(0, x) = p(x)

where p(x) : Rd → [0, 1] is the initial condition. To analyze the PDE [10] introduce
a branching Brownian motion in which particles split into 3 at a fixed rate ε−2. As in
the systems described in the next subsection, this is a dual process that can be used to
compute solutions of the PDE. To find u(x, t) one starts with a particle at x at time t
and runs the branching Brownian motion down to time 0. If a particle in the system
ends up at y at time 0, its state is set to be 1with probability p(y) and 0with probability
1 − p(y). As we work upwards the branching tree, states of particles do not change
until three lineages coalesce into one. At this point the one lineage that emerges after
coalescence takes the value that is in the majority of the three coalescing particles.

A variety of particle systems have dual processes that are close to branching Brow-
nian motions after rescaling. A similar treatment as in [10] can thus be taken to
understand these systems. Instead of taking a majority vote at each branch point in
the dual process, the specific interaction rule of the particle system considered would
prescribe the value of the lineage that emerges after that.

In what follows we will discuss three examples. The sexual reproduction model
which is a system with fast stirring and the Lotka–Volterra system and nonlinear voter
models that are examples of voter model perturbations. In each case we will first
consider a system ξδ

t on δZd run at rate δ−2 that converges to a reaction diffusion
equation. Then we will introduce a process ξε

t on δεZd that is further sped up by a
factor of ε−2 that converges to motion by mean curvature. For reasons that we will
explain later we will choose

δ = exp
(− ε−3) or ε = (log(1/δ))−1/3. (1.5)

123



Motion by mean curvature in interacting particle systems 493

Fig. 1 Picture of the branching Brownian motion. We run from (x, t) down to time 0, and then work back
up the structure to compute the state of x at time t

Note that ε is determined by δ and vice versa so we can regard either as the small
parameter in ξε

t , but given the notation for the processes it is more natural to choose
ε.

1.2 Systems with fast stirring

Particle systems with fast stirring were first introduced by Durrett and Neuhauser [9].
Let δ > 0 be a small rescaling parameter. They considered processes ξδ

t : δZd →
{0, 1} that evolve as follows:
(i) There are translation invariant finite range flip rates cδ(x, ξ) that give the rate at

which site x changes to the opposite state when the configuration is ξ .
(ii) For each unordered pair x, y ∈ δZd with ‖x − y‖1 = δ we exchange the values at

x and y at rate δ−2/2.

We will focus on the special case in which the particle system is the “sexual repro-
duction” model where state 1 means a site is occupied and state 0 means vacant. The
flip rates is given by

cδ(x, ξ) = 1{ξ(x)=1} + 1{ξ(x)=0} · λn1(x, ξ),

where λ > 0 is the birth rate and n1(x, ξ) is the number of pairs in the set

x + N δ
b ≡ x + δ · {{e1, e2}, {−e1, e2}, {−e1,−e2}, {e1,−e2}

}
123



494 X. Huang, R. Durrett

in which both sites are in state 1. To have a concrete example in mind we will restrict
our attention to the case d = 2. As there are four possible pairs in Z2, we let β = 4λ.

Durrett and Neuhauser [9] showed that as δ → 0 the density of 1’s near x at time
t converges to the solution of

∂u

∂t
= 1

2
�u + φ(u) where φ(u) = −u + βu2(1 − u). (1.6)

The term −u in φ(u) accounts for deaths of individuals (i.e., the flips from 1 to 0
at rate 1), while the term βu2(1 − u) accounts for the sexual reproduction. Writing
φ(u) = −u(1 − βu(1 − u)) we see that when β < 4 there is no positive solution of
φ(u) = 0. When β = 4, 1/2 is a double root. When β > 4 there are two positive
roots ρ1 < 1/2 < ρ2 < 1. Based on this calculation one might guess that as δ → 0,
the critical value for survival of the sexual reproduction model with fast stirring,
βc(δ), should converge to 4. However, the correct result, which is proved in [9], is
βc(δ) → 4.5 as δ → 0.

To explain the intuition behind this, we look at the PDE (1.6) in d = 1 for intuition.
We note that if β > 4 there are traveling wave solutions u(x, t) = w(x − ct) with
w(−∞) = ρ2 and w(∞) = 0. A little calculus shows that w satisfies

−cw′ = (1/2)w′′ + φ(w).

Multiplying by w′ and integrating from −∞ to ∞, we find, see (1.6) in [9], that

c
∫

w′(x)2 dx =
∫ ρ2

0
φ(y) dy.

We have no idea about the value of
∫

w′(x)2 dx , but it is positive so this tells us that
the sign of the wave speed c is the same as that of the integral on the right-hand side.
When β = 4.5, the three roots are 0, 1/3, and 2/3, so symmetry around the central
root 1/3 implies the integral is 0. Monotonicity (or calculus) tells us that c < 0 when
β < 4.5, and c > 0 for β > 4.5. Convergence results for the PDE, see e.g. [13], and
block constructions were used to show that

• When β > 4.5 there is some δ0(β) > 0 such that for δ < δ0(β) there is a nontrivial
stationary distribution with a density close to ρ2. The second part of the conclusion
about density is an improvement due to Cox et al. [3].

• When β < 4.5 there is some δ0(β) > 0 such that for δ < δ0(β) the process ξδ
t

dies out.

Since ρ2(β) approaches 2/3 as β ↓ 4.5, it is conjectured in [9] the density of the upper
invariant measure (which is obtained by starting with all 1’s and letting t → ∞) has
a positive density at βc(δ) when δ is small.

Here we speed up the process ξδ
t by an extra factor ε−2 and rescale the space to

δεZd to obtain a new process

ξε
t : δεZ2 → {0, 1}.
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If ε is kept fixed then the limiting differential equation as δ → 0 is

∂uε

∂t
= 1

2
�uε + 1

ε2
φ(uε), uε(0, x) = p(x), (1.7)

where p : Rd → [0, 1] is the initial condition and the reaction term remains the same

φ(u) = −u + βu2(1 − u).

(1.7) matches the form of an Allen–Cahn equation given in (1.3) except for a factor
1
2 in front of the Laplacian. This is because their underlying Brownian motions have
different rates. The Brownian motion with generator �u has rate 2, that is, at time
1 the Brownian motion has variance is 2, while the Brownian motion with generator
1
2�u runs at rate 1. We will adopt the convention in probability and assume that

all Brownian motions have rate 1, (1.8)

which gives rise to PDEs with a factor 1
2 before the Laplacian like (1.7).

Fixing ε and letting δ → 0 shows us how the rescaled particle system is related to
the Allen–Cahn equation. However, to prove our result we need to take both ε and δ

to 0. In order to avoid collisions in the dual process (see Sect. 2 for a full discussion),
we need to require that the branching rate ε−2 is much slower than the stirring rate
(δε)−2/2 so that newly born particles move away from each other before the next
branching time. Choosing δ = exp(−ε−3) guarantees this. Weaker conditions may
suffice.

Let p(x) : Rd → [0, 1] be the initial density of the system that we consider. In the
case of sexual reproduction d = 2. We will state our assumptions on p later in Sect.
1.5, see (C1)–(C3). We say the process ξε

t starts with initial condition p if the initial
distribution is a product measure where P(ξ ε

0 (x) = 1) = p(x) for x ∈ δεZd .

Theorem 1.2 Let ξε
t : δεZ2 → {0, 1} denote the rescaled sexual reproduction model

with fast stirring starting with an initial condition p(x) that satisfies (C1)–(C3).
Choose δ = exp(−ε−3). If β = 4.5 then as ε → 0, P(ξ ε

t (x) = 1) converges to
motion by mean curvature.

Theorem 1.9 will explain explicitly what it means to converge to motion by mean
curvature. Theorem 1.2 shows that the probabilities P(ξ ε

t (x) = 1) converge to a
density u(x, t) that satisfies motion by mean curvature. As in Theorem 1.2 in [3] one
can also prove that the rescaled particle system which takes values in {0, 1} on a fine
grid also converges to u(x, t). See the discussion before Theorem 1.2 in [3] for the
necessary definition. This remark also applies to the next two examples.

In motion by mean curvature the interfaces become straight as time t → ∞, so the
regions in which the solution is close to one of the two stable fixed points get larger.
This suggests that

Conjecture 1.3 If β = 4.5 there exists some ε0(β) > 0 so that when ε < ε0(β) there
is a translation invariant stationary distribution for the process ξε

t with density close
to 2/3.
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Theorem 1.2 suggests that there is a discontinuous phase transition but does not rule
out the possibility that the phase transition could be continuous for any ε > 0.

1.3 Voter model perturbations

Cox et al. [3] introduced a class of interacting particle systems called voter model
perturbations. For simplicity we will restrict our attention to processes with two states.
In this case the process is denoted by ξt : Zd → {0, 1} and the rate at which ξt (x)
flips to the opposite state given configuration ξ is

cδ(x, ξ) = cv(x, ξ) + δ2cp(x, ξ)

where cv(x, ξ) is the voter flip rate and cp(x, ξ) is the perturbation flip rate.We rescale
the system ξt by x → δx, t → δ−2t and obtain the rescaled process ξδ

t : δZd → {0, 1}.
The perturbation cp(x, ξ) is scaled down by δ2 so that on the sped up time scale it is
O(1) while the voter model runs at rate δ−2.

The voter model part of the process will depend on a symmetric (i.e, K (x) =
K (−x)), irreducible probability kernel K : Zd → [0, 1] with K (0) = 0 and covari-
ance matrix σ 2 I . LettingNv denote the neighborhood for voting (determined by K ),
whenever there is a voter flip at x ∈ Z

d , the voter at x chooses a site in x + Nv

randomly according to the probability kernel K and adopts its state. The voter flip rate
can be formulated as

cv(x, ξ) = (1 − ξ(x)) f1(x, ξ) + ξ(x) f0(x, ξ),

where f j (x, ξ) =∑y∈Zd K (y − x)1{ξ(y)=i} is the local density.
Cox et al. [3] have shown (see their Theorem1.2) that, under somemild assumptions

on the perturbation cp, if we run the system on δZd with d ≥ 3 then the process
converges to the solution of a reaction diffusion equation

∂u

∂t
= σ 2

2
�u + φ(u),

where φ is the reaction term that depends on the particular perturbation. A general
formula is given in Sect. 1.1 of [3]. See (1.30) Here, d ≥ 3 is needed so that the
voter model has a one parameter family of stationary distribution. Four examples
were studied in [3]. Two fall within the scope of this investigation.

Lotka–Volterra systems This model of the competition of two species were initially
studied by Neuhauser and Pacala [21]. For more recent references see [3]. In this case
the perturbation rate is given by

cp(x, ξ) = θ0 f
2
1 (1 − ξ(x)) + θ1 f

2
0 ξ(x)

where θ0 and θ1 are parameters in R. In words we pick two nearest neighbors of x
(with replacement, according to K ) and flip if both of the neighbors are of the opposite
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type to x . Let {e1, e2} be i.i.d. with law K (·) and let 〈·〉u denote the expectation on
the product space where e1, e2 and ξ are independent and ξ distributes as the voter
equilibrium with density u. Then the limiting PDE has reaction term

φ(u) = θ0〈(1 − ξ(0))ξ(e1)ξ(e2)〉u − θ1〈ξ(0)(1 − ξ(e1))(1 − ξ(e2))〉u .

This term can be rewritten in the form

φ(u) = u(1 − u)[θ0 p2 − θ1(p2 + p3) + up3(θ0 + θ1)], (1.9)

where p2 = p(0|e1, e2) is the probability that the rate 1 random walks with ker-
nel K starting from e1 and e2 coalesce but they avoid the one starting at 0, and
p3 = p(0|e1|e2) is the probability that the random walks starting from 0, e1, e2 never
coalesce.

In [3] the phase diagram is described. There are five regions {Ri , 1 ≤ i ≤ 5}, see
Fig. 1. At the boundary between R4 and R5, θ0 = θ1 = θ > 0 so (1.9) simplifies to

φ(u) = θ p3u(1 − u)(2u − 1).

In this case the reaction diffusion equation is bistable and the speed of traveling waves
is 0. Next we further rescale the system ξδ

t by x → εx , t → ε−2t to get the second
rescaled process ξε

t . Following the same approach as our proof of Theorem 1.2, we
have

Theorem 1.4 Let ξε
t : δεZd → {0, 1} denote the rescaled voter model perturbations

where the perturbation is a Lotka–Volterra system, starting with an initial condition
p(x) that satisfies (C1)–(C3). Choose δ = exp(−ε−3). In d ≥ 3 as ε → 0, P(ξ ε

t (x) =
1) converges to motion by mean curvature.

