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Cognate linkages provide the useful property in mechanism design of having the same
motion. This paper describes an approach for determining all coupler curve cognates for
planar linkages with rotational joints. Although a prior compilation of six-bar cognates
due to Dijksman purported to be a complete list, that analysis assumed, without proof,
that cognates only arise by permuting link rotations. Our approach eliminates that assump-
tion using arguments concerning the singular foci of the coupler curve to constrain a
cognate search and then completing the analysis by solving a precision point problem.
This analysis confirms that Dijksman’s list for six-bars is comprehensive. As we further
demonstrate on an eight-bar and a ten-bar example, the method greatly constrains the
set of permutations of link rotations that can possibly lead to cognates, thereby facilitating
the discovery of all cognates that arise in that manner. However, for these higher order link-
ages, the further step of using a precision point test to eliminate the possibility of any other
cognates is still beyond our computational capabilities. [DOI: 10.1115/1.4052806]
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1 Introduction

By offering alternative mechanism dimensions that achieve the
same motion, knowledge of cognates can be useful in mechanical
design. Roberts’s proof [1] that every planar four-bar coupler
curve is generated by three distinct mechanisms was the first
result in cognate theory. Much later, cognates were found for all
the inversions of planar six-bar linkages, with Table 4 of
Dijksman’s book [2], based on Refs. [3,4], purporting to be a com-
plete list. For a review of all the cognates known before the publi-
cation of that table, we refer the reader to Ref. [5] and the references
in Ref. [6].

Dijksman’s method of finding cognates included the following
assumption [3]:

We now make the assumption that the angular velocities occurring in
all cognates to be found are permuted only .... It is then clear that not
all permutations are permissible ... In this way one can even try to
forecast the number of cognates of six-bars.

For succinctness, we introduce the following terminology.

Definition A permutation cognate is one for which the rotations
of its links are a permutation of the rotations of the original linkage,
both measured in the world reference frame.

Dijksman’s Conjecture All cognates for planar linkages with
rotational links are permutation cognates.

This poses the question as to whether Dijksman’s table is really
complete. In short, three issues remain unresolved:

(1) Does Dijksman’s Conjecture hold for four-bar and six-bar
linkages?

(2) If it does hold, has Dijksman found all permissible
permutations?

(3) For each permissible permutation, is there only one cognate
(or, in one case, only one two-dimensional family of
cognates)?

Given these open issues, only two rows in Dijksman’s table can
be considered complete:
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e for four-bars, Roberts [1] settled the matter using arguments
concerning the singular foci and nodal points of the coupler
curve.

e Roth [7] gave a rigorous treatment of Stephenson-3 six-bars
(and certain related geared linkages) by close examination of
the coefficient equations of the coupler curve.

In addition to the above questions, we add:

(1) Can we find all permutation cognates more efficiently than
exhaustive testing?

(2) Does Dijksman’s Conjecture hold for higher-order linkages
(eight-bars, ten-bars, etc.)?

In Refs. [8,9], we have previously shown how to answer Ques-
tion 3 using a formulation wherein planar vectors are written as
complex numbers. Given a linkage type and a permutation of the
angles, these papers reduce the construction of the cognates for
that permutation to solving a linear system of equations. This
system either has no solutions (meaning that the permutation is
invalid for generating cognates), has a unique solution, or has a
linear set of solutions. By automating this method, one could also
answer Question 2 by exhaustively testing every possible permuta-
tion. However, Question 1 remains open.

The present paper answers Question 1 definitively in a way that
also lets us easily answer Question 2 without resorting to exhaustive
testing. Moreover, our approach gives a highly effective answer to
Question 4, thus facilitating the construction of all permutation cog-
nates for higher-order linkages. The approach we use to settle
Dijksman’s conjecture for six-bars extends in principle to eight-bars
and beyond, but the computations are currently beyond our capabil-
ities, so Question 5 remains open. Nevertheless, we believe our
method is a big step towards ultimately tackling that question.

Like Roberts [1] did for four-bars, for each linkage type, we start
by determining the singular foci of the coupler curve. To do so, we
use the methods of Refs. [10,11], supplemented by techniques from
numerical algebraic geometry [12] as implemented in the software
package BERTINI [13,14]. Since the singular foci belong to the
coupler curve, not a specific linkage, all cognates must have the
same singular foci with the same signatures. However, the singular
foci alone do not completely determine the curve—recall that for
four-bars, Roberts also considered the nodal points. To finish the
job, our approach selects a few general points on the curve and
solves the associated curve interpolation problem using numerical
algebraic geometry. In this way, we find all curve cognates not
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just the permutation cognates. A side benefit is that the focal condi-
tions already strongly limit the possible angle permutations, which
is how we address Question 4.

To save space, we refer to the companion paper [9] for loop equa-
tions for all the six-bar inversions. Before treating these, we review
the definition of a singular focus and describe how to compute the
singular foci of a linkage. After first treating the Stephenson-2B
linkage in detail, we summarize our results for all six-bars, omitting
Watt-2 linkages because their coupler curves are the same as
four-bars.

A caveat: throughout this paper, we restrict our attention to
general linkages of the types we study. We do not rule out the pos-
sibility that additional curve cognates could appear in exceptional
cases.

The rest of the paper is organized as follows. Section 2 reviews
the definition of a singular foci and describes how to compute
them, using the Stephenson-2B as an example. Section 3 sum-
marizes the focal signatures for the four-bar, all six-bars, and one
example each of an eight-bar and a ten-bar. It also details which per-
mutations of the link rotations are compatible with these signatures,
which is a necessary condition for a permutation cognate. In Sec. 4,
to complete the analysis for six-bars, that is, to definitively answer
Question 1, we find all cognates by appending an appropriate
number of precision points to the focal point conditions and solve
the system using numerical algebraic geometry. We summarize
these results in Sec. 5.

2 Background

The problem of finding coupler curve cognates is closely con-
nected to precision-point path synthesis problems. In the case of
curve cognates, we are not given a finite set of points on the
curve, but rather we wish to find all linkages that exactly reproduce
the whole curve.

In principle, one way to solve the curve cognate problem is to use
a complete solution to the maximal precision-point path synthesis
problem. For example, only a finite number of distinct four-bars
interpolate nine general points. Given a four-bar curve, we could
select nine general points on it and find all four-bars interpolating
them. These four-bars will separate into groups of cognates. In
Ref. [15], complete solutions of the nine-point problem for four-
bars were computed using numerical algebraic geometry, resulting
in 1442 coupler curves that interpolate the points, each curve gen-
erated by three cognate linkages. This accords to Roberts’s result
that four-bars are triply generated. For six-bar linkages, such an
approach becomes untenable since the precision-point problems
are currently too big for current approaches.

