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Abstract— Computer science pedagogy, especially in the higher
education and vocational training context, has long-favored the
hands-on practice provided by programming tasks due to the
belief that this leads to better performance on hands-on tasks at
work. This assumption, however, has not been experimentally
tested against other modes of engagement such as worked
example-based reflection. While theory suggests that example-
based reflection could be better for conceptual learning, the
concern is that the lack of practice will leave students unable to
implement the learned concepts in practice, thus leaving them
unprepared for work. In this paper, therefore, we experimentally
contrast programming practice with example-based reflection to
observe their differential impact on conceptual learning and
performance on a hands-on task in the context of a collaborative
programming project. The industry paradigm of Mob
Programming, adapted for use in an online and instructional
context, is used to structure the collaboration. Keeping with the
prevailing view held in pedagogy, we hypothesize that example-
based reflection will lead to better conceptual learning but will be
detrimental to hands-on task performance. Results support that
reflection leads to conceptual learning. Additionally, however,
reflection does not pose an impediment to hands-on task
performance. We discuss possible explanations for this effect, thus
providing an improved understanding of prior theory in this new
computer science education context. We also discuss implications
for the pedagogy of software engineering education, in light of this
new evidence, that impacts student learning as well as work
performance in the future.

Index Terms— Worked examples, Computer science education,
Project-based learning, Collaborative learning tools, Computer-
supported collaborative learning, Conversational agent-based
support, Mob programming, Collaborative programming,
Ensemble programming.
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I. INTRODUCTION

ROGRAMMING practice holds a preeminent place in the

teaching and learning of computer science. As a field that
values practitioners' ability to implement solutions to hands-on
tasks, this bias is understandable. Learning science literature,
such as that on example-based learning [1], however, explicitly
compares problem-solving practice with worked example-
based learning, in domains such as mathematics and science, to
conclude that worked example-based reflection is more
effective for learning, especially in novice learners. Following
from this theory, programming practice, being the analogue for
problem-solving in the computer science context, could be
hypothesized as being inferior to worked example-based
reflection from the standpoint of student learning. The concern
voiced by educators is that while it may indeed be the case that
worked example-based reflection helps students learn the
conceptual aspects of programming better, they may be left less
able to implement those learned concepts in actual hands-on
programming tasks, owing to their lack of hands-on practice.
Without experimental analyses to offer definitive evidence one
way or the other, therefore, prevailing dogma dictates
pedagogy, leaving programming practice as the preferred way
to help students learn as well as implement what they have
learned in hands-on tasks.

In order to better understand the application of the literature
on example-based learning to computer science education while
influencing pedagogy to move in a direction better suited to
prepare students for work, we present, in this paper, an
experimental study with a study design that allows us to
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compare different levels of programming practice and worked
example-based reflection to understand their differential impact
on conceptual learning from the task as well as performance on
a hands-on transfer task.

We situate the study in a work-relevant graduate-level course
on Cloud Computing offered online at Carnegie Mellon
University’s campuses in Pittsburgh, Silicon Valley, and Qatar.
The course is considered a work placement course in that it is
aimed at helping successful students transition to careers in
Cloud Computing such as Software Engineering for the Cloud
and System Administration. This study lays the foundation for
the adoption of this application across a full spectrum of
technical courses in other work-relevant contexts including
community college and corporate learning.

At the outset, we do not question the value of problem-
solving practice for learning by doing software development.
Instead, we seek to compare its strengths and weaknesses with
that of an alternative instructional activity type shown to be
effective in other contexts — worked example-based reflection.
The literature on example-based learning [1] compares
extensive problem-solving practice with learning from worked
out examples that consist of the givens of a problem, solution
steps, and the final solution itself [2]. This literature establishes
that problem-solving practice is generally inferior to worked
example study, especially when the learners are considered
novices with respect to the concepts they are learning. Even so,
the integration of worked example study into the computer
science curriculum has been stifled by the belief that it will
leave students less able to engage in subsequent authentic
problem-solving tasks from lack of hands-on practice. While
some computer science education research challenging this
assumption has started to emerge [3], the published studies are
mainly focused on the introductory curricular context. This
leaves open the question of identifying the right trade-off
between problem-solving practice and worked example study
for learning and performance in the advanced, more work-
relevant computer science curriculum.