In the Lotka–Volterra system the stable fixed points are at 0 and 1, so reasoning as
we did for the sexual reproduction model with fast stirring:

Conjecture 1.5 When ε is sufficiently small there is clustering in the process ξε
t , i.e.,

for any finite box B the probability of seeing both types in the box tends to 0 as t → ∞.

Nonlinear voter modelsMolofsky et al. [20] used simulations and heuristic arguments
to study a discrete time system with nearest neighbor interactions. We consider a
continuous time version of the system with long range interactions. At times of the
arrivals of a rate 1 Poisson process, a site x chooses four points x1, . . . x4 at random
from x+[−L, L]d . If there are exactly k one’s at the sites x, x1, . . . x4 then x becomes
1 with probability ak and 0 with probability 1 − ak where

a0 = 0, a5 = 1, a1 = 1 − a4 a2 = 1 − a3.

This gives us a two-parameter family of models that are symmetric under interchange
of 0 and 1.
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It is complicated to compute the reaction term φL(u) explicitly as the states of the
chosen sites x, x1, . . . x4 might not be independent. However, when the neighborhood
Nb = [−L, L]d is chosen to be large then coalescence in the dual process is rare and
the states of these sites become nearly independent. A little calculation, see (1.67) in
[3], shows that if they are independent then the reaction term is

φ(u) = b1u(1 − u)4 + b2u
2(1 − u)3 − b2u

3(1 − u)2 − b1(1 − u)4u, (1.10)

where b1 = 4a1 − a4 and b2 = 6a2 − 4a3. For any L > 0, φL(u) has the same form
as that in (1.10) with coefficients b1,L , b2,L instead of b1, b2. If L is large then the
coefficients b1,L , b2,L are close to the coefficients b1, b2 in the independent case.

The reaction term φ(u) is a cubic in Region 1 and 3, but in Region 2 and 4 it is
quintic. This leads to the following predictions about the behavior of the system.

• In Region 1, the fixed point at 1/2 is attracting, so the system should exhibit
coexistence.

• In Region 3, the fixed point at 1/2 is unstable, so when the process is sped up it
should exhibit motion by mean curvature, and we expect clustering, i.e., for any
finite box [−N , N ]d the probability that all sites in this box have the same state
tends to 1.

• In Region 2, 0 and 1 are unstable fixed points, so if the fixed points are u∗ <

1/2 < 1 − u∗, the values in [0, u∗ − ε] and [1 − u∗ + ε, 1] for any ε > 0 should
rapidly disappear from the solution. When the process is sped up then the system
exhibits motion by mean curvature, resulting in large regions with 1’s at density
u∗ separated by a thin boundary from large regions with density 1 − u∗.

• InRegion 4, there is a travelingwave solutionw1 withw1(−∞) = 1 andw1(∞) =
1/2 with speed c1 and a traveling wave solution w2 with w2(−∞) = 1/2 and
w2(∞) = 0 with speed c2. By symmetry c2 = −c1. If c1 < 0 (Case 4A), the
PDE converges to 1/2 and there is coexistence. If c1 > 0 (Case 4B) and L is
sufficiently large, then there is a traveling wave solution w0 of the PDE in d = 1
with w0(−∞) = 0 and w0(∞) = 1 with speed 0 (see p. 284 in [14]). When the
process is sped up then it should exhibit motion by mean curvature, and we expect
clustering.

In [3] the following result is proved, see their Theorem 1.13 (Fig. 2).

Theorem 1.6 Suppose (b1, b2) is in Region 1, 2 or 4A. If L is sufficiently large then (i)
There is coexistence for sufficiently small δ (depending on L). (ii) Let η > 0. In Region
1 and 4A, there is a δ0(η) so that for δ < δ0(η) and any stationary distributions ν with
ν(ξ ≡ 0) = ν(ξ ≡ 1) = 0 have

sup
x

∣∣ν(ξ(x) = 1) − 1/2
∣∣ < η.

Again we need to further speed up the process to get convergence to motion by
mean curvature. We rescale the process ξδ

t a second time by speeding up time by an
extra ε−2 and rescaling space to δεZd to define a process ξε

t .
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Fig. 2 Phase diagram for the continuous time nonlinear voter model with large range in d ≥ 3. Piecewise
linear curves show the shape of φ. Black dots indicate the locations of stable fixed points

We define the voting and branching neighborhoods by

Nv = {±e1, . . . ± ed} and Nb = [−L, L]d ∩ Z
d .

To prove our result we need several assumptions:

(A1) b1 > 0 and 3b1 + b2 < 0: the process is in Region 2.
(A2) 0 ≤ a1 ≤ a2 ≤ 1/2: the process is attractive.
(A3) 6b1 + b2 > 0: the g function defined in (1.14) is concave on (1/2, 1 − u∗).

Theorem 1.7 Let ξε
t : δεZd → {0, 1} denote the rescaled voter model perturbations

where the perturbation is a nonlinear voter model, starting with an initial condition
p(x) that satisfies (C1)–(C3). Choose δ = exp(−ε−3). Suppose the initial condition
p(x) satisfies ε ≤ p(x) ≤ 1− ε for some ε > 0. In d ≥ 3 if (A1), (A2), and (A3) hold
then as ε → 0, P(ξ ε

t (x) = 1) converges to motion by mean curvature.

Using the reasoning from the two previous examples:

Conjecture 1.8 If (A1), (A2), and (A3) hold then there exists some ε0(a1, a2) > 0 so
that when ε < ε0(a1, a2) there is a translation invariant stationary distribution in
which the density is close to u∗. By symmetry there is also one with density to close to
1 − u∗.

The statement in Conjecture 1.8 implies the existence of two translation invariant
stationary distributions.
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1.4 Overview of proofs

The key to the proof in [10] and in our three examples is understanding the dual process
and using a special function g to compute the state after each branch point in the dual
process.
Duality and the g function
The g function in [10]. [10] begins by constructing a dual process that produces the
solution to

∂u

∂t
= �u + cu(1 − u)(2u − 1), u(0, x) = p(x), x ∈ R

d .

The initial condition p is assumed to take values in [0, 1] and satisfy some regularity
conditions that we will state later.

The dual process in [10] is a branching Brownian motion in R
d in which the

Brownian motions are run at rate 2 and split into 3 particles at rate c. To compute the
solution at x at time t they run the dual process backward in time down to time 0. A
dual particle that lands at y at time 0 is set to be 1 with probability p(y) and to be 0
with probability 1− p(y). The states for different particles at time 0 are independent.
Then they work their way back up the tree performing majority vote whenever three
lineages merge into one. In [10] an important role in the proof is played by the function

g0(p) = p3 + 3p2(1 − p) = 3p2 − 2p3, (1.11)

which is the probability that the output of the majority vote operation is 1 when the
inputs are independent Bernoulli(p) random variables. g0 has fixed points at 0, 1/2
and 1.

The g function in sexual reproduction model with fast stirring The sexual reproduc-
tion model with fast stirring has a dual process that was introduced by Durrett and
Neuhauser [9]. The dual has particles that are moved by stirring, and have births when
events in the sexual reproduction dynamics occur. In Sect. 2 we define this dual process
rigorously and show that in the fast stirring limit it is almost a branching Brownian
motion inR2. Since a birth event depends on the states of three particles (two particles
in the chosen pair and the particle at the center), the dual branches into three particles
at each branch point. However, we mark one lineage to indicate it came from the orig-
inal particle while the other two are offspring. When β = 4.5, we have a birth event
with probability 9/11 (i.e., β/(1 + β)) and a death event with probability 2/11. The
analogous function to (1.11) for the sexual reproduction model with fast stirring is

g1(p) = 9

11

[
p2(1 − p) + p

] = 9

11

[
p + p2 − p3

]
, (1.12)

which has fixed points 0, 1/3 and 2/3.

The g function in votermodel perturbations where the perturbation is a Lotka–Volterra
system Voter model perturbations also have duals that were defined by Cox et al. [3].
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In the class of nonlinear voter models that we will study, the dual is a branching
coalescing randomwalk. In the Lotka–Volterra system the system branches into three,
and we mark one lineage to indicate it came from the original particle (call it x) while
the others are offspring (call them y and z).

To simplify computation, in the dual process we only consider the “effective" per-
turbations and let them be branch points. When a perturbation occurs at x there are
three possibilities: (i) If x coalesces with y or z (or with both) there is no change in
the state of x . Hence we ignore this case. (ii) If y and z coalesce then y and z share
the same state. This case is treated as a voter event since x would adopt the state of
a randomly chosen neighbor (y or z). Hence this case is not part of the perturbation.
(iii) If there is no coalescence among the three particles, x changes state if y and z are
both in the opposite state to itself. Case (iii) is the only effective perturbation and in
this case

g2(p) = (1 − p)p2 + p
[
1 − (1 − p)2

] = 3p2 − 2p3 (1.13)

which is the same as (1.11).
The g function in voter model perturbations where the perturbation is a nonlinear
voter model In the nonlinear voter model the system branches into five, and we again
mark one lineage to indicate it came from the original particle. Since the branching
rate is 1 φ(p) has the form

φ(p) = −ph1(p) + (1 − p)h2(p),

where h1(p) represents the probability of getting a 0 when the center is in state 1
and the states of the rest four sites are i.i.d. Bernoulli(p), while h2(p) represents the
probability of the center flipping from 0 to 1. It follows that

g3(p) = p(1 − h1(p)) + (1 − p)h2(p) = φ(p) + p

= b1 p(1 − p)4 + b2 p
2(1 − p)3 − b2 p

3(1 − p)2 − b1 p
4(1 − p) + p

(1.14)

where b1 = 4a1 − a4 and b2 = 6a2 − 4a3. In the collection of nonlinear voter models
that we study g3 has fixed points at 0, 1− u∗, 1/2, u∗, and 1. If the middle fixed point
u0 is unstable then 0,1 are stable if there are three zeros, and 1 − u∗, u∗ are stable if
there are five zeros. We collect these observations into an assumption

(G0) There are fixed points 0 ≤ u− < u0 < u+ ≤ 1 where u0 is unstable, u+, u−
are stable, and u+ − u0 = u0 − u−. There can be fixed points at 0 and 1 which
must be unstable. To avoid absorption, the initial condition p(x) is uniformly
bounded away from the fixed points at 0 and 1, i.e.,

(i) if there is a fixed point at 0 we suppose the initial condition p(x) ≥ ε for some
ε > 0,

(ii) if there is a fixed point at 1 we suppose the initial condition p(x) ≤ 1 − ε for
some ε > 0.

We can observe the reaction term φ(p) in the above three examples satisfies

φ(p) = r(g(p) − p) (1.15)
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where r is the reaction rate.

1.5 Proof of convergence

The main result in this paper is the following result that contains Theorems 1.2, 1.4
and 1.7 as special cases. This result applies to any model with fast stirring or voter
model perturbation where the g function satisfies (G0) and the following assumptions:

(G1) g(u+ − δ) + g(u− + δ) = u− + u+ = 2u0 (1.16)

(G2) g′(u0) > 1 and g′(u−) = g′(u+) < 1. (1.17)

(G3) g′′(p) > 0 if p ∈ (u−, u0), g
′′(p) < 0 if p ∈ (u0, u+). (1.18)

(G4) There exists c0 ∈ (0, 1−g′(u−)) and δ∗ ≡ inf{x ≥ 0 : g′(u−+x) ≥ 1−c0} > 0
so that for δ ≤ δ∗

u+ − g(u+ − δ) = g(u− + δ) − u− ≤ (1 − c0)δ. (1.19)

(G5) g is strictly increasing on [0, 1].
In Sect. 4 we will show that the conditions hold in all our examples.

The initial condition p : Rd → [0, 1] is assumed to satisfy some regularity condi-
tions given later. Given p, the initial interface is defined to be

	 =
{
x ∈ R

d : p(x) = u0

}
.

Following [10] we suppose that 	 is a smooth hypersurface which is also the bound-
ary of a bounded open set topologically equivalent to the sphere. Now we state the
regularity conditions imposed on the initial condition p:

(C1) 	 is Cα for some α > 3.
(C2) For x inside 	, p(x) < u0. For x outside 	, p(x) > u0.
(C3) There exists r , γ > 0 such that for all x ∈ R

d , |p(x)−u0| ≥ γ (dist(x, 	)∧ r).

The conditions (C1)–(C3) guarantee that the mean curvature flow 0 = {	t : t ≥ 0}
started from	 exists up to some finite timeT , see e.g., Evans and Spruck [12].With	t

properly defined, the meaning of d(x, t) is now precise: it is the signed distance from x
to 	t , positive outside 	t and negative inside. Note that 	t = {x ∈ R

d : d(x, t) = 0}.
In the scope of this paper we consider only the evolution of a single interface. In

more general scenarios there could bemultiple interfaces evolving together, say nested
interfaces.