For finding cognates, instead of choosing general points on the
coupler curve, we can choose distinguished points associated with
the coupler curve in order to make the synthesis problem easier.
An advantageous choice is to select the points where the coupler
curve approaches infinity, which is equivalent to finding the
curve’s singular foci. This approach is motivated by recalling that
the ground pivots of a four-bar linkage coincide with two singular
foci of its coupler curve. The maximal number of general precision
points that can be specified for the path synthesis of a four-bar with
specified ground pivots is just five, and the problem can be solved
ab initio with a 96-path homotopy [16]. Furthermore, since we
know the location of the third singular focus, that constraint
reduces the maximal number of general precision points to just
three, which allows one to find all cognates even more simply.
Thus, this suggests that analyzing the singular foci of the coupler
curves of six-bars and higher-order linkages might provide signifi-
cant leverage in solving for cognates. Indeed, this will turn out to be
the case, but first we must review the definition of singular foci and
how to compute them.

2.1 Singular Foci and Isotropic Coordinates. The notion
that conics (parabolas, ellipses, and hyperbolas) have focal points
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is a familiar one. So too might one remember that as an ellipse is
morphed into a circle, its two foci coalesce in to a single focus.
This double focal point at the circle’s center is an example of a sin-
gular focus, and it clearly tells us something fundamental about the
circle. Similarly, the singular foci of coupler curves hold important
information that can help us solve the riddle of curve cognates.

A general definition of singular foci can be found in Ref. [17],
and examples of their application to linkages appear in Ref. [18].
We will make use of the treatment found in Refs. [10,11] which
greatly simplifies computations through the use of isotropic coordi-
nates. From a geometric viewpoint, both treatments involve analyz-
ing how a curve meets infinity, whereas from an algebraic
viewpoint, they involve analyzing the highest order terms of the
coupler curve equation. This makes sense because near infinity,
when variables get large, the highest order terms dominate the
lower order ones. A fundamental difference of Refs. [17,18] as
compared to Refs. [10,11] comes in how “infinity” is defined.

If one confines their analysis to the reals, the question of how a
coupler curve reaches infinity is vacuous: links are finite, so the
whole coupler curve must remain finite. For example, this is true
of a circle. However, if we allow the coordinates of the curve to
take on complex values, this picture completely changes. Funda-
mentally, this is because in the reals, the polynomial for squared dis-
tance from the origin, 2+ y2 has only a single zero, (x, y)=(0, 0),
whereas in complex space, any point with y = +ix is a zero. Because
of this, there are points that stretch out to infinity in the complex
plane while still satisfying a circle’s equation. The same is true
for any algebraic curve.

Let us call the two lines of points that are zero distance from the
origin the isotropic lines. Their linear equations are x + iy = 0 and
x — iy = 0. Since the fundamental property of arigid link is that it pre-
serves distance, it should not be too surprising that these lines hold a
special significance. The classical treatment of singular foci takes a
one-homogeneous approach wherein the open Euclidean plane is
closed up by adding a line at infinity, having one point on that line
for each slope a finite line can have. In a sense that can be made
precise, two distinct parallel lines intersect at the point at infinity
associated with their slope. This implies that all lines parallel to
one of the isotropic lines meets it in the same point at infinity.
These two isotropic points play a major role in the classical theory.

A more facile way of treating singular foci, and in many ways, a
more convenient way of treating nearly all problems in planar link-
ages, is to use isotropic coordinates. This is almost identical to a
complex-vector formulation of kinematics that treats any point
(x, y) in the Euclidean plane as the point p=x+1iy in the
complex plane. To turn this into isotropic coordinates, we form a
second coordinate p = x — iy so that (p, p) is just a linear change
of coordinates from (x, y). When x and y are real, p is the
complex conjugate of p, but this is no longer true when x or y has
a nonzero imaginary part.

If we close up the Euclidean plane one-homogeneously, i.e., with
a single line at infinity, all the lines parallel to the p-axis meet in one
isotropic point, and all lines parallel to the p-axis meet in the other
one. But there is another way of closing up the plane that works to
our advantage: add two lines at infinity, one parallel to each coordi-
nate direction. This two-homogenization is done using the substitu-
tions p = P/w and p = P/W, and clearing denominators. The new
coordinates are written ([P, w], [P, w]) and we do not allow
[P, w]=1[0, 0] nor [P,#]=1[0,0]. The bracket notation means
that only ratios matter: [a, b] and [Aa, Ab] for A #0 are considered
the same point.

The bottom line (see Ref. [10] for more) is that after making this
transformation, the coordinates of the singular foci are formed as
the values of p where p hits infinity (i.e., where w =0) and vice
versa for the values of p. For the real curves we study here, if a
term ap/p* appears, so does its conjugate *p*p/. This means that p
hits infinity in the complex conjugates of where p hits infinity, so
in fact we just need to compute the p-coordinates. To do this for
plane curve given by f(p, p) =0, make the substitution p = 1/w,
clear denominators, set W = 0, and solve for p. Or put more simply,
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just cross out all terms of f except those with the highest power of p
and then set p = 1. The result is a simpler polynomial g(p) = 0 whose
roots are the p-coordinates of the curve’s singular foci. As a simple
example, consider the equation (p — c)(p — ¢*) — r> = 0, which is a
real circle with center ¢ and radius r. Omitting lower-order terms in
D, we are left with (p — ¢)p = 0, and setting p = 1, we find that the sin-
gular focus of the circle is its center p = c. (More properly speaking, it

is (p, p)=(c, ¢*).)

2.2 Computing Singular Foci. To find singular foci following
the prescription earlier, we need a curve’s coupler curve equation in
the form f(p, p) =0. In Ref. [10], it is shown how to carry this
through using the Dixon determinant formulation from Ref. [19] to
eliminate rotation angles from the kinematic loop equations. In
Ref. [11], the singular foci are found by direct computations on the
loop equations without elimination, which yields additional informa-
tion about the rotations associated with the singular foci. To automate
this, we follow the paradigm of numerical elimination theory [14,20]
in numerical algebraic geometry and use the software package
BERTINI [13,14]. This approach avoids any trouble with extraneous
roots, which is a possibility when using the Dixon determinant. Fur-
thermore, the information about rotations further constrains the pos-
sible cognates, making our search for cognates more efficient.