When we move from the introductory to the advanced
curricular context, additional considerations for the design of
such learning activities also start to emerge. Specifically, as
workplace software engineering practices evolve to include
more team-based and collaborative activities [4], the need for
collaborative learning opportunities, especially in courses that
are more vocational than foundational, becomes ever more
apparent. Consequently, we choose to incorporate the study in
a collaborative programming project. The collaborative
programming project is scaffolded with the wuse of
conversational agent-based prompts based on an industry
paradigm for collaborative programming called Mob
Programming that was adapted for use in an online instructional
context in prior work [5] — [8].

Starting with the study presented in this paper, we establish
a research agenda investigating the trade-off between problem-
solving practice and worked example study in collaborative
programming activities offered at-scale in advanced courses in
the computer science curriculum. The goal is to find the right
combination of the two to maximally impact learning from the

ublication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards,

task with minimum detriment to performance on subsequent
authentic problem-solving. With this, we aim to contribute to
the literature on example-based learning and inform the design
of collaborative programming exercises for learning and hands-
on task performance.

In the remainder of this paper, we start by developing an
understanding of prior theoretical work in example-based
learning as well as computer science education to come to a
nuanced understanding of the differences between worked
example-based reflection and problem-solving practice, and
where they work well. In the Methods section that follows, we
first describe the context in which the study was conducted and
the characteristics of the participants. We then describe the
design of the collaborative learning activity and scaffolding in
detail. This is followed by the description of the study design
that enables us to compare the differential effects of varying
levels of problem-solving practice and example-based
reflection on student’s conceptual learning from the task and
performance on a hands-on transfer task. This is followed by
our Hypotheses, predominantly motivated by prevailing
pedagogical practice which tilts heavily toward problem-
solving practice in the form of programming. Evidence that
supports or rejects our hypotheses is presented in the following
Analysis and Results section. In the Discussion section that
follows, we expand on the results and their implications for
theory of example-based learning and computer science
pedagogy. We then conclude by summarizing the findings
charting a course for future work.

II. THEORETICAL FOUNDATION AND MOTIVATION

Problem-solving tasks in the form of computer
programming exercises have held an exalted position in the
computer science curriculum both for courses taught in-person
and at-scale. Two possible reasons can be identified for their
preeminence in the curriculum. First, these tasks are seen as
“authentic” in their similarity to the day-to-day work of
software engineers. Second, their place in the curriculum is
informed by computer science education research that focuses
overwhelmingly on the introductory computer science context
[9]. The value of problem-solving practice for learning
software development by doing has been recognized by this
research. However, a more nuanced view may be necessary to
separate places in the curriculum where problem-solving
practice can have the most impact from places where
alternative methods of engagement, such as worked example
study, might be better.

Early research in computer science pedagogy [10] —[12]
points to the separation of programming knowledge into the
syntax and semantics of programming language constructs,
and its conceptual aspects such as the mechanisms and
explanations that are used to compose solutions. In other
words, students learning programming must learn the
conceptual aspects such as variables, loops, iteration, and
functions, in addition to the procedural aspects of converting
these concepts into working code. It is possible to hypothesize,
therefore, that at places in the curriculum where students have
gained enough procedural knowledge to implement concepts
once they are learned, their time is better spent learning
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concepts that they are new to. Cognitive Load Theory [13] can
help us understand the value that can be gained from driving
the limited cognitive resources that students have towards
conceptual learning from a task.

A. Cognitive Load Theory and Example-Based Learning

Cognitive Load Theory points out that the identification and
induction of schemata, i.e., domain-specific knowledge
structures [14], from problem states is the primary function of
conceptual learning from a task. Since problem-solving practice
may involve superfluous production steps that place a load on
the limited cognitive resources of a student, these resources are
taken away from the processes that could most impact their
conceptual learning. The literature on example-based learning
[1] builds on this to investigate the differential impact of
problem-solving practice and worked example study on
conceptual learning from a task. This literature establishes that
problem-solving practice is generally inferior to worked
example study precisely because of the reason outlined above.
The worked examples do away with the superfluous production
steps to allow students to completely focus on learning from the
problem states showcased. We can see an isomorphic
relationship between the processes of schema acquisition and
automation pointed to in the worked example literature [15] and
the separation of programming knowledge into its conceptual
and procedural aspects pointed to in the computer science
education literature [10] — [12]. This would indicate that
problem-solving practice in the form of programming exercises
may not be the most efficient for conceptual learning and
worked example study can play that role better. Indeed,
computer science education research has also started to gain this
nuanced understanding of the separation between the
conceptual and procedural aspects of programming knowledge.
The preeminence of problem-solving practice in the curriculum
has started to be challenged as a result. Alternative methods of
engagement such as the use of two-dimensional Parson’s
problems [16] which are a type of code completion problem
useful for teaching syntactic and semantic language constructs
i.e., the procedural aspects of programming, the CMX game-
based learning environment, also targeting the procedural
aspects of programming knowledge, such as arrays [17] and
worked example study [18] targeting the conceptual aspects
have started to emerge. Even so, these alternative methods of
engagement are largely absent as students move from the
introductory context and on to courses advanced in the
computer science curriculum.

