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Abstract

There are a number of situations in which rescaled interacting particle systems have
been shown to converge to a reaction diffusion equation (RDE) with a bistable reaction
term, see e.g., Cox et al. (Astérisque 349:1-127, 2013), Durrett (Ann Appl Prob
19:477-496, 2009, Electron J Probab 19:1-64, 2014), Durrett and Neuhauser (Ann
Probab 22:289-333, 1994). These RDEs have traveling wave solutions. When the
speed of the wave is nonzero, block constructions have been used to prove the existence
or nonexistence of nontrivial stationary distributions. Here, we follow the approach
in a paper by Etheridge et al. (Electron J Probab 22:1-40, 2017) to show that in
a wide variety of examples when the RDE limit has a bistable reaction term and
traveling waves have speed 0, one can run time faster and further rescale space to
obtain convergence to motion by mean curvature. This opens up the possibility of
proving that the sexual reproduction model with fast stirring has a discontinuous
phase transition, and that in Region 2 of the phase diagram for the nonlinear voter
model studied by Molofsky et al. (Theoret Pop Biol 55(1999):270-282, 1999) there
were two nontrivial stationary distributions.

Keywords Voter model perturbation - Fast sirring - Sexual reproduction model -
Nonlinear voter model

Mathematics Subject Classification Primary 60K35

1 Introduction

The literature on motion by mean curvature is extensive, so we will only cite the papers
most relevant to our research. In 1992 Evans et al. [ 11] established that suitably rescaled
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versions of the Allen—Cahn equations converge to motion by mean curvature, in the
sense that the solution converges to an indicator function of a region whose boundary
evolves as the mean curvature flow. The big breakthrough made in this paper was that
the limiting result was valid for all time despite the possible occurrence of geometric
singularities. See the first four pages of [11] for the physical motivation and references
to previous work.

In 1995 Katsoulakis and Souganidis [ 18] used the results developed in [11] to prove
that stochastic Ising models with long range interactions, called Kac potentials, when
rescaled converge to motion by mean curvature. The interaction kernel for their Ising
model on Z is

Ky(x,y) = y'J(ylx — yD
J : R = [0, 00) has compact support and is symmetric, i.e.,J (x) = J(|x]).

(1.1)

The weighted sum of spins seen by x is

hy (x) =Y Ky (x, )0 ().
y#X

This formula is used to define the Gibbs measure with inverse temperature j

o) = - (1 5 o <—ﬂ Z hy(x)a(x)> ,

where Z () is a normalization to make p a probability measure. For this formula to be
meaningful we have to restrict to a finite box A = [—L, L]? with boundary conditions
imposed outside of A and then let L — oco. See Chapter 6 of Liggett [19] for more
details. &y, is also used to define the rates at which o (x) flips to —o (x),

exp(=phy (x)o (x))
exp(—phy (x)) + exp(Bhy (x)).

cy(x,0) =

This is one in the large collection of flip rates for which Gibbs states are reversible
stationary distributions. Again, see Chapter 6 of [19].

A very basic question is to understand the behavior of the process as y — 0.
DeMasi et al. [4-6] studied the limits as y — 0 of the averaged magnetization of the
system

my(x, 1) = E,0,(x), (x,1) €Z xRY,

where EZV is the expectation starting from the measure u” . To state the result in [4]
we need the mean-field equation

3
8—”;+m—tanh(J*m)=O inRY x R*, (1.2)
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where J x m denotes the usual convolution in R?. Let Zﬁ ={x=(x1....,xy) €

(ZH"xy # -+ # xn).

Theorem 1.1 [Theorem 2.1 in [18]]. Assume that the initial measure is product mea-
sure w¥ with

E}yo(x) =mo(yx), xeZf,

where my is Lipschitz continuous and (1.1) holds. Then for any fixed n and x € Zz,

Ey (Ho,(x, ) —Hm(yxi,t) =0
i=1

hm

where m is the unique solution of (1.2) with initial condition my.

In words, the distribution of the particle system at time ¢ is almost a product measure
in which the probabilities are given by m(y x, t). To prove convergence to motion by
mean curvature [18] use a lengthy argument to examine the asymptotics of the mean-
field equation (1.2) as t — oo and space and time are rescaled. Since the publication
of [18] a number of similar results have been proved. [1,15,16,22,23] is a small sample
of the papers that can be found in AMS subject classification 60.

1.1 A more probabilistic approach

Soon after the publication of [11], Chen [2] generalized much of this work and simpli-
fied the proofs. Etheridge et al. [ 10] use his paper as their primary source of information
about motion by mean curvature, so we will as well. The object of study in [2] is the
reaction diffusion equation (RDE)

W=Au—Lfw), (x,n)eR!xRT,

u(x,0) = p(x), x e R4, (13)

where € is a small rescaling parameter, p is a bounded continuous function in R¢ and
f is the derivative of a bistable potential. Chen gives general conditions on f in (1.3)
of his paper [2] that guarantee motion by mean curvature will appear in the limit as
€ — 0,

f e C*R), fhas exactly three zeros: u_ < up < uy
fw) <0, foru e (—oo,u_)U (up,uy)
fu) >0, foru € (u—,up) Y (u4, 00)

flw=) >0, f'up) >0, f'(uo) <O0.

We will restrict our attention to the case in which f is a third or fifth degree polynomial
that is anti-symmetric around its central root ug, i.e., f(ug — x) = — f (uo + x).
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In the case of a cubic, the 1/€? in front of the reaction term suggests that when €
is small the values of the solution will be close to one of the three fixed points (u_,
uo and u) across most of the space. Chen’s results prove this and give quantitative
estimates when ¢ is small.

To explain the phrase “motion by mean curvature”, we note that under some assump-
tions that we state later, he proved that the set of points {x € R? : u(x,t) = up} can
be written as a family of parameterized hyper-surfaces I'; : §9~! — R4 where §¢~!
is the unit sphere in R4, and I'; evolves by

oI, (0)

= K (@)n(0), 6 e S, (1.4)

where n,(0) is the vector normal to the hypersurface and «;(6) is the mean curvature,
i.e., the sum of the principal curvatures. We refer to 0 = {I'; : + > 0} as the mean
curvature flow.

Etheridge et al. [10] used Chen’s results to show that the spatial A-Fleming-Viot
process with selection against heterozygosity when suitably rescaled in space and time
converges to motion by mean curvature. We refer the reader to [10] for the description
of the process. Their first step was to study the behavior of the PDE ind > 2,

v 1
— = AV (1 — )2 — 1), 10, x) = p(x)
ot €2

where p(x) : R4 — [0, 1] is the initial condition. To analyze the PDE [10] introduce
a branching Brownian motion in which particles split into 3 at a fixed rate e ~2. As in
the systems described in the next subsection, this is a dual process that can be used to
compute solutions of the PDE. To find u(x, ) one starts with a particle at x at time ¢
and runs the branching Brownian motion down to time 0. If a particle in the system
ends up at y at time 0, its state is set to be 1 with probability p(y) and O with probability
1 — p(y). As we work upwards the branching tree, states of particles do not change
until three lineages coalesce into one. At this point the one lineage that emerges after
coalescence takes the value that is in the majority of the three coalescing particles.

A variety of particle systems have dual processes that are close to branching Brow-
nian motions after rescaling. A similar treatment as in [10] can thus be taken to
understand these systems. Instead of taking a majority vote at each branch point in
the dual process, the specific interaction rule of the particle system considered would
prescribe the value of the lineage that emerges after that.

In what follows we will discuss three examples. The sexual reproduction model
which is a system with fast stirring and the Lotka—Volterra system and nonlinear voter
models that are examples of voter model perturbations. In each case we will first
consider a system £ on 6Z¢ run at rate 72 that converges to a reaction diffusion
equation. Then we will introduce a process & on 8eZ4 that is further sped up by a
factor of €2 that converges to motion by mean curvature. For reasons that we will
explain later we will choose

§=exp(—e) or e=(log(1/8)""/". (1.5)

@ Springer



Motion by mean curvature in interacting particle systems 493
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Fig. 1 Picture of the branching Brownian motion. We run from (x, #) down to time 0, and then work back
up the structure to compute the state of x at time ¢

Note that € is determined by § and vice versa so we can regard either as the small
parameter in &7, but given the notation for the processes it is more natural to choose
€.

1.2 Systems with fast stirring

Particle systems with fast stirring were first introduced by Durrett and Neuhauser [9].
Let 6 > 0 be a small rescaling parameter. They considered processes 5,8 874 —
{0, 1} that evolve as follows:

(i) There are translation invariant finite range flip rates cs(x, &) that give the rate at
which site x changes to the opposite state when the configuration is &.

(ii) For each unordered pair x, y € 8Z¢ with ||x — y||; = § we exchange the values at
x and y at rate §2/2.

We will focus on the special case in which the particle system is the “sexual repro-
duction” model where state 1 means a site is occupied and state 0 means vacant. The
flip rates is given by

cs(x, &) = lig=1) + lg)=0y - An1(x, §),

where A > 0 is the birth rate and n{ (x, &) is the number of pairs in the set

x+MN =x+8-{{er, e2}, {—er, e2}, {—e1, —ea}, {e1, —ea}}
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494 X. Huang, R. Durrett

in which both sites are in state 1. To have a concrete example in mind we will restrict
our attention to the case d = 2. As there are four possible pairs in Z?, we let B = 4.

Durrett and Neuhauser [9] showed that as § — 0 the density of 1’s near x at time
t converges to the solution of

au 1 5
m = EAM + ¢(u) where ¢u) = —u+ Bu”(1 —u). (1.6)

The term —u in ¢ (1) accounts for deaths of individuals (i.e., the flips from 1 to 0
at rate 1), while the term Bu®(1 — u) accounts for the sexual reproduction. Writing
¢(u) = —u(l — Bu(l — u)) we see that when 8 < 4 there is no positive solution of
¢(u) = 0. When 8 = 4, 1/2 is a double root. When 8 > 4 there are two positive
roots p; < 1/2 < p» < 1. Based on this calculation one might guess that as § — 0,
the critical value for survival of the sexual reproduction model with fast stirring,
Bc(8), should converge to 4. However, the correct result, which is proved in [9], is
Be(8) > 45as§ — 0.

To explain the intuition behind this, we look at the PDE (1.6) in d = 1 for intuition.
We note that if 8 > 4 there are traveling wave solutions u(x, t) = w(x — ct) with
w(—00) = p and w(oco) = 0. A little calculus shows that w satisfies

—cw’ = (1/2w” + ¢(w).

Multiplying by w’ and integrating from —oo to co, we find, see (1.6) in [9], that
)
C/ w'(x)? dx = / P (y)dy.
0

We have no idea about the value of f w’(x)% dx, but it is positive so this tells us that
the sign of the wave speed c is the same as that of the integral on the right-hand side.
When B8 = 4.5, the three roots are 0, 1/3, and 2/3, so symmetry around the central
root 1/3 implies the integral is 0. Monotonicity (or calculus) tells us that ¢ < 0 when
B < 4.5, and ¢ > 0 for B > 4.5. Convergence results for the PDE, see e.g. [13], and
block constructions were used to show that

e When 8 > 4.5 there is some 8y (8) > 0 such that for § < §o(8) there is a nontrivial
stationary distribution with a density close to p,. The second part of the conclusion
about density is an improvement due to Cox et al. [3].

e When 8 < 4.5 there is some §p(B) > 0 such that for § < 8o(B) the process é,‘s
dies out.

Since py(B) approaches 2/3 as 8 |, 4.5, itis conjectured in [9] the density of the upper
invariant measure (which is obtained by starting with all 1’s and letting t — ©0) has
a positive density at 8.(6) when § is small.