Consider an N-link mechanism which has one degree-of-freedom
(DOF). Thus, N must be even and the linkage has N/2 — 1 loop equa-
tions together with an equation for the location of the coupler point p
relative to the origin. To write relations directly in isotropic coordi-
nates, we use a complex-plane formulation wherein translations
become addition and rotations are multiplication by a complex
number of unit magnitude. Specifically, letting © ; be the angle of
rotation of link j with respect to ground, 8; = ¢! is its complex rota-
tion. Fixing link O as the ground link, there are N — 1 rotations 6; for
the moving links. The loop equations and coupler point equation can
be written relative to the origin in the form

N-1
aio + aki6j+akNp=0, k=1,...,N/2 €))]
j=1
where each a;;is a complex vector between two points of link j in its
reference position. (Since the a;; are complex, any offset angle that
would result from choosing a different reference orientation can be
absorbed into these coefficients.) To work in Cartesian coordinates,
one would take the real and imaginary parts of these equations, but to
work in isotropic coordinates we keep them as is and merely intro-
duce the conjugate equations

N-1
ay+ Y a0 +app=0, k=1,...,N/2 )
j=1

along with the unit-length equations
06,=1, j=1,...,N-1 3)

Together, Egs. (1)—(3) form a system of 2N — 1 equations in the 2N
variables {(@, ..., Oy_1, p), @1,..., By_1, p)}, describing the link-
age’s 1-DOF motion.

As discussed in Sec. 2.1, the singular foci are the points where the
coupler curve approaches infinity in p. Because we have not elim-
inated the rotation angles, we include them in our two-
homogenization procedure by substituting p=1/W as before

while also rescaling éj =0;/w for j=1, ..., N—1. Clearing
denominators in Egs. (2) and (3) yields
N-1
ag+ Y a0 +ajy =0, k=1,...,N/2 4)
=1
00,=w, j=1,....,N—1 5)

The singular foci are given by where the solution curve of the

system (1), (4), and (5) intersects w=0. It turns out that the
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system obtained by merely substituting w = 0 may have additional
solutions which do not arise as limits of the coupler curve. So,
instead of solving that system directly, we use a homotopy that
reveals how finite arcs of the curve approach infinity. This is accom-
plished by slicing with a hyperplane to get finitely-many points and
then following the paths starting from these points as the hyperplane
is moved smoothly to infinity.
Specifically, we start by appending the equation

LOw):=w—-c=0 (6)

where the complex coefficient ¢ is chosen random for genericity.
Given all the coefficients a;; and c, the system (1), (4)—(6) consists
of 2N polynomials in 2N unknowns that is easily solved using
BERTINI for relevant sizes of N.

Once the finite solutions are known, they become start points cor-
responding with r=1 for the homotopy that deforms the slicing
hyperplane (W) to the hyperplane at infinity w = 0 as t — 0, namely

h(w, ) :=tl(W)+ (1 —tw=w—t-c=0 @)

The full set of equations for the homotopy is Eqs. (1), (4), (5), and
(7). Given the start points for the homotopy, the solution paths can
be tracked, for example, using a user-defined homotopy in BERTINI.
The endpoints at t=0 are the values of p for the singular foci. We
also may observe the multiplicities of the singular foci by the
number of paths that converge to each. Furthermore, notice that at
t=0, where w = 0, each corresponding unit length equation (5) has
become Bjéj =0 so that either 6;=0 or éj =0 for every j=1, ...,
N —1. It is easily observed that both cannot be zero since that
does not leave enough freedoms to satisfy all the remaining equa-
tions. Therefore, the pattern of which N—1 variables among
{6, éj,jz 1,...,N—1} is zero at each singular focus becomes
an additional signature of the focus.

This homotopy-based approach computes the singular foci as
numerical values that are dependent on the input coefficients ay;.
In some cases, symbolic formulas for each singular focus can be tri-
vially observed from the numerical values such as when a singular
focus is a ground pivot. Explicit symbolic expressions of the singu-
lar foci are not required to find permutation cognates but to settle
the existence of any other cognates, they become essential. One
approach to deriving is to employ exactness recovery methods
[21] to determine symbolic expressions directly from numerical
computations. Alternatively, one can use a computer algebra
package, taking advantage of the knowledge of which rotations
vanish at each singular focus to simplify expressions.

2.3 Singular Foci of Stephenson-2B. To illustrate the
approach in Sec. 2.2 for computing singular foci, we consider com-
puting the singular foci of the Stephenson-2B six-bar linkage,
shown in Fig. 1. In this figure and the rest, we draw the linkage
in a reference pose where all link rotations are zero (Remember
that any offset angle can be absorbed into the link vectors.). In
any other pose along the coupler curve, link vector a; rotates to
01a; and similarly for the rest. Each loop equation for the link is
just a sum of these rotated vectors. Referring to the notation in
Fig. 1, after making the substitutions for p and éj, and clearing
denominators, the system consisting of the loop, coupler point,
and unit length equations is

0=(ag — bp) + a10; + a0, + az0;3 — a404
0= (a} — bW + a0 +a30, + a30; — a0,
0= 0,0, + a305 + b404 + as0s

0= b;éz + a§é3 + bZé4 + a§é5
p=ap+a0 +c:60,

1 =ajw+ aTél + czéz

0=06-w j=1,...,5
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Fig. 1 Stephenson-2B mechanism

To compute the start points of the homotopy, we append the linear
equation (6) and use BERTINI to compute the nine solutions. Repla-
cing Eq. (6) by (7) and tracking the homotopy paths emanating
from the nine points, yields the singular foci. Symbolic expressions
for the singular foci are shown in Table 1 along with the corre-
sponding rotations that vanished at infinity. Multiplicities greater
than one are explicitly noted. For example, in the first row of
Table 1, bgx 3 means that three paths end at by with the same set
of vanishing rotations. Three paths also end at a, but different
sets of rotations vanish for each, so the multiplicity with respect
to each set of vanishing rotations is one while the total multiplicity
of ay is three. This analysis shows that the two ground pivots are
both singular foci with multiplicity 3, but the extra information pro-
vided by the vanishing rotations show that these singular foci are
geometrically different from each other as well as the others. As
we will see next, this shows that every Stephenson-2B cognate
linkage must have the same ground pivots.