In the advanced computer science curriculum, the
preeminence of problem-solving practice becomes harder to
justify as students have gained substantial foundational
knowledge in the procedural aspects of programming but are
new to advanced concepts such as Artificial Intelligence, Cloud
Computing, and Data Science that are taught in these courses.
Students can gain more value, therefore, from focusing more of
their time on conceptual learning. Regardless, the suggestion
that worked example study ought to be better integrated into the
advanced computer science curriculum has remained
controversial [19]. Since example-based learning involves less
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hands-on work to convert conceptual knowledge into actual
programs, the concern is that while students may learn more,
they may be left less able to implement their knowledge in
projects that follow their learning experience. In the
introductory computer science context, this concern may be
warranted because students are new to both the conceptual, as
well as the procedural aspects of programming. It is less
warranted, however, in places in the advanced curricular
context where students are novices with respect to the concepts
taught and can therefore gain more from focusing on conceptual
knowledge. Without confirmatory evidence, however,
pedagogical practice continues to follow prevailing dogma.
Therefore, the research agenda being pursued in this paper
becomes warranted for two reasons. First, to provide
confirmatory evidence of the application of the literature on
example-based learning to a new domain, i.e., advanced
computer science education, predicated on the nuanced
understanding of the separation of programming knowledge
into its conceptual and procedural aspects posited here. Second,
to provide evidence that will inform pedagogy that will best
prepare students for work. We thus present a research agenda
that explicitly investigates the right combination of problem-
solving practice and worked example-based reflection for
impacting student learning and hands-on task performance at-
scale in the context of advanced courses in the computer science
curriculum becomes called for.

B. Need for Collaborative Learning

Since the advanced curricular context is more vocational than
foundational, the need for learning tasks to be “authentic” in
their similarity to the day-to-day work of software engineers is
indeed important. Workplace software engineering practices
are also evolving to include more team-based and collaborative
activities [4]. Consequently, the design of these tasks as
individual experiences for students starts to come into question
as well. While the conceptual underpinnings of the comparison
between problem-solving practice and worked example study
remain the same, barring some notable exceptions [20] this
comparison has not been explicitly investigated in a
collaborative learning context. In this paper, therefore, we
further the research agenda outlined above by presenting a
study situated in a synchronous collaborative learning activity
offered as a part of an advanced online course in the computer
science curriculum. By varying the boundary between problem-
solving practice and worked example discussion during the
activity, we are able to compare students’ learning from the
task, and hands-on performance to determine the combination
most suited for this context. Analyzing the results with respect
to the characteristics of the context in which the study was
conducted, we can further the research agenda by discussing
implications and directions for future research.

III. METHOD

A. Course Context and Participants

This study was conducted in the Fall 2020 semester-long
offering of a graduate-level project-based online course
covering Cloud Computing concepts offered to graduate and
senior undergraduate students belonging to a large North
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Fig. 1. Course structure, pre-test, post-test, and delayed post-test alignment

American university and its branch campuses'. The course is
structured around four project-based units. Each unit has
several sub-units and culminates in a large individual project
that has assessment components to evaluate achievement in
each sub-unit. Our experiment is situated within the first sub-
unit of the fourth project unit of the course that focuses on
“Building Inverted Indices in Scala”. In preparation for the
individual project in this unit, students, in groups of 4, work
with our synchronous (real-time) collaborative programming
activity, called the Online Programming Exercise (OPE). In this
exercise, students have access to a collaborative programming
environment called Cloud9? that is instrumented with a text-
chat that they can use for communication during programming.
The exercise is immediately preceded and succeeded by a pre-
and post-test respectively. Performance improvement on the
post-test over the pre-test serves as a measure of conceptual
learning, while performance on the complex individual
software development project component corresponding to this
sub-unit serves as a procedural and conceptual problem-solving
transfer task (delayed post-test). A summary of the course
structure and the location of the study within it is shown in Fig.
1. A total of 48 students participated in the exercise and the
subsequent project from across two campuses.

