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ARTICLE INFO ABSTRACT

Keywords: An approach for approximate kinematic synthesis of mechanisms is proposed in this paper which
Mechanisms computes a graph that identifies minima of an objective function as vertices and connections
Optimization between them as edges. Such a graph is interactively presented to a designer, whereby edges are

Homotopy continuation

continuously traversed to navigate families of design candidates in between minima. Candidates
Saddle graph

are evaluated continuously according to auxiliary considerations for the exploration of design
trade-offs. Relevant design specifications tend to be particular per application and are either
unclear as how to incorporate into an objective, or clear but with great consequence to the
complexity of function evaluation. Computing the aforementioned graphs begins with finding
all minima and saddles of an objective function through polynomial homotopy continuation.
Connections between minima that minimize their maximum objective value must pass through
a saddle to do so. Therefore, after gathering saddles, each is perturbed both ways in its least
eigendirection to seed gradient descent paths which connect two minima when pieced together.
Discovered connections between minima are organized into a graph, where edges correspond
to gradient descent paths.

1. Introduction

Kinematic synthesis aims to find the dimensions of a mechanism after desired constraints have been posed on its motion. For exact
synthesis, the number of constraints and dimensional design variables are equal. For approximate synthesis, the former exceeds the
latter. Our approach to approximate synthesis begins by constructing an objective function from motion specifications, of which
minima and saddles can be computed via homotopy continuation. Minima are subsequently connected by computing gradient
descent paths emanating from saddles that are pieced together and organized into a graph which we call a saddle graph. The resulting
paths in design space connect two minima while minimizing the maximum objective value along the way (which is the saddle it
passes through). A saddle graph organizes stationary points and their connections by representing saddles and minima as vertices
and gradient descent paths as edges. After computing and constructing a saddle graph, it may be displayed to a designer for perusal
in an interactive and continuous fashion.

The utility of such interactive exploration is augmented by evaluating all design candidates that comprise a saddle graph
according to auxiliary performance metrics. To navigate trade-offs, this information is relayed to the designer during interaction with
the saddle graph. The value of a saddle graph hinges on the supposition that a designer would recognize greater utility along one of
its edges rather than on a minimum vertex. Such cases arise because applications often drive a diverse set of design specifications
which together do not lend to a neat objective function. Some specifications have no clear formalization, some do but greatly
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increase the complexity of function evaluations, and some are omitted due to low priority. Blending such specifications into an
application-specific objective leads to intricate optimization that hinders generalizability and is thus not pursued here. Instead, we
form the objective from motion specifications, which take a polynomial form, and evaluate auxiliary metrics on an ad hoc basis
after saddle graphs have been formed, aiding in generalizability.

1.1. Background

Early works that applied homotopy continuation for the exact synthesis of mechanisms include [1-3]. This is achieved by finding
the roots of a system of polynomial equations that arise naturally from the mathematical model. This body of work has evolved
with the development of newer and better techniques to address the problem of finding these roots. As homotopy continuation
advanced, it enabled solutions to more complicated problems of exact kinematic synthesis [4-7]. On a different front, the methods
of approximate kinematic synthesis have focused on optimization [8,9], Fourier descriptors [10], evolutionary algorithms [11,12],
and machine learning [13]. Approximate synthesis allows for the inclusion of a much greater number of motion specifications,
and with numerical optimization techniques, inequality constraints can be handled as well. Both search-based and gradient-based
algorithms are popular in these works. A less-explored pathway to design mechanisms is to frame the optimization objective and to
find all the critical points of the same. In this hybrid framework, the design problem poses an objective and the tools of numerical
continuation are used to compute minima and saddles. The general characteristics of optimization problems that can be solved using
homotopy continuation are as follows:

1. The objective function must have a finite number of stationary points
2. It is preferable to construct an objective function whose monomial structure is invariant with respect to the number of design
specifications, enabling a unified formulation.

Liu and Yang [14], in one of the first works of this kind, solved a class of problems in the design of four-bar mechanisms and reported
a root-count of 33 for these optimization problems. More recently, more complicated problems, including the design of systems
with two degrees of freedom, can be solved using more advanced numerical continuation techniques [15]. In these works, emphasis
was on finding all of the isolated critical points. The current work aims to construct a network of critical points by establishing
connections between them leading to a thorough exploration of the design space. Since the construction of these networks are
enabled from the computation of saddle points, we refer to these networks as saddle graphs. The construction involves the tracking
of gradient-descent paths starting from the saddle points leading into the adjoining minima. This leg of the work has precedence
in literature, such as Morse and Morse-Smale complexes [16-18]. One-dimensional slow invariant manifolds for dynamical systems
arising in [19] were used to compute a saddle network in studying the equilibria and slow dynamics in the composition space of
reactive systems. In a more recent work [20], a similar network is used to study an energy landscape related to the snappability
of pin-jointed bar frameworks. In both these applications, directed graphs connecting saddle points to the adjoining minima are
computed similar to our notion of saddle graphs. The novelty of this work is to leverage the construction of saddle graphs to find
parametric families of solutions that aid in the development of a design tool in the optimal synthesis of mechanisms.

