
2372-0050 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TLT.2022.3169121, IEEE
Transactions on Learning Technologies

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. XX, NO. X, XXXXXX 20XX 1

 
Abstract— Computer science pedagogy, especially in the higher 

education and vocational training context, has long-favored the 
hands-on practice provided by programming tasks due to the 
belief that this leads to better performance on hands-on tasks at 
work. This assumption, however, has not been experimentally 
tested against other modes of engagement such as worked 
example-based reflection. While theory suggests that example-
based reflection could be better for conceptual learning, the 
concern is that the lack of practice will leave students unable to 
implement the learned concepts in practice, thus leaving them 
unprepared for work. In this paper, therefore, we experimentally 
contrast programming practice with example-based reflection to 
observe their differential impact on conceptual learning and 
performance on a hands-on task in the context of a collaborative 
programming project. The industry paradigm of Mob 
Programming, adapted for use in an online and instructional 
context, is used to structure the collaboration. Keeping with the 
prevailing view held in pedagogy, we hypothesize that example-
based reflection will lead to better conceptual learning but will be 
detrimental to hands-on task performance. Results support that 
reflection leads to conceptual learning. Additionally, however, 
reflection does not pose an impediment to hands-on task 
performance. We discuss possible explanations for this effect, thus 
providing an improved understanding of prior theory in this new 
computer science education context. We also discuss implications 
for the pedagogy of software engineering education, in light of this 
new evidence, that impacts student learning as well as work 
performance in the future. 
 

Index Terms— Worked examples, Computer science education, 
Project-based learning, Collaborative learning tools, Computer-
supported collaborative learning, Conversational agent-based 
support, Mob programming, Collaborative programming, 
Ensemble programming. 
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I. INTRODUCTION 

ROGRAMMING practice holds a preeminent place in the 
teaching and learning of computer science. As a field that 

values practitioners' ability to implement solutions to hands-on 
tasks, this bias is understandable. Learning science literature, 
such as that on example-based learning [1], however, explicitly 
compares problem-solving practice with worked example-
based learning, in domains such as mathematics and science, to 
conclude that worked example-based reflection is more 
effective for learning, especially in novice learners. Following 
from this theory, programming practice, being the analogue for 
problem-solving in the computer science context, could be 
hypothesized as being inferior to worked example-based 
reflection from the standpoint of student learning. The concern 
voiced by educators is that while it may indeed be the case that 
worked example-based reflection helps students learn the 
conceptual aspects of programming better, they may be left less 
able to implement those learned concepts in actual hands-on 
programming tasks, owing to their lack of hands-on practice. 
Without experimental analyses to offer definitive evidence one 
way or the other, therefore, prevailing dogma dictates 
pedagogy, leaving programming practice as the preferred way 
to help students learn as well as implement what they have 
learned in hands-on tasks. 
 In order to better understand the application of the literature 
on example-based learning to computer science education while 
influencing pedagogy to move in a direction better suited to 
prepare students for work, we present, in this paper, an 
experimental study with a study design that allows us to 
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compare different levels of programming practice and worked 
example-based reflection to understand their differential impact 
on conceptual learning from the task as well as performance on 
a hands-on transfer task. 

We situate the study in a work-relevant graduate-level course 
on Cloud Computing offered online at Carnegie Mellon 
University’s campuses in Pittsburgh, Silicon Valley, and Qatar. 
The course is considered a work placement course in that it is 
aimed at helping successful students transition to careers in 
Cloud Computing such as Software Engineering for the Cloud 
and System Administration. This study lays the foundation for 
the adoption of this application across a full spectrum of 
technical courses in other work-relevant contexts including 
community college and corporate learning. 