The unit introduces students not only to the conceptual
aspects of inverted indices and the PageRank algorithm, but
also to the procedural aspects of thinking in, and implementing
concepts learned in a new programming language, Scala. Scala
uses a programming paradigm called functional programming
that most students are unfamiliar with prior to this unit.
Consequently, this becomes the ideal context to test the
differential impact of problem-solving practice, in the form of
collaborative programming, and worked example-study, in the

! http://www.cs.cmu.edu/~msakr/15619-f20/
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form of collaborative reflection, on learning from the task, and
performance on the subsequent problem-solving transfer task.

Since the course has been offered online for over 15
semesters, the course content and structure did not need to be
changed in response to the move to online learning in the wake
of the COVID-19 pandemic. The main effect was seen in the
enrollment numbers which were about half the usual. Some
students participated from off-campus locations in other time
zones. Options of time slots were provided to students for
participating in the synchronous collaborative exercise such
that each time slot was amenable to students from different time
zones.

B. Collaborative Task Design

The design of the two elements of the collaborative task i.e.,
collaborative reflection phase and collaborative programming
phase are described below.

In the collaborative reflection phase, students are presented
with a worked-out example. Since the problem has already been
worked out, their time is engaged instead in collaborative
reflection. Learning from worked examples hinges on being
able to draw students’ attention to the relevant problem states
while helping them navigate away from superfluous ones [19].
In prior work, this has been achieved by using various means
such as classification of examples by common schema [21]
contrasting examples, and prompt-directed self-explanation
[22]. In our study, we use conversational agent-based prompt
scaffolding during to direct students’ joint attention to the
aspects of the problem state that are relevant to their learning.
The collaborative learning context might not only allow
students to rely on the experience of all the members of the team
to identify relevant problem states but, when designed
appropriately, can require students to make their reasoning

2 https://aws.amazon.com/cloud9/
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LEARNING OBJECTIVES, AND EXAMPLES OF CORRESPONDING PRE/POST TEST QUESTIONS AND COLLABORATIVE REFLECTION

TABLEI

PROMPTS

# Learning Objective

Example Pre/Post-Test Question
(Multiple-Choice)

Example Collaborative Reflection Prompt

Utilize the suitable map and
reduce operations in Spark to
transform and aggregate
data.

Utilize suitable functional
2 operations in Scala to
transform data structures.

Identify the use case of a
JOIN operation and utilize

Examine the following ways of
computing the sum by key of the
exampleRDD. Which of them is the
most efficient?

Which of the following is a right
way of transforming srcList to
destList?

Calling JOIN on two RDDs of type

Think of the solution you were attempting. Is

this the same as what the bot presented in the

chat? Take this time to explain the solution to
each other.

There are a few different ways of doing
element indexing such as dot indexing or the
scala case() function. Which of these is shown
in the example and which would be better
aligned with best practice?

How is the combining of values implemented
here? Can you unpack the working based on
the example presented?
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3 JOIN to combine and (K, V1) and (K, V2) results in
transform different RDDs in which of the following types?
Spark.

Identify the use case of the
cache() method and utilize it
to improve the performance

of a Spark application.

What is caching in memory meant
to achieve in Spark?

What factors do you need to keep in mind
while deciding what to cache? See if you can
discover the list of factors from the example.

THE BOUNDARY BETWEEN COLLABORATIVE PROGRAMMIrllﬂ\I?}}?’Il{ECI"{"ICE AND WORKED EXAMPLE DISCUSSION ACROSS TASKS.
Task # Mostézllzgzlem- Equal E)i\;[r(l)lspfllz I\{Z(f)lrelt(cet(iion Exfnlllrl)}l]e\ggiiﬁion

1 12+6 9+9 6+12 0+18

2 12+6 9+9 6+ 12 0+18

3 8+4 6+6 4+8 0+12

4 4+2 3+3 2+4 0+6

Legend: a + b, where ‘a’ indicates time spent on collaborative programming, and ‘b’ represents the time spent on collaborative reflection.

explicit. One student articulating their idea then provides an
opportunity for other students in the team to challenge, extend,
or integrate that idea with their own, resulting in transactive
exchange that is associated with learning [23]. Indeed, prior
work in other contexts has provided evidence for the strategic
use of conversational agent-based prompts to productively
impact student behavior for supporting their learning [24].