Theorem 1.9 Let ξε
t denote a rescaled particle system on δεZd within the two classes

considered. Suppose ξε
t satisfies (G0)–(G5), and let uε(t, x) = P(ξ ε

t (x) = 1) with
uε(0, x) = p(x). Let T ∗ ∈ (0,T ) and k ∈ N be fixed. There exist εd(k) > 0 and
bd(k), cd(k) ∈ (0,∞) such that for all ε ∈ (0, εd) and t satisfying bd(k)ε2| log ε| ≤
t ≤ T ∗,
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1. for x such that d(x, t) ≥ cd(k)ε| log ε|, we have uε(t, x) ∈ (u+ − εk, u+ + εk),
2. for x such that d(x, t) ≤ −cd(k)ε| log ε|, we have uε(t, x) ∈ (u− − εk, u− + εk).

Our proof follows [10] very closely. As we give our proof we will describe the
correspondence between the two arguments. Here we give a brief outline of the proof
to highlight the main steps. From now on we will let B(t) denote the one-dimensional
branching Brownian motion, whileW(t) denotes branching Brownian motion in d ≥
2.

Step 1 Prove a result in one dimension. Let u−, u+ be the stable fixed points of g, and
let V(B(t)) be the result of applying the algorithm defined in Sect. 2.3 to compute the
state when the initial density is p0(x) = u−·1{x<0}+u+·1{x≥0}. In d = 1 the interface
is a single point and there is no curvature so it does not move. The one dimensional
version of Theorem 1.9 is Theorem 3.6. These results are proved by combining facts
about the iteration, with information on the structure of the tree and bounds on the
movement of Brownian motion.

Step 2Generalize Theorem 3.6 to d ≥ 2with x replaced by d(x, t), the signed distance
from the x to the interface 	t , see Proposition 3.10.

Step 3Proposition 3.10 takes care of the values away from the interface. The next step is
to take care of the values near the interface by showing that the probability the dual gives
a 1 (resp. 0) at x for a general initial condition p is almost the same as the probability
the algorithm in Sect. 2.3 computes a 1 (resp. 0) at d(x, t)±K1eK2tε| log ε| in the one
dimensional systemwith the special initial condition p0(x) = u−·1{x<0}+u+·1{x≥0}.
See Proposition 3.11 for this result. The key step to proving Proposition 3.11 is Lemma
3.12, which compares the values computed by the algorithm in d = 1 at

z±1 = d
(
X̂ ε
s , t − s

)± γ (t − s)ε| log ε|,
z±2 = Bs ± γ (t)ε| log ε|,

where X̂ ε
s is an approximation of the rescaled dual process that will be defined in Sect.

2.1.2.

2 Dual process and branching randomwalk

2.1 The sexual reproductionmodel

2.1.1 The graphical representation

We begin by constructing the process using a graphical representation that consists of
a collection of independent Poisson processes. Here, we give only a brief description
of the construction. More details can be found in Sect. 2a of [9]. Define

c∗(ε) =
∑
i

sup
ξε∈{0,1}δεZd

cε
i (0, ξ

ε) = (β + 1)ε−2, (2.1)
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where cε
i (0, ξ

ε) is the rate that the origin changes to state i in the process ξε
t when the

configuration is ξε .

• For every site x ∈ δεZd we have a Poisson process {T b,x
n , n ≥ 1} with rate c∗(ε)

and a sequence of i.i.d. random variables {Ux
n , n ≥ 1} uniform on (0, 1). At time

T b,x
n we use Ux

n to determine the type of change that occurs:

1. If Ux
n ∈ (0, β

1+β
), x gives birth to two particles on a randomly chosen pair

from x + Nb.
– If the state of x is 1, then nothing occurs to the particle at x .
– If the state of x is 0, then x flips to 1 if both of its children are 1’s.

2. If Ux
n ∈ (

β
1+β

, 1):
– If the state of x is 0, then nothing occurs to the particle at x .
– If the state of x is 1, then x flips to 0.

• For every unordered pair x, y ∈ δεZd with ‖x − y‖1 = δε we assign a Poisson
process {T x,y

n , n ≥ 1} with rate (δε)−2/2. At an arrival of this Poisson process,
the states of x and y are exchanged.

2.1.2 The dual is almost a branching randomwalk

For a particle at site x ∈ δεZd at time t , we denote by {Xε
s }0≤s≤t its dual process. The

dual process is naturally defined only for 0 ≤ s ≤ t but it is convenient to assume that
the Poisson processes and uniform random variables in the construction are defined
for negative times and hence define Xε

s for all s ≥ 0. We will focus on the case where
d = 2 in later discussion of the sexual reproduction model, but the comparison to a
branching random walk in this section is general in all dimensions d ≥ 1.

Let Rε
0 = 0 and let Rε

m be the m-th time that a branching event occurs among the
particles in Xε

s and set X ε
0(0) = x to represent the initial location of the first particle.

• In between the branching time {Rε
m : m ≥ 1} the particles move by stirring. If

there is a particle at x or y at time s and there is an arrival in T x,y
n at time t − s

then the particle at x jumps to y and a particle at y jumps to x .
• At time Rε

1 if the branching occurs at x1 we uniformly choose a pair of neighbors
x1, x2 from

x + N ε
b = x + δε · {{e1, e2}, {−e1, e2}, {−e1,−e2}, {e1,−e2}

}
,

add x1 and x2 to the dual, and number them as 1 and 2.
• At later branching times Rε

m if the branching occurs at xm then we add a randomly
chosen pair from xm + N ε

b , and number the two new particles 2(m − 1) + 1 and
2(m − 1) + 2. A collision is said to happen if a particle is born at the location
already occupied by another particle. In this case the colliding particle is not added
to Xε . We also construct a (noncoalescing) branching random walk X̂

ε
in which

two particles are always added, and if there is a collision an independent graphical
representation is used to determine its movements.
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Notice that in the sexual reproduction model once a particle flips to state 0 its
future is then independent of all its past. When constructing the dual process, once a
particle flips to state 0 we don’t necessarily need to probe into its past anymore. We
can either treat this particle as “dead" and do not let it branch again since we don’t need
information about its past, or we can let it branch despite its state so that the resulting
dual process has the structure of a regular tree. Here we take the second treatment.

In order to have the probability of collisions in the dual process Xε
t to be small we

have chosen δ = exp(−ε−3), i.e., ε = (log(1/δ))−1/3, so that δ � ε. Intuitively, if
the stirring rate is large enough compared to the branching rate, then particles do not
stay near each other for a sufficiently long time to have a birth that causes collisions.
To simplify notation, we will write

η = δε

from now on. In this notation, the dual process Xε on ηZd jumps at rate 2d · η−2/2 to
a randomly chosen neighbor.

Lemma 2.1 Let T ∈ (0,∞), k ∈ N and x ∈ R
d be fixed. Let Xε and X̂

ε
be defined as

above and both start at x. There exists ε∗(k, T ) > 0 so that for ε ∈ (0, ε∗(k, T )),

Pε
x

(
Xε(t) = X̂

ε
(t) for all t ≤ T

)
≥ 1 − εk .

Proof This proof comes from Durrett and Neuhauser [9]. To be self-contained we
will present most of the details. We say a particle X ε

k is crowded at time s if for
some j �= k, ‖X ε

k (s) − X ε
j (s)‖1 ≤ η. To bound the number of collisions, we need

to estimate the amount of time X ε
k is crowded. Let j �= k, V ε

s = X ε
k (s) − X ε

j (s) and

W ε
s be a random walk that jumps to a randomly chosen neighbor at rate 2dη−2. Let

x, y ∈ η{±e1, . . . ,±ed}. Then

jumps from x to rate in V rate in W
−x η−2/2 0
0 0 η−2

x + y η−2 η−2

Sincewe are interested in ‖V ε
s ‖1 we can ignore the first line in the above table,which

does not change the norm. Thenwe can couple the jumps so that |{s ≤ t : ‖V ε
s ‖1 ≤ η}|

is stochastically smaller than w
η
t = |{s ≤ t : ‖W ε

s ‖1 ≤ η}|. Asymptotic results for
random walks imply, see (2.1) at p. 301 of [9], that when tη−2 ≥ 2,

Ew
η
t ≤

⎧⎪⎨
⎪⎩
Cη2, d ≥ 3,

Cη2 log(η−2), d = 2,

Cηt1/2, d = 1.
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Let χk
ε (t) be the amount of time X ε

k is crowded in [0, t] andKt be the total number of
particles at time t . It is easy to see

E(χk
ε (t)|Kt = K ) ≤ K Ew

η
t ,

EKt = exp(νt), where ν = 3c∗ε−2,

E(χk
ε (t)) ≤ exp(νt)Ew

η
t .

To see that with high probability no collisions occur, we note that the expected number
of births from X ε

k while there is some other X ε
j in its neighborhood is (consider the

worst case when d = 1)

≤ E(χk
ε (t))c∗ε−2 ≤ C0ηt

1/2ε−2 exp(νt)

Take K = η−0.2. Then P(Kt > K ) ≤ K−1 exp(νt) = η0.2 exp(νt). When Kt ≤ K ,
the expected number of collisions is smaller than

KC0ηt
1/2ε−2 exp(νt).

Combining the error probabilities we have the probability of a collision occurring
before time T is smaller than

η0.2 exp(νT ) + KC0ηT
1/2ε−2 exp(νT ) (2.2)

Since η = δε = ε exp(−ε−3) the above term vanishes as ε → 0 and decays faster
than any polynomial of ε. Then for any given k ∈ N, there exists some ε∗(k, T ) so
that when ε < ε∗(k, T ) the probability of collision (2.2) is less than εk . When there
is no collision between [0, T ], Xε(t) = X̂

ε
(t) for all 0 ≤ t ≤ T .

2.1.3 Our randomwalks are close to Brownian motion

Let X̂ ε
t represent a single lineage in the comparison process X̂

ε
(t). At each branch

point we will choose one lineage of the offspring particles to be X̂ ε
t uniformly at

random. We start by showing that the trajectory of a single lineage X̂ ε
t of the dual

process is close to a Brownian motion Wt in R
d when ε is small. Recall that X̂ ε

t is a
random walk that jumps at rate dη−2 to a randomly chosen neighbor.

Lemma 2.2 Let X̂ ε
t be a single lineage started at x and let k ∈ N. There exists some

ε0(k) and a coupling between the Brownian motion Wt in R
d and X̂ ε

t so that for
ε ∈ (0, ε0(k))

P
(
|Wt − X̂ ε

t | ≥ ε for some t ≤ kε2| log ε|
)

≤ ε2k .

Proof Write X̂ ε
t = (X̂1,ε

t , . . . , X̂d,ε
t ) where for each 1 ≤ i ≤ d X̂ i,ε

t is a random
walk on ηZ with rate η−2. Let {Ni (t) : 1 ≤ i ≤ d} be independent Poisson processes
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with rate η−2 and let Y (i)
1 ,Y (i)

2 , . . . be i.i.d. random variables uniform on {−η, η}. For
1 ≤ i ≤ d, define discrete time random walks S(i)

n := Y (i)
1 + Y (i)

2 + · · · + Y (i)
n . Then

we can observe that S(i)
Ni (t)

has the same distribution as X̂ i,ε
t . Furthermore, if we let

N (t) = ∑d
i=1 Ni (t) then SN (t) := (S(1)

N1(t)
, . . . , S(d)

Nd (t)) has then same distribution as

X̂ ε
t .

From now on we consider the first coordinate X̂1,ε
t and S(1)

N1(t)
of the two random

walks.Write x = (x1, . . . , xd). By Skorohod’s embedding theorem (see [17] Theorem
12.1), there is a Brownian motion Bt in R started at x1 and a sequence of stopping
times 0 = τ0 ≤ τ1 ≤ . . . such that B(τi ) = S(1)

i . Moreover, the differences τi − τi−1

are i.i.d. with E(τi − τi−1) = E |Y (1)
1 |2 = η2 and E(τi − τi−1)

2 ≤ 4E |Y (1)
1 |4 = 4η4.

Note that

τN1(t) − t = (τN1(t) − N1(t)Eτ1) + (N1(t)Eτ1 − t)

is a martingale, so L2-maximal inequality implies

E

(
max
0≤s≤t

|τN1(s) − s|2
)

≤ 4E(τN1(t) − t)2 ≤ 4E[N1(t)] · Var(τ1) ≤ 16tη2.