Here we speed up the process E;S by an extra factor € 2 and rescale the space to
8€Z to obtain a new process

£€ : 8eZ? — {0, 1).

@ Springer



Motion by mean curvature in interacting particle systems 495

If € is kept fixed then the limiting differential equation as § — 0 is

W L nue vt Lowe), w0, = p) (1.7)
Bt_Zu 6214,14,)c_px, .

where p : R — [0, 1] is the initial condition and the reaction term remains the same
¢u) = —u+ pu*(1 —u).

(1.7) matches the form of an Allen—Cahn equation given in (1.3) except for a factor
% in front of the Laplacian. This is because their underlying Brownian motions have
different rates. The Brownian motion with generator Au has rate 2, that is, at time
1 the Brownian motion has variance is 2, while the Brownian motion with generator
%Au runs at rate 1. We will adopt the convention in probability and assume that

all Brownian motions have rate 1, (1.8)

which gives rise to PDEs with a factor % before the Laplacian like (1.7).

Fixing € and letting § — 0 shows us how the rescaled particle system is related to
the Allen—Cahn equation. However, to prove our result we need to take both € and §
to 0. In order to avoid collisions in the dual process (see Sect. 2 for a full discussion),
we need to require that the branching rate ¢ =2 is much slower than the stirring rate
(8€)72/2 so that newly born particles move away from each other before the next
branching time. Choosing § = exp(—e ) guarantees this. Weaker conditions may
suffice.

Let p(x) : R4 — [0, 1] be the initial density of the system that we consider. In the
case of sexual reproduction d = 2. We will state our assumptions on p later in Sect.
1.5, see (C1)—(C3). We say the process & starts with initial condition p if the initial
distribution is a product measure where P(Sg (x)=1) = px)forx € seZd.

Theorem 1.2 Let &f : 8eZ? — {0, 1} denote the rescaled sexual reproduction model
with fast stirring starting with an initial condition p(x) that satisfies (CI)—(C3).
Choose § = exp(—e‘S). If B =45 thenase — 0, P(§f(x) = 1) converges to
motion by mean curvature.

Theorem 1.9 will explain explicitly what it means to converge to motion by mean
curvature. Theorem 1.2 shows that the probabilities P (& (x) = 1) converge to a
density u(x, t) that satisfies motion by mean curvature. As in Theorem 1.2 in [3] one
can also prove that the rescaled particle system which takes values in {0, 1} on a fine
grid also converges to u(x, t). See the discussion before Theorem 1.2 in [3] for the
necessary definition. This remark also applies to the next two examples.

In motion by mean curvature the interfaces become straight as time t — 00, so the
regions in which the solution is close to one of the two stable fixed points get larger.
This suggests that

Conjecture 1.3 If B = 4.5 there exists some €y(f) > 0 so that when € < €o(B) there
is a translation invariant stationary distribution for the process & with density close
to 2/3.
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496 X. Huang, R. Durrett

Theorem 1.2 suggests that there is a discontinuous phase transition but does not rule
out the possibility that the phase transition could be continuous for any € > 0.

1.3 Voter model perturbations

Cox et al. [3] introduced a class of interacting particle systems called voter model
perturbations. For simplicity we will restrict our attention to processes with two states.
In this case the process is denoted by & : Z¢ — {0, 1} and the rate at which & (x)
flips to the opposite state given configuration & is

Ax,8) = cy(x, &) +8%cp(x, &)

where ¢, (x, §) is the voter flip rate and ¢, (x, §) is the perturbation flip rate. We rescale
the system & by x — 8x, 1 — 821 and obtain the rescaled process ét‘s 1874 — {0, 1}.
The perturbation ¢, (x, &) is scaled down by 82 so that on the sped up time scale it is
O (1) while the voter model runs at rate 572,

The voter model part of the process will depend on a symmetric (i.e, K (x) =
K (—x)), irreducible probability kernel K : Z4 — [0, 1] with K (0) = 0 and covari-
ance matrix o2 1. Letting \V,, denote the neighborhood for voting (determined by K),
whenever there is a voter flip at x € 74 the voter at x chooses a site in x + N,
randomly according to the probability kernel K and adopts its state. The voter flip rate
can be formulated as

c(x, ) = =8W) fi(x, &) + &) folx, §),

where f(x, &) = 3_,cza K(y — x)Lg(y)=i) is the local density.

Cox etal. [3] have shown (see their Theorem 1.2) that, under some mild assumptions
on the perturbation c,, if we run the system on 874 with d > 3 then the process
converges to the solution of a reaction diffusion equation

W2 k)
— = —Au u),
ot 2

where ¢ is the reaction term that depends on the particular perturbation. A general
formula is given in Sect. 1.1 of [3]. See (1.30) Here, d > 3 is needed so that the
voter model has a one parameter family of stationary distribution. Four examples
were studied in [3]. Two fall within the scope of this investigation.

Lotka—Volterra systems This model of the competition of two species were initially
studied by Neuhauser and Pacala [21]. For more recent references see [3]. In this case
the perturbation rate is given by

cp(x, ) = O fE(1 — E(x)) + 01 fFE(x)

where 6y and 6, are parameters in R. In words we pick two nearest neighbors of x
(with replacement, according to K') and flip if both of the neighbors are of the opposite
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type to x. Let {ey, e>} be i.i.d. with law K (-) and let (-), denote the expectation on
the product space where eg, e; and £ are independent and £ distributes as the voter
equilibrium with density u. Then the limiting PDE has reaction term

¢ () = 6o((1 — £(0))§(e1)(e2))u — 01(E(0)(1 — &(er))(1 —&(e2)))u-

This term can be rewritten in the form

@) =u(l —u)[Bop2 — 01(p2 + p3) +up3(6 + 61)], (1.9

where p» = p(0Oley, e2) is the probability that the rate 1 random walks with ker-
nel K starting from e; and e; coalesce but they avoid the one starting at 0, and
p3 = p(0leq|ey) is the probability that the random walks starting from 0, e, e2 never
coalesce.

In [3] the phase diagram is described. There are five regions {R;, 1 <i < 5}, see
Fig. 1. At the boundary between R4 and Rs, 6y = 61 = 6 > 0 so (1.9) simplifies to

¢w) =0p3u(l —u)Cu —1).

In this case the reaction diffusion equation is bistable and the speed of traveling waves
is 0. Next we further rescale the system .§,‘s by x — €x,t — €2t to get the second
rescaled process & . Following the same approach as our proof of Theorem 1.2, we
have

Theorem 1.4 Let & : 8eZ — {0, 1} denote the rescaled voter model perturbations
where the perturbation is a Lotka—Volterra system, starting with an initial condition
p(x) that satisfies (C1)—(C3). Choose § = exp(—6_3). Ind >3ase - 0, P(§  (x) =
1) converges to motion by mean curvature.

In the Lotka—Volterra system the stable fixed points are at 0 and 1, so reasoning as
we did for the sexual reproduction model with fast stirring:

Conjecture 1.5 When € is sufficiently small there is clustering in the process &f, i.e.,
for any finite box B the probability of seeing both types in the box tends to 0 ast — 0.

Nonlinear voter models Molofsky et al. [20] used simulations and heuristic arguments
to study a discrete time system with nearest neighbor interactions. We consider a
continuous time version of the system with long range interactions. At times of the
arrivals of a rate 1 Poisson process, a site x chooses four points x1, ... x4 at random
fromx+[—L, L]d. If there are exactly k one’s at the sites x, x, . .. x4 then x becomes
1 with probability a; and O with probability 1 — a; where

ap=0, as=1, aj=1—a4 ar=1—a;3.

This gives us a two-parameter family of models that are symmetric under interchange
of 0 and 1.
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498 X. Huang, R. Durrett

It is complicated to compute the reaction term ¢y (1) explicitly as the states of the
chosen sites x, xp, . . . x4 might not be independent. However, when the neighborhood
Ny =[-L, L]d is chosen to be large then coalescence in the dual process is rare and
the states of these sites become nearly independent. A little calculation, see (1.67) in
[3], shows that if they are independent then the reaction term is

dw) = bru(l —w)* + b’ (1 —u)® —bou> (1 —uw)> —bi(1 —w)u,  (1.10)

where b; = 4a; — a4 and by = 6ay — 4as. For any L > 0, ¢1 (1) has the same form
as that in (1.10) with coefficients by 1, by ; instead of by, by. If L is large then the
coefficients b; 1., by 1 are close to the coefficients by, by in the independent case.
The reaction term ¢ (#) is a cubic in Region 1 and 3, but in Region 2 and 4 it is
quintic. This leads to the following predictions about the behavior of the system.

e In Region 1, the fixed point at 1/2 is attracting, so the system should exhibit
coexistence.

e In Region 3, the fixed point at 1/2 is unstable, so when the process is sped up it
should exhibit motion by mean curvature, and we expect clustering, i.e., for any
finite box [—N, N]¢ the probability that all sites in this box have the same state
tends to 1.

e In Region 2, 0 and 1 are unstable fixed points, so if the fixed points are u™ <
1/2 < 1 — u*, the values in [0, u* — ¢] and [1 — u* + ¢, 1] for any & > 0 should
rapidly disappear from the solution. When the process is sped up then the system
exhibits motion by mean curvature, resulting in large regions with 1’s at density
u* separated by a thin boundary from large regions with density 1 — u*.

e InRegion4, there is a traveling wave solution wy with wi(—o0) = 1 and w;(c0) =
1/2 with speed c; and a traveling wave solution wy with wy(—o0) = 1/2 and
wa(00) = 0 with speed c3. By symmetry ¢c; = —cj. If ¢ < 0 (Case 4A), the
PDE converges to 1/2 and there is coexistence. If ¢; > 0 (Case 4B) and L is
sufficiently large, then there is a traveling wave solution wq of the PDE ind = 1
with wo(—o00) = 0 and wo(oco) = 1 with speed O (see p. 284 in [14]). When the
process is sped up then it should exhibit motion by mean curvature, and we expect
clustering.

In [3] the following result is proved, see their Theorem 1.13 (Fig. 2).

Theorem 1.6 Suppose (b1, ba) is in Region 1, 2 or 4A. If L is sufficiently large then (i)
There is coexistence for sufficiently small § (depending on L). (ii) Let n > 0. In Region
1 and 4A, there is a o(n) so that for 5 < 8o(n) and any stationary distributions v with
v(E=0)=vE=1)=0have

sup [v(E(x) = 1) — 1/2| <.

Again we need to further speed up the process to get convergence to motion by
mean curvature. We rescale the process Sf a second time by speeding up time by an
extra € ~2 and rescaling space to 8€Z¢ to define a process &
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5b1+b2:0

- <
4B \ 4A —

3b1 + by =0
= 2
61:0

Fig. 2 Phase diagram for the continuous time nonlinear voter model with large range in d > 3. Piecewise
linear curves show the shape of ¢. Black dots indicate the locations of stable fixed points

We define the voting and branching neighborhoods by
N, ={tel,...+es} and N, =[-L,L1*NZ°.

To prove our result we need several assumptions:

(A1) by > 0 and 3b1 + by < 0: the process is in Region 2.
(A2) 0 < a; < ap < 1/2: the process is attractive.
(A3) 6b1 + by > 0: the g function defined in (1.14) is concave on (1/2, 1 — u™).

Theorem 1.7 Let & : 8eZ4 — {0, 1} denote the rescaled voter model perturbations
where the perturbation is a nonlinear voter model, starting with an initial condition
p(x) that satisfies (C1)—(C3). Choose § = exp(—€_3). Suppose the initial condition
p(x) satisfiese < p(x) < 1—¢ forsomee > 0.Ind > 3if(Al), (A2), and (A3) hold
then as € — 0, P(&f (x) = 1) converges to motion by mean curvature.