For structuring the collaboration in the problem-solving
portion of the activity, we turn to a collaborative programming
paradigm used in the industry called Mob Programming [25] —
[26]. Structuring collaboration is necessary as research has
shown that students do not utilize collaborative learning
opportunities without intentional design [27]. Further, a
structured collaboration prevents the possible breakdown of
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group processes. A well-structured collaborative problem-
solving portion of the intervention can serve as a strong baseline
for the comparison. Based on the Mob Programming paradigm
used in the industry, prior studies have designed roles for use in
online instructional contexts [5] — [8] Students are assigned to
roles that are tasked with different aspects of problem-solving
with the roles rotating over the course of the task. Well-defined
responsibilities for each student prevents group process
breakdown, while the interdependent nature of the roles ensures
collaboration for problem-solving. The roles are described
further in the following section.
1) Role Scaffolding

During the problem-solving phase, students are assigned to
four interdependent roles designed based on the industry
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practice of Mob Programming. Mob Programming involves a
team of co-located developers assuming interdependent roles to
work synchronously on a single problem, on one computer. For
our task, students are assigned to the following four roles that
have been adapted for an online instructional context in prior
work [5] —[8].

a) The Driver writes the code based on a high-level
consensus decision of the team arrived at by the
Navigator.

b) The Navigator arrives at the team consensus on the

next course of action based on a discussion with the
rest of the team members and communicates that to the
Driver to implement into code. The Driver and
Navigator are assisted in this endeavor by students in
two supporting roles.

c) The Researcher consults resources such as a provided
task primer and other web-accessible external support
material, as necessary, to assist the team in idea-
generation as well as implementation.

d) The Project Manager is responsible for making sure
the rest of the team members are complying with and
adequately performing their roles.

The roles rotate after each task such that each team member
gets to play the Driver role once during the exercise. Knowing
that the roles will rotate encourages all participants, including
those in the support-oriented roles, to pay attention in case they
are called on to work on the implementation for the next task.
The role rotation also provides an opportunity for individuals to
contribute in various capacities over the course of the exercise.
The separation of responsibilities between roles requires the
externalization of thinking while discussing implementation
alternatives, which provides opportunities for knowledge gaps
to be revealed and addressed.

C. Instructional Design

For instrumenting the collaborative task to best support
student learning, we turn to instructional design best practices.
These practices are about aligning the learning goal with
instruction positioned to explicitly target that goal, and the
assessment that measures what was targeted [28] —[29].
Actualizing this best practice, the collaborative programming
exercise is divided into four tasks, each targeting a learning
objective (LO). Each task is divided into a problem-solving
phase where students, assigned to four interdependent roles,
work on the programming problem, and a collaborative
reflection phase where they are guided by conversational agent-
based prompts to reflect based on a presented worked-example.
Completing a task provides the opportunity for students to
encounter and practice content related to the learning objective
and then collaboratively reflect on what was learned before
work on the next task begins. Students are assigned to four
interdependent roles during the problem-solving phase by the
conversational agent and the collaborative reflection is guided
using conversational agent-based discourse-level prompts.
Table I shows examples of these collaborative reflection
prompts. While the focus of the prompts may seem to be
procedures specific to the programming language, they are

ublication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards,

meant to evoke a conceptual discussion in response. As an
example — the entry in the second row “dot indexing versus the
scala case() function ” is meant to evoke a discussion about
different ways indexing can happen and which one turns out to
be more efficient. Another way to think about the separation
between the conceptual and the procedural is that once the
learner has understood this difference, they will be able to
identify which method is more efficient even in a completely
new programming language, once they learn what each relevant
procedure in that language does. The conceptual learning,
therefore, is independent of the programming language
paradigm i.e., the procedural aspects of implementing the
concept, once learned.

D. Measurement

Before and immediately after the task, students take a pre-
and post-test respectively, where two multiple-choice questions
are assigned for each learning objective. The pre-test score and
post-test score for each LO is the average of the scores of the
two questions targeting that LO, and thus ranges between 0 and
1. Performance improvement from pre- to post-test is used as a
measure of students’ conceptual learning from the task.
Students subsequently work on an individual programming
project. Since this project involves implementing the concepts
learned from the collaborative exercise, it can serve as a delayed
measure of conceptual as well as procedural knowledge. The
project contains six tasks that map directly to the learning
objectives of the collaborative activity. Table I shows the
learning objectives and examples of pre- and post-test questions
corresponding to each task, while Fig. 1. shows the position of
pre-, post-, and delayed post-tests within the course.