By Chebyshev’s inequality,

P

(
max
0≤s≤t

|τN1(s) − s| ≥ η1/2
)

≤ η−1E

(
max
0≤s≤t

|τN1(s) − σ 2s|2
)

≤ 16tη. (2.3)

Write Wt = (W (1)
t , . . . ,W (d)

t ). Since W (1)
t is itself a one dimensional Brownian

motion, without loss of generality we can let W (1)
t = Bt . Notice that |X̂1,ε

t −W (1)
t | =

|S(1)
N1(t)

− B(t)| = |B(τN1(t)) − B(t)|. Then applying (2.3)

P
(
|W (1)

t − X̂1,ε
t | ≥ ε/

√
d for some t ≤ kε2| log ε|

)
= P

(
max

0≤t≤kε2| log ε|
|BτN1(t) − Bt | ≥ ε/

√
d

)

≤ P

(
max

0≤t≤kε2| log ε|
|τN1(t) − t | ≥ η1/2

)

+ P

(
max

0≤t≤kε2| log ε|
|τN1(t) − t | < η1/2, max

0≤t≤kε2| log ε|
|BτN1(t) − Bt | ≥ ε/

√
d

)

≤ 16kε2| log ε|η + P
(
N1(kε

2| log ε|) > η−2.5kε2| log ε|
)

+ η−2.5kε2| log ε| · P
(

sup
s∈[−η1/2,η1/2]

|B(s) − B(0)| ≥ η1/6

)
.

123



508 X. Huang, R. Durrett

The second term is upper bounded by η1/2 due to Markov inequality. To estimate the
third term, let Z be a standard Gaussian variable. By reflection principle,

P

(
sup

s∈[−η1/2,η1/2]
|B(s) − B(0)| ≥ η1/6

)
≤ 2P

(
sup

s∈[0,η1/2]
|B(s) − B(0)| ≥ η1/6

)

≤ 4P
(|B(η1/2) − B(0)| ≥ η1/6

) = 4P
(
η1/4Z ≥ η1/6

)
≤ 4e−η−1/6/4.

Thus

P
(
|W (1)

t − X̂1,ε
t | ≥ ε/

√
d for some t ≤ kε2| log ε|

)
≤ 16kε2| log ε|η + η1/2 + 4η−2.5kε2| log ε|e−η−1/6/4 ≤ Cη1/2 (2.4)

for some C > 0. Finally, it follows from (2.4) that

P
(
|Wt − X̂ ε

t | ≥ ε for some t ≤ kε2| log ε|
)

≤ d · P
(
|W (1)

t − X̂1,ε
t | ≥ ε/

√
d for some t ≤ kε2| log ε|

)
≤ dCη1/2 ≤ ε2k .

��

2.2 Voter model perturbations

2.2.1 The dual is close to a branching randomwalk

The dual process Xε is a coalescing branching random walk. As a result of the coa-
lescence, the dual process does not have the tree structure that leads to independence
among subtrees. The situation is not too bad once we realize coalescence mostly hap-
pens between particles with the same parent in a short amount of time after their births.
Hence we will construct a comparison process X̂ε that has the desired tree structure.

Recall that the voting and branching neighborhoods are

N ε
v = {−η, η}d and N ε

b = [−ηL, ηL]d ∩ ηZd

for a fixed L . Let J (t) denote the set of particles in Xε at time t . If two particles i and
j coalesce at time s, then i ∨ j is removed from J (s−) to form J (s). Set R0 = 0 and
let Rm be them-th branching time inXε . Similarly, define Ĵ (t) and R̂m for the process
X̂

ε
.
The comparison process X̂

ε
is constructed as follows:

• At time R̂m , the parent particle at x gives birth to N0 = 4 particles at sites
(Y1, . . . ,Y4) chosen uniformly without replacement from x + N ε

b .

123



Motion by mean curvature in interacting particle systems 509

• During [R̂m, R̂m + η1/2) we do not allow birth events. The particles move as
coalescing random walks in ηZd and we allow the particles within the new family
(i.e. the parent particle and its N0 children) to coalesce with each other.

• During [R̂m +η1/2, R̂m+1) the particles move as randomwalks without coalescing
and give births at rate ε−2.

If we view the interval [R̂m, R̂m + η1/2) as one single point in time then the process
X̂

ε
would have the desired tree structure where each vertex has a random number of

offspring depending on the coalescence. Note that

R̂m+1 − R̂m
d= √

η + Exponential(ε−2 Ĵ (R̂m + √
η)).

The graphical representations of Xε and X̂
ε
can be coupled until there is a coales-

cence inXε that is not in X̂
ε
. Whenever this happens we use an independent graphical

representation to determine themovement of the non-coalesced particle in X̂
ε
.Wehope

to couple Xε and X̂
ε
in a way that the former is dominated by the latter. The obstacles

in doing so are (i) Xε can have births during intervals {[R̂m, R̂m + η1/2) : m ≥ 1} (ii)
if the scenario in (i) does not happen, since X̂

ε
has more particles ever since the first

coalescence in Xε that is not in X̂
ε
, the branching times R̂m could arrive faster than

Rm . As we will prove soon, both (i) and (ii) will not be the case with high probability.
Our goal is to establish the following coupling between Xε and X̂

ε
in such a way that

the former is dominated by the latter.

Lemma 2.3 Let T ∈ (0,∞), k ∈ N and x ∈ R
d be fixed. Let Xε and X̂

ε
be defined as

above and both start at x. There exists ε∗(k, T ) > 0 so that for ε ∈ (0, ε∗(k, T )),

Pε
x

(
Xε(t) = X̂

ε
(t) for all t ≤ T

)
≥ 1 − εk .

Proof Let NT = min{m : Rm > T } and define the good events

G1 = {Rm − Rm−1 >
√

η for all 1 ≤ m ≤ NT }
G2 = {Rm = R̂m for all 1 ≤ m ≤ NT }
G3 = {J (s) = J (Rm−1 + √

η) for all s ∈ [Rm−1 + √
η, Rm) and all 1 ≤ m ≤ NT }.

Observe that onG ≡ G1∩G2∩G3 we can coupleXε and X̂
ε
exactly. Hence it suffices

to upper bound P(Gc). The estimates have already been done in detail in [3] so we
will cite the relevant results instead of repeating the arguments.

Lemma 2.4 in [3] gives

P(Gc
1) = P

(
min

1≤m≤NT
Rm − Rm−1 ≤ √

η
)

≤ η1/8.
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Let X ε, j
s denote the location of particle j in Xε at time s. Define

τm = inf

{
s ≥ Rm−1 + √

η : inf
i �= j∈J (s)

: |X ε,i
s − X ε, j

s | ≤ η7/8
}

Lemma 2.7 in [3] gives

P(Gc
3) = P(τm < Rm for some 1 ≤ m ≤ NT ) ≤ η1/16.

The memoryless property of exponential random variables implies that

(
Rm+1 − Rm |G1 ∩ G3)

d= √
η + Exponential(J (Rm + √

η)
)

.

We will argue by induction that G1 ∩ G3 ⊆ G2. First note R0 = R̂0 = 0. Suppose
Rm = R̂m holds up to m = k on G1 ∩ G3. Then we should have J (Rk + √

η) =
Ĵ (R̂k + √

η) on G1 ∩ G3. This means

(
Rk+1 − Rk |G1 ∩ G3)

d= √
η + Exponential( Ĵ (R̂k + √

η)
)

d= R̂k+1 − R̂k

Therefore Rk+1 = R̂k+1 on G1 ∩ G3 and this concludes the proof of G1 ∩ G3 ⊆ G2.
Finally,

P(Gc) ≤ P(Gc
1) + P(Gc

3) ≤ η1/8 + η1/16 ≤ εk

for any k ∈ N when ε is sufficiently small.

2.2.2 Our randomwalks are almost Brownian motions

We will show the trajectory of a single lineage X̂ ε
t of the dual process is close to a

BrownianmotionWt inRd . Note that X̂ ε
t is a randomwalk inηZd that jumps at rateη−2

to a site chosen uniformly random from its neighborhood of the formN ε
v = {−η, η}d .

The following lemma is essentially the same as Lemma 2.2. Note that the random
walk in Lemma 2.2 has jump rate 2d · η−2/2 while here the random walk has jump
rate η−2, implying that X̂ ε

t would converge to a time-changed Brownian motion. The
proof is essentially the same as that of Lemma 2.2 and hence is omitted.

Lemma 2.4 Let X̂ ε
t be a single lineage started at x and let k ∈ N. There exists ε0(k)

and a coupling of the Brownian motion Wt in Rd and X̂ ε
t so that for ε ∈ (0, ε0(k))

P
(
|Wσ 2t − X̂ ε

t | ≥ ε for some t ≤ kε2| log ε|
)

≤ ε2k

for σ = 1/
√
d.
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2.3 Computing the state of x at time t

To do this, we use the comparison process X̂
ε
constructed in Sects. 2.1.1 and 2.2.1

and work backwards in time. X̂
ε
has a tree structure so we can follow [10] to define a

time-labelled tree T (X̂
ε
(t)) for X̂

ε
. Since X̂

ε
and X̂ has the same tree structure except

for the rescaling, to simplify notation we consider T (X̂(t)) from now on.
Each branch point in {X̂}0≤s≤t is a vertex in the tree T (X̂(t)) and is assigned a time

label tv that is the corresponding branching time in X̂. For the sexual reproduction
model, at each branch point the parent gives birth to N0 = 2 children, so the tree
T (X̂(t)) branches into 3 lineages. For the voter model perturbations, at each branch
point the parent gives birth to N0 = 4 children some of whom will coalesce into one.
There are two ways to look at T (X̂(t)): we can either see it as a Galton-Watson tree
where the offspring distribution is determined by the coalescence, or we can still see
it as a regular tree where each vertex has N0 + 1 children and deal with the influence
of coalescence in a computing process that will be introduced later as an algorithm.
Here we take the second approach.

Now we will describe an algorithm that computes the state of x at time t given
the graphical representation and the initial states of the particles in X̂(t). Since we
are considering the dual process without rescaling, with a little abuse of notation let
p : Zd → [0, 1] be the initial condition.
Algorithm for sexual reproduction model with fast stirring

1. Each particle i in T (X̂(t)) is independently assigned state 1with probability p(X̂ i
t )

and state 0 with probability 1 − p(X̂ i
t ).

2. At each branch point v in T (X̂(t)), we have an independent random variable Uv

uniform on (0, 1) that determines the state of the parent particle according to rules
specified in Sect. 2.1.1.

Algorithm for nonlinear voter models Let {πv} be a collection of i.i.d. random partition
of the set {0, 1, . . . , N0}, where v represents a vertex in the N0+1 regular time-labelled
tree T (X̂(t)). The law of πv is given by the coalescence of particles within the same
family within time

√
η after birth.

1. Each particle i in T (X̂(t)) is independently assigned state 1with probability p(X̂ i
t )

and state 0 with probability 1 − p(X̂ i
t ).

2. At each branch point v in T (X̂(t)), we first sample a random partition πv . For
vertices in the same cell of πv , we uniformly choose one of them and let its state
be the state of every vertex in that cell. Let i1 denote the total number of 1’s among
these N0+1 particles. Then an independent random variableUv uniform on (0, 1)
is sampled. If Uv < ai1 then set the output to be 1, otherwise set the output to be
0.

For Lotka–Volterra systems, since the effective perturbations only occur when there
is no coalescence among the three children, see (1.13), we can consider only such
branch points and effectively reduce the branching rate to θ p3ε−2. At each branch
point, the state of the chosen lineage only flips when it is opposite to both of the other
lineages. This is essentially performing a majority vote, which is why (1.13) is the
same as (1.11). Hence the proof for Lotka–Volterra systems is the same as that in [10].
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Algorithm for Lotka–Volterra systems

1. Each particle i in T (X̂(t)) is independently assigned state 1with probability p(X̂ i
t )

and state 0 with probability 1 − p(X̂ i
t ).

2. Let the branching event occur at rate θ p3ε−2. At each branch point v in T (X̂(t)),
we perform a majority vote.

Starting from states of the leaves of T (X̂(t)), the above algorithms compute the
state of the root at x . From now on we use use Vp(X̂(t)) to denote the output, i.e., the
state of the root of T (X̂(t)). Note that for a branching Brownian motionWt in Rd we
can define Vp(Wt ) in the same way except that the initial condition p will be defined
on Rd instead of Zd .

3 Convergence tomotion bymean curvature

Here we will prove the result assuming the g function has properties (G0)–(G5). In the
next section we will check those conditions in our examples. A second consequence
of concavity for p ∈ (u0, u+) is that if p ∈ [u0 + η, u+ − η]

g(p + η) − 2g(p) + g(p − η) ≤ 0. (3.1)

To prove (3.1), we note that

∫ p

p−η

∫ x+η

x
g′′(y) dy dx = g(p + η) − 2g(p) + g(p − η).

3.1 Branching Brownianmotion in one dimension

Define the initial condition p0 : R → [0, 1] to be p0(x) = u+·1{x≥0}+u−·1{x<0} and
writeV := Vp0 . In this section we will consider one dimensional branching Brownian
motion Bt , beginning by listing the useful properties of V(B(t)).
Monotonicity When the interaction rule is attractive and the initial condition p0 is
nondecreasing in x so for any x1 ≤ x2 ∈ R,

Pε
x1 [V(B(t)) = 1] ≤ Pε

x2 [V(B(t)) = 1].