At the outset, we do not question the value of problem-
solving practice for learning by doing software development. 
Instead, we seek to compare its strengths and weaknesses with 
that of an alternative instructional activity type shown to be 
effective in other contexts – worked example-based reflection. 
The literature on example-based learning [1] compares 
extensive problem-solving practice with learning from worked 
out examples that consist of the givens of a problem, solution 
steps, and the final solution itself [2]. This literature establishes 
that problem-solving practice is generally inferior to worked 
example study, especially when the learners are considered 
novices with respect to the concepts they are learning. Even so, 
the integration of worked example study into the computer 
science curriculum has been stifled by the belief that it will 
leave students less able to engage in subsequent authentic 
problem-solving tasks from lack of hands-on practice. While 
some computer science education research challenging this 
assumption has started to emerge [3], the published studies are 
mainly focused on the introductory curricular context. This 
leaves open the question of identifying the right trade-off 
between problem-solving practice and worked example study 
for learning and performance in the advanced, more work-
relevant computer science curriculum. 

When we move from the introductory to the advanced 
curricular context, additional considerations for the design of 
such learning activities also start to emerge. Specifically, as 
workplace software engineering practices evolve to include 
more team-based and collaborative activities [4], the need for 
collaborative learning opportunities, especially in courses that 
are more vocational than foundational, becomes ever more 
apparent. Consequently, we choose to incorporate the study in 
a collaborative programming project. The collaborative 
programming project is scaffolded with the use of 
conversational agent-based prompts based on an industry 
paradigm for collaborative programming called Mob 
Programming that was adapted for use in an online instructional 
context in prior work [5] – [8]. 

Starting with the study presented in this paper, we establish 
a research agenda investigating the trade-off between problem-
solving practice and worked example study in collaborative 
programming activities offered at-scale in advanced courses in 
the computer science curriculum. The goal is to find the right 
combination of the two to maximally impact learning from the 

task with minimum detriment to performance on subsequent 
authentic problem-solving. With this, we aim to contribute to 
the literature on example-based learning and inform the design 
of collaborative programming exercises for learning and hands-
on task performance. 

In the remainder of this paper, we start by developing an 
understanding of prior theoretical work in example-based 
learning as well as computer science education to come to a 
nuanced understanding of the differences between worked 
example-based reflection and problem-solving practice, and 
where they work well. In the Methods section that follows, we 
first describe the context in which the study was conducted and 
the characteristics of the participants. We then describe the 
design of the collaborative learning activity and scaffolding in 
detail. This is followed by the description of the study design 
that enables us to compare the differential effects of varying 
levels of problem-solving practice and example-based 
reflection on student’s conceptual learning from the task and 
performance on a hands-on transfer task. This is followed by 
our Hypotheses, predominantly motivated by prevailing 
pedagogical practice which tilts heavily toward problem-
solving practice in the form of programming. Evidence that 
supports or rejects our hypotheses is presented in the following 
Analysis and Results section. In the Discussion section that 
follows, we expand on the results and their implications for 
theory of example-based learning and computer science 
pedagogy. We then conclude by summarizing the findings 
charting a course for future work. 

II. THEORETICAL FOUNDATION AND MOTIVATION 

Problem-solving tasks in the form of computer 
programming exercises have held an exalted position in the 
computer science curriculum both for courses taught in-person 
and at-scale. Two possible reasons can be identified for their 
preeminence in the curriculum. First, these tasks are seen as 
“authentic” in their similarity to the day-to-day work of 
software engineers. Second, their place in the curriculum is 
informed by computer science education research that focuses 
overwhelmingly on the introductory computer science context 
[9]. The value of problem-solving practice for learning 
software development by doing has been recognized by this 
research. However, a more nuanced view may be necessary to 
separate places in the curriculum where problem-solving 
practice can have the most impact from places where 
alternative methods of engagement, such as worked example 
study, might be better. 

Early research in computer science pedagogy [10] – [12] 
points to the separation of programming knowledge into the 
syntax and semantics of programming language constructs, 
and its conceptual aspects such as the mechanisms and 
explanations that are used to compose solutions. In other 
words, students learning programming must learn the 
conceptual aspects such as variables, loops, iteration, and 
functions, in addition to the procedural aspects of converting 
these concepts into working code. It is possible to hypothesize, 
therefore, that at places in the curriculum where students have 
gained enough procedural knowledge to implement concepts 
once they are learned, their time is better spent learning 
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concepts that they are new to. Cognitive Load Theory [13] can 
help us understand the value that can be gained from driving 
the limited cognitive resources that students have towards 
conceptual learning from a task. 