3 Focal Signatures and Permutations

For linkage type, the term focal signature consists of the number
of singular foci, the distinct patterns of vanishing rotations at each
singular focus, and the multiplicity of each pattern. The computa-
tional approach in Sec. 2.2 yields all this information. For the
Stephenson-2B, this is the information in Table 1 except the explicit
symbolic formulas. It tells us that there are five singular foci: two
with multiplicity 3 and three each having multiplicity one. Further-
more, one of the multiplicity 3 singular foci comes from a multiplic-
ity 3 vanishing pattern, whereas the other one comes from three
distinct vanishing patterns each of multiplicity 1. Table 2 lists the
focal signature information for the four-bar and all six-bar types.
For easier reading, it only shows the vanishing rotations in 0; for
Jj=1, ..., N—1 since one immediately knows from this list that
the complementary 6, vanish. As can be observed in that table, it
is possible for a singular focus to have different multiplicities
with respect to different vanishing rotations. In particular, this

Table 1 Rotations that vanish and corresponding singular foci
for Stephenson-2B

Vanishing rotations Singular foci and multiplicity

02. 03, 04, 05, 0, box3
01, 02, 04, 03, 05 dao
01, 02, 65, 03, 04 ao
01, 02, 03, 04, Os ag

AA ap-a;—ap-cy+by-cy
01, 03, 04, 02, 05 p

A A aO'“Z—CIO'bz—Zao'C2+bQ'C2
01, 04, 05, 02, 03

az—bz

o cay-by+ag-ay-by—d- by -+ by by-

01, 05, 05, 0y, 0, aop-ay -by+ap-ay-by—agp-by-cy+by-by-cr

a by +ay - by

031005-4 / Vol. 14, JUNE 2022

Table 2 Vanishing rotations and singular foci for the four-bar
and six-bar mechanisms

Vanishing
Mechanism rotations Singular foci and multiplicity
4-Bar 01, 6, ap
92, 93 b()
61,62 (a0~a2+b2-bo—b2~a0)/a2
Watt-1A 0,, 03, 04, 05 box?2
01, 63, 05 bo
01, 05, 05 (ag-az+ag-b3—by-bz)laz
61,63,64 (az'(ls'ho"‘ao'bz'bS—bo'hz'bs)/
(a - as)
04, 05 roots of a quadratic
Watt-1B 0,, 03, 04, 05 box2
91, 92, 94 ap
61, 63, 64 (u2~b0—a0~b2+b0~b2)/a2
91,93,95 (az'a4'b0+ao'b2'b4—b0'b2'b4)/
(ay-ag)
91,92,95 (a0~a3~a4+ao-a4'b3+a0'b3~b4—a4
bo-b3—Dbo-bs-bs)l(asz- as)
04, 05 roots of a quadratic
Stephenson-1 0, 03, 05 bg
62, 63, 65 b()
01, 65, 05 (ap-az+ag-bz—by-b3)las
61, 63, 64 (ao'b5+a5'bo—b0'b5)/d5
62,63,64 (al-a5-h0+ao-b1-b5—b0-h1-b5)/
(a;-as)
04, 05 roots of a cubic
Stephenson-2A 0, 03, 04, 05 box3
01, 04, 05 by
61, 62, 65 [2%%)
0y, 03, 05 (ap-ag-by—ag-by-by+ar-by-by+ by
by by)l(ay-by+ay-by)
91,93,94 (a2~a5~b0+a0-b2'b5—b0'b2~b5)/
(ay-as)
91, 92, 94 (a5-b0—a0-b5+b0-b5)/a5
Stephenson-2B 0., 03, 04, 05 box3
01, 05, 0, Ao
01, 0, 05 2]
01, 05, 03 Ao
61, 63, 64 (ao-az—a0-02+b0-cz)/a2
01, 04, 05 (ag-ax—ag-ba—ag-cy+bg- )/
(az—by)
61,63,65 (ao~a2~b4+ao-a4~b2—a0~b4~cz+b0
“by-co)l(ay-by+ay-by)
Stephenson-3 04, 6,, 05 ap
02, 03, 05 bo
64, 65 Co X 3
0,, 03, 04 (as-co+bo-bs—Dbs-co)las
61, 62, 64 (u5~c0+a0~b5—b5~co)/a5
01, 03, 05 (az-bo—ag - by)/(az—by)
01, 03, 04 (az-bo-bs—ag-by-bs+ay-as-co—as

'bz'CO—az'bS'Co+b2‘b5‘60)/
(as - (a2 — b))

occurs for singular focus by of the Watt-1A and Stephenson-2A
linkages.

If a cognate is a permutation cognate, the permutation of the
angles will permute the patterns of rotations that vanish where the
coupler curve hits infinity. But this focal signature is a generic prop-
erty of the linkage, so it cannot change. Only angle permutations
that preserve the focal signature are candidates for permutation cog-
nates. Applying any two signature-preserving permutations in suc-
cession still preserves the signature, so the collection of all such
permutations forms a group.

Preservation of the focal signature is a necessary but not suffi-
cient condition for an angle permutation to give a valid cognate.
The final check is to apply the methods from Refs. [8,9] to see if
the signature-preserving permutations are consistent with
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preserving the system of loop and coupler point equations. We will
find that except in the case of the four-bar, the signature-preserving
permutations are a small subset of full set of permutations among
the moving links, i.e., for n > 6, each n-link mechanism type has
many fewer than (n—1)! signature-preserving permutations. We
will give the details in the following subsections, starting with
our running example, the Stephenson-2B.

3.1 Group Notation. Our discussion will benefit from using
notation from the theory of groups. A two-way symmetry, which
arises from a transposition, is denoted Z,. For example, swapping
rotations 0; and 6,, which corresponds with the transposition
denoted 6, < 0,, yield a two-symmetry group action Z,. If k inde-
pendent transpositions act on distinct elements, then the resulting
group of size 2* is denoted

Iy XXy
i ——
k times

For example, the three transpositions 0, <> 0,, 05 < 0,, and 05 < 0g
are applied to distinct elements so the resulting group action is
Z, X 7, X Z», which has order 2° =8.

A three-way symmetry arises from two transpositions that have
an element in common, which is denoted S; and has order 3! =6.
For example, the transpositions 0; <0, and 0; <03 have one
element in common, namely 01, so this corresponds with the three-
way symmetry group S;. Finally, the product S5 X Z, has order 3! -
2=12 and arises from three permutations, two which have one
element in common with the third one having distinct elements,
e.g., 91 <—>92, 91 > 63, and 94<—> 65.

Every permutation group includes the trivial permutation where
nothing is changed. We will refer to any other permutation as
nontrivial.