Antisymmetry We use T (B(t)) to denote the time-labelled tree for Bt and write

Pt
x (T ) = Pε

x (V(B(t)) = 1|T (B(t)) = T ).

Applying the reflection from z to−z, and using the symmetry of the Brownian motion
conditioned on {T (B(t)) = T }, we see that for any time-labelled tree T

Pt
z (T ) = 2u0 − Pt−z(T ).
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The last property implies Pt
0(T ) = u0. Using monotonicity we have

Pt
z (T ) ≥ u0 for z ≥ 0, Pt

z (T ) ≤ u0 for z ≤ 0.

3.1.1 Useful inequalities

So far the function g : [0, 1] → [0, 1] has a single variable. It is natural to extend g to
be a function on [0, 1]N0+1. Let (p1, . . . , pN0+1) ∈ [0, 1]N0+1 and g(p1, . . . , pN0+1)

is the probability that the output at the branch point is 1when the inputs are independent
Bernoulli random variables with rate p1, . . . , pN0+1 respectively. With a slight abuse
of notation, we will use g(·) to stand for both.
Lemma 3.1 For any time-labelled tree T , and time t > 0 and any z ≥ 0,

Pt
z (T ) ≥ u+Pz(Bt ≥ 0) + u−Pz(Bt < 0).

Proof The proof is by induction on the number of branching events in the tree T .
Suppose time τ is the first branching event in T and that the subtrees corresponding
to the N0 + 1 offspring are T1, . . . , TN0+1. Letting

Pt
z (T ∗) = (Pt

z (T1), . . . , Pt
z (TN0+1)).

h(p1, . . . , pN0+1) = g(p1, . . . , pN0+1) − 1

N0 + 1
(p1 + · · · + pN0+1).

we can write

Pt
z (T ) = Ez(g(P

t−τ
Bτ

(T ∗)) = Ez(g(P
t−τ
Bτ

(T1), . . . , Pt−τ
Bτ

(TN0+1)))

= Ez(h(Pt−τ
Bτ

(T1), . . . , Pt−τ
Bτ

(TN0+1))) + 1

N0 + 1

N0+1∑
i=1

Ez(P
t−τ
Bτ

(Ti ))

Write h(p) = h(p, . . . , p). Observe that h(u+ − p) = −h(u− + p) due to (G1),
which implies

h(Pt−z(T ∗)) = h(2u0 − Pt
z (T ∗)) = h(u+ − (−u− + Pt

z (T ∗))) = −h(Pt
z (T ∗)).

(3.2)
It follows that

Ez(h(Pt−τ
Bτ

(T ∗)) = Ez(h(Pt−τ
Bτ

(T ∗))(1{Bτ ≥0} + 1{Bτ <0})
= Ez(h(Pt−τ

Bτ
(T ∗))1{Bτ ≥0}) − Ez(h(Pt−τ

−Bτ
(T ∗))1{Bτ <0}) (by (3.2))

=
∫ ∞

0
h(Pt−τ

x (T ∗))(φz,τ (x) − φz,τ (−x)) dx

where φz,t (x) is the probability density function of a Brownian motion starting at
site z at time t. Since Pt−τ

x (Ti ) ≥ u0 for x ≥ 0 we have h(Pt−τ
x (T ∗)) ≥ 0. Spatial

123



514 X. Huang, R. Durrett

symmetry of Brownian motion and the fact that φz,t (x) is decreasing on x ≥ z implies
φz,τ (x) − φz,τ (−x) ≥ 0 for all x ≥ 0. That is, Ez(h(Pt−τ

Bτ
(T ∗)) ≥ 0.

For i = 1, . . . , N0 + 1, by the induction hypothesis

Ez(P
t−τ
Bτ

(Ti )) ≥ u+Ez(PBτ (Bt−τ ≥ 0)) + u−Ez(PBτ (Bt−τ < 0))

= u+Pz(Bt ≥ 0) + u−Pz(Bt < 0).

If follows that

Ez(g(P
t−τ
Bτ

(T ∗)) ≥ 1

N0 + 1

N0+1∑
i=1

Ez(P
t−τ
Bτ

(Ti )) ≥ u+Pz(Bt ≥ 0) + u−Pz(Bt < 0).

We define the iterates of g, g(n)(p), by

g(n)(p) = g(g(n−1)(p)), g(1)(p) = g(p).

The fixed points at u− and u+ of g are attracting and u0 is unstable. That is, if we start
from u0 + ε, then iterating g will lead to u+ while if we start at u0 − ε, iterating g
will take us down to u−. Lemma 3.2 quantifies the rate of convergence.

Lemma 3.2 For all k ∈ N there exists A(k) < ∞ such that, for all ε ∈ (0, u+−u0−δ∗)
where δ∗ is defined in (G4) and n ≥ A(k)| log ε| we have

g(n)(u0 + ε) ≥ u+ − εk and g(n)(u0 − ε) ≤ u− − εk .

Proof (G4) (i.e., (1.19)) implies that if δ < δ∗ then u+ − g(u+ − δ) ≤ (1 − c0)δ.
Iterating gives

u+ − g(n)(u+ − δ) ≤ (1 − c0)
n(u+ − δ).

That is, there is some constant Ck such that if δ < δ∗ then for n ≥ Ck | log ε| we have

g(n)(u+ − δ) ≥ u+ − εk .

It remains to find an Mε , which will depend on ε, so that g(Mε )(u0 + ε) ≥ u+ − δ∗.
By (1.17) we know g′(u0) > 1. Since u0 and u+ are two fixed points of g and g is

strictly increasing, we have g(p) > p for p ∈ (u0, u+ − δ∗]. It follows that

k1 ≡ inf
x∈(0,u+−u0−δ∗]

g(u0 + x) − (u0 + x)

x
> 0

so for x ∈ [u0 + ε, u+ − δ∗] we have g(u0 + x) − u0 ≥ (1+ k1)x . Hence for m ∈ N

such that g(m)(u0 + ε) < u+ − δ∗ we have g(m)(u0 + ε) ≥ u0 + (1 + k1)mε. This
implies we can takeMε = B| log ε|where B = 1/ log(1+k1). Taking A(k) = B+Ck

completes the proof.
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Since the branching rate c∗ε−2 is large when ε is small, then even for a small t the
tree T (B(t)) should be have a lot of vertices. For l ∈ R, let T reg

l denote a ternary tree
with depth �l�. For a time-labelled ternary tree T , we write T ⊇ T reg

l if T reg
l can be

embedded in T as a subtree. The next two results are Lemma 2.10 and 2.11 in [10].
The proofs are exactly the same so they are omitted.

Lemma 3.3 Let k ∈ N and let A = A(k) be as in Lemma 3.2. Then there exists
a1 = a1(k) and ε1 = ε1(k) such that, for all ε ∈ (0, ε1) and t ≥ a1ε2| log ε|,

Pε
[
T (B(t)) ⊇ T reg

A(k)| log ε|
]

≥ 1 − εk .

Lemma 3.4 Let k ∈ N, and let a1(k) as in Lemma 3.3. Then there exists d1(k), ε1(k)
such that for all ε ∈ (0, ε1(k)) and all s ≤ a1ε2| log ε|,

Pε
x [∃i ∈ N (s) : |Bi (s) − x | ≥ d1(k)ε| log ε|] ≤ εk,

where N (s) is the set of indices of particles in B up to time s.

While the proof of Lemma 3.2 is fresh on the reader’s mind we will prove

Lemma 3.5 For a fixed k ∈ N, there exists σ1(k) > 0 such that for t ≥ σ1(k)ε2| log ε|
and x ∈ R

Pε
x [Vp(W(t)) = 1] ≤ u+ + εk

where p : Rd → [0, 1] is the initial condition satisfying (G0).

Remark The same conclusion also holds for Pε
x [Vp(X̂ε(t)) = 1] following the same

proof.

Proof First we consider the case where 1 is not a fixed point of g. Since u+ is a fixed
point of g and g′(u+) < 1 by (G2), it is easy to see g(p) < p on (u+, 1]. It follows
that

k2 ≡ inf
x∈(0,1−u+]

(u+ + x) − g(u+ + x)

x
∈ (0, 1),

which implies that if δ ∈ [0, 1 − u+]

g(u+ + δ) − u+ ≤ (1 − k2)δ.

Iterating as in the proof of Lemma 3.2

g(n)(u+ + δ) − u+ ≤ (1 − k2)
(
g(n−1)(u+ + δ) − u+

)
≤ (1 − k2)

nδ.
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By assumption (G0), since 1 is not a stable fixed point of g we get the largest value
by setting p ≡ 1. In order to have g(n)(1) ≤ u+ + εk we need

g(n)(u+ + (1 − u+)) − u+ ≤ (1 − k2)
n(1 − u+) ≤ εk .

It is easy to see that there exists C(k) > 0 such that the above inequality holds for
n ≥ C(k)| log ε|. It follows from Lemma 3.3 that there exists σ1(k) > 0 such that for
t ≥ σ1(k)ε2| log ε|

Pε[T (W(t)) ⊇ T reg
C(k)| log ε|] ≥ 1 − εk .

Therefore, when t ≥ σ1ε
2| log ε| Pε

x [Vp(W(t)) = 1] ≤ u+ + εk + εk = u+ + 2εk .
The second case where 1 is a fixed point of g follows similarly. By assumption (G0)

we can set p ≡ 1 − ε for some arbitrarily small ε > 0. Modify the definition of k2 to
be

k2(ε) ≡ inf
x∈(0,1−ε−u+]

(u+ + x) − g(u+ + x)

x
∈ (0, 1).

In order to have g(n)(1 − ε) ≤ u+ + εk we need

g(n)(u+ + (1 − ε − u+)) − u+ ≤ (1 − k2)
n(1 − ε − u+) ≤ εk .

The rest of the argument for the second case is the same. ��

3.1.2 The main result in one dimension

We are now ready to prove

Theorem 3.6 Fix any T ∗ ∈ (0,∞). For all k ∈ N there exist c1(k) and ε1(k) > 0
such that, for all t ∈ [0, T ∗] and all ε ∈ (0, ε1),

1. for x ≥ c1(k)ε| log ε|, we have Pε
x [V(B(t)) = 1] ≥ u+ − εk ,

2. for x ≤ −c1(k)ε| log ε|, we have Pε
x [V(B(t)) = 1] ≤ u− + εk ,

Proof of Theorem 3.6 For all ε < 1/2, define zε implicitly by the relation

P0(BT ∗ ≥ −zε) = 1/2 + (u+ − u−)−1ε (3.3)

and note that zε ∼ (u+ − u−)−1ε
√
2πT ∗ as ε → 0. Let ε1(k) < 1/2 be sufficiently

small so that Lemmas 3.3 and 3.4 hold for ε ∈ (0, ε1). Let d1(k) be given by Lemma
3.4 and let c1(k) = 2d1(k) so that, for ε ∈ (0, ε1),

d1(k)ε| log ε| + zε ≤ c1(k)ε| log ε|.

Let a1(k) be given by Lemma 3.3 and let δ1 = δ1(k, ε) = a1(k)ε2| log ε|.
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Note that g(u+) = u+, which means if we start with initial condition p(x) ≡ u+
then

Pε
z (Vp(B(t)) = 1) = u+ for all t > 0, z ∈ R. (3.4)

If t ∈ (0, δ1) and z ≥ c1ε| log ε|, then Lemma 3.4 and (3.4) gives

Pε
z (V(B(t)) = 0) ≤ Pε

z (∃i ∈ N (t) such that |Bi (t) − z| ≥ d1ε| log ε|) + Pε
z (Vp(B(t)) = 0)

≤ 1 − u+ + εk .

We now suppose that t ∈ [δ1, T ∗] and z ≥ c1ε| log ε|, and define

pt−δ1(z) = Pε
z (V(B(t − δ1)) = 1),

and let ψε ≡ pt−δ1(zε). Write {B(δ1) > zε} for the event Bi (δ1) > zε for all
i ∈ N (δ1). Then

Pε
z (V(B(t)) = 1) = Pε

z (Vpt−δ1
(B(δ1)) = 1)

≥ Pε
z

({Vψε (B(δ1)) = 1} ∩ {B(δ1) > zε}
)

≥ Pε
z (Vψε (B(δ1)) = 1) − εk

By definition of zε in (3.3) and t − δ1 < T ∗,

ψε = Pε
zε (V(B(t − δ1)) = 1) ≥ u+Pzε (Bt−δ1 ≥ 0) + u−Pzε (Bt−δ1 < 0)

= u+(1/2 + (u+ − u−)−1ε) + u−(1/2 − (u+ − u−)−1ε) = u0 + ε.