1.2. Motivation

The goal is to develop a tool that offers continuous families of design candidates to a user. This is important since, from a
designer’s standpoint, there are several auxiliary design considerations that are difficult to account for in an objective function such
as branching or circuit defects. For a four-bar linkage and other mechanisms derived from four-bar loops, inequality constraints
can be derived to detect branching and then implemented with a constrained optimizer [21,22]. However, for more complex
mechanisms, such inequalities are unavailable. Branching defects can be detected through a discretized solution of the direct
kinematics which is easy and flexible via post-processing analysis but difficult to force-fit into an objective function. Moreover,
the topic of branch and circuit defects has more gray area than is usually considered by past literature. For example, [23,24] found
utility in “defective” mechanisms which produced most but not all precision points. Therefore, the designer’s and application’s
tolerance for kinematic inaccuracy could be additionally included into an objective, neither of which information tends to be readily
available. Such a tolerance can be modeled by adding weighting factors to the objective, which often leads to hand-tuning until a
desired minimum is found. Such hand-tuning activities cast into doubt the correlation between an objective value and true design
utility. In [25], this uncertainty is described as “fuzziness” in the design criteria and constraints.

Dimensional sensitivity provides a second example point. Generically, such a metric measures how changes in dimension affect
an output motion. In practice, what entails changes in dimension and output motion is application-specific. Sometimes components
of the design space gradient with respect to an objective sufficiently describe sensitivity, sometimes eigenvalues of the design space
Hessian are additionally required, and for specific output motions, a full Monte Carlo simulation may be needed. Performing these
analyses individually is more or less tractable, but incorporating such activities into an objective is at best cumbersome and at worst
intractable.

Another metric that is straightforward to evaluate in post-process but cumbersome to incorporate into an objective is its spatial
envelope, which is frequently computed as a maximum length or area over all relevant configurations of a mechanism. Inequality
constraints, commonly imposed on link lengths, are naturally handled with interior point methods [26]. In our methodology, we
do not handle inequality constraints up front, but instead assess link packaging as auxiliary considerations in post process. Finally,
we argue that some design considerations are never formalized and remain latent to the designer’s mind. For example, the designer



A. Baskar et al. Mechanism and Machine Theory 176 (2022) 104932

Primary Objective

Motion specification

7T
=S
=
% Auxiliary Considerations
@]

0 Preferred

0 27 pivot
Input 4 locations

Y

Objective function

Evaluate graph per ‘
auxiliary metrics Desirable

\ / Undesirable

|Organize saddle graph |

Homotopy Continuation

Y

Gradient Descent Paths

Fig. 1. Process flow diagram of homotopy-based optimization.

might expect a certain aesthetic. Although never formalized, these considerations additionally skew the designer’s judgment of utility
away from the minima of the objective function. This all motivates the need for delivering families of design candidates that the
designer can choose from.

1.3. Outline

A flow diagram is presented in Fig. 1 which summarizes our saddle graph approach. The rest of the paper is organized as follows.
Section 2 provides details regarding homotopy-based optimization and saddle graphs. Section 3 summarizes four-bar function
generation which is applied in Section 4 to a humanoid finger and a flapping motion for a hummingbird. A discussion regarding
the results is provided in Section 5 followed by a short conclusion in Section 6.

2. Homotopy-based optimization

The process flow for the mathematical modeling of homotopy-based optimization can be summarized in the following five step
procedure:
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1. For any given problem specification such as the design of a function generator, the vector loop equations are derived. All the
passive configuration variables are eliminated to arrive at a scalar equation referred to as the residue condition hereon. This
elimination step is crucial to render the optimization problem invariant to the number of design specifications. Otherwise, the
number of variables would increase with the number of specifications. The residue condition is a function of, say, n design
variables and the design specifications such as the angular displacements given by the function to be generated.

2. For N > n generic design specifications, it is impossible to meet all conditions exactly with zero residual error. Hence, an
objective function is proposed as a sum of squares of the residue condition for the N design specifications. The residue
condition and hence objective function are polynomial.

3. The first-order necessary conditions of optimality are derived by setting the partial derivatives of the function with respect
to the design vector of dimension » to zero. This always leads into a square system with the same number of equations and
variables. The monomial structure of this system of polynomials is one measure of complexity of the underlying system and
can be used to dictate the choice of the numerical technique used to find the roots. Note that the monomial structure is
invariant with respect to the number of design specifications for a given model.

4. Several standard methods of numerical continuation techniques exist for solving polynomial systems such as a multi-
homogeneous homotopy [27], polyhedral homotopy [28], regeneration [29], and monodromy-based techniques [4,5,30,31].
For small systems with, say, expected root counts in the hundreds, a straight-forward multi-homogeneous homotopy is often
preferred based on its simplicity. For more complicated systems with a comparatively higher root count, monodromy-based
techniques can be quite efficient [32]. A generic design specification is randomly chosen and one of the available techniques
is used to compute the critical points. This is called the ab initio step and the solution set found serves as the start points for
the subsequent step, namely, parameter homotopy.