E. Study Design

In the weeks before the synchronous collaborative activity in
which the study was conducted, students first read text and
watched video content explaining the activity, the collaborative
programming environment, and the roles that they were to be
assigned to. After that, students, in groups of 4, participated in
a pilot activity that mimicked the activity in which the actual
study would be conducted from end-to-end. The content for this
pilot activity was kept relatively lightweight so that the focus
could remain on helping students familiarize themselves with
the collaborative programming environment and interacting in
their roles. For both the pilot, and the study, groups were formed
based on students’ time-availability that they were polled about
earlier in the course.

For the activity where the study took place, students, in
groups of 4, were assigned to 4 different conditions. The
conditions were as follows —

1) Mostly problem-solving

Students spend two-thirds of the time on collaborative problem-
solving before being cut-off and presented with a worked
example solution for collaboration reflection.

2) Equal problem solving and worked example discussion
Students spend equal amounts of time on collaborative
problem-solving and reflection based on the presented worked
example.

3) Mostly worked example discussion

Students spend one-third of the time on problem-solving and
the rest of collaborative reflection.
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4) Only worked example discussion
Students spend all of the time reflecting based on the presented
worked example.

The total activity duration was 80 minutes. 5 minutes in the
beginning were allocated for setup and helping students
familiarize themselves with each other. Another 5 minutes were
allocated at the end of the activity for students to submit their
solution. 10 minutes was the buffer allocated for context-

OPE_Bot: "Ok, we are switching roles now. The new task is
unlocked.”

OPE_Bot: "The new roles are -
S1 - Navigator

S2 - Driver

S3 - Researcher

S4 - Project Manager”

S3 (Researcher): "@S1 (Navigator), what could (sic) | help
you find?"”

S1 (Navigator): “Are we supposed to use only the helper
functions?”

S3 (Researcher): "Yes, | think so! Looked at it (the task
writeup.”

S4 (Project Manager): "@S2 (Driver), want to try
implementing this in that block with our variables?”

S2 (Driver): It has some build errors.

Fig. 2. Example student interaction facilitated by the conversational agent
during the collaborative programming phase.

switching from problem-solving to worked example discussion
and rotating roles. The remaining 60 minutes was for the actual
tasks which was split according to the conditions that students
were assigned to as shown in Table II. A few minutes in the
beginning and end were used for becoming acquainted with
teammates and submitting the completed solution respectively.
A total of 48 students participated in the activity in groups of 4
with 3 groups students i.e., 12 students in each of the four
conditions.

An example student interaction facilitated by the
conversational agent during the collaborative programming

OPE_Bot: “You have run out of time for this test case.
Don’t worry! Here is a reference solution - "

OPE_Bot: .... (Reference Solution)

OPE_Bot: "Can you compare the solution you were
attempting to the example shown?”

S1: "Oh it uses join.”
S2: "Yes..." (Still viewing the example)

S3: "and it uses pattern matching here”

S4: "l guess zip should work too?”
S1: "Yeah | think so.”

S1: "here if we use indexing it would a bit confusing |
guess” (sic)

OPE_Bot: Based on your solution and the example, which
implementation is better aligned with best practice?

S1: "Pattern matching is more readable.”

S1: "Here we use join to combine the values, we also tried
zip and we think zip would work too”

OPE_Bot: When done identifying the explanation, write the
explanation agreed on in the chat.

S3: "We chose join to combine values and pattern
matching because it is more readable”

OPE_Bot: "Ok, we are switching roles now. Your next task
is unlocked.”

Fig. 3. Example interaction in the collaborative reflection phase.

phase is shown in Fig. 2. An example interaction during the
collaborative reflection phase is shown in Fig. 3.

IV. HYPOTHESES

1) Hypothesis 1: The Online Programming Exercises (OPEs)
result in pre- to post-test learning gains

Regardless of whether students participate in more problem-
solving or worked example discussion, the activity results in
pre- to post-test learning gains.
2) Hypothesis 2: Worked example discussion contributes
more to conceptual learning as measured by the pre- to post-
test learning gains than problem solving.

Thus, we expect the most learning where students maximize
time on worked example study, and less learning as students
spend more of their time on problem solving.
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LEARNING OBJECTIVES, AND EXAMPLES OF CORRESPONDING PRE/POST TEST QUESTIONS AND COLLABORATIVE REFLECTION

TABLE III

PROMPTS

# Learning Objective

Example Pre/Post-Test Question
(Multiple-Choice)

Example Collaborative Reflection Prompt

Utilize the suitable map and
reduce operations in Spark to
transform and aggregate
data.