A. Cognitive Load Theory and Example-Based Learning 

Cognitive Load Theory points out that the identification and 
induction of schemata, i.e., domain-specific knowledge 
structures [14], from problem states is the primary function of 
conceptual learning from a task. Since problem-solving practice 
may involve superfluous production steps that place a load on 
the limited cognitive resources of a student, these resources are 
taken away from the processes that could most impact their 
conceptual learning. The literature on example-based learning 
[1] builds on this to investigate the differential impact of 
problem-solving practice and worked example study on 
conceptual learning from a task. This literature establishes that 
problem-solving practice is generally inferior to worked 
example study precisely because of the reason outlined above. 
The worked examples do away with the superfluous production 
steps to allow students to completely focus on learning from the 
problem states showcased. We can see an isomorphic 
relationship between the processes of schema acquisition and 
automation pointed to in the worked example literature [15] and 
the separation of programming knowledge into its conceptual 
and procedural aspects pointed to in the computer science 
education literature [10] – [12]. This would indicate that 
problem-solving practice in the form of programming exercises 
may not be the most efficient for conceptual learning and 
worked example study can play that role better. Indeed, 
computer science education research has also started to gain this 
nuanced understanding of the separation between the 
conceptual and procedural aspects of programming knowledge. 
The preeminence of problem-solving practice in the curriculum 
has started to be challenged as a result. Alternative methods of 
engagement such as the use of two-dimensional Parson’s 
problems [16] which are a type of code completion problem 
useful for teaching syntactic and semantic language constructs 
i.e., the procedural aspects of programming, the CMX game-
based learning environment, also targeting the procedural 
aspects of programming knowledge, such as arrays [17] and 
worked example study [18] targeting the conceptual aspects 
have started to emerge. Even so, these alternative methods of 
engagement are largely absent as students move from the 
introductory context and on to courses advanced in the 
computer science curriculum. 

In the advanced computer science curriculum, the 
preeminence of problem-solving practice becomes harder to 
justify as students have gained substantial foundational 
knowledge in the procedural aspects of programming but are 
new to advanced concepts such as Artificial Intelligence, Cloud 
Computing, and Data Science that are taught in these courses. 
Students can gain more value, therefore, from focusing more of 
their time on conceptual learning. Regardless, the suggestion 
that worked example study ought to be better integrated into the 
advanced computer science curriculum has remained 
controversial [19]. Since example-based learning involves less 

hands-on work to convert conceptual knowledge into actual 
programs, the concern is that while students may learn more, 
they may be left less able to implement their knowledge in 
projects that follow their learning experience. In the 
introductory computer science context, this concern may be 
warranted because students are new to both the conceptual, as 
well as the procedural aspects of programming. It is less 
warranted, however, in places in the advanced curricular 
context where students are novices with respect to the concepts 
taught and can therefore gain more from focusing on conceptual 
knowledge. Without confirmatory evidence, however, 
pedagogical practice continues to follow prevailing dogma. 
Therefore, the research agenda being pursued in this paper 
becomes warranted for two reasons. First, to provide 
confirmatory evidence of the application of the literature on 
example-based learning to a new domain, i.e., advanced 
computer science education, predicated on the nuanced 
understanding of the separation of programming knowledge 
into its conceptual and procedural aspects posited here. Second, 
to provide evidence that will inform pedagogy that will best 
prepare students for work. We thus present a research agenda 
that explicitly investigates the right combination of problem-
solving practice and worked example-based reflection for 
impacting student learning and hands-on task performance at-
scale in the context of advanced courses in the computer science 
curriculum becomes called for. 