It follows from Lemmas 3.2 and 3.3 that

Pε
z (Vψε (B(δ1)) = 1) ≥ g(A(k)| log ε|)(u0 + ε)Pε

(
T (B(t)) ⊇ T reg

A(k)| log ε|
)

≥ (u+ − εk)(1 − εk) ≥ u+ − 2εk

Therefore, Pε
z (V(B(t)) = 1) ≥ u+ − 3εk . ��

3.1.3 Slope of the interface

To prepare the proof of Theorem 3.13, i.e., the extension of Theorem 3.6 to higher
dimensions, we state the following result on the “slope” of the interface.

Proposition 3.7 Suppose x ≥ 0 and η > 0. Then for any time-labelled regular tree T
with N0 + 1 offspring and any time t,

Pt
x (T ) − Pt

x−η(T ) ≥ Pt
x+η(T ) − Pt

x (T ).
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Proof The proof is essentially the same as that of Proposition 2.11 in [10]. We prove
the result by induction on the number of branching events in T . We begin by noting
that for a time-labelled tree T0 with a root and a single leaf, we easily get

Pt
x (T0) − Pt

x−η(T0) =
∫ x

x−η

φ0,t (u) du ≥
∫ x+η

x
φ0,t (u) du = Pt

x+η(T0) − Pt
x (T0)

whereφμ,σ 2 is the density function of a N (μ, σ 2) randomvariable. To do the induction
step let τ be the first branching time and let T1, . . . , TN0+1 be the trees of the offspring
of that branching. We have

(Pt
x (T ) − Pt

x−η(T )) − (Pt
x+η(T ) − Pt

x (T ))

=
(
Ex [g(Pt−τ

Bτ
(T ∗))] − Ex−η[g(Pt−τ

Bτ
(T ∗))]

)
−
(
Ex+η[g(Pt−τ

Bτ
(T ∗))] − Ex [g(Pt−τ

Bτ
(T ∗))]

)
.

If we let ρ(x) = g(Pt−τ
x (T ∗)) then the above is

−
∫ ∞

−∞
g(ρ(y + η)) − 2g(ρ(y)) + g(ρ(y − η))φx,τ (y) dy

= −
∫ ∞

0
g(ρ(y + η)) − 2g(ρ(y)) + g(ρ(y − η))(φx,τ (y) − φx,τ (−y)) dy

Since x ≥ 0, we have φx,τ (y)−φx,τ (−y) ≥ 0 for y ≥ 0 so it is enough to show (3.1),
i.e.,

g(ρ(y + η)) − 2g(ρ(y)) + g(ρ(y − η)) ≤ 0.

By the induction assumption ρ(y)−ρ(y−η) ≥ ρ(y+η)−ρ(y) ≡ h. Let p = ρ(y).

g(ρ(y + η)) − g(ρ(y)) = g(p + h) − g(p) ≤ g(p) − g(p − h) ≤ g(ρ(y)) − g(ρ(y − η))

by monotonicity of g, which completes the proof.

Exploiting the “concavity" in Proposition 3.7 gives a lower bound on the “slope"
of the interface.

Corollary 3.8 Fix any T ∗ ∈ (0,∞). Suppose that for some t ∈ [0, T ∗] and z ∈ R,

∣∣Pε
z [V(B(t)) = 1] − u0

∣∣ ≤ (u+ − u0) − δ0, (3.5)

Take ε1(1) and c1(1) from Theorem 3.6 and ε < min(ε1(1), δ0/2), and letw ∈ R with
|z − w| ≤ c1(1)ε| log ε|. Then

|Pε
z [V(B(t)) = 1] − Pε

w[V(B(t)) = 1]| ≥ δ0|z − w|
4c1(1)ε| log ε| .
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Proof Consider first the case 0 ≤ z < w. By Theorem 3.6 and (3.5) we have for small
ε

Pε
c1(1)ε| log ε|[V(B(t)) = 1] − Pε

z [V(B(t)) = 1] ≥ δ0

2
.

Write η = w − z. Proposition 3.7 implies that Pt
( j+1)η+z − Pt

jη+z ≤ Pt
w − Pt

z for

j ∈ N. Let n0 = �η−1(c1(1)ε| log ε| − z)�. Then

Pt
c1(1)ε| log ε| − Pt

z ≤
n0−1∑
j=0

Pt
( j+1)η+z − Pt

jη+z ≤ n0(P
t
w − Pt

z ).

That is,

Pt
w − Pt

z ≥ Pt
c1(1)ε| log ε| − Pt

z

n0
≥ δ0|z − w|

2(c1(1)ε| log ε| + |z − w|) ≥ δ0|z − w|
4c1(1)ε| log ε| .

3.2 BBM in higher dimensions

3.2.1 Properties of motion by mean curvature

A key fact in the proof in Etheridge et al. [10] is a coupling between a one dimensional
Brownian motion Bs and d(Ws, t − s), the signed distance from a d-dimensional
Brownian motion Ws to the interface 	t−s . To prepare for the coupling we will state
some regularity properties of the mean curvature flow, which are given in Sect. 2.3 of
[10] and are derived based on assumptions (C1)–(C3). Recall that d(x, t) is the signed
distance from x to the mean curvature flow 	t .

1. There exists κ0 > 0 such that for all t ∈ [0, T ∗] and x ∈ {t : |d(y, t)| ≤ κ0} we
have

|∇d(x, t)| = 1. (3.6)

Moreover, d is a Cα,α/2 function in {(x, t) : |d(x, t)| ≤ κ0, t ≤ T ∗}, where α > 3
as in (C1).

2. Viewing n = ∇d as the positive normal direction, for x ∈ 	t , the normal velocity
of 	t at x is −∂t d(x, t), and the curvature of 	t at x is −�d(x, t).

3. There exists κ0 > 0 such that for all t ∈ [0, T ∗] and x such that |d(x, t)| ≤ κ0,∣∣∣∣∇ (∂t d(x, t) − �d(x, t))

∣∣∣∣ ≤ κ0. (3.7)

4. There exists v0, V0 > 0 such that for all t ∈ [T ∗ − v0] and all s ∈ [t, t + v0],

|d(x, t) − d(x, s)| ≤ V0(s − t). (3.8)

We state Proposition 2.13 in [10]:
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Proposition 3.9 Let (Ws)s≥0 denote a d-dimensional Brownian motion started at x ∈
R
d . Suppose that t ≤ T ∗, β ≤ κ0 and let

Tβ = inf({s ∈ [0, t) : |d(Ws, t − s)| ≥ β} ∪ {t}).

Thenwe can couple (Ws)s≥0 with a one-dimensional Brownianmotion (Bs)s≥0 started
from z = d(x, t) in such a way that for s ≤ Tβ ,

Bs − κ0βs ≤ d(Ws, t − s) ≤ Bs + κ0βs.

By Lemma 2.1 we can establish the results for X̂
ε
, which will also hold for Xε with

high probability. Let Wt denote a Brownian motion in R
d while X̂ ε

t denote a random
walk on ηZd with jump rate η−2/2 to each neighboring site.

3.2.2 Generation of the interface

The following proposition is very similar to Proposition 2.15 in [10]. The major dif-
ference is that we work with the rescaled dual process Xε

t and its comparison process
X̂

ε

t instead of the branching Brownian motion Wt in Rd .

Proposition 3.10 Let k ∈ N and σ1(k) be defined as in Lemma 3.5. Then there exist
εd(k), ad(k), bd(k) > 0 such that for all ε ∈ (0, εd), if we set

δd(k, ε) := max{ad(k), σ1(k)}ε2| log ε|
δ′
d(k, ε) := (max{ad(k), σ1(k)} + k + 1)ε2| log ε|,

then for t ∈ [δd , δ′
d ],

1. for x such that d(x, t) ≥ bdε| log ε|, we have Pε
x (Vp(X̂

ε
(t)) = 1) ≥ u+ − εk;

2. for x such that d(x, t) ≤ −bdε| log ε|, we have Pε
x (Vp(X̂

ε
(t)) = 1) ≤ u− + εk .

Proof For fixed k ∈ N and A(k) specified as in Lemma 3.2, it follows from Lemma
3.3 that there exists ad(k), εd(k) > 0 such that for all ε ∈ (0, εd) and t ≥ adε2| log ε|.

Pε[T (X̂
ε
(t)) ⊇ T reg

A(k)| log ε|] ≥ 1 − εk .

It follows from the same argument as in Lemma 3.4 that for t ∈ [δd , δ′
d ] there exists

b′
d(k), εd(k) such that for all ε ∈ (0, εd),

Pε
x [∃i ∈ N (t) : |Wi (t) − x | ≥ b′

d(k)ε| log ε|] ≤ εk .

By (2.34) in [10] there exists v0, V0 > 0 such that for t ≤ v0, and any x ∈ R
d we

have |d(x, 0) − d(x, t)| ≤ V0t . We can choose εd sufficiently small so that δ′
d ≤ v0.
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Thus if d(x, t) ≥ 2b′
dε| log ε| and |Wi (t) − x | ≤ b′

dε| log ε| then
d(Wi (t), 0) ≥ d(x, t) − |d(x, t) − d(Wi (t), t)| − |d(Wi (t), t) − d(Wi (t), 0)|

≥ 2b′
dε| log ε| − b′

dε| log ε| − V0δ
′
d ≥ 2

3
b′
dε| log ε|.

It follows from Lemma 2.2 that

P(|Wi (t) − X̂ ε
i (t)| ≥ ε for some t ≤ δ′

d) ≤ ε2k .

The triangle inequality then implies that with probability at least 1 − ε2k

d(X̂ ε
i (t), 0) ≥ d(Wi (t), 0) − |X̂ ε

i (t) − Wi | ≥ 2

3
b′
dε| log ε| − ε ≥ 1

2
b′
dε| log ε|.

Applying (C2) and (C3),

p(X̂ ε
i (t)) ≥ u0 + γ (

1

2
b′
dε| log ε| ∧ r) ≥ u0 + ε.

For x such that d(x, t) ≥ 2b′
dε| log ε| and t ∈ [δd , δ′

d ] it follows exactly from the
proof of Theorem 3.6 that

Pε
x [Vp(X̂

ε
(t)) = 1] ≥ u+ − 3εk .

Taking bd = 2b′
d completes the proof.

3.2.3 Propagation of the interface

In the Sect. 3.2.2 we established the existence of an interface develops for a short time
interval [δd , δ′

d ]. In this section we will show that the interface continue to exist for
much longer. The key to proving Theorem 3.13 is the following proposition, which
is an analogue of Proposition 2.17 in [10]. To make things easier to write we define
γ (t) = K1eK2t and introduce

z±0 = d(x, t) ± K1e
K2tε| log ε|

which are two points inR. They depend on x and t but we do not record the dependence
in notation.

Proposition 3.11 Let l ∈ N with l ≥ 4. Define δd(l) as in Proposition 3.10 and C1 as
in Lemma 3.12.There exists K1(l), K2(l) > 0 and εd(l, K1, K2) > 0 so that for all
ε ∈ (0, εd) and t ∈ [δd(l), T ∗] we have

sup
x∈Rd

(
Pε
x [Vp(X̂

ε
(t)) = 1] − Pε

z+0
[V(B(t)) = 1]

)
≤ C1ε

l (3.9)

sup
x∈Rd

(
Pε
x [Vp(X̂

ε
(t)) = 0] − Pε

z−0
[V(B(t)) = 0]

)
≤ C1ε

l (3.10)
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The key ingredient for proving Proposition 3.11 is the following lemma, which is
an analogue of Lemma 2.18 in [10]. The idea of the proof remains the same but the
coefficients are slightly different due to the differences in the g’s. Let Bt ∈ R be a
one-dimensional Brownian motion that can be thought of as a single lineage in the
branching Brownian motion B(t).

z±1 = d(X̂ ε
s , t − s) ± γ (t − s)ε| log ε|

z±2 = Bs ± γ (t)ε| log ε|

Lemma 3.12 Let l ∈ Nwith l ≥ 4andσ1(l)beas inLemma3.5. Let δ0 andc0 be chosen
as in (G4). Choose C1 sufficiently large so that C1 > max{2(1 − c0)/c0, 3/(2c0)}.
Let C2 = max0≤p≤1 C1|g′(p)|. Let K1 > 0. There exists K2 = K2(K1, l) > 0 and
εd(l, K1, K2) > 0 such that for all ε ∈ (0, εd), x ∈ R

d , s ∈ [0, (l + 1)ε2| log ε|] and
t ∈ [s, T ∗],

Ex
[
g(Pε

z+1
[V(B(t − s)) = 1] + C1ε

l )
]

≤ (1 − c0/3)C1ε
l + Ed(x,t)

[
g(Pε

z+2
[V(B(t − s)) = 1])]+ C2ε

l1s≤ε4

(3.11)

Ex
[
g(Pε

z−1
[V(B(t − s)) = 0] + C1ε

l )
]

≤ (1 − c0/3)C1ε
l + Ed(x,t)

[
g(Pε

z−2
[V(B(t − s)) = 0])]+ C2ε

l1s≤ε4

(3.12)

To keep our approach parallel to the one in [10] we defer the proof of Lemma 3.12
to the next subsection. The only property of g that is used in the proof below is its
monotonicity.