5. Once the ab initio step is completed, the polynomial system is considered solved. Any different design specification set for this
model can be solved via a parameter homotopy from the start system found in the previous step to the target of interest. By
successfully completing this step, all possible critical points of the objective function are known leading to full exploration of
the design space. This is one of the main advantages of formulating a polynomial objective function and utilizing numerical
continuation techniques over using traditional optimization toolboxes that only find one or a few minima.

2.1. Critical points

Critical points of an optimization problem are generally classified as either a minimum, maximum, or a saddle point based on
the definiteness of Hessian matrix of the objective function. If all the eigenvalues of the Hessian matrix evaluated at a critical point
are positive, then the critical point is a minimum. On the other hand, if all of the eigenvalues are negative, then the critical point is
a maximum. A unified classification scheme is adopted in this work to classify a critical point as a saddle of index k where k is the
number of eigenvalues of the Hessian matrix evaluated at the critical point which are negative. By this scheme, for an n-dimensional
problem, an index 0 saddle is a minimum and an index » saddle is a maximum. This classification scheme simplifies the discussion
on saddle graphs.

2.2. Saddle graphs

Suppose that f(d) is the polynomial objective function of the optimization problem where d is the set of n design variables.
Let d* denote a saddle point of index k satisfying the first-order necessary condition for optimality, namely, f4(d*) = 0 where f; is
the gradient vector of f with respect to d. Let f4q be the Hessian matrix of f with respect to d. Then, the eigenvalues of f44(d*) are
referred to as principal curvatures and the corresponding eigenvectors are the principal directions of curvature. For j = 1,... ,k, let e,
be the principal directions corresponding to the negative principal curvatures 4; < 0 of fqq(d*). Therefore, in a small neighborhood
of d*, these principal directions with negative principal curvature represent a basis for the subspace of directions for which the
objective f instantaneously decreases.

Consider the following:

Bo—p a0=a. Lo=s-e, &)
where s € {—1,+1}. The solution d,(r) to (1) represents a solution to the gradient descent optimization emanating from a saddle
point along a negative principal direction. For the problems under consideration, we know f is bounded below (in fact, nonnegative
since a sum of squares) and coercive, i.e., lim gy f(d) = o, which implies that lim,_,, d,(?) is a saddle point of index at most k— 1.
In particular, all solutions to (1) have bounded length.

Numerically, one typically combines the initial value conditions in (1) into a single condition:

d0)=d* +6-5-¢

for some 0 < § < 1. Due to numerical error when computing the saddle point d* and corresponding principal direction e;,
implementing the initial condition using a perturbation, and employing a numerical scheme such as Runge-Kutta—Fehlberg [33,
pp. 539-549] for approximating d,(), the corresponding numerical trajectory will, almost surely, lead to a local minima since local
minima are stable solutions of gradient descent. This is not a concern as the goal is to compute paths connecting minima together.

For an index 1 saddle point d*, the two gradient descent solutions, denoted d, () and d_(r), must lead to two minima (index 0
saddles). In some cases, they both could lead to the same minimum albeit via distinct paths. If the two minima are distinct, the
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Fig. 2. Illustration of the saddle graph for Himmelblau’s function: (a) A 3-dimensional plot of Himmelblau’s function with its saddle graph; (b) A 2-dimensional
contour plot of Himmelblau’s function with its saddle graph.

mountain pass theorem [34, p. 114] provides that the corresponding path between the two minima and d* is a minimizer of the
maximum value of the objective function over the set of smooth paths connecting the two minima. These paths are referred as
separatrix lines of valley type in [18]. Note that such a path can easily be constructed when the saddle points are known while
constructing such a path is an extremely challenging problem when only the minima are known.

For saddles of index at least 2, there are multiple negative principal directions. In the following analysis, we only consider
one principal direction which has the most negative principal curvature. One reason for this consideration is that this direction is
dominant in that the other orthogonal directions where the principal curvature is larger, i.e., either positive or less negative, is
attenuated fast in comparison. Further, due to numerical considerations described above, numerical tracking of gradient descent
paths starting from high index saddles almost surely converge to minima. In particular, saddle points of positive index are unstable
equilibria for gradient descent and there are practical challenges in numerically approximating such unstable paths.

This process allows for all of the saddle points of index > 1 to be connected with the set of local minima. We represent this
connectivity in the form of a graph, which we call the saddle graph. Each edge of this graph represents a continuous parametric
family of mechanisms. In particular, this graph provides greater insights by representing the design space extensively as opposed to
just examining the minima. Auxiliary design considerations can be used to sift through this graph of solutions to identify candidate
designs.

2.2.1. Example of a saddle graph
To illustrate the construction of saddle graphs, consider Himmelblau’s function

fll) =@ +L— 10"+ +12 -7

which is bounded below and coercive as shown in Fig. 2(a). There are nine critical points: four minima (index 0), four index 1
saddle points, and a local maximum (index 2). The index 1 saddles connect the minima via gradient descent paths as a consequence
of the mountain pass theorem forming a roughly quadrilateral shape as shown in Fig. 2(b).