Utilize suitable functional
2 operations in Scala to
transform data structures.

Identify the use case of a
JOIN operation and utilize

Examine the following ways of
computing the sum by key of the
exampleRDD. Which of them is the
most efficient?

Which of the following is a right

way of transforming srcList to
destList?

Calling JOIN on two RDDs of type

Think of the solution you were attempting. Is

this the same as what the bot presented in the

chat? Take this time to explain the solution to
each other.

There are a few different ways of doing
element indexing such as dot indexing or the
scala case() function. Which of these is shown
in the example and which would be better
aligned with best practice?

How is the combining of values implemented
here? Can you unpack the working based on
the example presented?
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3 JOIN to combine and (K, V1) and (K, V2) results in
transform different RDDs in which of the following types?
Spark.

Identify the use case of the
cache() method and utilize it
to improve the performance

of a Spark application.

What is caching in memory meant
to achieve in Spark?

What factors do you need to keep in mind
while deciding what to cache? See if you can
discover the list of factors from the example.

3) Hypothesis 3: Programming practice contributes most to
ability to program.

Thus, we expect students who practice more at writing code
to perform better on a subsequent authentic programming task
than students who spent more time on worked example
discussion.

V. ANALYSIS AND RESULTS

1) Hypothesis 1: Students learned in all conditions.

We first tested to ensure that there was significant pre- to
post-test learning in evidence across conditions. For this
analysis, we built an ANOVA model with Time Point (pre- vs
post-), Learning Objective, Group, and Condition as well as all
two- and three-way interactions of Time Point, Learning
Objective, and Condition as independent variables, and the test
score as the dependent variable. There was a main effect of time
point such that test scores were higher on average at post-test
time F(1,371)=1.51, p <.0003, effect size .21 s.d. None of the
two- or three-way interactions were significant. Therefore,
students learned for all learning objectives in all conditions
between the pre- and post-test. Thus, Hypothesis 1 is fully
supported.

2) Hypothesis 2: Worked example study contributes more to
conceptual learning as measured by the pre- to post-test
learning gains than problem solving.

In order to test the second hypothesis, we computed an
ANCOVA model with Condition and Learning Objective as
independent variables, Group nested within Condition, pre-test
score as a covariate, and post-test score as the dependent
variable. When we treat Condition as a nominal variable with 4
levels, there is no significant effect of condition. However, if
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we transform the Condition variable to simply compare the no
programming condition to the others, there is a significant
effect in favor of no programming F(1,171)=4.2, p <.05, effect
size .18, with an advantage for no programming. For a finer
grained analysis, we checked the relationship between
percentage of time spent on problem solving and learning and
found a significant negative correlation. For this analysis, we
built an ANCOVA model with post-test score as the dependent
variable, pre-test score and percentage of time spent on problem
solving as covariates, and Learning Objective as an independent
variable. In this analysis, there was a significant negative
correlation between percentage of time spent on problem
solving and post-test score in this analysis, indicating that as we
manipulated amount of time spent on problem solving, the more
time spent on problem solving, the less learning took place, F(1,
182) =5.42, p <.05. The partial correlation accounting for just
the effect of percentage of time spent on problem solving is
R=.17. Thus, Hypothesis 2 is supported, though the effect may
be weak.

3) Hypothesis 3: Programming practice contributes most to
ability to program.

In order to test the third hypothesis, we constructed a
repeated measures dependent variable that is comprised of the
6 separate scores assigned to evaluate the quality of the
authentic problem-solving task. The Construct variable
distinguished between the 6 different criterion scores. We built
an ANCOVA model with pre-test score and percentage of time
spent on problem solving as covariates and Construct as the
independent variable. The criterion score for each of the
Construct labels was the dependent variable. There was no
effect of Construct or Condition. We also tested the model with
percentage of time nested within Construct in case the condition
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variable had a differential effect across construct levels, but
there was still no effect. Thus, Hypothesis 3 was not supported.
What this means is that not only did students learn more
conceptual knowledge from spending more time studying
worked examples, but they did also not incur any deficit in
terms of their ability to perform on the authentic task, either
overall, or on any single criterion score.

The verbose results from the analyses are shown in Table III.