Proof of Proposition 3.11 We begin by proving (3.9) for t ∈ [δd , δ′
d ]. Take K1 =

bd(l)+ c1(l) where bd(l) is as defined in Proposition 3.10 and c1 is as defined in The-
orem3.6. Let K2 = K2(K1, l), as defined inLemma3.12. If d(x, t) ≤ −bd(l)ε| log ε|,
then by Proposition 3.10, Pε

x [Vp(X̂
ε
(t)) = 1] ≤ εl . Then (3.9) holds.

On the other hand, if d(x, t) ≥ −bd(l)ε| log ε|, then d(x, t) + γ (t)ε| log ε| ≥
c1(l)ε| log ε|, and by Theorem 3.6

Pε
d(x,t)+γ (t)ε| log ε|[V(B(t)) = 1] ≥ u+ − εl .

By definition of δd in Proposition 3.10, t ≥ σ1(l)ε| log ε|. It follows from the same
argument as in Lemma 3.5 that

Pε
x [Vp(X̂

ε
(t)) = 1] ≤ u+ + εl .

Therefore when ε is sufficiently small (3.9) holds.
We follow the proof in [10] and assume that there exists t ∈ [δ′

d , T
∗] such that for

some x ∈ R
d (3.9) does not hold, i.e.,

Pε
x [Vp(X̂

ε
(t)) = 1] − Pε

d(x,t)+γ (t)ε| log ε|[V(B(t)) = 1] > C1ε
l .
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Let T ′ be the infimum of the set of such t and choose

T ∈ [T ′,min(T ′ + εl+3, T ∗)]

which is in the set of such t . Hence there exists some x ∈ R
d such that

Pε
x [Vp(X̂

ε
(T )) = 1] − Pε

d(x,T )+γ (T )ε| log ε|[V(B(T )) = 1] > C1ε
l . (3.13)

Our goal is to contradict (3.13) by showing that

Pε
x [Vp(X̂

ε
(T )) = 1] ≤ Pε

d(x,T )+γ (T )ε| log ε|[V(B(T )) = 1]+(1−c0/4)C1ε
l . (3.14)

Wewrite S for the time of the first branching event in X̂
ε
(T ) and X̂ ε(S) for the position

of the initial particle at that time. By the strong Markov property

Pε
x [Vp(X̂

ε
(T )) = 1] ≤ Eε

x [g(Pε

X̂ε (S)
[Vp(X̂

ε
(T − S)) = 1]1S≤T−δd ]

+ Eε
x [Pε

X̂ε (T−δd )
[Vp(X̂

ε
(δd)) = 1]1S≥T−δd ] (3.15)

Let c∗ be a constant such that c∗ε−2 is the reaction rate for the process that we consider.
For sexual reproduction model with fast stirring, c∗ = (1+β) as defined in (2.1). For
voter model perturbations, c∗ = 1. Without loss of generality we can assume c∗ ≥ 1
since otherwisewe can rescale time to obtain c∗ ≥ 1. Since S = Exponential(c∗ε−2)

and T − δd ≥ δ′
d − δd = (l + 1)ε2| log ε|, we have

Eε
x

[
Pε

X̂ε
T−δd

[Vp(X̂
ε
(δd )) = 1]1{S≥T−δd }

]
≤ P[S ≥ (l + 1)ε2| log ε|] ≤ εc

∗(l+1) ≤ εl+1.

To bound the first term in (3.15), partition on the event {S ≤ εl+3},

Eε
x

[
g(Pε

X̂ε
S

[
Vp(X̂

ε
(T − S)) = 1

]
1{S≤T−δd }

]
≤ P

[
S ≤ εl+3]+ Eε

x

[
g(Pε

X̂ε
S

[
Vp(X̂

ε
(T − S)) = 1

]
1{εl+3≤S≤T−δd }

]
≤ εl+1 + Eε

x

[
g(Pε

d(X̂ε
S ,T−S)+γ (T−S)ε| log ε|

[
V(B(T − S)) = 1

]+ C1ε
l)1{S≤T−δd }

]
.

(3.16)

The last line follows from the minimality of T ′ and the fact that T − S ≤ T ′ on the
event {S ≥ εl+3}.

Eε
x

[
g(Pε

d(X̂ε
S ,T−S)+γ (T−S)ε| log ε|

[
V(B(T − S)) = 1

]+ C1ε
l )1S≤T−δd

]

≤
∫ (l+1)ε2| log ε|

0
c∗ε−2e−c∗ε−2s

Ex
[
g(Pε

d(X̂ε
s ,T−s)+K1eK2(T−s)ε| log ε|

[
V(B(T − s)) = 1

]+ C1ε
l )
]
ds

+ P[S ≥ (l + 1)ε2| log ε|].
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Using Lemma 3.12 we get

≤(1 − c0/3)C1ε
l +
∫ (l+1)ε2| log ε|

0
c∗ε−2e−c∗ε−2s Ed(x,t)[g(Pε

Bs+γ (t)ε| log ε|[V(B(t − s)) = 1])] ds
+ C2ε

l P[S ≤ ε4] + εl+1.

Let S′ denotes the first branching time in (B(s))s≥0 and BS′ the position of the ancestor
at that time. Noting that S′ has the same distribution as S we have

≤ (1 − c0/3)C1ε
l + 2εl+1 + Eε

d(x,t)

[
g(Pε

BS′ +K1eK2T ε| log ε|
[
V(B(T − S′)) = 1

]
1S′≤T−δ′

d

]]
.

(3.17)
Combining (3.15), (3.16) and (3.17),

Pε
x

[
Vp(X̂

ε(T )) = 1
] ≤ 4εl+1 + (1 − c0/3)C1ε

l + Eε
d(x,t)

[
g
(
Pε

BS′ +K1eK2T ε| log ε|
[
V(B(T − S′)) = 1

]]
≤ (1 − c0/4)C1ε

l + Pε

d(x,T )+K1eK2T ε| log ε|
[
V(B(T )) = 1

]
,

which proves (3.14) and hence we have proved (3.9) by an argument of contradiction.
The proof of (3.10) is similar. ��

Before giving the proof of Lemma 3.12 we prove the main result.

Theorem 3.13 Let uε(t, x) = P(ξ ε
t (x) = 1) with uε(0, x) = p(x). Let T ∗ ∈

(0,T ) and k ∈ N be fixed. Choose σ1(k) as in Lemma 3.5. There exist εd(k) >

0 and ad(k), cd(k) ∈ (0,∞) such that for all ε ∈ (0, εd) and t satisfying
max{ad , σ1}ε2| log ε| ≤ t ≤ T ∗,

1. for x such that d(x, t) ≥ cd(k)ε| log ε|, we have uε(t, x) ≥ u+ − εk ,
2. for x such that d(x, t) ≤ −cd(k)ε| log ε|, we have uε(t, x) ≤ u− + εk .

Proof We first prove the result for X̂
ε
(t). We choose cd(k) = c1(k) + K1eK2T ∗

. Thus
for t ∈ [δd , T ∗] and x ∈ R

d such that d(x, t) ≤ −cd(k)ε| log ε| we have

d(x, t) + K1e
K2T ∗ ≤ −c1(k)ε| log ε|.

It follows from Proposition 3.11 and Theorem 3.6 that Pε
x [Vp(X̂

ε
(t)) = 1] ≤

u− + (C1 + 1)εk . Similarly, if d(x, t) ≥ cd(k)ε| log ε| then d(x, t) − K1eK2T ∗ ≥
c1(k)ε| log ε|. Hence

Pε
x [Vp(X̂

ε
(t)) = 0] ≤ Pε

d(x,t)−γ (t)ε| log ε|[V(B(t)) = 0] + C1ε
k ≤ 1 − u+ + (1 + C1)ε

k .

It remains to show uε(t, x) is close to Pε
x [Vp(X̂

ε
(t)) = 1]. Let G = {Xε(t) =

X̂
ε
(t) for t ≤ T ∗}. Lemma 2.1 implies that P(G) ≥ 1 − εk .
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Then

uε(t, x) = Pε
x [Vp(X(t)) = 1]

= Pε
x [{Vp(X̂

ε
(t)) = 1} ∩ G] + Pε

x [{Vp(X(t)) = 1} ∩ Gc]
≤ Pε

x [Vp(X̂
ε
(t)) = 1] + εk

On the other hand,

uε(t, x) ≥ Pε
x [{Vp(X̂

ε
(t)) = 1} ∩ G] ≥ Pε

x [Vp(X̂
ε
(t)) = 1] − P[Gc] ≥ Pε

x [Vp(X̂
ε
(t)) = 1] − εk .

Therefore, |uε(t, x) − Pε
x [Vp(X̂

ε
(t)) = 1]| ≤ εk .

3.2.4 Proof of Lemma 3.12

Proof We continue to write γ (t) = K1eK2t . Define a good event by

G = {|d(Ws, t − s) − d(X̂ ε
s , t − s)| ≤ ε for s ∈ [0, (l + 1)ε2| log ε|]}.

The triangle inequality implies d(Ws, t − s) ≤ d(X̂ ε
s , t − s) + |X̂ ε

s − Ws |. There is a
similar result with W and X interchanged so

|d(Ws, t − s) − d(X̂ ε
s , t − s)| ≤ |X̂ ε

s − Ws | (3.18)

Lemma 2.2 implies that for sufficiently small ε

P(G) ≥ 1 − ε2l . (3.19)

We choose κ0 as in (3.7) and c1(k) from Theorem 3.6. Let

R = 2c1(l) + 4(l + 1)d + 1 (3.20)

and fix K2 such that
(K1 + 1)(K2 − κ0) − κ0R = c1(1). (3.21)

Let s ∈ [0, (l + 1)ε2| log ε|] and

Ax =
{

sup
u∈[0,s]

|Wu − x | ≤ 2(l + 1)dε| log ε|
}

.

Using the reflection principle

P(Ac
x ) ≤ 2dP0

(
sup

u∈[0,s]
Bu > 2(� + 1)ε| log ε|

)

≤ 4dP0(Bs > 2(� + 1)ε| log ε|) ≤ 4dεl+1 (3.22)
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where we have used the tail bound the tail bound

P(Bs ≥ x
√
s) ≤ exp(−x2/4)

with s = (l + 1)ε2| log ε| and x = 2
√

(� + 1)| log ε|.
Recall that in Lemma 3.12 s ∈ [0, (� + 1)ε2| log ε|] is fixed and t ∈ [s, T ∗]. We
consider three cases:

1. d(x, t) ≤ − (2c1(l) + 2(l + 1)d + γ (t − s)) ε| log ε|,
2. d(x, t) ≥ (2c1(l) + 2(l + 1)d + γ (t − s)) ε| log ε|,
3. |d(x, t)| ≤ (2c1(l) + 2(l + 1)d + γ (t − s)) ε| log ε|.
The first two are easy since x is far from the interface so the probabilities of interest
are either close to u+ or close to u−.
Case 1 By (3.8) there exists v0, V0 > 0 such that if s ≤ v0 and x ∈ R

d then

|d(x, t) − d(x, t − s)| ≤ V0s. (3.23)

We take εd sufficiently small in Lemma 3.12 so that (l + 1)ε2| log ε| ≤ v0 for all
ε ∈ (0, εd). Rearranging the definition of Case 1 and adding d(Ws, t − s) to both
sides

d(Ws, t − s) + γ (t − s)ε| log ε| ≤ − (2c1(l) + 2(l + 1)d)

ε| log ε| + d(Ws, t − s) − d(x, t)

The triangle inequality implies d(x, t − s) + |Ws − x | ≥ d(Ws, t − s) so

d(Ws, t − s) + γ (t − s)ε| log ε| ≤ − (2c1(l) + 2(l + 1)d)

ε| log ε| + |Ws − x | + |d(x, t) − d(x, t − s)|.

Using (3.23) with s ≤ (l + 1)ε2| log ε|we see that on Ax

d(Ws, t − s) + γ (t − s)ε| log ε| ≤ −2c1(l)ε| log ε| + V0(l + 1)ε2| log ε|.