For the index 2 saddle (local maximum), Fig. 2(b) plots the trajectory arising from the principal direction with the most
negative principal curvature. We demonstrate why we made this selection by considering various trajectories resulting from small
perturbations along any linear combination of the two principal descent directions. Each plot in Fig. 3 shows trajectories with
various sizes of perturbations § emanating from the same combinations of negative principal directions. Thus, when § is sufficiently
small, all the descent paths converge with the one along the principal direction with the most negative principal curvature thereby
justifying the restriction of saddle graph analysis to the principal direction with the most negative principal curvature.

One observes that the saddle graph captures all the main characteristics of Himmelblau’s function near each minima. Translating
to mechanisms, this means that the saddle graph captures the main characteristics of the design space near each minima and
potentially opens more choices for the designer. The following demonstrate the utility of saddle graphs in the context of a four-bar
function generation.

3. Function generation of a four-bar mechanism

The mathematical model of the optimization follows [35]. Here, we expand on it at greater detail for completeness. Consider
the four-bar mechanism shown in Fig. 4. For function generation, the objective is to coordinate the angles y and y swept by the
proximal links in a predefined manner from a home configuration yet to be determined. Since such a function generated by the
mechanism does not change when the mechanism is rotated, stretched, or translated, this allows us to fix the two ground pivots
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Fig. 3. Evolution of finitely many descent paths starting from the index 2 saddle against step length & of the initial perturbation.

(u) (1+s,1)

(0,0) (1,0

Fig. 4. Schematic of the function generation problem.

at (0,0) and (1, 0), thereby removing four free choices from the model. The two proximal links are defined at a home or reference
configuration using the variables (1, v) and (s, 1), respectively, as shown. The floating coupler link is of length r. We consider a rotated
configuration of the mechanism where the angular displacement of the two proximal links are y; and y;, respectively, which are
the design specifications.

Let us first write a vector loop equation running from the ground-pivot at origin to the other pivot at (1,0) between the home
configuration and the displaced configuration. Considering the rigidity of the coupler link of length r, the following equation can
be written:

= |IR[g;1- ,0)" = (1,0) = Rly;1- (5,0 ||* = 0, @

where R[a] represents 2D rotation matrix of angle « (say). Note that, this step already removes the passive angle ¢; from the model.
Upon expansion, a modifier variable r,, = (=14 r? = s> = 1> —u? — v?) is introduced to simplify the equation and reduce the degree
of above equation in the variable r. The simplified residue condition is:

N 1= 1y + (su+tv)cos(u; —y;) + (tu — sv)sin(u; —y;) — scosy; +1siny; +ucos u; —vsinp; = 0. 3)

The above condition is associated with the design position j. The number of variables in the design set is 5, namely, d =
{r,.s,t,u,v}. Hence, for a generic design specification, up to a maximum of 5 design positions can be solved with zero residue.
This is the classical exact synthesis problem that admits a maximum of three feasible solutions [36, p. 210]. On the other hand,
this work deals with an optimization problem where the number of design positions can be arbitrarily large. Since most practical
problems require more than just five positions, it is useful to solve this problem in an optimal fashion.

3.1. Optimization model

The objective function must be one that reduces the residue across all design positions via a sum of squares of the residuals,
namely:

RPN @)

A point to note is that the approach does not directly minimize the error in the function generated, instead it relies on the residue
condition to indirectly achieve the same. The issue with a direct minimization approach is that 4; and y; would be variables that
proliferate with the number of design positions in such a model with (3) being the constraint as opposed to being the objective.
Hence, the proposed objective function is deemed appropriate.
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This is an unconstrained optimization problem in the five design variables, d = {r,,, s,t,u, v}. The critical points of the objective
function are the points where the gradient of the objective function is zero, which is the necessary condition for optimality, namely:

P ©
d—j=l’7,' ad

This results in a system of five polynomial equations in five variables. Irrespective of the number of design positions, N, the
structure of the above set of polynomial equations remain the same, in the sense of the distinct monomials present in them. This
means the complexity of the problem is invariant to the number of design positions, which provides an important advantage. A
way of quantifying the complexity of the problem is by finding an upper bound to the maximum number of roots this polynomial
system admits. The total degree of the system is 2 - 3* = 162 since the degrees of the five polynomials to solve are 2,3,3,3,3,
respectively. Hence, the number of critical points to this optimization problem is bounded by 162. Tighter upper bounds exist
for these polynomial systems based in algebraic geometry. For example, a multi-homogeneous Bézout number [37] of 53 can be
found using the grouping {{r,,,s.t}, {u,v}}. There also exists a sharper Bernshtein-Kushnirenko-Khovanskii (BKK) bound [37] of
33 (including the trivial solution at the origin) for this system. Note that these numbers are only upper bounds for the maximum
number of roots and the actual number called the root count may be lesser than the smallest of these bounds. We refer to Appendix
for more details on the nature of these equations. In the following, a numerical continuation technique is used to estimate the root
count for the system of equations formulated in this section via direct computation.

3.2. Ab initio solve

Any general parameterized square system of polynomials admits a finite number of isolated zeroes, called roots. According to
the theory of numerical continuation, once the roots of a numerically general [38] version of a target polynomial system have been
completely found ab initio, those roots may serve as start points for computationally efficient parameter homotopies to target systems
with engineering relevance. This is a consequence of the technique called parameter homotopy [39] in which such a subsequent
target system can be solved via a continuous deformation process from the solved system to the unsolved one. Theoretically, with
probability one, there exists a one-to-one map between the roots of these two systems.