Using the reasoning from the two previous examples:

Conjecture 1.8 If (Al), (A2), and (A3) hold then there exists some €y(ay, az) > 0 so
that when € < e€o(ay, ay) there is a translation invariant stationary distribution in
which the density is close to u*. By symmetry there is also one with density to close to
1—u*

The statement in Conjecture 1.8 implies the existence of two translation invariant
stationary distributions.
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1.4 Overview of proofs

The key to the proof in [10] and in our three examples is understanding the dual process
and using a special function g to compute the state after each branch point in the dual
process.

Duality and the g function

The g function in [10]. [10] begins by constructing a dual process that produces the
solution to

9
a_b: — Autcu(l —w)Qu—1), u(©,x) = px),x R

The initial condition p is assumed to take values in [0, 1] and satisfy some regularity
conditions that we will state later.

The dual process in [10] is a branching Brownian motion in R¢ in which the
Brownian motions are run at rate 2 and split into 3 particles at rate c. To compute the
solution at x at time ¢ they run the dual process backward in time down to time 0. A
dual particle that lands at y at time 0 is set to be 1 with probability p(y) and to be 0
with probability 1 — p(y). The states for different particles at time O are independent.
Then they work their way back up the tree performing majority vote whenever three
lineages merge into one. In [10] an important role in the proof is played by the function

go(p) = p> +3p*(1 — p) =3p* —2p, (1.11)

which is the probability that the output of the majority vote operation is 1 when the
inputs are independent Bernoulli(p) random variables. go has fixed points at 0, 1/2
and 1.

The g function in sexual reproduction model with fast stirring The sexual reproduc-
tion model with fast stirring has a dual process that was introduced by Durrett and
Neuhauser [9]. The dual has particles that are moved by stirring, and have births when
events in the sexual reproduction dynamics occur. In Sect. 2 we define this dual process
rigorously and show that in the fast stirring limit it is almost a branching Brownian
motion in R2. Since a birth event depends on the states of three particles (two particles
in the chosen pair and the particle at the center), the dual branches into three particles
at each branch point. However, we mark one lineage to indicate it came from the orig-
inal particle while the other two are offspring. When g = 4.5, we have a birth event
with probability 9/11 (i.e., 8/(1 + B)) and a death event with probability 2/11. The
analogous function to (1.11) for the sexual reproduction model with fast stirring is

9 9
g1<p)=ﬁ[p2(1—p>+p] = H[p+p2—p3], (1.12)

which has fixed points 0, 1/3 and 2/3.

The g function in voter model perturbations where the perturbation is a Lotka—Volterra
system Voter model perturbations also have duals that were defined by Cox et al. [3].
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In the class of nonlinear voter models that we will study, the dual is a branching
coalescing random walk. In the Lotka—Volterra system the system branches into three,
and we mark one lineage to indicate it came from the original particle (call it x) while
the others are offspring (call them y and z).

To simplify computation, in the dual process we only consider the “effective” per-
turbations and let them be branch points. When a perturbation occurs at x there are
three possibilities: (i) If x coalesces with y or z (or with both) there is no change in
the state of x. Hence we ignore this case. (ii) If y and z coalesce then y and z share
the same state. This case is treated as a voter event since x would adopt the state of
a randomly chosen neighbor (y or z). Hence this case is not part of the perturbation.
(iii) If there is no coalescence among the three particles, x changes state if y and z are
both in the opposite state to itself. Case (iii) is the only effective perturbation and in
this case

g(p) =1 —p)p*+p[l — A= p)?|=3p>—2p’ (1.13)

which is the same as (1.11).
The g function in voter model perturbations where the perturbation is a nonlinear
voter model In the nonlinear voter model the system branches into five, and we again
mark one lineage to indicate it came from the original particle. Since the branching
rate is 1 ¢ (p) has the form

¢(p) = —phi(p) + (1 — p)ha(p),

where h1(p) represents the probability of getting a 0 when the center is in state 1
and the states of the rest four sites are i.i.d. Bernoulli(p), while h>(p) represents the
probability of the center flipping from O to 1. It follows that

g(p)=pd—hi(p)+A—-pha(p)=¢(p)+p

=bip(1 — p)* +bap*(1 — p)* —bap>(1 — p)? — by p*(1 — p) + p
(1.14)

where by = 4a; — a4 and by = 6ay — 4as. In the collection of nonlinear voter models
that we study g3 has fixed points at 0, 1 — u*, 1/2, u*, and 1. If the middle fixed point
u( is unstable then 0,1 are stable if there are three zeros, and 1 — u*, u™ are stable if
there are five zeros. We collect these observations into an assumption

(GO) There are fixed points 0 < u_ < up < u4 < 1 where uy is unstable, u4, u_
are stable, and v — ug = ug — u—_. There can be fixed points at 0 and 1 which
must be unstable. To avoid absorption, the initial condition p(x) is uniformly
bounded away from the fixed points at 0 and 1, i.e.,

(1) if there is a fixed point at 0 we suppose the initial condition p(x) > ¢ for some
e >0,

(i1) if there is a fixed point at 1 we suppose the initial condition p(x) < 1 — ¢ for
some ¢ > 0.

We can observe the reaction term ¢ (p) in the above three examples satisfies
¢(p) =r(g(p) —p) (1.15)
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where r is the reaction rate.

1.5 Proof of convergence

The main result in this paper is the following result that contains Theorems 1.2, 1.4
and 1.7 as special cases. This result applies to any model with fast stirring or voter
model perturbation where the g function satisfies (G0) and the following assumptions:

(GD) guy —8)+gu_~+08) =u_~+uy =2ug (1.16)
(G2) g'(up) >1 and g'u_)=g"(uy) <1. (1.17)
(G3) g"(p) > 0if p e (u_,u), g"(p) <0if p e (up, uy). (1.18)

(G4) There exists cg € (0, 1—g’(u_))and 8, = inf{x >0: g'(u_+x) > 1—co} >0
so that for § < §,

wy —gluy —8) = gu_+8) —u_ < (1—co)s. (1.19)

(GS5) g is strictly increasing on [0, 1].
In Sect. 4 we will show that the conditions hold in all our examples.

The initial condition p : R? — [0, 1] is assumed to satisfy some regularity condi-
tions given later. Given p, the initial interface is defined to be

r = {x G]Rd:p(x)zuo}.

Following [10] we suppose that I" is a smooth hypersurface which is also the bound-
ary of a bounded open set topologically equivalent to the sphere. Now we state the
regularity conditions imposed on the initial condition p:

(C1) T"is C“ for some o > 3.
(C2) For x inside I', p(x) < ug. For x outside I', p(x) > uyp.
(C3) There exists r, y > 0 such that for all x € RY, [p(x) —ug| = y(dist(x,I") Ar).

The conditions (C1)—(C3) guarantee that the mean curvature flow 0 = {I'; : ¢t > 0}
started from I" exists up to some finite time .7, see e.g., Evans and Spruck [12]. With T';
properly defined, the meaning of d(x, ) is now precise: it is the signed distance from x
to I'y, positive outside I'; and negative inside. Note that I'; = {x € R :d(x,1) = 0}.

In the scope of this paper we consider only the evolution of a single interface. In
more general scenarios there could be multiple interfaces evolving together, say nested
interfaces.

Theorem 1.9 Let & denote a rescaled particle system on 8eZ® within the two classes
considered. Suppose & satisfies (GO)—(GS5), and let u®(t,x) = P(& (x) = 1) with
u¢(0,x) = p(x). Let T* € (0, 7) and k € N be fixed. There exist €;(k) > 0 and
by(k), cqa(k) € (0, 00) such that for all € € (0, €q) and t satisfying bd(k)e2| loge| <
t<T*
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1. for x such that d(x, t) > cq(k)e|log €|, we have u¢(t, x) € (u4 — €5 uy + €9,
2. for x such that d(x, 1) < —cy(k)e|log €|, we have u€ (¢, x) € (u_ —€*, u_ + €.

Our proof follows [10] very closely. As we give our proof we will describe the
correspondence between the two arguments. Here we give a brief outline of the proof
to highlight the main steps. From now on we will let B(#) denote the one-dimensional
branching Brownian motion, while W(#) denotes branching Brownian motion in d >
2.

Step I Prove a result in one dimension. Let u_, u_ be the stable fixed points of g, and
let V(B(z)) be the result of applying the algorithm defined in Sect. 2.3 to compute the
state when the initial density is po(x) = u_-l{y <o} +u4-l{x>0}. Ind = 1 the interface
is a single point and there is no curvature so it does not move. The one dimensional
version of Theorem 1.9 is Theorem 3.6. These results are proved by combining facts
about the iteration, with information on the structure of the tree and bounds on the
movement of Brownian motion.

Step 2 Generalize Theorem 3.6 to d > 2 with x replaced by d(x, 1), the signed distance
from the x to the interface I';, see Proposition 3.10.

Step 3 Proposition 3.10 takes care of the values away from the interface. The next step is
to take care of the values near the interface by showing that the probability the dual gives
a 1 (resp. 0) at x for a general initial condition p is almost the same as the probability
the algorithm in Sect. 2.3 computes a 1 (resp. 0) atd(x, t) £ K eKate| log €| in the one
dimensional system with the special initial condition po(x) = u_-1{y <o} +u4 - 1{x>0).
See Proposition 3.11 for this result. The key step to proving Proposition 3.11 is Lemma
3.12, which compares the values computed by the algorithmind = 1 at

G =d(XE 1 —5) £yt —s)e|logel,
z5 = By £ y(t)e|loge|,

where X < is an approximation of the rescaled dual process that will be defined in Sect.
2.1.2.

2 Dual process and branching random walk

2.1 The sexual reproduction model

2.1.1 The graphical representation

We begin by constructing the process using a graphical representation that consists of

a collection of independent Poisson processes. Here, we give only a brief description
of the construction. More details can be found in Sect. 2a of [9]. Define

@)=Y sup  cf(0.69=(B+ e, 2.1)

i g’:e E{O, 1 }SeZd

@ Springer



504 X. Huang, R. Durrett

where ¢{ (0, £€) is the rate that the origin changes to state i in the process & when the
configuration is £€ .

e For every site x € 8eZ4 we have a Poisson process {T,f”x, n > 1} with rate ¢*(¢)
and a sequence of i.i.d. random variables {U,’, n > 1} uniform on (0, 1). At time

Tnb’x we use U;) to determine the type of change that occurs:

1. If U < (0, %), x gives birth to two particles on a randomly chosen pair
from x + Nj.
— If the state of x is 1, then nothing occurs to the particle at x.
— If the state of x is 0, then x flips to 1 if both of its children are 1’s.
2. IfU € (%, 1):
— If the state of x is 0, then nothing occurs to the particle at x.
— If the state of x is 1, then x flips to 0.

e For every unordered pair x, y € 8¢Z? with ||x — y||; = 8¢ we assign a Poisson
process {7, ", n > 1} with rate (8¢)~2/2. At an arrival of this Poisson process,
the states of x and y are exchanged.

2.1.2 The dual is almost a branching random walk

For a particle at site x € 8e74 at time 7, we denote by {X¢}o<s< its dual process. The
dual process is naturally defined only for 0 < s < ¢ but it is convenient to assume that
the Poisson processes and uniform random variables in the construction are defined
for negative times and hence define X¢ for all s > 0. We will focus on the case where
d = 2 in later discussion of the sexual reproduction model, but the comparison to a
branching random walk in this section is general in all dimensions d > 1.