3.2 Valid Permutations of Stephenson-2B. Using Table 1,

we can determine which permutations are valid. As noted in
Sec. 2.3, there are three types of singular foci: ground pivot ay,
ground pivot by, and the three singular foci of multiplicity
1. Hence, all valid permutations must keep the two ground pivots
fixed, but the three singular foci of multiplicity 1 may permute
among themselves.
_ From by, one sees that 0, cannot permute with any other rotation as
0 is the unique 0; vanishing at by. Since 0, cannot permute and 6, is
the only other rotation that appears in each of the three sets of rota-
tions for ay, 6, also cannot permute. Therefore, the two ground pivots
have shown that the only possible permutations are among 03, 04,
and 0s. Checking transpositions 03 <0, and 04« 05 separately
shows that the vanishing structure for the ground pivots and one of
the other singular foci of multiplicity 1 are maintained while trans-
posing the other two singular foci of multiplicity 1. Hence, this
yields a three-way symmetry among 03, 64, and 05 showing that
the group action on the Stephenson-2B cognates corresponds with
S3. Note that since links 3 and 5 are both binary links connected
between links 2 and 4, they are topologically equivalent, so the trans-
position 03 < 05 corresponds with a relabeling of the mechanism
rather than a new cognate. Accordingly, only three of the six permu-
tations in S5 have the potential to yield unique mechanisms. As found
in Ref. [9], these are in fact valid permutation cognates.

3.3 Four-Bar Valid Permutations. As Roberts [1] identified,
the three singular foci of the four-bar can be permuted in any way
which corresponds to any permutation of the three rotations.
Hence, the three-way symmetry shows that the group action on
the rotations of the four-bar corresponds with S;. Considering
Fig. 2(a), the transposition 0, <> 05 corresponds with relabeling so
only three of the six permutations in S3 can produce unique mech-
anisms. These are the permutation cognates found by Roberts [1].

Journal of Mechanisms and Robotics
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Fig. 2 (a) Four-bar and (b) Stephenson-1

3.4 Stephenson-1 Valid Permutations. The only valid non-
trivial permutation of rotations for the Stephenson-1 is the transpo-
sition 0; < 6,. Hence, the group action corresponds with Z,. This
action gives a permutation cognate.

3.5 Stephenson-2A Valid Permutations. The group of
signature-preserving permutations for Stephenson-2A is Z, X Z,
generated by the two transpositions 6, < 03 and 04 < 05 yielding
permutation cognates (Fig. 3).

3.6 Stephenson-3 Valid Permutations. Considering Fig. 4,
Roth [7] determined that the cognates of the Stephenson-3 mecha-
nism are generated by applying Roberts cognates to the four-bar
formed by links 0-1-2-3 and a skew pantograph transformation to
links 10-4-5 as discussed in Ref. [8]. The results of the computation
from Sec. 2.2 match those previously known results as follows.
First, the group of valid permutations of the Stephenson-3 mecha-
nism corresponds with S3 X Z, where the S5 arises from a three-way
symmetry of the rotations 0, 6,, and 65 while the Z, arises from the
transposition 0,4 < 0s. Finally, as in the case of the four-bar, the
group S3 can only produce three unique mechanisms due to
relabeling.

3.7 Watt-1A Valid Permutations. For the Watt-1A, the only
signature-preserving permutation is the trivial one. However, the

(10“ Ab

Fig. 3 Stephenson-2A
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Fig. 4 Stephenson-3

Watt-1A is unique among the six-bars as it has a two-dimensional
family of cognates (Fig. 5).

3.8 Watt-1B Valid Permutations. The group of signature-
preserving permutations for Watt-1B is Z, X Z, generated by
the transpositions 0, <> 05 and 04« 0s. These yield permutation
cognates.

3.9 Valid Permutations of An Eight-Bar Mechanism.
Whereas our analysis of the six-bars confirms that Dijksman
found all permutation cognates, the equivalent question for higher-
order linkages has never been addressed. An exhaustive check of
all possible permutations for an eight-bar would have 7!=5040
cases to check. (The ground link is fixed, so an n-link mechanism
has (n—1) link angles that might permute.) The necessity of pre-
serving the focal signature greatly reduces the task. We illustrate
this fact by treating the eight-bar shown in Fig. 6 followed by a
ten-bar in the next section.

For this eight-bar, the slice (6) gives 23 finite points on the
coupler curve, which are then tracked to infinity using Eq. (7) to
find the singular foci. Nine are distinct singular foci with multiplic-
ity 1 corresponding to the following sets of vanishing rotations:

{61, 62, 64, 07},
{01, 03, 64, 06},
{62, 03, 64, 06},

{01, 02, 65, 66},
{61, 03, 64, 07},
{02, 03, 04, 67},

{01, 62, 65, 67}
{61,03,05,06}  (8)
{02, 63, 05, O6}

Two more are located at the ground pivot by but with different van-
ishing rotations:

{61,03,05,07;} and {0, 03, 05, 07} ©)

Fig. 5 (a) Watt-1A and (b) Watt-1B

031005-6 / Vol. 14, JUNE 2022
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Fig. 6 An eight-bar mechanism

Finally, there are two distinct singular foci that each have multiplic-
ity 6 arising from the following vanishing rotations:

{04, 05, 06,07} and {0g, 07} (10
From Eq. (10), one sees that the set of rotations decomposes into
three sets which could permute among themselves, namely {0,
0,, 03}, {04, 05}, and {O¢, 0,}. Now, Eq. (9) refines this since 05
and 0, appear while 6, and 64 do not appear showing that 6, s,
06, and O; must all not permute. Moreover, since 03 appears in
both collections while 0; and 6, only appear once, 65 must not
permute yielding the only possible permutation is the transposition
0, < 0,. Checking Eq. (8) shows that this transposition keeps the
first row invariant while the second and third rows interchange
meaning that this is permutation preserves the focal signature.
The group action on the rotations corresponds with Z, of order 2.

By computing the focal signature, we have reduced the complete
analysis of permutation cognates from 5040 cases to just 2. The
trivial permutation and the transposition 6, <0, each give a
unique mechanism: the original one in Fig. 6 and its cognate
shown in Ref. [8].

3.10 Valid Permutations of a Ten-Bar Mechanism. The
final example is to determine the valid permutations of the ten-bar
linkage in Ref. [22] and shown in Fig. 7. Tracking 56 paths for
this ten-bar linkage produced the following structure regarding van-
ishing rotations and multiplicity. There are eight distinct singular
foci with multiplicity 1 corresponding to the following sets of van-
ishing rotations:

{01, 02, 03, 05, 07},
{01, 02, 04, 05, 07},
{02, 03, 05, O, 07},
{02, 04, 05, O, 07},

{61, 05, 63, 07, B3}
{91’92, 94’ 97798} (11)
{62, 03, 66, 07, B3}
{02, 04, B, 07, B3}

There are four distinct singular foci each with multiplicity 2
that arise from two distinct sets of vanishing rotations with multi-
plicity 1. The first one in the following list corresponds with
ground pivot b:

{61, 92, 94, 65, 99} and
{91, 92, 94, eg, 99} and
{61, 92, 93, eg, 99} and
{91, 92, 93, 65, 99} and