VI. DISCUSSION

We find, interestingly, that the condition where students
spent all of their time on collaborative reflection based on the
presented worked example was best for conceptual learning
from the task and did not incur any deficit in terms of their
ability to perform on the authentic task. The finding about
conceptual learning impact is in line with what the literature on
example-based learning would predict. For maximally
impacting conceptual learning from the task, it is best to do
away with superfluous production steps that might draw student
attention away from conceptual learning and focus all of their
time instead on highlighting problem states relevant to
conceptual learning. In the synchronous collaborative learning
task that students participated in as a part of this study, this was
achieved using a two-fold mechanism. In addition to simply
being presented with a worked example, conversational agent
prompts were used to direct student attention to the problem
states relevant to their conceptual learning. In response to these
prompts, students, in their groups were required to direct their
attention to finding and discussing the relevant problem states.
The discussion meant that any misconceptions could be
revealed and addressed for the group as a whole. An example
of such an interaction in response to the collaborative reflection
prompt was shown in Fig. 3.

The finding about the lack of differential impact on authentic
task performance is interesting. Since students are new to the
procedural aspects of writing working programs in the new
language, Scala, that is introduced in this unit, we hypothesized
that hands-on practice would serve students better for
performance on the authentic task. However, there turned out
to not be a significant difference. When we asked students to
understand why this might be the case, we found that most
students were comfortable learning the syntactic and semantic
aspects of programming, even in a new language, all on their
own. Additionally, some foundational knowledge they had
gained from working on other programming languages with a
similar paradigm was useful in orienting them towards learning
relevant syntactic and semantic aspects in this new language.
Students preferred that their time in the collaborative activity
was instead spent on learning concepts that they find harder to
learn on their own. It should be noted, however, that the
intervening week between the end of the collaborative activities
and when the project was due could have served to wash out
some of the differential impact. Since students said that they are
comfortable searching for syntactic and semantic issues on their
own, this could indeed have been the case. It is possible,
however, that students who received less problem-solving
practice spent more time searching, and less time on the
implementation while those who participated in worked
example study had to do more of the heavy lifting around

ublication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards,

implementation themselves. This can only be confirmed by a
process analysis of the data about how students split their time
while working on the individual project. Since this study was
not instrumented to collect this data, this is a caveat for the
findings, and a factor to investigate in future work.

Even so, the evidence presented in this study starts to make
it possible to recommend better integrating worked example
study into the advanced computer science curriculum. While
the value that hands-on software development brings to
learning software engineering is not disputed, a nuanced view
of the separation of programming knowledge into its procedural
and conceptual components was used for isolating the impact
on conceptual learning in this study. We see clearly the role of
conceptual learning in advanced computer science and the
value of reflection over practice for this learning. At the same
time, we see that maximizing hands on work is not necessary
for supporting needed learning of the hands-on skills of
computer programming. The evidence supports a view that
shifting more time towards reflection would be beneficial. More
work to pinpoint the ideal balance and placement of reflection
versus practice is still needed.

The study also presented a way to actualize the theory of
example-based learning in a collaborative learning environment
at scale using conversational agent-based prompts to take
advantage of the different perspectives that could be
contributed by the students in the text-chat. Based on these
results and the additional questions that the findings have
raised, future work to further this research agenda is warranted.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present first fruits of a research agenda
investigating the trade-off between problem-solving practice
and worked example study in collaborative programming
activities offered at scale in advanced courses teaching work-
relevant computer science skills. We find results pointing to
the positive impact of worked example discussions on
conceptual learning from a task, thereby challenging the
dominant place of problem-solving practice in the advanced
computer science curriculum. Further, the study found no
difference in the impact of worked example discussions and
problem-solving practice on authentic hands-on task
performance. A nuanced view of the separation of
programming knowledge into its procedural and conceptual
aspects was put forth and actualized in a collaborative learning
environment. Further research is needed to confirm the results
obtained, especially with respect to the lack of differential
impact on authentic task performance, but evidence has been
obtained to start to recommend a stronger integration of
worked example study into the advanced computer science
curriculum.

The literature on example-based learning points also to the
effects of sequencing worked example study and problem-
solving practice. Improved impact has been found by using
worked example study first, to help students learn the relevant
problem states, and then implement them during problem-
solving practice. The study presented in this paper investigated
only problem-solving practice followed by worked example
study due to a lack of statistical power. This comparison has
been planned for the next study in this sequence. The design
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informed by the results presented in this paper are expected to
be carried forward in forthcoming offerings of this course in
community college and corporate learning contexts.
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