Let R = 0 and let RY, be the m-th time that a branching event occurs among the
particles in X§ and set X{;(0) = x to represent the initial location of the first particle.

e In between the branching time {R;, : m > 1} the particles move by stirring. If
there is a particle at x or y at time s and there is an arrival in T}, > at time ¢ — s
then the particle at x jumps to y and a particle at y jumps to x.

e Attime R{ if the branching occurs at x| we uniformly choose a pair of neighbors
X1, xp from

x +Nf =x+8€-{{er, e2}, {—e1, €2}, {—e1, —ea}, {e1, —e2}},

add x; and x; to the dual, and number them as 1 and 2.

e At later branching times Ry, if the branching occurs at x,, then we add a randomly
chosen pair from x,,, + N, and number the two new particles 2(m — 1) + 1 and
2(m — 1) 4+ 2. A collision is said to happen if a particle is born at the location
already occupied by another particle. In this case the colliding particle is not added
to X€. We also construct a (noncoalescing) branching random walk X* in which
two particles are always added, and if there is a collision an independent graphical
representation is used to determine its movements.
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Notice that in the sexual reproduction model once a particle flips to state O its
future is then independent of all its past. When constructing the dual process, once a
particle flips to state 0 we don’t necessarily need to probe into its past anymore. We
can either treat this particle as “dead" and do not let it branch again since we don’t need
information about its past, or we can let it branch despite its state so that the resulting
dual process has the structure of a regular tree. Here we take the second treatment.

In order to have the probability of collisions in the dual process X to be small we
have chosen § = exp(—e‘3), ie., € = (10g(1/8))‘1/3, so that § < e. Intuitively, if
the stirring rate is large enough compared to the branching rate, then particles do not
stay near each other for a sufficiently long time to have a birth that causes collisions.
To simplify notation, we will write

n = b€

from now on. In this notation, the dual process X¢ on nZ¢ jumps at rate 2d - n~2/2 to
a randomly chosen neighbor.

Lemma2.1 Let T € (0, 00), k € Nand x € R? be fixed. Let X¢ and X be defined as
above and both start at x. There exists €*(k, T) > 0 so that for € € (0, €*(k, T)),

P (Xf(r) — X°() forallt < T) > 1— ek,

Proof This proof comes from Durrett and Neuhauser [9]. To be self-contained we
will present most of the details. We say a particle X is crowded at time s if for
some j # k, || X;(s) — X; ($)]l1 < n. To bound the number of collisions, we need
to estimate the amount of time X} is crowded. Let j # k, VS = X (s) — X ; (s) and

W¢ be a random walk that jumps to a randomly chosen neighbor at rate 2d n~2. Let
x,y € n{xey, ..., xeq}. Then

jumps from x to rate in V/ rate in W
—x n%/2 0

0 0 n2
x+y 2 n?

Since we are interested in || V||| we can ignore the first line in the above table, which
does not change the norm. Then we can couple the jumps so that [{s <7 : |Vl < n}]
is stochastically smaller than w,77 = |{s < t: |[Wsllh < n}l. Asymptotic results for
random walks imply, see (2.1) at p. 301 of [9], that when ™2 > 2,

Cn?, d >3,
Ew! < {Cn’login™), d =2,
Cnt'/?, d=1.
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Let xf (t) be the amount of time X is crowded in [0, ¢] and KC; be the total number of
particles at time 7. It is easy to see

E(x{DIK; = K) < KEw],
EK; = exp(vt), where v = 3c*e?,
E(xk®) < expor) Ew].
To see that with high probability no collisions occur, we note that the expected number

of births from X while there is some other X ; in its neighborhood is (consider the
worst case whend = 1)

< E(xfn)c*e ™ < Cont'?e 2 exp(vr)

Take K = %2, Then P(K; > K) < K~ 'exp(vr) = n%2exp(vt). When K; < K,
the expected number of collisions is smaller than

I(Contl/ze_2 exp(vt).

Combining the error probabilities we have the probability of a collision occurring
before time 7 is smaller than

770'2 exp(vT) + KConTl/Ze_2 exp(vT) 2.2)

Since = 8¢ = € exp(—e ) the above term vanishes as ¢ — 0 and decays faster
than any polynomial of €. Then for any given k € N, there exists some ¢*(k, T) so
that when € < €*(k, T) the probability of collision (2.2) is less than €*. When there
is no collision between [0, T'], X (7)) = )A(e (t)forall0 <t <T.

2.1.3 Our random walks are close to Brownian motion

Let )A(f represent a single lineage in the comparison process X (t). At each branch
point we will choose one lineage of the offspring particles to be )A(f uniformly at
random. We start by showing that the trajectory of a single lineage X ¢ of the dual
process is close to a Brownian motion W; in RY when ¢ is small. Recall that )A(f isa
random walk that jumps at rate dn~2 to a randomly chosen neighbor.

Lemma 2.2 Let )A(f be a single lineage started at x and let k € N. There exists some
€o(k) and a coupling between the Brownian motion W; in R? and )A(f so that for
€ € (0, (k)

P <|Wt - )A(f| > ¢ for some t < ke?| 10g6|> < e,

Proof Write )A(f = ()A(tl’g, ...,)A(,d’e) where foreach 1 < i < d )A(f’e is a random
walk on nZ with rate 2. Let {N;(f) : 1 <i < d} be independent Poisson processes
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with rate n’z andlet Y. l(i), Yz(i), ... bei.i.d. random variables uniform on {—n», n}. For
1 <i < d, define discrete time random walks S,(,i) = Yl(i) + Yz(i) + -4 Y,gi). Then
we can observe that S](\j)(t) has the same distribution as X fe Furthermore, if we let
N(t) = Zl | Ni(t) then Sy = (SN1 LR S](j)(l)) has then same distribution as
XG

From now on we consider the first coordinate X €and S (1)( 0 of the two random
walks. Write x = (xq, ..., xg). By Skorohod’s embeddlng theorem (see [17] Theorem
12.1), there is a Browman motion B, in R started at x; and a sequence of stopping
times 0 = 1o < 11 < ... suchthat B(7;) = Si(l). Moreover, the differences 7; — 7;_
areii.d. with E(t; — 1,_1) = E|Y1(l)|2 =n?and E(tj — 7,_1)% < 4E|Y1(1)|4 = 4n*.

Note that

e —t= (N — N@OET) + N1 ET —1)

is a martingale, so Ly-maximal inequality implies
E (012?; TN (s) — s|2> < 4E(tn, ) —1)* < 4E[N{(D)] - Var(z)) < 16t7%.
By Chebyshev’s inequality,
P <Orgg§t [Thy ) — ST = n”2> <n'E <Orgg§t TNy () — 02SI2> <16tn. (2.3)

Write W, = (Wt(l), cees W,(d)). Since W,(l) is itself a one dimensional Brownian
motion, without loss of generality we can let Wt(l) = B,. Notice that |X ,1 € — W,(1)| =

1Sy — B(O| = | B(tn, 1)) — B(1)|. Then applying (2.3)

P (|W,<1) — X€| = €//d for some 1 < ké?| 10g6|)

:P( max |Bry, B,|>e/\/_)

0<t<ke?|loge|

<P ( max |ty — ] > nl/z)

0<t<ke?| log €|

+P( max |y —tl <%, max |B Ty B,|>6/\/_>

0<t<ke?|loge| 0<t<ke?|loge|

< 16ke?[loge|n + P (N1 (ke[ loge]) > 12 ke?| logel)

+n ke logel - P sup  [B(s)— BO) = n"°).
se[—nl/2,51/2]
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The second term is upper bounded by 7'/? due to Markov inequality. To estimate the
third term, let Z be a standard Gaussian variable. By reflection principle,

P ( sup  |B(s) — B(0)| > 171/6) <2P ( sup  |B(s) — B(0)| > 171/6)

se[—nl/2,n1/2] sel0,n1/2]
<4P(1B(n'?) — BO)| = n'/®) = 4P (n'/*Z > n'/%)

< de7n Vo1,
Thus
P (|W,(1) — X€| = €/+/d for some 1 < ke?| loge|)
< 16ke2|logeln + nV/% + 4n 25k logele ™™ 14 < cpl/? (2.4)
for some C > 0. Finally, it follows from (2.4) that

P (|W, — )A(f| > ¢ for some 1 < ke?| logel)
<d-P <|Wl(l) — X = €/N/d for some 1 < k62|10g6|)

<dCp'? < &,

2.2 Voter model perturbations
2.2.1 The dual is close to a branching random walk

The dual process X€ is a coalescing branching random walk. As a result of the coa-

lescence, the dual process does not have the tree structure that leads to independence

among subtrees. The situation is not too bad once we realize coalescence mostly hap-

pens between particles with the same parent in a short amount of time after their births.

Hence we will construct a comparison process X¢ that has the desired tree structure.
Recall that the voting and branching neighborhoods are

Ny =1{-nn" and Nj =[-nL,nL} NyZ¢
for a fixed L. Let J(¢) denote the set of particles in X€ at time ¢. If two particles i and

Jj coalesce at time s, then i V j is removed from J (s—) to form J(s).Set Rp =0 and
let R;, be the m-th branching time in X€. Similarly, define J (¢) and R, for the process
A€

; . o€ .
The comparison process X is constructed as follows:

e At time R, the parent particle at x gives birth to Ny = 4 particles at sites
(Y1, ..., Yy) chosen uniformly without replacement from x + N, 5 .
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e During [Iém, Iém + nl/ 2) we do not allow birth events. The particles move as
coalescing random walks in nZ? and we allow the particles within the new family
(i.e. the parent partlcle and its Ny children) to coalesce with each other.

e During [R,, +7'/?, m+1) the particles move as random walks without coalescing
and give births at rate € >

If we view the interval [R,,, R,y + 1n'/2) as one single point in time then the process
A€ .

X' would have the desired tree structure where each vertex has a random number of
offspring depending on the coalescence. Note that

A

Rus1 — R £ /7 + Exponential(e 27 (R, -+ /7).

The graphical representations of X¢ and X* can be coupled until there is a coales-
cence in X¢ that is not in X*. Whenever this happens we use an independent graphical
representation to determine the movement of the non-coalesced particle in X . We hope
to couple X€ and X ina way that the former is dominated by the latter. The obstacles
in doing so are (i) X€ can have births during 1ntervals {[Rm, Rm + nl/ 2yim > 1} (i1)
if the scenario in (i) does not happen since X* has more partlcles ever since the first
coalescence in X€ that is not in X , the branching times Rm could arrive faster than
R,,. As we will prove soon, both (i) and (ii) will not be the case with high probability.

Our goal is to establish the following coupling between X¢ and X insucha way that
the former is dominated by the latter.

Lemma2.3 Let T € (0,00), k € Nand x € R? be fixed. Let X¢ and X be defined as
above and both start at x. There exists €*(k, T) > 0 so that for € € (0, €*(k, T)),

P;(Xf(z) =X(t) forall t < T) > 1 — ek,
Proof Let Ny = min{m : R,, > T} and define the good events

Gi={Ry — Ry_1 > ﬁ foralll <m < N}
Gy ={Rn =R, foralll <m < Nr}
={J(s) = J(Rm—1+/n) foralls € [Ry—1 + /0, Ry) and all 1 <m < N7}.

Observe thaton G = G| NG, NG3 we can couple X€ and X exactly. Hence it suffices
to upper bound P (G€). The estimates have already been done in detail in [3] so we
will cite the relevant results instead of repeating the arguments.