{02, 04, 05, Og, B9 }
{02, 04, O, Og, 09 }
{02, 03, O, Og, B9 }
{02, 03, 05, Og, 09 }

(12)
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P

\ \

2 h(x)

Fig. 7 Original ten-bar mechanism x and three cognates f(x),
g(x), and h(x)

Next, there are five distinct singular foci that arise from a single set
of vanishing rotations of multiplicity 4. The first one in the follow-
ing list corresponds with the ground pivot c:

{03, 04, 05,03, 09}, {03, 04, 05, 07, O3}

13
{61, 06,69}, {0s,07,08}, {0Os, 03,609} 13

Finally, there is a singular focus that arises from the following set of
vanishing rotations of multiplicity 20:

{07, 09} (14)

This focal signature limits the possible permutation cognates. First,
Egs. (13) and (14) show that 6; and 6y must remain fixed. Next,

since 0, is the only rotation in every collection in Eq. (11), it also
cannot permute. Of the six remaining, namely 0;, 05, 0,4, Os, Og,
and Bg, the bottom row in Eq. (13) shows that the only possible per-
mutations must arise from the three transpositions 0; <> 0, 03 <> 04,
and 05 < 0g. Each of these transpositions preserves the focal signa-
ture so that the corresponding group action on the rotations is
Zy X X X Z,. This analysis has reduced the number of permuta-
tions to check from 9!=362, 880 to just 4, the trivial permutation
and three transpositions.

For the four cases remaining, the methods described in the com-
panion papers [8,9] can compute the permutation cognates. The
transpositions 0; <> 0,4 and 05 <> 0g along with the combination of
both of these generate three distinct cognates of the original mech-
anism which are denoted f(x), g(x), and h(x), respectively, in Fig. 7.
Table 3 together with (15) contain explicit formulas for the cognates
while Table 4 lists numerical values (rounded to four decimal
places).

agdy + bsbg — bycy — coay by as
n= as(ao — bo) ’ 72=_a_4’ y3=_b_3
_ agazbs — azbobs — asbobs + asbscy
b= azbs(ao — bo)
aszbs + asbs bs — as
2= a3b5 3T b5
5 = agasbs — asboby — asbsco + asbycy + bobsbs — bybscy
asbs(ag — bo)
by(as — b asbs + asbs
5 = 4(azb5 5) 55 = — 231)55 (15)

Unlike the other signature-preserving permutations, the transposi-
tion 0; < 04 results in an inconsistent system. Therefore, there
does not exist a cognate that arises by simply permuting the
angular velocities 0, and 6.

Table 3 Link rotations and link parameters for a ten-bar mechanism (x) and three curve cognates

(F(x), g(x), h(x))

Cognate X fx) g(x) h(x)
Link rotations 1 0, 0, 0, 0,
2 0, 0, 0, 0,
3 0; 04 0; 0,
4 0, 03 0, 0;
5 65 65 93 93
6 B¢ 06 B¢ B¢
7 0, 0, 0, 0,
8 Og Og 05 05
9 69 69 99 99
Link parameters 0 ao ao ao ao
bo co+y2(bo — co) o+ albo — o) o+ 2(bo — o)
Co Co Co Co
1 a 7iay Siay S1a;
by bi+ai(yi—1) bi+a (i —1) bi+a(6,-1)
2 a naz fias 014y
by r2b2 $oby 62by
3 az —by $oas Oaay
bs ¥3bs {3bs O3by
4 (2% 1243 $oay 62a3
by —as {3ba 03bs3
5 as as ag(§z—1) —asaglbs
bs ¥3bs {aag dsag
6 de 714e $ias O1ae
7 ay ay ay ar
8 as 73as bs—as 93bs
9 dg dg dg dg
by bo by by
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Table 4 Ten bar linkage and cognate parameters where i = v—1

Original Swap 3—4 Swap 5-8 Swap 34 & 5-8
ag 0.0+ 0.0i 0.0000 + 0.0000i 0.0000 +0.0000i 0.0000 + 0.0000i
by 1.040.0i 2.3667 + 1.0000i 0.1509 +0.0283i 3.0667 + 1.4000i
Co 2240.1i 2.2000 + 0.1000i 2.2000 + 0.1000i 2.2000 +0.1000i
a, 0.5+0.3i 0.8833 +1.2100i 0.0670 +0.0594i 1.1133 +1.6200i
by 0.4-0.7i 0.7833 +0.2100i —0.0330 - 0.9406i 1.0133 4+ 0.6200i
a, 0.3-0.3i 1.0100 —0.4100i 0.0538 —0.0368i 1.3400 — 0.5000i
by 0.440.5i 0.2867 —0.3933i 0.721340.8176i 0.1853 —0.8099i
az 0.2-0.7i 0.1000 — 0.5000i 0.2828 — 1.2069i —0.1793 - 0.8517i
b3 -0.5+0.3i 0.3353+0.5412i —0.5828 4+ 0.8069i 0.6146 +0.8929i
ay 0.64+0.3i —0.5533 - 0.0067i 1.0450+0.4610i —0.8726 4+ 0.3616i
by -0.14+0.5i —0.2000 4 0.7000¢ 0.1793 +0.8517i —0.2828 4+ 1.2069i
as —0.6+40.3i —0.6000 + 0.3000i —0.7966 — 0.5586i —0.7966 — 0.5586i
bs 0.74+0.3i 0.8941 —0.3235i —0.8966 — 1.6586i —1.8260 — 1.4763i
ag 0.240.0i 0.4733 +0.2000i 0.0302 +0.0057i 0.6133 +0.2800i
az -0.3-0.5i —0.3000 — 0.5000i —0.3000 — 0.5000i —0.3000 — 0.5000i
ag -0.1-1.1i —1.0294 -0.9176i 1.3000 + 0.0000i 1.4941 —0.6235i
ay -0.9-0.1i —0.9000 — 0.1000i —0.9000 - 0.1000i —0.9000 — 0.1000i
bg 0.640.5i 0.6000 + 0.5000i 0.6000 + 0.5000i 0.6000 + 0.5000i

4 Show Completeness

We have shown how to find all permutation cognates. It is much
harder to show that no other type of cognate exists. To attack this
problem, we solve a special type of precision-point path synthesis
problem. For four-bars, one could settle the question by sampling
ten general points from the coupler curve of a general four-bar,
solving a path synthesis problem for nine of these points, and check-
ing which of these solutions also interpolates the tenth point. This
would give the original linkage and all its cognates. For four-bars,
this is feasible, but for a six-bar, this would require solving a path
synthesis problem having 15 precision points which is beyond
current computational capability.