For the ab initio solve, as described in Item 4 in Section 2, the choice of the technique is usually incumbent upon the scale
and complexity of the problem. For relatively simple problems such as the function generation one being discussed here, a multi-
homogeneous homotopy is adequate. A generic parameter set (u;,y;) for j = 1,2,..., N of random complex numbers is chosen to
define the ab initio system to be solved. Using the partition {{r,, s,?}, {u,v}} of two homogenized groups, Bertini [38,40] is used
to track 53 paths yielding the 25 roots. All the computations of this work are carried out using a Intel® Core™ 2.80 GHz system using
a single core. It is of note that one of the 25 solutions is the trivial solution where all five variables take the value zero. Unexpectedly,
this seemingly useless trivial solution provides strong utility for the designer via a saddle graph which will be expanded upon in
the numerical case studies.

Remark. It is worth pointing out that some critical points of an objective function lie at infinity. For example, f(x) = x> has a
minimum at x = 0 and a maximum as x tends to infinity. It is possible to represent critical points at infinity by working with
projective coordinates as demonstrated in [19]. However, for the numerical examples considered in this work, the critical points at
infinity were degenerate and did not lead to results with meaningful engineering impact. Therefore, further studies on the matter
were not pursued.

4. Numerical case studies

In this paper, we consider two numerical case studies. For each, we report on the computation of a parameter homotopy to find
all saddles, the computation of eigenvalues of the Hessian matrix to classify each saddle, the computation of gradient descent paths
from saddles of index > 1 perturbed in negative principal directions, the organization of saddles into a graph according to descent
path connections yielding a saddle graph, and the evaluation of such graphs according to auxiliary design considerations.

4.1. Humanoid finger

The first case study is that of the design of a humanoid finger, adopted from [35]. This example deals with the design of a
constrained 3R humanoid finger with two degrees of freedom. The human finger consists of three phalanges: proximal, middle, and
distal phalanx. For most people, the motion between middles and distal phalanxes is coordinated. In building a humanoid finger,
their motions can be coupled using a four-bar mechanism by solving a function generation problem. Since the range of motion is
continuous, it is desirable to have as many discrete design positions as possible. Thus, this problem falls within the framework of
the homotopy-based optimization framework described earlier.

The input specifications are obtained from a video of a human index finger to record the angular displacement of the phalanges.
After processing the raw data (refer to [35] for more information), 21 design positions are chosen (listed in Table 1) from a quadratic
curve that fits the data as shown in Fig. 5. Beginning from the 25 start points of the general system solved earlier, a parameter
homotopy is used to solve the system associated with the humanoid example in the Bertini software in about 1.5 s. All 25 paths
converged successfully and those corresponding to physical linkage geometry are reported in Table 2 yielding the critical points of
the design objective function.
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Fig. 5. Data processing to arrive at the design specification for the function generation problem of a human finger motion.

Table 1
Design specification for the function generation problem of a human finger motion.
1 2 3 4 5 6 7 8 9 10 11
" 0 —0.060 -0.120 -0.180 -0.240 —0.300 —0.360 -0.420 —0.480 —0.540 -0.600
v 0 0.0245 0.0532 0.0860 0.123 0.164 0.210 0.259 0.313 0.371 0.433
12 13 14 15 16 17 18 19 20 21
u —0.660 -0.720 —0.780 —0.840 —0.900 —0.960 -1.020 -1.080 -1.140 -1.200
v 0.499 0.569 0.644 0.723 0.806 0.893 0.984 1.080 1.179 1.283
Table 2
Design candidates for the function generation problem of a human finger data.
# Design parameters (m) Type Saddle Max. error” Obj.
r ] ; " B index (rad) f
1 1.553 -0.118 —0.948 0.079 0.384 Min. 0 0.010 0.00003
2 1.146 —-0.103 —-0.369 —0.055 0.280 Saddle 1 0.055 0.00012
3 0.546 -0.289 0.028 0.153 0.281 Saddle 2 N/A 0.00448
4 0.443 —-0.607 0.049 0.359 0.502 Saddle 1 0.025 0.00007
5 0.945 -0.913 1.259 0.216 0.321 Min. 0 N/A 0.00003
6 0.087 —-0.428 0.307 0.447 0.320 Saddle 1 N/A 0.00005
7 1 0 0 0 0 Min.? 0 N/A 0

aGlobal minimum.
PN/A denotes a defective design.

4.1.1. Construction of a saddle graph

The saddle graph for this humanoid finger example is presented in Fig. 6. Each edge of this graph represents a continuous
family of design candidates in terms of a parameter ¢ between 0 and 1. The straight line edges shown are only representative. In
other words, the connections shown are topologically consistent, however the true connections are 1-dimensional smooth manifolds
embedded in a 5-dimensional space. Such connections cannot be visualized in their original space unlike in the case of Himmelblau’s
function in Fig. 2(b). It is observed that some of these edges offer design solutions that are very distinct from any of the minima.
This is particularly interesting along the edges that map to the trivial global minimum solution such as 2-7, 3-7 and 6-7. While
the trivial solution is practically useless by itself, the edges leading into them often produce excellent design candidates. One such
design returning a very small objective value comparable with even all other local minima barring the trivial solution is shown in
Fig. 8. It is a snapshot from a design tool we developed in Wolfram Mathematica [41] to visualize the continuous family of design
candidates that occur along the connecting edges of the graph. The design shown is along the edge connecting #6 to the trivial
solution #7 (refer to Table 2).