Lemma 2.4 in [3] gives

. _ 1/8
P(G)) =P (15In11ugnzvr Ry — Rpy—1 < ﬁ) <7
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Let X§’j denote the location of particle j in X€ at time s. Define

7, = inf {s > Rpu—1+ 1 ‘#i‘g():
i#jel(s

x5 - x5 < n7/8}
Lemma 2.7 in [3] gives

P(G§) = P(ty < Ry forsome 1 <m < Nr) < n'/16,

The memoryless property of exponential random variables implies that
d .
(Rm+1 — RwlG1 N G3) % /7 + Exponential(J (R, + ﬁ)) .

We will argue by induction that G; N G3 S G». First note Ry = Ry =0. Suppose
Ry = Ry, holds up to m = k on G N G3. Then we should have J(R; + /1) =

JA(Iék + /n) on G1 N G3. This means

(Rk-H — Rr|G1 N G3) 4 SN+ Exponential(f(lék + ﬁ))
d A A
= Ri+1 — R

Therefore Ry = ﬁk+1 on G1 N G3 and this concludes the proof of G| N G3 C G».
Finally,

P(G) = P(G)) + P(GS) = n'/® +!/10 < ¢
for any k € N when € is sufficiently small.

2.2.2 Our random walks are almost Brownian motions

We will show the trajectory of a single lineage )A(f of the dual process is close to a

Brownian motion W, in R?. Note that X ¢ isarandom walk in nZ< that jumps at rate 5>
to a site chosen uniformly random from its neighborhood of the form N = {—1, nye.
The following lemma is essentially the same as Lemma 2.2. Note that the random
walk in Lemma 2.2 has jump rate 2d - n~2/2 while here the random walk has jump
rate 2, implying that X ¢ would converge to a time-changed Brownian motion. The
proof is essentially the same as that of Lemma 2.2 and hence is omitted.

Lemma2.4 Let )A(f be a single lineage started at x and let k € N. There exists €y(k)
and a coupling of the Brownian motion W; in R¢ and )A(f so that for € € (0, €y(k))

P <|W(,z, — Xﬂ > € for somet < k62|10g6|) <k
foro =1//d.
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2.3 Computing the state of x at time t

To do this, we use the comparlson process X° constructed in Sects. 2.1.1 and 2.2.1
and work backwards i in time. X* has atree structure so we can follow [10] to define a
time-labelled tree T(X (1)) for X°. Since X and X has the same tree structure except
for the rescaling, to simplify notation we consider T(X(t)) from now on.

Each branch point in {)A(}OSSS, is a vertex in the tree 7 ()A((t)) and is assigned a time
label ¢, that is the corresponding branching time in X. For the sexual reproduction
model, at each branch point the parent gives birth to Ny = 2 children, so the tree
T(X(t)) branches into 3 lineages. For the voter model perturbations, at each branch
point the parent gives birth to Ng = 4 children some of whom will coalesce into one.
There are two ways to look at 7 ()A((t)): we can either see it as a Galton-Watson tree
where the offspring distribution is determined by the coalescence, or we can still see
it as a regular tree where each vertex has No + 1 children and deal with the influence
of coalescence in a computing process that will be introduced later as an algorithm.
Here we take the second approach.

Now we will describe an algorithm that computes the state of x at time ¢ given
the graphical representation and the initial states of the particles in X(t). Since we
are considering the dual process without rescaling, with a little abuse of notation let
p: 74 — [0, 1] be the initial condition.

Algorithm for sexual reproduction model with fast stirring

1. Eachparticlei in7 X)) is independently assigned state 1 with probability p(}A( 1))
and state 0 with probability 1 — p(X h.

2. At each branch point v in ’T(X(t)), we have an independent random variable U,
uniform on (0, 1) that determines the state of the parent particle according to rules
specified in Sect. 2.1.1.

Algorithm for nonlinear voter models Let {mr,,} be a collection of i.i.d. random partition
oftheset {0, 1, ..., No}, where v represents a vertex in the No+ 1 regular time-labelled
tree T(X(t)). The law of 7, is given by the coalescence of particles within the same
family within time ,/7 after birth.

1. Each particlei in T(X(t)) is independently assigned state 1 with probability p()A( ;)
and state 0 with probability 1 — p(X?).

2. At each branch point v in T()A((t)), we first sample a random partition m,. For
vertices in the same cell of 7, we uniformly choose one of them and let its state
be the state of every vertex in that cell. Let i denote the total number of 1’s among
these No + 1 particles. Then an independent random variable U,, uniform on (0, 1)

is sampled. If U,y < a;, then set the output to be 1, otherwise set the output to be
0.

For Lotka—Volterra systems, since the effective perturbations only occur when there
is no coalescence among the three children, see (1.13), we can consider only such
branch points and effectively reduce the branching rate to 6 p3e ~2. At each branch
point, the state of the chosen lineage only flips when it is opposite to both of the other
lineages. This is essentially performing a majority vote, which is why (1.13) is the
same as (1.11). Hence the proof for Lotka—Volterra systems is the same as that in [10].
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Algorithm for Lotka—Volterra systems

1. Eachparticlei in T(X(1))is independently assigned state 1 with probability p(}A( )
and state 0 with probability 1 — p(X?).

2. Let the branching event occur at rate 6 p36_2. At each branch point v in 7 ()A((t)),
we perform a majority vote.

Starting from states of the leaves of 7 ()A((t)), the above algorithms compute the
state of the root at x. From now on we use use V,(X(#)) to denote the output, i.e., the

state of the root of 7 (X(t)). Note that for a branching Brownian motion W; in R? we
can define V,(W,) in the same way except that the initial condition p will be defined
on R? instead of Z4.

3 Convergence to motion by mean curvature
Here we will prove the result assuming the g function has properties (G0)—(G5). In the
next section we will check those conditions in our examples. A second consequence

of concavity for p € (uo, uy) is thatif p € [ug + n, uy+ — nl

gp+n —2¢(p)+gp—n) <0. 3.1

To prove (3.1), we note that
p X+ ,
/ / g'(dydx =g(p+n) —2g(p)+g(p —n).
p—nJx

3.1 Branching Brownian motion in one dimension
Define the initial condition pg : R — [0, 1]tobe po(x) = u4 - 1x>0y+u—-1{x<0; and
write V := V. In this section we will consider one dimensional branching Brownian
motion By, beginning by listing the useful properties of V(B(?)).
Monotonicity When the interaction rule is attractive and the initial condition pg is
nondecreasing in x so for any x; < x» € R,

PEIVB() = 11 < PEIVBM) = 11.
Antisymmetry We use 7 (B(t)) to denote the time-labelled tree for B, and write

PL(T) = PE(V(B(1) = 1T (B(1)) = 7).

Applying the reflection from z to —z, and using the symmetry of the Brownian motion
conditioned on {7 (B(z)) = 7}, we see that for any time-labelled tree 7°

PU(T) =2ug — PL(T).
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The last property implies P{(7) = ug. Using monotonicity we have
PI(T)>up forz>0, PNT)=<uy forz<O.
3.1.1 Useful inequalities

So far the function g : [0, 1] — [0, 1] has a single variable. It is natural to extend g to

be a function on [0, 11MF! Let (p1, ..., png+1) € [0, 11V and g(p1, ..., pag+1)
is the probability that the output at the branch pointis 1 when the inputs are independent
Bernoulli random variables with rate p1, ..., py,+1 respectively. With a slight abuse

of notation, we will use g(-) to stand for both.
Lemma 3.1 For any time-labelled tree T, and time t > 0 and any z > 0,
PX(T) = uy P.(B; = 0) + u_P.(B; <0).
Proof The proof is by induction on the number of branching events in the tree 7.
Suppose time t is the first branching event in 7 and that the subtrees corresponding

to the No + 1 offspring are 77, ..., Ty,+1. Letting

PU(T*) = (P{(T1), ..., P{(Tny+1))-

h(p1, ..., PNo+1) = &(P1s -\ PNy+1) — (p1+ -+ PNo+1)-

No+1
we can write
PUT) = E.(g(Py_"(T#)) = E-(g(PE"(TD). ... Pl " (Tngs1)))

1 No+1
Y EL(PyT(T)
No+1 P

= Ez(h(Pé:’(Tl), cees Pé:t(TN0+1))) +
Write h(p) = h(p, ..., p). Observe that h(uy — p) = —h(u— + p) due to (G1),
which implies
h(PL_(T%)) = hQQuo — PI(T%)) = h(uy — (—u_ + P}(T%))) = —h(P!(T%)).

(3.2)
It follows that

E;(h(Py " (T%) = E(h(Py_"(T#)(1{8,>0} + (B, <0})
= E;(h(Py_"(T#)1p,>0) — Ez(h(PL (T#)1(p, <o) (by (3.2))

_ /0 P (T5)) (oo () — oo (=) dx

where ¢, ,(x) is the probability density function of a Brownian motion starting at
site z at time t. Since P~ "(7;) > ug for x > 0 we have h(P!~" (7)) > 0. Spatial
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symmetry of Brownian motion and the fact that ¢, ; (x) is decreasing on x > z implies
¢2.0(x) — ¢y (—x) > 0forall x > 0. That is, Ez(h(Pé:T(T*)) > 0.
Fori =1,..., No + 1, by the induction hypothesis
E(Pp "(T})) = u E(Pp,(Bi—x > 0)) + u_E,(Pp,(B;—; <0))
=uyP,(B; >0)+u_P;(B; <0).

If follows that

No+1
> E(Pp(T) = uy P.(B; = 0) +u_P.(B; <0).
i=1

Ex(g(Py"(T) 2

We define the iterates of g, g™ (p), by

¢ (p) =g V), ¢V(p)=gp).

The fixed points at u_ and u 4 of g are attracting and u is unstable. That is, if we start
from ug + €, then iterating g will lead to u4 while if we start at uy — €, iterating g
will take us down to u_. Lemma 3.2 quantifies the rate of convergence.

Lemma 3.2 Forallk € Nthere exists A(k) < oo suchthat, foralle € (0, uy—uo—=984)
where § is defined in (G4) and n > A(k)|loge| we have
g™ (uo+€) > uq — & and g™ (up—e) <u_ — €~

Proof (G4) (i.e., (1.19)) implies that if § < 8, then uy — g(uy — 8) < (1 — ¢p)é.
Iterating gives

=gy —8) < (1—co)"(us —9).
That is, there is some constant C such that if § < 8, then for n > Cy|log €| we have
g (uy —8) = uy — €.
It remains to find an M,, which will depend on €, so that g™ (ug + €) > u, — 6,.
By (1.17) we know g’(ug) > 1. Since ug and u are two fixed points of g and g is

strictly increasing, we have g(p) > p for p € (uo, uy+ — 8,]. It follows that

ki = inf g(ug +x) — (ug + x) -

x€(0,uq—uo—384] X

0

so for x € [ug + €, uy — 8] we have g(ug + x) —ug > (1 + k1)x. Hence form € N
such that g™ (ug + €) < u4 — 8 we have g (ug + €) > ug + (1 + k1)™e. This
implies we can take M, = B|loge| where B = 1/log(1+kq). Taking A(k) = B+ Ck
completes the proof.
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Since the branching rate c*e 2 is large when € is small, then even for a small  the
tree 7 (B(¢)) should be have a lot of vertices. For / € R, let 7, denote a ternary tree
with depth [/]. For a time-labelled ternary tree 7, we write 7 2 7, “® if 7,"® can be
embedded in 7 as a subtree. The next two results are Lemma 2.10 and 2.11 in [10].
The proofs are exactly the same so they are omitted.