Fortunately, by taking advantage of focal information, we can
bring the six-bar problems within range. We can compute the singu-
lar foci and use their signature to derive symbolic expressions for
them. As one may see in Table 2, these focal equations are much
simpler than the coupler curve equation. So instead of all general
points, it is easier to solve a path synthesis problem whose precision
points are the singular foci and a sufficient number of additional
general points. As an example, consider specifying singular foci
F,, F,, F5 for the four-bar. Then, Table 2 tells us that ag=Fj,
bo =F 2, and

Fiay + (F2 — F1)by = Fza,

These three conditions and their conjugate counterparts (Gy = F,
etc.) are six independent linear conditions. Consequently, the deter-
mination of all four-bar path cognates can be accomplished by
adding just three more general precision points and then checking
the solutions against a fourth one. This is much simpler than
solving a nine-point problem.

For six-bars, we proceed similarly. The first step is to check how
many independent conditions are imposed by specifying the singular
foci. Let x be the set of link parameters, x = (ag, by, ...), and suppose
that S(x) is map that gives the singular foci. Choose a general (i.e.,
random) set of parameters x*. Then, all cognates to x* must satisfy
S(x) —S(x*)=0. Let JS(x*) be the Jacobian matrix of S evaluated
at x*. By Ref. [20], assigning the singular foci imposes rank JS(x*)
conditions on the link parameters. Accordingly, we only need to
specify k =15 — rank JS(x*) additional precision points to obtain
an exactly constrained path synthesis problem. The k points are ran-
domly sampled from the original coupler curve to ensure genericity.
The second column in Table 5 lists &, the remaining degrees-
of-freedom, for the four-bar and six-bar linkages.

When forming the path synthesis problems, for the four-bars and
six-bars, we may write the jth entry of S(x) form S;(x) = p;(x)/g(x).

031005-8 / Vol. 14, JUNE 2022

Clearing the denominator yields a polynomial of the form p;(x)—
Si(x*) - gj(x) =0 for each singular focus.

Methods in numerical algebraic geometry [12,14] can be used to
both sample random points from the coupler curve and solve the
resulting path synthesis problem for four-bar and six-bar linkages.
In particular, our experiments utilized regeneration [23,24] to
solve the path synthesis problems with the resulting finite number
of nondegenerate linkages summarized in Table 5.

Due to degrees-of-freedom counting, each nondegenerate linkage
is a cognate of the original linkage if its coupler curve also passes
through one additional randomly selected point on the coupler
curve. If this additional check results in a unique cognate linkage,
then the completeness test verifies that there is indeed a unique
cognate per valid assignment of singular foci. This was indeed
the case for the four-bar (confirming Roberts’s result [1]) and the
Stephenson-3 (confirming Roth’s result [7]). The same was true
for the Watt-1B, Stephenson-1, Stephenson-2A, and Stephenson-
2B six-bar linkages which proves that Dijksman’s corresponding
list of cognates is complete.

For the Watt-1A, Sec. 3.7 states that there is only the trivial assign-
ment of the singular foci and there is a two-dimensional family of
cognates. One natural way to parameterize this two-dimensional
family is by the ground pivot ao which, in isotropic coordinates, cor-
responds with the two variables (ag, dp). Hence, one first fixes this
ground pivot and then applies the completeness test to verify that
there indeed is a unique cognate proving that Dijksman’s correspond-
ing list of cognates is complete. We note that this computation first
required the filtering of degenerate components before checking at
an additional random point on the coupler curve.

Table 5 Number of points on the coupler curve (k), which is the
degrees-of-freedom after specifying the singular foci, and
number of nondegenerate solutions of the k-point problem
after specifying the singular foci

Mechanism k points # solutions
4-Bar 3 4
Watt-1A 5 958
Watt-1B 2 34
Stephenson-1 2 32
Stephenson-2A 5 3344
Stephenson-2B 5 3472
Stephenson-3 5 3430
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5 Conclusion

Permutation cognates are those that arise by permuting link
rotation angles. Dijksman conjectured that all planar cognates
are permutation cognates and compiled a list of them for all
six-bar planar mechanisms. He did not show how to make sure
the list is exhaustive or how to generalize his approach to higher-
order linkages. We have shown that analyzing the vanishing rota-
tions corresponding to the singular foci of a mechanism type pro-
duces a short list of permutations that are compatible with
preserving these focal signatures. This reproduces the result
known for four-bars and also reproduces Dijksman’s list for
six-bars, confirming that he found all permutation cognates.
Testing an eight-bar example, our method reveals that just one
nontrivial permutation preserves the focal signatures, and indeed,
it yields a path cognate. For a ten-bar example, our method
reveals that three independent transpositions of rotations preserve
the focal signatures, but the further step of deriving cognates using
these transpositions shows that one of them is inconsistent. Thus,
this linkage type is shown to have exactly four permutation cog-
nates (counting the original linkage).

Since its ground link is fixed, an n-bar linkage has (n — 1)! possible
ways to permute its rotations. Restricting one’s search to just permu-
tation cognates, our method provides an extreme reduction in the
number of permutations to check compared to a naive approach of
checking all possible permutations. For the eight-bar we studied,
the reduction is from 7!=5040 to just one transposition. For the
ten-bar, it reduces the cases from 9!=362,880 to just three
transpositions.

For six-bars, we were able to check Dijksman’s Conjecture by
computing all cognates that match a given assignment of singular
foci by adding to the focal conditions a minimally sufficient
number of precision points sampled generically from the coupler
curve and solving the resulting path synthesis problem. Without
the focal conditions, one would be faced with a 15-point path synth-
esis problem, which is currently impossible to solve completely.
With the focal conditions, one needs to add only two or five preci-
sion points (depending on the linkage type). These smaller prob-
lems are feasible, and we find in every case that only permutation
cognates result. This confirms Dijkman’s Conjecture for general
six-bars, confirming that the list of permutation cognates is in fact
the complete list of all possible path cognates.

While our methodology has proven effective for finding all per-
mutation cognates for higher-order linkages, we are presently not
able to solve the path synthesis problems that would confirm Dijks-
man’s Conjecture for eight-bars or beyond due to computational
limitations.

Acknowledgment

SNS and JDH were partially supported by NSF CCF-181274.
SNS was also supported by the Schmitt Leadership Fellowship in
Science and Engineering.

Journal of Mechanisms and Robotics

Conflict of Interest

There are no conflicts of interest.

References

[1] Roberts, S., 1875, “On Three-Bar Motion in Plane Space,” Proc. Lond. Math.
Soc., 7(1), pp. 14-23.

[2] Dijksman, E., 1976, Motion Geometry of Mechanisms, Cambridge University
Press Archive, Cambridge.