The construction of such a design interface is made possible by the computation of all critical points (including all saddle points)
of the optimization problem via homotopy continuation. Auxiliary considerations are taken up at this stage to find practical designs
along the edges of this graph. These auxiliary considerations provide a justification for the design candidate presented in Fig. 8.
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Fig. 6. Saddle graph for the function generation optimization to design a humanoid finger. Edges may be traversed continuously to peruse linkage design
candidates as they correspond to gradient descent paths in 5D design space.

4.1.2. Auxiliary considerations of the design process

The discussion on saddle graphs so far has primary considered only the objective function value of the optimization. The
computed edges represent paths between saddle points and adjoining minima in a way that minimizes the objective function.
However, as mentioned earlier, there may be other considerations that are very pertinent to the design process. The following
discusses a few which are shown in Fig. 7.

(a) Branch/circuit defect index k,: Linkages found through kinematic synthesis are often plagued by branch and circuit
defects [42]. Engineers have proposed strategies in literature to analyze and design mechanisms free of these defects [43-45]. These
defects occur as a consequence of the fact that parallel mechanisms admit multiple assembly modes for the same input, e.g., elbow-
up and elbow-down configurations in the case of four-bar mechanisms. Hence, in some cases, two branches of configurations occur
separated by a singular configuration. In the case of a branch defect, the synthesized motion is divided by a singularity. In the case of
a circuit defect, the synthesized motion is divided onto disconnected configuration assembly modes. It is useful to evaluate the extent
that such defects occur on the saddle graph itself. To do so, we determine which branch or circuit each approximate function point
belongs to, then determine which branch or circuit possesses the most design points. The percentage of function points belonging
to this branch or circuit is used as a metric of desirability. For instance, if all of the design specifications occur on the same branch,
then the candidate is very desirable (k, = 1). It is possible that a design position does not belong to either branch. Since this is
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Fig. 7. Auxiliary considerations visualized in the saddle graph for the design of a humanoid finger.
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Fig. 8. A feasible design found by analyzing the saddle graph. This design is neither a minimum nor a saddle point, but lies in a 1-dimensional manifold
connecting the trivial global minimum #7 and a saddle point #6, found by solving (1).

an approximate synthesis procedure, no design position is expected to occur on any of the branches with zero residue. We pick a
small error tolerance (say 2.5°) in the output value of the function generated to determine the percentage of design positions close

to each branch and pick the maximum as the index.
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(b) Polygon diagonal index k,: Another useful characteristic to look at corresponds with the overall sizing of the mechanism.
The size of a four-bar mechanism is based on its four pivots, two moving and two fixed. A natural choice of characteristic length
is the largest diagonal (including the sides) of the quadrilateral defined by these pivots over the desired range of motion of the
mechanism. Unlike the branch defect index k,, the polygon diagonal index k, is a relative index scaled to lie between 0 and 1 where
1 corresponds with the desirable scenario of having the smallest diagonal length among all the designs that constitute the saddle
graph. Due to the relative nature of this measure, a mechanism with &, = 0 may still be useful.

(c) Maximum length index k;: Maximum length of the mechanism is also worth considering when it comes to sizing. This
measure is not dependent on the range of motion but only the link lengths. In reference to the schematic in Fig. 4, this can be
expressed mathematically as:

max(l, Vu2 + v2,r, Vs? +12). 6)

This also is a relative index scaled to fit between 0 and 1 where 1 corresponds with the mechanism having the smallest maximum
length among all the designs that constitute the saddle graph.

(d) Transmission angle index k,: The transmission angle is defined as the angle between the coupler and the follower link of
a four-bar mechanism [46], which appears frequently in the relevant literature [47,48]. A transmission angle of i% is the most
desirable while 0 or x is undesirable in terms of input—output velocity transmission. This essentially provides a measurement on
the proximity of a mechanism to a singular configuration. The index k, itself is computed by finding the minimum value of the sine
of the transmission angle over the range of motion of the design candidate. It is also a relative index that is scaled to take values
between 0 and 1 where 1 is the most desirable.

(e) Sensitivity index k,: From a designer’s standpoint, a mechanism is desirable if the output motion is less sensitive to small
deviations in link dimensions. This makes the mechanism robust to manufacturing errors. There are several ways of defining the
sensitivity of linkages to deviations in link dimensions, e.g., [49,50]. Following [24], a direct way of measuring the sensitivity of
a design is by perturbing the design variables {r,s,t,u, v} within an assumed manufacturing tolerance of 0.00012 mm (standard
deviation), that corresponds to CNC machining tolerance. A sample size of 100 perturbations is generated for each design via a
multi-normal distribution and the mean percentage deviation of the objective function over the sample is considered. For illustration,
if f; is the objective value of a design d and f,k = 1,2, ..., 100 are the objective values of the perturbed designs d,,k = 1,2, ..., 100,
respectively, then the sensitivity index is given by:

1 = fl
100 & f,

This is then mapped to a linear scale such that k; = 0 corresponds to the most sensitive design and k, = 1 represents the least
sensitive design.