On event G ∩ Ax when ε is sufficiently small,

z+1 = d(X̂ ε
s , t − s) + γ (t − s)ε| log ε| ≤ d(Ws, t − s) + ε + γ (t − s)ε| log ε|

≤ −c1(l)ε| log ε|.

Hence it follows from Theorem 3.6 that

Ex [g(Pε

z+1
[V(B(t − s)) = 1] + C1ε

l )] ≤ Ex [g(u− + (1 + C1)ε
l )] + Px [Acx ] + P[Gc].

Using (G4), (3.22), and (3.19) the above is

≤ u− + (1 − c0) · (1 + C1)ε
l + 4dεl+1 + ε2l ≤ u− + (1 − c0/3)C1ε

l
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when ε is sufficiently small. As u− is a fixed point of g and we start with initial
condition p0(x) = u+ ·1{x≥0} +u− ·1{x<0} for the one dimensional BBM, the second
term on the right hand side of (3.11) satisfies

Ed(x,t)
[
g(Pε

z+2
[V(B(t − s)) = 1])] ≥ u−.

The third term on the right hand side of (3.11) is non-negative so the result follows.
Case 2 In this case d(x, t) ≥ (c1(l)+ 2(l + 1))ε| log ε|. Repeating the proof of (3.22)
gives

Pd(x,t)[Bs ≤ c1(l)ε| log ε|] ≤ P0[Bs ≥ 2(l + 1)ε| log ε|] ≤ εl+1 (3.24)

Recall z+2 = Bs + γ (t)ε| log ε|. Using Theorem 3.6 and (3.24) and (1.19) it follows
that

Ed(x,t)[g(Pε

z+2
[V(B(t − s)) = 1])]

≥ Ed(x,t)[g(Pε

z+2
[V(B(t − s)) = 1])1{Bs≥c1(l)ε| log ε|}]

≥ g(u+ − εl) − εl+1 ≥ u+ − (1 − c0)ε
l − εl+1 ≥ u+ − εl

when ε is small. Therefore, the right hand side of (3.11) for small ε is at least

(1 − c0/3)C1ε
l + u+ − εl .

Since the initial condition is p0(x) = u+ · 1{x≥0} + u− · 1{x<0}, by the monotonicity
of g it is easy to see that for any x ∈ R and t ≥ 0,

Pε
x [V(B(t)) = 1] ≤ u+.

Hence using (G4) the left hand side of (3.11) is

Ex [g(Pε

z+1
[V(B(t − s)) = 1] + C1ε

l)] ≤ Ex [g(u+ + C1ε
l)]

≤ u+ + (1 − c0) · C1ε
l ≤ u+ + ((1 − c0/3)C1 − 1)εl ,

where the last line follows from the choice of C1. So (3.11) holds in this case.
Case 3 We now turn to the case with

|d(x, t)| ≤ (2c1(l) + 2(l + 1)d + γ (t − s)) ε| log ε|.

Using (3.23) we see that on the event Ax , we have for u ∈ [0, s]

|d(Wu, t − u)| ≤ |Wu − x | + |d(x, t)| + |d(x, t) − d(x, t − u)|
≤ (2c1(l) + 4(l + 1)d + γ (t − s)) ε| log ε| + V0(l + 1)ε2| log ε|
≤ (R + γ (t − s))ε| log ε|,
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where R = 2c1(l) + 4(l + 1)d + 1, see (3.20). Applying Proposition 3.9 with

β = (R + γ (t − s))ε| log ε|

shows we can couple (Wu)u≥0 with (Bu)u≥0 (which starts from d(x, t)) in such a way
that for u ≤ Tβ = inf{s ∈ [0, t) : |d(Ws, t − s)| > β} ∧ t ,

d(Wu, t − u) ≤ Bu + κ0βu.

Note that Ax ⊆ {Tβ > s}. Let η > 0. Recall z+1 = d(X̂ ε
s , t − s) + K1eK2(t−s)ε| log ε|

and let

z+3 = d(Ws, t − s) + ε + γ (t − s)ε| log ε|
z+4 = Bs + κ0βs + ε + γ (t − s)ε| log ε|

By the coupling between d(Wt , t − s) and Bs we have z
+
3 ≤ z+4 . By the convergence

of X̂ ε
s to Ws proved in Lemma 2.2 and the monotonicity of g

Ex
[
g(Pε

z+1

[
V(B(t − s)) = 1

]+ C1ε
l)
]

≤ Ex
[
g(Pε

z+3

[
V(B(t − s)) = 1

]+ C1ε
l)
]+ Px (A

c
x ) + P(Gc)

≤ Ed(x,t)
[
g(Pε

z+4

[
V(B(t − s)) = 1

]+ C1ε
l)
]+ 4dεl+1 + ε2l . (3.25)

where in the last step we have used (3.22). Let

E = {|Pε

z+4

[
V(B(t − s)) = 1

]− u0| ≤ (u+ − u0) − δ0
}
.

where δ0 is the constant defined before (1.19).
Consider first when the event E occurs.

γ (t)ε| log ε| − (ε + κ0βs + γ (t − s)ε| log ε|)
≥ γ (t)ε| log ε| − (κ0βs + (K1 + 1)eK2(t−s)ε| log ε|)
=
(
(K1 + 1)eK2(t−s)(eK2s − 1 − κ0s) − κ0Rs

)
ε| log ε|

≥ ((K1 + 1)(K2 − κ0) − κ0R)sε| log ε| = c1(1)sε| log ε| (3.26)

where the last line follows from the choice of K2 in (3.21). Take εd sufficiently small
so that εd < min(ε1(1), δ0/2). For ε ∈ (0, εd) we can apply Corollary 3.8 to z = z+4
and w = z+2 Using (3.26) to conclude z+2 − z+4 ≥ c1(1)sε| log ε| it follows that on E

Pε

z+2

[
V(B(t − s)) = 1

]− Pε

z+4

[
V(B(t − s)) = 1

] ≥ δ0s

4
(3.27)
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so we have

g
(
Pε

z+4

[
V(B(t − s)) = 1

]+ C1ε
l
)

≤ g
(
Pε

z+2

[
V(B(t − s)) = 1

]− δ0s/4 + C1ε
l
)

Recalling s ≤ (� + 1)ε2| log ε| and using the monotonicity of g we can replace
−δ0s/4 + C1ε

l by 0 when s > 4C1ε
l/δ0. If � ≥ 4 and s ≤ 4C1ε

l/δ0 the s ≤ ε3 for
small ε. Since g′(p) ≤ C2

g
(
Pε

z+4

[
V(B(t − s)) = 1

]+ C1ε
l
)

≤ g
(
Pε

z+2

[
V(B(t − s)) = 1

])+ max
0≤p≤1

|g′(p)| · C1ε
l1s≤ε3

≤ g
(
Pε

z+2

[
V(B(t − s)) = 1

])+ C2ε
l1s≤ε3 (3.28)

(1.19) implies that If p ≥ u+ − δ0, δ ≥ 0 then

g(p + δ) ≤ g(p) + (1 − c0)δ. (3.29)

Taking εd sufficiently small so that C1ε
l < δ0 for all ε ∈ (0, εd), and using (3.29) we

have on Ec that

g
(
Pε

z+4

[
V(B(t − s)) = 1

]+ C1ε
l
)

≤ g
(
Pε

z+4

[
V(B(t − s)) = 1

])+ (1 − c0) · C1ε
l

≤ g
(
Pε

z+2

[
V(B(t − s)) = 1

])+ (1 − c0) · C1ε
l

(3.30)

since z+4 ≤ z+2 . Using (3.28) and (3.30) in (3.25)

Ex

[
g
(
Pε

z+1
[V(B(t − s)) = 1] + C1ε

l
)]

≤ Ed(x,t)

[
g
(
Pε

z+2
[V(B(t − s)) = 1]

)]
+ (1 − c0)C1ε

l + 4dεl+1 + ε2l + C2ε
l1s≤ε3

≤ Ed(x,t)

[
g
(
Pε

z+2
[V(B(t − s)) = 1]

)]
+ (1 − c0/3)C1ε

l + C2ε
l1s≤ε3 ,

which completes the proof of Lemma 3.12 and hence of Proposition 3.11.

4 Checking the conditions

Since (G0) is based on an observation on all the particle systems considered, it is
satisfied trivially. Recall that (G5) g is strictly increasing on [0, 1] holds in all our
examples and (G4) is a consequence of (G1), (G2) and (G3). That is, it suffices to
check (G1)–(G3).
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4.1 Cubic g

As discussed in Sect. 1, both the sexual reproduction model with rapid stirring and
the Lotka–Volterra systems fall into this category. In this case, according to (1.15) we
must have

g(p) = p − c[(p − u−)(p − u0)(p − u+)]

for some c > 0. To check (G1)we note that ifwe let g1(p) = (p−u−)(p−u0)(p−u+)

then g1(u+ − δ) = −g1(u− + δ). So g(u+ − δ) + g(u− + δ) = u+ + u− = 2u0 by
(G0).

g′(p) = 1 − c[(p − u0)(p − u+) + (p − u−)(p − u+) + (p − u−)(p − u0)]

From this we see that

g′(u+) = 1 − c(u+ − u−)(u+ − u0) < 1,

g′(u−) = 1 − c(u− − u0)(u− − u+) < 1,

g′(u0) = 1 − c(u0 − u−)(u0 − u+) > 1,

which proves (G2). Taking the second derivative we obtain

g′′(p) = −2c[(p − u+) + (p − u0) + (p − u−)] = −6c(p − u0)

since u+ + u− = 2u0. This proves (G3).

4.2 Nonlinear voter model

Recall that for the nonlinear voter model we suppose

(A1) b1 > 0 and 3b1 + b2 < 0;
(A2) 0 ≤ a1 ≤ a2 ≤ 1/2;
(A3) 6b1 + b2 > 0.

In Region 2 there are two extra roots of φ(p) denoted by 1− u∗ < 1/2 < u∗, where

u∗ = 1/2 + β0 with β0 =
√−(b1 − b2)(3b1 + b2)

2(b1 − b2)
.
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The roots come from the following calculation:

φ(p) = b1 p(1 − p)4 + b2 p
2(1 − p)3 − b2 p

3(1 − p)2 − b1 p
4(1 − p)

= b1 p(1 − p)(1 + 3p2 − 3p − 2p3) + b2(1 − p)2 p2(1 − 2p)

= p(1 − p)(1 − 2p)
(
b1(1 − p + p2) + b2 p(1 − p)

)
= p(1 − p)(1 − 2p)(b1 − b2)

(
p2 − p + b1

b1 − b2

)
.

Solving p2 − p + b1/(b1 − b2) = 0 gives the two extra roots 1
2 ± β0.

To check our conditions we note that g(p) = p + φ(p) where φ(p) is the reaction
term, see (1.15). In our notation u0 = 1/2, u− = 1 − u∗ and u+ = u∗.
Checking (G1) φ(p) is antisymmetric about u0 so φ(u+ − δ) = −φ(u− + δ) and
hence g(u+ − δ) + g(u− + δ) = u+ + u− = 2u0, proving (G1).
Checking (G2) u−, u+ are stable fixed points so φ′(u−) < 0, φ′(u+) < 0. u0 is
unstable so φ′(u0) > 0 and (G2) follows.
Checking (G3) Since g′′(p) = φ′′(p) the next step is to calculate φ′′(p) for p ∈
(1/2, u∗). By symmetry it is easy to see

φ(0) = φ(1/2) = φ(1) = 0 and φ(p) = −φ(1 − p). (4.1)

It follows that φ′′(p) = −φ′′(1− p) and φ′′(1/2) = 0. Since φ(p) is quintic it has at
most three inflection points. To check (G3) it suffices to show φ′′(u∗) < 0.

Let φ1(p) = p(1 − p)(1 − 2p) and φ2(p) = (b1 − b2)
(
p2 − p + b1

b1−b2

)
. Since

φ(p) = φ1(p)φ2(p) we have

φ′′(p) = φ′′
1 (p)φ2(p) + φ1(p)φ

′′
2 (p) + 2φ′

1(p)φ
′
2(p).

Notice that φ2(u∗) = 0 so our problem simplifies to

φ′′(u∗) = φ1(u
∗)φ′′

2 (u
∗) + 2φ′

1(u
∗)φ′

2(u
∗)

The calculation simplifies if we write u∗ = 1/2 + β0, i.e.,

φ′′(1/2 + β0) = φ1(1/2 + β0)φ
′′
2 (1/2 + β0) + 2φ′

1(1/2 + β0)φ
′
2(1/2 + β0)

= −2β0

(
1

4
− β2

0

)
· 2(b1 − b2) + 2

(
6β2

0 − 1

2

)
· 2β0(b1 − b2)

= 4β0(b1 − b2)

(
7β2

0 − 3

4

)
= −4β0(6b1 + b2) < 0,

hence proving (G3).
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