Lemma3.3 Let k € N and let A = A(k) be as in Lemma 3.2. Then there exists
a; = ay (k) and €1 = €1(k) such that, for all e € (0,€1) andt > a162| log €],

pe [T(B(t)) > Tﬁffmogd] > 1 — ek,

Lemma3.4 Letk € N, and let a (k) as in Lemma 3.3. Then there exists dy(k), €1 (k)
such that for all € € (0, €1 (k)) and all s < a;€?| loge|,

PE[3i € N(s) 1 |Bi(s) — x| > di(k)e|loge|] < €,
where N (s) is the set of indices of particles in B up to time s.

While the proof of Lemma 3.2 is fresh on the reader’s mind we will prove

Lemma 3.5 Forafixed k € N, there exists o1 (k) > 0 such that fort > o1 (k)€?| log €|
andx € R

PV, (W) = 1] < uy + ¢t
where p : RY — [0, 1] is the initial condition satisfying (GO).

Remark The same conclusion also holds for P{[V, (XA6 (1)) = 1] following the same
proof.

Proof First we consider the case where 1 is not a fixed point of g. Since u is a fixed
point of g and g’'(u4) < 1 by (G2), it is easy to see g(p) < p on (u, 1]. It follows
that

. (g +x) — gug +x)
ky = inf
x€(0,1—1uy] x

e (0,1),

which implies thatif § € [0, 1 — u4 ]
gluy +68) —uy < (1—k2)d.
Iterating as in the proof of Lemma 3.2
g s +8) —uy = (1= k) (¢ Vs +8) —uy) = (1 = k2)"s,
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By assumption (GO), since 1 is not a stable fixed point of g we get the largest value
by setting p = 1. In order to have g™ (1) < u, + € we need

g up + (1 —up) —up < (1 —k)"(1 —uy) < €.

It is easy to see that there exists C(k) > 0 such that the above inequality holds for
n > C(k)|loge|. It follows from Lemma 3.3 that there exists o (k) > 0 such that for
t > oy (k)e?|loge|

PIT(W(@) 2 T 10ge] = 1 — €5

Therefore, when ¢ > o1€?|loge| PS[V,(W(t) = 1] < uy + ek + ek = uy + 26k
The second case where 1 is a fixed point of g follows similarly. By assumption (GO)

we can set p = | — ¢ for some arbitrarily small ¢ > 0. Modify the definition of k3 to
be

ko(e)=  inf O 80 4

xe(0,1—e—uy] X

In order to have g™ (1 — &) < u, + € we need

g(")(u+ +(l—e—up)—ur <1 —k)"(1—e—uy) < k.

The rest of the argument for the second case is the same. O

3.1.2 The main result in one dimension

We are now ready to prove

Theorem 3.6 Fix any T* € (0, 00). For all k € N there exist ¢\ (k) and €1 (k) > 0
such that, forall t € [0, T*]) and all € € (0, €1),

1. for x > ci(k)e|loge|, we have PS[V(B(t)) = 1] > uy — ek,
2. forx < —cy(k)e|loge|, we have P{[V(B(t)) = 1] <u_ + ek,

Proof of Theorem 3.6 For all € < 1/2, define z. implicitly by the relation
Po(Brs = —ze) = 1/2+ (uy —u_) e (3.3)
and note that z. ~ (uy — u_) les27T* as e — 0. Lete; (k) < 1/2 be sufficiently
small so that Lemmas 3.3 and 3.4 hold for € € (0, €1). Let d (k) be given by Lemma
3.4 and let ¢ (k) = 2d; (k) so that, for € € (0, €1),
di(k)e|loge| + ze < ci1(k)e|loge|.

Let a1 (k) be given by Lemma 3.3 and let §; = §;1(k, €) = ay (k)62| loge].
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Note that g(u+) = u4, which means if we start with initial condition p(x) = uy
then
PE(V,B() =1)=uy forallt >0,z €R. (3.4)

Ift € (0,61) and z > c1€|loge|, then Lemma 3.4 and (3.4) gives
P; VB@) =0) < P; (3i € N(t) such that |B; (t) — z| > dy€|loge|) + P; (V,B() =0)
< 1— Uy =+ Gk.
We now suppose that t € [, T*] and z > ci€|log €|, and define
pi—s(2) = PL(VB(t —81) = 1),

and let ¥¢ = p;_s,(z¢). Write {B(61) > z¢} for the event B;(81) > z. for all
i € N(61). Then

PEVB®) =1 = PL(Vp_, (BGD) = 1)
> Pf ({VyeBG1) = 1} N {BGY) > z))
> PE(Vye(B(G1)) = 1) — €

By definition of z. in (3.3) and r — §; < T*,

Y =P (VB —81))=1) > ui P (Bi—s; > 0) +u_ P, (Bi—s <0)
=uy (124 e —u) ')+ u_(1/2 — (uy —u_)"'e) = ug +e.

It follows from Lemmas 3.2 and 3.3 that

PE(VyeBE1) = 1) = g O D g + )P (TB1) 2 T, 1)

> (uy —€)(1 =€) > uy — 26k

Therefore, PS (V(B(1)) = 1) > uy — 3¢k o

3.1.3 Slope of the interface

To prepare the proof of Theorem 3.13, i.e., the extension of Theorem 3.6 to higher
dimensions, we state the following result on the “slope” of the interface.

Proposition 3.7 Suppose x > 0 and n > 0. Then for any time-labelled regular tree T
with No + 1 offspring and any time t,

PUT) — PL_(T) = PL,,(T) — PL(T).
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Proof The proof is essentially the same as that of Proposition 2.11 in [10]. We prove
the result by induction on the number of branching events in 7. We begin by noting
that for a time-labelled tree 7 with a root and a single leaf, we easily get

X x+n
Pi(To) — Py, (To) = / ¢o.1(u) du = / ¢o.1(u) du = Py, (To) — Py(To)
x—n X

where ¢, ;2 is the density functionofa N (u, 02) random variable. To do the induction
step let T be the first branching time and let 77, . . ., T, +1 be the trees of the offspring
of that branching. We have

(PUT) = P{_,(T)) = (PL,,,(T) = P{(T))
= (Elg(Py " (T#)] = Exylg (P (T)])

— (Ecanlg (P (T0)] = Exlg(Py"(T#)])

If we let p(x) = g(P.~"(T«)) then the above is

- / glp(y+n) —2g(p() +gp(y —mM)dx(y) dy

—00

= —/0 glo(y+m) —28(p(y) + gy — M) (@x,:(¥) — ¢x,c (—=¥)) dy

Since x > 0, we have ¢y - (y) — ¢x - (—y) = Ofor y > 0soitis enough to show (3.1),
ie.,

gy +m) —28(p(y) +glp(y —m) = 0.
By the induction assumption p(y) —p(y —n) > p(y+n) —p(y) = h.Let p = p(y).

glp(y+m) —glp(y) =g(p+h)—gp) <glp)—glp—"h) <glpo() —glp(y —n)

by monotonicity of g, which completes the proof.

Exploiting the “concavity" in Proposition 3.7 gives a lower bound on the “slope"
of the interface.

Corollary 3.8 Fix any T* € (0, 00). Suppose that for some t € [0, T*] and z € R,
|PEIVB(1) = 1] — uo| < (uy — u) — b, 3.5

Take €1 (1) and c (1) from Theorem 3.6 and € < min(€((1), 80/2), and let w € R with
lz —w| < c1(D)e|logel|. Then

dolz — w]

(PVB@) =11 = P,IVB@) =1l = 7
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Proof Consider first the case 0 < 7 < w. By Theorem 3.6 and (3.5) we have for small
€

o
P (e toge) [VB(®) = 1] = PI[VB() = 1] = >
Write n = w — z. Proposition 3.7 implies that P(; ) . — P}, < Py — P! for

jeN.Letng = [~ (¢ (1)e|log €| — z)]. Then

no—1

t t 1t t t t
Pl etogel = PL= D Plistygsz = Plyge < no(Py, — PY).
ot

That is,

t t
Pl P> P (heltoge) — Pz . dolz — w] . dolz — w| .
no 2(ci(De|loge| + |z — w]) — 4c1(1)e|loge|

3.2 BBMin higher dimensions
3.2.1 Properties of motion by mean curvature

A key fact in the proof in Etheridge et al. [10] is a coupling between a one dimensional
Brownian motion By and d(Ws, t — s), the signed distance from a d-dimensional
Brownian motion W; to the interface I';_;. To prepare for the coupling we will state
some regularity properties of the mean curvature flow, which are given in Sect. 2.3 of
[10] and are derived based on assumptions (C1)—(C3). Recall that d (x, t) is the signed
distance from x to the mean curvature flow I';.

1. There exists kg > 0 such that for all € [0, T*] and x € {t : |d(y, t)| < Ko} we
have
|Vd(x,t)| = 1. 3.6)

Moreover, d is a C%%/2 function in {(x,0) : |d(x, 1) < ko, t < T*}, where a > 3
as in (C1).

2. Viewing n = Vd as the positive normal direction, for x € I';, the normal velocity
of I'; at x is —9,;d(x, t), and the curvature of I'; at x is —Ad(x, 1).

3. There exists kg > 0 such that for all # € [0, T*] and x such that |d(x, 1)| < ko,

V (0:d(x,t) — Ad(x, 1)) | < ko. 3.7

4. There exists vy, Vo > 0 such that forall t € [T* — vg] and all s € [z, t + vo],
|d(x, 1) —d(x,s)] < Vo(s —1). (3.8)
We state Proposition 2.13 in [10]:
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Proposition 3.9 Let (W;),>0 denote a d-dimensional Brownian motion started at x €
RY. Suppose that t < T*, B < ko and let

Tg = inf({s € [0, 1) : [d(W,, 1 —5)| = B} U {r}).

Then we can couple (Wy) >0 with a one-dimensional Brownian motion (By)s>0 started
from z = d(x,t) in such a way that for s < Tg,

By —koBs <d(Ws,t —s) < Bg + koBs.

By Lemma 2.1 we can establish the results for f(e, which will also hold for X¢ with
high probability. Let W, denote a Brownian motion in R? while X ¢ denote a random
walk on nZ? with jump rate n~2/2 to each neighboring site.

3.2.2 Generation of the interface

The following proposition is very similar to Proposition 2.15 in [10]. The major dif-
ference is that we work with the rescaled dual process X{ and its comparison process

X: instead of the branching Brownian motion W, in R.

Proposition 3.10 Let k € N and o1 (k) be defined as in Lemma 3.5. Then there exist
€4(k), ag(k), ba(k) > 0 such that for all € € (0, €g), if we set

84k, €) := max{ay(k), o1 (k)}62| log €|
8(’1(k, €) := (max{ay(k), o1 (k)} + k + 1)€2| loge|,

then for t € [84, 8],

1. for x such that d(x,t) > bge|loge|, we have P;(V,,(f(e(t)) =1)>u; — ek;
2. for x such that d(x,t) < —bg€|loge|, we have PXE(V[,()AKS(I)) =) <u_+ ek,

Proof For fixed k € N and A(k) specified as in Lemma 3.2, it follows from Lemma
3.3 that there exists ag (k), €5 (k) > O suchthatforalle € (0, €;) andt > ad62| loge|.

PEITX (1) 2 Tyf 0ge] = 1 — €

It follows from the same argument as in Lemma 3.4 that for ¢ € [§4, 8;1] there exists
bl (k), €q(k) such that for all € € (0, &),

PS[3i € N(@t) : |[Wi(r) — x| > b:,(k)e|loge|] < &~

By (2.34) in [10] there exists vy, Vo > 0 such that for t < vg, and any x € RY we
have |d(x,0) — d(x,t)| < Vot. We can choose €, sufficiently small so that 8;1 < vg.
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Thus if d(x, 1) > 2b/,e|loge| and |W; (1) — x| < b/,€|loge| then
d(Wi(1),0) = d(x,1) — |d(x, 1) —d(W; (1), t)| — |d(W;(1), 1) — d(W; (1), 0)]
> 2b/€|loge| — be|loge| — Vsl > %bfie|loge|.
It follows from Lemma 2.2 that
P(IW;(1) — X (1)| > e for some < &) < €.