In addition to these indices, the objective function value f associated with the saddle graph is also shown in Fig. 7 via a
normalized index 1 — (L) Note that the region around the index 2 saddle shows the maximum objective value and the rest
of the graph is comparabrféX on this metric alone. Each of these sub-plots can be associated with the saddle graph. These sub-plots
are generated based on a discretization scheme of fixed step length of 0.025 along each edge of the saddle graph. The computation
time required for creating these sub-plots is about 10 s. It can be readily identified from this visualization that the edge 6 — 7
provides the best overall traits. Note that while the objective function decreases in value monotonically as we traverse from #6
to #7, there is a trade-off in the fact that the mechanism degenerates with the two proximal links collapsing to zero-length at the
global minimum #7, in the neighborhood of which the sensitivity index is poor. This justifies the choice of the design shown in Fig. 8.
Effective implementation of all the numerical computation of this allows for the quick development of a graphical user interface in
the Wolfram Mathematica' environment. It may be noted that the list of performance indices and their definitions may not apply
generally to all design scenarios and they may be modified based on the application at hand. Nevertheless, other considerations can
be easily accommodated within this framework.

4.2. Hummingbird flapping motion

The second example is taken from [51] which considers the design of a flapping wing mechanism wherein a Watt six-bar linkage
was designed to obtain large amplitude of flapping motion about 180° for a full-cycle of the crank motion. We attempt to design a
four-bar mechanism that performs a similar motion as the six-bar mechanism designed in [51]. The design specification obtained
from [51] is shown in Table 3. For this problem, the parameter homotopy yielded 5 real solutions which are listed in Table 4.

The saddle graph for this design problem is shown in Fig. 9. In this case, the index 2 saddle connects to the same minimum upon
descent along either direction of the eigenvector with the most negative eigenvalue. As in the earlier case, the regions around the
trivial solution lead to the most useful set of design candidates accounting for auxiliary considerations as shown in Fig. 10. In this
example, the branch defect index plot is generated by using a tolerance of 5° in the output value of the function generated in order
to identify the primary branch. While no useful solution can be found among the critical points themselves, the path connecting
them are found to lead to useful designs, e.g., the path connecting #1 and #5 contains useful designs such as the one shown in
Fig. 11.

1 Refer to doi:10.7274/r781wd40q72 for supplementary resources showcasing a design interface.
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Table 3
Design specification for a mechanism to mimic hummingbird flapping motion.
1 2 3 4 5 6 7 8 9 10 11
z 37 2 z 7 in 9z
w0 1 5 W 5 3 5 T B o 4
74 -0.613 -0.999 -1.212 -1.241 —-1.100 —-0.800 —0.400 0.003 0.356 0.644 0.866
12 13 14 15 16 17 18 19 20 21
Ux [:14 13 Ix 3 8r 1z 9 197 2
10 5 10 5 2 5 10 5 10 ¢
v 1.019 1.102 1.114 1.061 0.947 0.774 0.536 0.225 -0.167 -0.613
Table 4
Real critical points for the design problem to create a flapping motion.
# Design parameters (m) Type Saddle Ob;.
r s t u v index !
1 0.674 -0.963 0.308 0.644 0.173 Saddle 1 0.117554
2 0.682 -0.907 -0.196 -0.207 0.477 Saddle 1 0.119302
3 0.633 —0.751 0.085 0.277 0.121 Saddle 2 0.170992
4 0.665 -1.157 0.033 0.459 0.362 Min. 0 0.0907026
5 1 0 0 0 0 Min.? 0 0
2Global minimum.
1.0
0.5 g
0.0
—0.5
02 %500 05 10 15 Degenerate
0.5 1
0.0 é solution
#1
S
—0.5
00 05 1.0
00 05 1.0
0.5
0.0 #
-0.5
00 05 10 00 05 1.0

Y Global minimum

Y Local minimum

A
A

Index 1 saddle point

Index 2 saddle point

/—p—3'c  Gradient descent path from a saddle point to a minimum

Fig. 9. Saddle graph for the function generation optimization to design a mechanism that creates a flapping motion.