[3] Dijksman, E., 1971, “Six-Bar Cognates of Watt’s Form,” J. Eng. Ind., 93(1),
pp. 183-190.

[4] Dijksman, E., 1971, “Six-Bar Cognates of a Stephenson Mechanism,” J. Mech.,
6(1), pp. 31-57.

[5] Nolle, H., 1974, “Linkage Coupler Curve Synthesis: A Historical Review- II.
Developments After 1875,” Mech. Mach. Theory, 9(3-4), pp. 325-349.

[6] Nolle, H., 1974, “Linkage Coupler Curve Synthesis: A Historical Review-
1. Developments Up to 1875,” Mech. Mach. Theory, 9(2), pp. 147-168.

[7]1 Roth, B., 1965, “On the Multiple Generation of Coupler Curves,” Trans. ASME,
Ser. B J. Eng. Ind., 87(2), pp. 177-183.

[8] Sherman, S. N., Hauenstein, J. D., and Wampler, C. W., 2020, “Curve Cognate
Constructions Made Easy,” Proceedings of the ASME 2020 International
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, Virtual, Online.

[9] Sherman, S. N., Hauenstein, J. D., and Wampler, C. W., 2021, “A General
Method for Constructing Planar Cognate Mechanisms,” ASME J. Mech. Rob.,
13(3), p. 031107.

[10] Wampler, C. W., 2004, “Singular Foci of Planar Linkages,” Mech. Mach. Theory,
39(11), pp. 1123-1138.

[11] Wampler, C. W., 2004, “The Geometry of Singular Foci of Planar Linkages,”
Mech. Mach. Theory, 39(11), pp. 1139-1153.

[12] Sommese, A. J., and Wampler, C. W., 2005, The Numerical Solution of
Systems of Polynomials Arising in Engineering and Science, World Scientific,
Singapore.

[13] Bates, D. J., Hauenstein, J. D., Sommese, A. J., and Wampler, C. W., 2006,
“Bertini: Software for Numerical Algebraic Geometry,” bertini.nd.edu

[14] Bates, D. J., Hauenstein, J. D., Sommese, A. J., and Wampler, C. W., 2013,
Numerically Solving Polynomial Systems with Bertini, Vol. 25, Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

[15] Wampler, C. W., Morgan, A., and Sommese, A. J., 1992, “Complete Solution of
the Nine-Point Path Synthesis Problem for Four-Bar Linkages,” ASME J. Mech.
Des., 114(1), pp. 153-159.

[16] Morgan, A. P., and Wampler, C. W., 1989, “Solving a Planar Four-bar Design
Problem Using Continuation,” Proceedings of the ASME 1989 Design
Technical Conferences, Montreal, Quebec, Canada, pp. 409—416.

[17] Coolidge, J., 1959, A Treatise on Algebraic Plane Curves, Dover, New York.

[18] Bottema, O., and Roth, B., 1990, Theoretical Kinematics, Dover, New York.

[19] Wampler, C., 2001, “Solving the Kinematics of Planar Mechanisms by Dixon
Determinant and a Complex-Plane Formulation,” ASME J. Mech. Des., 123(3),
pp. 382-387.

[20] Hauenstein, J. D., and Sommese, A. J., 2010, “Witness Sets of Projections,” Appl.
Math. Comput., 217(7), pp. 3349-3354.

[21] Bates, D. J., Hauenstein, J. D., McCoy, T. M., Peterson, C., and Sommese, A. J.,
2013, “Recovering Exact Results From Inexact Numerical Data in Algebraic
Geometry,” Exp. Math., 22(1), pp. 38-50.

[22] Choe, J., Li, D., Soh, G., and McCarthy, J. M., 2009, “Synthesis of a 10-bar
Driver for Planar Scale Change Linkages,” 2009 ASME/IFToMM International
Conference on Reconfigurable Mechanisms and Robots, London, UK, pp.
142-147.

[23] Hauenstein, J. D., Sommese, A. J., and Wampler, C. W., 2011, “Regeneration
Homotopies for Solving Systems of Polynomials,” Math. Comp., 80(273),
pp. 345-3717.

[24] Hauenstein, J. D., and Wampler, C. W., 2017, “Unification and Extension of
Intersection Algorithms in Numerical Algebraic Geometry,” Appl. Math.
Comput., 293(1), pp. 226-243.

JUNE 2022, Vol. 14 / 031005-9

220z Joquialdas 6 Uo Jasn aweq 810N JO Alsiaaun Aq Jpd'G00LE0 € ¥L IWIBSS66.9/S00LE0/E/YL/IPd-0joie/SonogoIsWSIUEYoaL/BI0"aWSE UONDa||0d|e)BIpawWSE//: Y WOl Papeojumod


https://dx.doi.org/10.1112/plms/s1-7.1.14
https://dx.doi.org/10.1112/plms/s1-7.1.14
http://dx.doi.org/10.1115/1.3427873
http://dx.doi.org/10.1016/0022-2569(71)90005-X
http://dx.doi.org/10.1016/0094-114X(74)90018-4
http://dx.doi.org/10.1016/0094-114X(74)90034-2
http://dx.doi.org/10.1115/1.3670789
http://dx.doi.org/10.1115/1.3670789
https://doi.org/10.1115/1.4050293
http://dx.doi.org/10.1016/j.mechmachtheory.2004.06.008
http://dx.doi.org/10.1016/j.mechmachtheory.2004.06.007
http://bertini.nd.edu
http://dx.doi.org/10.1115/1.2916909
http://dx.doi.org/10.1115/1.2916909
http://dx.doi.org/10.1115/1.1372192
http://dx.doi.org/10.1080/10586458.2013.737640
http://dx.doi.org/10.1090/S0025-5718-2010-02399-3

	1  Introduction
	2  Background
	2.1  Singular Foci and Isotropic Coordinates
	2.2  Computing Singular Foci
	2.3  Singular Foci of Stephenson-2B

	3  Focal Signatures and Permutations
	3.1  Group Notation
	3.2  Valid Permutations of Stephenson-2B
	3.3  Four-Bar Valid Permutations
	3.4  Stephenson-1 Valid Permutations
	3.5  Stephenson-2A Valid Permutations
	3.6  Stephenson-3 Valid Permutations
	3.7  Watt-1A Valid Permutations
	3.8  Watt-1B Valid Permutations
	3.9  Valid Permutations of An Eight-Bar Mechanism
	3.10  Valid Permutations of a Ten-Bar Mechanism

	4  Show Completeness
	5  Conclusion
	 Acknowledgment
	 Conflict of Interest
	 References