The triangle inequality then implies that with probability at least 1 — €2
€ v € 2 / 1 ’
d(X;(1),0) = d(Wi(1),0) — |X; (1) = W[ = gbddlogel —€e= Ebd€|10g€|~
Applying (C2) and (C3),
€ 1 ’
p(X; (1) = uo + J/(Ebdd loge[ Ar) = up+e.

For x such that d(x,t) > 2béle| loge| and t € [§y4, 821] it follows exactly from the
proof of Theorem 3.6 that

PEIV, (X (1) = 11> uy — 3~
Taking by = 2b/; completes the proof.

3.2.3 Propagation of the interface

In the Sect. 3.2.2 we established the existence of an interface develops for a short time
interval [, 5;1]. In this section we will show that the interface continue to exist for
much longer. The key to proving Theorem 3.13 is the following proposition, which
is an analogue of Proposition 2.17 in [10]. To make things easier to write we define
y(t) = K1eX2" and introduce

zE =d(x, 1) £ K1eFe| loge|

which are two points in R. They depend on x and ¢ but we do not record the dependence
in notation.

Proposition 3.11 Let ! € N with | > 4. Define 6,4(1) as in Proposition 3.10 and C1 as
in Lemma 3.12.There exists K1(l), Ko(I) > 0 and €4(1, K1, K2) > 0 so that for all
€ €(0,¢eg) and t € [84(1), T*] we have

sup (PEIV, (X (1) = 11— PS[VB@) = 11) < Crél (3.9)
xeRd 0
sup (PEIV, (K (1) = 01— PE[VB@) =01) < Cie! (3.10)
xeRd %0
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The key ingredient for proving Proposition 3.11 is the following lemma, which is
an analogue of Lemma 2.18 in [10]. The idea of the proof remains the same but the
coefficients are slightly different due to the differences in the g’s. Let B; € R be a
one-dimensional Brownian motion that can be thought of as a single lineage in the
branching Brownian motion B(?).

ZE=d(RS, 1 —s) £ y(t — s)e|loge|
Z = By £ y()e|loge|

Lemma3.12 Letl € Nwithl > 4and o (l) be asin Lemma3.5. Let 8o and co be chosen
as in (G4). Choose Cq sufficiently large so that C; > max{2(1 — cg)/co,3/(2co)}.
Let C; = maxo<p<1 Ci1lg’(p)|. Let Ky > 0. There exists Ky = K»(K1,1) > 0 and
ea(l, K1, K2) > 0 such that for all € € (0, €4),x € R%, s € [0, (I + 1)e?|loge|] and
tels, T%],

Ec[s(PSGIVBG =) = 11+ Creh)]

< (1= c0/3C1€" + Eap[g(PLIVBE =) = 1] + Cae'l s
(3.11)
Ex[g(PLIVB( —5) =01+ Cie)]

<1 —co/3)Ciel + Ed(xi,)[g(P;Z, [VB(t —5)) = 0D] + Cae' 1,
(3.12)

To keep our approach parallel to the one in [10] we defer the proof of Lemma 3.12
to the next subsection. The only property of g that is used in the proof below is its
monotonicity.

Proof of Proposition 3.11 We begin by proving (3.9) for t € [§,, 8"1]. Take K| =
bq(l) 4+ c1(I) where b, (1) is as defined in Proposition 3.10 and c; is as defined in The-
orem3.6.Let K» = K»(K1,[),asdefinedinLemma3.12.Ifd(x, 1) < —by(l)e|loge],
then by Proposition 3.10, P{[V, (Xe (1)) = 1] < €'. Then (3.9) holds.

On the other hand, if d(x,t) > —by(l)e|loge|, then d(x,t) + y(t)e|loge| >
c1(D)e|log €|, and by Theorem 3.6

!
P;(x,l)+y(t)6|logel[V(B(I)) =lzuy —€.

By definition of 8, in Proposition 3.10, ¢t > o1 (l)e|loge€]|. It follows from the same
argument as in Lemma 3.5 that

PV, X (1)) = 1] < uy + €.
Therefore when € is sufficiently small (3.9) holds.
We follow the proof in [10] and assume that there exists ¢ € [5:17 T*] such that for
some x € R? (3.9) does not hold, i.e.,

PEIV,(X (1) = 1] — PSie iytyelioge [VB@) = 11> Cré.
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Let T’ be the infimum of the set of such ¢ and choose
T e [T/, min(T' + €3, T%)]
which is in the set of such 7. Hence there exists some x € R? such that
Pj[Vp(XE(T)) =1] - P;(x,T)-i-y(T)elloge\[V(B(T)) =1] > Cy€. (3.13)
Our goal is to contradict (3.13) by showing that

PEIV, (X)) = 11 2 P, 14y ryeloge [YBT)) = 11+ (1 —co/4)Cre’. (3.14)

We write S for the time of the first branching event in X (T) and Xe (S) for the position
of the initial particle at that time. By the strong Markov property

PEIV,(X(1) = 11 < ES[g(Pg, o [V, (X' (T = 8)) = 11L527-5,]

+ESPY, o Vp (X G) = Hlsor—s,]  (3.15)

Let ¢* be a constant such that ¢*¢ 2 is the reaction rate for the process that we consider.
For sexual reproduction model with fast stirring, ¢* = (1 4 §) as defined in (2.1). For
voter model perturbations, ¢* = 1. Without loss of generality we can assume ¢* > 1
since otherwise we can rescale time to obtain ¢* > 1. Since § = Exponential (c*e~?)
and T — 8, > 8/, — 84 = (I + 1)€?|log €|, we have

ES [PX [V, X (62) = 1]1{SZT—ad}:| < P[S > (I + De?|loge|] < € (HD < (I+1,

T—34

To bound the first term in (3.15), partition on the event {S < el+3},

ES [g(Pfg[Vp(XE(T —8) = 1]1s<r—s0]
< P[S < €]+ Ef[a (P, [VP(XG(T =) =1l as<s<r-s5]
N

< €l+1 -I-E;[g(Pe

!
d(Xg,T—S)+y(T—5)e|1oge\[V(B(T =8 = 1]+ CreNlis<r-s0]-

(3.16)

The last line follows from the minimality of 7’ and the fact that T — S < T’ on the
event {§ > €13}

E[g(PS

1
e 151 syetiope VBT =) = 1]+ CreTszrs,]

(I+1)e?|loge| .o
</ 6*672€7C € Ex[g(Pg
0

l
< d()?j,T—:)+K1eK2<T’5)e|1og5\[V(B(T —5)) = 1] + Cre )] ds

+ P[S > (I + 1)e?|logel].
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Using Lemma 3.12 we get

; (I4+1)€?| loge| 5 I
<(—co/3)Cie + fo €2 T B n[8(PS et toge VB — ) = 1] ds

+ Crel P[S < €]+ €,

Let S’ denotes the first branching time in (B(s))s>0 and By the position of the ancestor
at that time. Noting that S” has the same distribution as S we have

< (I —co/3)Cre! +2¢!M + Ejien [g(P§3/+K1eK27'sllogel[V(B(T -5 = l]ls'fT*‘SZf]]'
(3.17)
Combining (3.15), (3.16) and (3.17),

PE[V,(RETY) = 1] < 461 4 (1 = co/3)Crél + ES, ) [g(P];S/+K]€K27,E‘1OgE‘[

[VBT) = 1],

VBT - 5)) =1]]

. 1 €
== LO/4)C1€ + Pd(x,T)JrKleKZTé\loge\

which proves (3.14) and hence we have proved (3.9) by an argument of contradiction.
The proof of (3.10) is similar. O

Before giving the proof of Lemma 3.12 we prove the main result.

Theorem 3.13 Let u(t,x) = P(& (x) = 1) with u¢(0,x) = p(x). Let T* €
(0,.7) and k € N be fixed. Choose o(k) as in Lemma 3.5. There exist €4(k) >
0 and ay(k),cq(k) € (0,00) such that for all € € (0,€4) and t satisfying
max{ay, o1}€%|loge| <t < T*,

1. for x such that d(x,t) > cy(k)e|loge|, we have u®(t,x) > uy — ek,

2. for x such that d(x,t) < —cq(k)e|loge|, we have u¢(t, x) <u_ + ek,

Proof We first prove the result for X (). We choose c;(k) = c1(k) + K, eK2T" Thus
fort € [84, T*] and x € R? such that d(x,t) < —cq(k)e|loge| we have

d(x,t) + K1e52T" < —ci(k)e|loge].
It follows from Proposition 3.11 and Theorem 3.6 that P{[V, (XE 1) = 1]

u_ + (Cy + 1)e. Similarly, if d(x, 1) > cq(k)e|loge| then d(x, 1) — K eXK2T"
c1(k)e|loge|. Hence

IV IA

PEIV (X @) =01 = P ) ettoge [VB®) =01+ Crek < 1—uy + (14 Cpek.

It remains to show u€(z, x) is close to P;[V,,()A(E ) = 1]. Let G = {X°(t) =
X (1) for t < T*}. Lemma 2.1 implies that P(G) > 1 — €.
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Then

u(t, x) = P{IV,(X(0) = 1]

= PE{V, (X" (1) = 1} N G+ PEV (X (1) = 1} N G°]

< PEIV,(X (1) = 1] + €

On the other hand,

(1, %) = PEUV,X (1) = 1} N Gl = PEIV,(X (1) = 1] — P[G*] = PV, (X (1) = 1] — €.

Therefore, |u€(f, x) — P;[VP(XG (1)) = 1]] < €k,

3.2.4 Proof of Lemma 3.12

Proof We continue to write y (r) = K1eX2". Define a good event by

G = {ld(Ws, 1 —s) —d(XE, 1 —s)| < efors e [0, (I + 1)e*|logel]}.

The triangle inequality implies d(W;, t — s) < d(f(ﬁ, t—s)+ |)A(§ — Ws|. There is a

similar result with W and X interchanged so
ld(Wy,t —s) —d(XE, 1 — )| < |XE— Wy
Lemma 2.2 implies that for sufficiently small €
P(G)>1-—¢€2.
We choose kg as in (3.7) and ¢ (k) from Theorem 3.6. Let
R =2c1(l) +4( + 1d +1

and fix K5 such that
(K1 + 1)(K2 — k) —koR = c1(1).

Lets € [0, (I + 1)62| log €] and

Ay = { sup |[W, —x| <21+ 1)d€|10g€|}.

uel0,s]

Using the reflection principle

P(AS) <2dPy| sup By > 2(€+ l)e|loge|
uel0,s]

< 4dPy(Bs > 2(¢ 4 1)e|loge|) < 4de't!

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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where we have used the tail bound the tail bound
P(By > x+/s) < exp(—x?/4)
with s = (I + 1é?| loge| and x = 2,/(€ + 1)|loge]|.

Recall that in Lemma 3.12 s € [0, (¢ + 1)€2] logel] is fixed and 7 € [s, T*]. We
consider three cases:

Lod(x, 1) < = Qci1()) +2( + Dd + y(t —5)) €| loge|,
2. d(x,1) > 2ci() + 20+ Dd + y(t — s)) €| log e,
3. 1d(x, D] < RQer() +2(+ 1d + y(t —s)) €| loge].