5. Discussions

For the design of mechanisms, we provide a new methodology to find feasible designs accounting for the primary motion
requirement as well as auxiliary considerations such as kinematic defects, packaging and design sensitivity. In this context, we offer
a qualitative comparison with Pareto fronts generated through a multi-objective optimization technique. Firstly, our framework can
handle many auxiliary considerations that do not need to be computed quickly. For instance, auxiliary considerations such as the
sensitivity index as we define it are computationally expensive. Hence, any conventional multi-objective optimization technique
that relies on an iterative algorithm will be time consuming in this regard. Further, multi-objective optimization techniques rely
on sophisticated search-based evolutionary algorithms such as [52] since these algorithms do not require gradient information of
the objectives. These evolutionary algorithms are stochastic in nature, and depend on hyper parameters such as population size,
mutation, and recombination probability. In comparison, the construction of saddle graphs is deterministic in nature. Saddle graphs
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Fig. 10. Auxiliary considerations visualized in the saddle graph for the design of a four-bar to generate the flapping motion of a hummingbird.
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Fig. 11. A feasible design for creating a flapping motion. This design lies in a 1-dimensional manifold connecting the global minimum #5 and a saddle point
#1. It is defect-free and exhibits full-cycle of motion as desired to create a flapping motion.

provides a visual interface to interact with a continuous representation of the design space that competes favorably with Pareto
fronts [53] and other trade-off charts such as a “snowflake” plot [25]. Snowflake charts are well-suited to visualize many objectives
for a handful of designs, but are ill-suited to visualize many objectives over continuous families of designs.
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Further, there is no guarantee in these search based algorithms of ensuring that the feasible design space is sufficiently explored.
The authors of [53] note that these design spaces are highly sensitive to the design variables. It underscores the key advantage of
the construction of saddle graphs in that the directed gradient-descent paths from saddle points identify the “best” regions of this
sensitive design space with respect to the structural error objective. This is made possible by the computation of all the saddle points
facilitated by numerical polynomial continuation technique. This makes our design methodology arguably superior when compared
with other multi-objective optimization frameworks.

An open research question begs how to scale our work to larger problems, such as the path generation of four-bars. The path
generation problem of four-bars and other design problems in six-bars are significantly harder to solve compared to the four-bar
function generation example discussed here. The challenge lies in solving higher degree polynomial systems to compute all the
critical points of the objective function. For example, the root counts of such systems are on the order of tens of thousands or higher.
Parameter homotopy computations of these high degree systems typically suffer from significant numerical failures, which stifles
the design process. Development of efficient numerical continuation algorithms that handle such stiff systems without requiring
high numerical precision would improve the scalability of our design process.

6. Conclusion

In this paper, an optimization framework to design mechanisms via homotopy continuation is proposed. As the loop closure
equations in rigid-body mechanisms are polynomial in nature, a sum of squares of the residue in these equations forms an
unconstrained minimization problem of a polynomial objective. The necessary conditions of optimality leads into a system of
polynomial equations. Numerical polynomial continuation enables the computation of all the critical points of such systems including
the saddle points. The mountain pass theorem guarantees the existence of saddle points in between two minima, forming natural
connections in the design space. These connections can be computed via a numerical integration routine starting from the saddle
points leading to continuous families of design solutions to the problem at hand that can be represented as a saddle graph. These
graphs serve as a platform for building real-time design tools where the continuous families of solutions can be sifted through for
auxiliary requirements such as defect-free mechanisms, favorable mechanical advantage characteristics, packaging considerations,
etc. This is demonstrated in the context of function generation of four-bar mechanisms. Two different case studies are shown: the
design of a humanoid finger mechanism and the design of a mechanism to create flapping motion. These examples showcase the
utility of saddle graphs in helping the designer to design mechanisms computationally in a fast and reliable manner.
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Appendix. Equations of optimal four-bar function generation

The following equations are the expanded form of (5) described in Section 3.1. Here, the design variables are {r,,s,t,u, v} and
the coefficients are ¢, c,, ..., ¢y0-
2c40Fy + €375 + 341 + c33U + C395U + C36tU + C3p0 + 355U + c35t0 = 0;
377 + 26265 + Cogt + C1qt + 3T ptt + 225U + ozt + €1ou? + 2051 5U% + Ca5tu® + €150 + gD
+2¢5750 + ¢ 10 + ¢ guv + 2c305Uv + coytuv + cl(,u2 + 2c285U2 + czzz‘u2 =0;
C3alm + €08 + 2¢9t + Clt + Cagl i + Cozsu + 2¢pptu + cgu2 + c253u2 +2¢1412 + v + €350, 0
+cp1 SV + 2¢10t0 + cuv + ey suv + 2¢p3tuv + CSU2 + czzsvz + 2c11t02 =0;
C33Fm + €178 + C39r, s + 02952 + cot + C3Fpt + o35t + clztz + 2c3u + 2cjgsu + 2031s2u
+2cgtu + 2cp55tu + 2c14t2u +cv+cigsv+ 6’305211 + ¢7t0 + ey 5tV + 0131211 =0;
C3ply + €158 + C3gFp S + c27s2 + ¢yt + 357t + Cp ST+ clotz + U+ cigsu+ c30s2u + cqtu
+eoystu + c1312u +2c1v + 2¢y50 + 2028szv + 2c5tv + 2cpp Stv + 2cy4 Pv=0,
where the coefficients are ¢|,c,, ..., ¢y are functions of the design specifications (ujw;) for j = 1,2,...,N. For example, ¢, =
% Zfi | sin® u iy € = = Zj\i | sin y; cos y;. Due to the algebraic relations among the coefficients, the root count of the system (25)

is less than the BKK bound (33 which includes the trivial solution at the origin) which would be the case were the coefficients
algebraically independent.
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