The first two are easy since x is far from the interface so the probabilities of interest
are either close to u or close to u_.
Case 1 By (3.8) there exists vg, Vo > 0 such thatif s < vgand x € R then

ld(x,1) —d(x,t —s)| < Vps. (3.23)
We take €, sufficiently small in Lemma 3.12 so that (I 4+ 1)e?|loge| < vy for all
€ € (0, €¢4). Rearranging the definition of Case 1 and adding d(Wy, ¢t — s) to both

sides

d(Ws,t —s)+y(t —s)e|loge] < — 2c1 (1) +2( + 1)d)
€lloge| +d (W, 1 —s) —d(x,1)

The triangle inequality implies d(x, t — s) + |Ws — x| > d(W, t — 5) so

d(Ws,t —s)+y (@ —s)elloge| < — Qe (1) +2(1+ 1)d)
€lloge| + [Ws — x|+ [d(x, 1) —d(x,1 —s)I.

Using (3.23) with s < (I 4+ 1)€?|log €|we see that on A,
d(Ws, t —s) +y(t —s)elloge| < —2ci1(D)e|loge| + Vol + 1)62|loge|.
On event G N Ay when € is sufficiently small,

ZF=d(XE 1 =)+ y(t —s)elloge] <d(Ws,t —s)+ €+ y(t —s5)e|loge]
< —c1(l)e|loge|.

Hence it follows from Theorem 3.6 that
E[g(PS VB —5) = 11+ C1e)] = Exlgu— + (1 +Ceh] + Pl AL] + PIG)
Using (G4), (3.22), and (3.19) the above is
<u_+1—co)- (1+CDe +4de™ + e <u_ + (1 —co/3)Cré
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when € is sufficiently small. As u_ is a fixed point of g and we start with initial
condition po(x) = uy - l{x>0) +u— - 1{y<q) for the one dimensional BBM, the second
term on the right hand side of (3.11) satisfies

Eq(x,n [g(PZ} (VB —5) =1D] > u_.

The third term on the right hand side of (3.11) is non-negative so the result follows.
Case 2 Inthiscase d(x, t) > (c1(I) +2(/ + 1))€| log €|. Repeating the proof of (3.22)
gives

Pien[Bs < c1(De|logel]l < Po[Bs > 2(1 + 1)e|loge|] < €™ (3.24)

Recall z;r = B + y(t)e|loge|. Using Theorem 3.6 and (3.24) and (1.19) it follows
that

Ed(x,z)[g(l";;r (VB —s)) =1]]
> Ed(x,z)[g(Pz} [VB(t = 5)) = 1D1{B,>c; (el logel}]

I+1 l

+1 >y —€

zg(u+—e[)—e[ 2u+—(l—co)e[—e
when € is small. Therefore, the right hand side of (3.11) for small € is at least

(1 —co/3)Cre! +uy —é€.

Since the initial condition is po(x) = u4 - l{x>0) + u— - 1{x <0}, by the monotonicity
of g itis easy to see that for any x € Rand ¢t > 0,

PEIVB()) = 11 < us.
Hence using (G4) the left hand side of (3.11) is

Er[g(PLIVB( =) = 11+ Cie)] < Exlg(uy + Cie)]

<utp+(1=co) Crel <up+((1—co/3)C1 — e,

where the last line follows from the choice of C;. So (3.11) holds in this case.
Case 3 We now turn to the case with

[dx, )] < Qcer()+2(+ 1d+y( —s))€|loge|.
Using (3.23) we see that on the event A,, we have for u € [0, 5]

[d(Wy,t —u)| < |Wy — x|+ |dx, )|+ |d(x,t) —d(x,t —u)|
< Qi) +40+Dd+y(t—s))elloge| + Vo(l + 1)€2|10ge|
< (R+y( —s))€|loge|,
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where R = 2¢1(I) +4(I + 1)d + 1, see (3.20). Applying Proposition 3.9 with
B =(R+y—s)e|logel

shows we can couple (W,,), >0 with (B,),>0 (Which starts from d(x, t)) in such a way
that foru < Tg =inf{s € [0,7) : [d(Wy,t — 5)| > B} AL,

d(Wy,t —u) < B, + koBu.

Note that A, € {Tg > s}. Letn > 0. Recall zf = d(f(f,, t—5)+ K1eX2=9¢| log €|
and let

z3+ =d(W,t —s)+e+y(t—s)e|loge|
2 = By +koBs + €+ y(t — s)e|loge|

By the coupling between d(W;, t — s) and B; we have z;r < zj. By the convergence
of )Afﬁ to W, proved in Lemma 2.2 and the monotonicity of g
Ex[g(PL[VB( —5) = 1]+ C1e)]
< E, [g(P;+ [VB(t — ) = 1]+ C1e")] + Pe(AS) + P(GY)
< Eawn[s(PL[VBE — ) = 1]+ Cieh)] +4ae™t + 2. (325

where in the last step we have used (3.22). Let
E = {IPL[V®B( —5) = 1] —uol = (ws — o) — do}.

where § is the constant defined before (1.19).
Consider first when the event E occurs.
y ()€l loge| — (€ + koBs + y (t — s)elloge])
> y(t)e|loge| — (koBs + (K1 + DeK2t=9)¢ logel)
_ ((K1 T 1)eK20=9 (K25 1 _ o) — K()RS) e|loge|
> (K1 + (K2 — ko) — koR)se|loge| = ci(1)se|log €] (3.26)
where the last line follows from the choice of K> in (3.21). Take €, sufficiently small

so that €; < min(e; (1), 80/2). For € € (0, €;5) we can apply Corollary 3.8 to z = zj
and w = z;r Using (3.26) to conclude z; — z;f > c1(1)se|loge] it follows that on E

P[VB@E—s5) =1]— PS[VB@ —9) =1] > S?TS (3.27)
2y 2y
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so we have
g (PZT [VB( —s) =1]+ Clel) <g (P;2+ [VB( —5)) = 1] — 8os/4 + Cle’)

Recalling s < (¢ + 1)e?|loge| and using the monotonicity of g we can replace
—805/4 + C1e! by O when s > 4C1€!/80. If £ > 4 and s < 4C1€! /8y the s < € for
small €. Since g’(p) < C»

g (PZ} [VB@E —s) =1]+ Clel) =g (P;; [VB( —s) = 1]) +0I5n§)5(1 1g'(p)] - Cre' 1 s

< g (PL[VBG—5) = 1]) + Cae'l s (3.28)

(1.19) implies that If p > u4 — §p, § > 0 then

g(p+9) =g(p)+ (1 —co)d. (3.29)

Taking €4 sufficiently small so that Ci1€l < § forall € € (0, ¢4), and using (3.29) we
have on E€ that

8 <PZ} [VB(r — ) = 1] + C1e’> <z (P;I [VB( —s) = 1]) + (1 —cp) - Cié

= ¢ (PL[VBE—5) = 1]) + (1 —cp) - Coé!
(3.30)

since z; < z5 . Using (3.28) and (3.30) in (3.25)

E[g (PLIVBGE =) =11+ Ciel)]
< Eaten [g (P;2+ [VB(r —5)) = 1])] + (1= c)Crél + 4de™ 4 ¥ 4 Crell_ s

< Eaw |8 (PSIVBGE =) = 11) | + (1 = co/3)Crel + Cae 1.

which completes the proof of Lemma 3.12 and hence of Proposition 3.11.

4 Checking the conditions

Since (GO) is based on an observation on all the particle systems considered, it is
satisfied trivially. Recall that (G5) g is strictly increasing on [0, 1] holds in all our
examples and (G4) is a consequence of (G1), (G2) and (G3). That is, it suffices to
check (G1)—~(G3).
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4.1 Cubicg

As discussed in Sect. 1, both the sexual reproduction model with rapid stirring and
the Lotka—Volterra systems fall into this category. In this case, according to (1.15) we
must have

gp)=p—clp—u_)(p—uo)(p —uy)l

for some ¢ > 0. Tocheck (G1) wenote thatifweletg; (p) = (p—u—_)(p—uop)(p—u4)
then g1 (uy —8) = —g1(u— +6).Sog(uy —8) +g(u— +6) = us +u_ = 2ug by
(GO).

gdp)=1—cl(p—up)(p—up)+(p—u)(p—uy)+(p—u_)(p—upl

From this we see that

guy)=1—cluy —u)(uy —ug) <1,
gu)y=1—clu_ —up)u_—uy) <1,
g o) =1—clup —u_)(uo —uy) > 1,

which proves (G2). Taking the second derivative we obtain

§"(p) = =2¢l(p — us) + (p — uo) + (p — u_)1 = —6¢(p — uo)

since u + u_ = 2uy. This proves (G3).

4.2 Nonlinear voter model

Recall that for the nonlinear voter model we suppose
(Al) by > 0and 3b; + by < O;

(A2) 0<a1 =ar = 1/2

(A3) 6b; + by > 0.

In Region 2 there are two extra roots of ¢ (p) denoted by 1 — u™* < 1/2 < u™*, where

A/ —(b1 — b2)(3b1 + b2)

u*=1/2+ with By =
/2 + Bo Bo 201 — by
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The roots come from the following calculation:

¢(p) = bip(1 — p)* +bap*(1 — p)* —bop*(1 — p)? — b1 p*(1 — p)
=b1p(1 — p)(1+3p* = 3p —2p*) + by(1 — p)?p*(1 — 2p)
= p(1= )1 =2p) (b1 = p+ p>) + bap(1 = p))

b
=P(1—p)(1—2p)(b1—bz)<p2—p+b lb )
1 — 02

Solving p2 — p+ b1/(b1 — by) = 0 gives the two extra roots % =+ Bo.

To check our conditions we note that g(p) = p + ¢ (p) where ¢ (p) is the reaction
term, see (1.15). In our notation ug = 1/2, u_ =1 — u* and uy = u™.
Checking (G1) ¢ (p) is antisymmetric about ug so ¢ (uy+ — 8) = —¢(u— + §) and
hence g(uy —8) + g(u— +8) = ut + u_ = 2uog, proving (G1).
Checking (G2) u—_, uy are stable fixed points so ¢'(u—_) < 0,¢'(us) < 0. ug is
unstable so ¢’ (ug) > 0 and (G2) follows.
Checking (G3) Since g”’(p) = ¢”(p) the next step is to calculate ¢”(p) for p €
(1/2, u*™). By symmetry it is easy to see

$0)=9¢(1/2)=¢(1) =0 and ¢(p)=—¢(l—p). 4.1)
It follows that ¢” (p) = —¢” (1 — p) and ¢”(1/2) = 0. Since ¢ (p) is quintic it has at
most three inflection points. To check (G3) it suffices to show ¢” (u*) < 0.

Let¢1(p) = p(1 — p)(1 —2p) and ¢p2(p) = (b1 — b2) (p2 —p+ b]lebz) Since
¢(p) = ¢1(p)¢2(p) we have

9" (p) = &1 (P)p2(p) + $1(P)B5 () + 201 (D)5 (p).
Notice that ¢ (u*) = 0 so our problem simplifies to
¢"(u*) = 1 (u")Py (™) + 267 (u*)py (™)
The calculation simplifies if we write u* = 1/2 + fo, i.e.,

¢"(1/2 + Bo) = 1(1/2 + Bo)p5 (1/2 + Bo) + 26| (1/2 + Bo)p5(1/2 + Bo)
1 1
=—2po (Z - ﬁé) 2(by — by) +2 <6ﬁ§ —~ 5) 2Bo(b1 — by)

3
=4Bo(b1 — b2) <7ﬂ§ - Z) = —4po(6b1 + b2) <0,

hence proving (G3).
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