B. Need for Collaborative Learning 

Since the advanced curricular context is more vocational than 
foundational, the need for learning tasks to be “authentic” in 
their similarity to the day-to-day work of software engineers is 
indeed important. Workplace software engineering practices 
are also evolving to include more team-based and collaborative 
activities [4]. Consequently, the design of these tasks as 
individual experiences for students starts to come into question 
as well. While the conceptual underpinnings of the comparison 
between problem-solving practice and worked example study 
remain the same, barring some notable exceptions [20] this 
comparison has not been explicitly investigated in a 
collaborative learning context. In this paper, therefore, we 
further the research agenda outlined above by presenting a 
study situated in a synchronous collaborative learning activity 
offered as a part of an advanced online course in the computer 
science curriculum. By varying the boundary between problem-
solving practice and worked example discussion during the 
activity, we are able to compare students’ learning from the 
task, and hands-on performance to determine the combination 
most suited for this context. Analyzing the results with respect 
to the characteristics of the context in which the study was 
conducted, we can further the research agenda by discussing 
implications and directions for future research. 

III. METHOD 

A. Course Context and Participants 

This study was conducted in the Fall 2020 semester-long 
offering of a graduate-level project-based online course 
covering Cloud Computing concepts offered to graduate and 
senior undergraduate students belonging to a large North 
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American university and its branch campuses1. The course is 
structured around four project-based units. Each unit has 
several sub-units and culminates in a large individual project 
that has assessment components to evaluate achievement in 
each sub-unit. Our experiment is situated within the first sub-
unit of the fourth project unit of the course that focuses on 
“Building Inverted Indices in Scala”. In preparation for the 
individual project in this unit, students, in groups of 4, work 
with our synchronous (real-time) collaborative programming 
activity, called the Online Programming Exercise (OPE). In this 
exercise, students have access to a collaborative programming 
environment called Cloud92 that is instrumented with a text-
chat that they can use for communication during programming. 
The exercise is immediately preceded and succeeded by a pre- 
and post-test respectively. Performance improvement on the 
post-test over the pre-test serves as a measure of conceptual 
learning, while performance on the complex individual 
software development project component corresponding to this 
sub-unit serves as a procedural and conceptual problem-solving 
transfer task (delayed post-test). A summary of the course 
structure and the location of the study within it is shown in Fig. 
1. A total of 48 students participated in the exercise and the 
subsequent project from across two campuses. 

The unit introduces students not only to the conceptual 
aspects of inverted indices and the PageRank algorithm, but 
also to the procedural aspects of thinking in, and implementing 
concepts learned in a new programming language, Scala. Scala 
uses a programming paradigm called functional programming 
that most students are unfamiliar with prior to this unit. 
Consequently, this becomes the ideal context to test the 
differential impact of problem-solving practice, in the form of 
collaborative programming, and worked example-study, in the 

 
1 http://www.cs.cmu.edu/~msakr/15619-f20/  

form of collaborative reflection, on learning from the task, and 
performance on the subsequent problem-solving transfer task. 

Since the course has been offered online for over 15 
semesters, the course content and structure did not need to be 
changed in response to the move to online learning in the wake 
of the COVID-19 pandemic. The main effect was seen in the 
enrollment numbers which were about half the usual. Some 
students participated from off-campus locations in other time 
zones. Options of time slots were provided to students for 
participating in the synchronous collaborative exercise such 
that each time slot was amenable to students from different time 
zones. 

B. Collaborative Task Design 

The design of the two elements of the collaborative task i.e., 
collaborative reflection phase and collaborative programming 
phase are described below.  

In the collaborative reflection phase, students are presented 
with a worked-out example. Since the problem has already been 
worked out, their time is engaged instead in collaborative 
reflection. Learning from worked examples hinges on being 
able to draw students’ attention to the relevant problem states 
while helping them navigate away from superfluous ones [19]. 
In prior work, this has been achieved by using various means 
such as classification of examples by common schema [21] 
contrasting examples, and prompt-directed self-explanation 
[22]. In our study, we use conversational agent-based prompt 
scaffolding during to direct students’ joint attention to the 
aspects of the problem state that are relevant to their learning. 
The collaborative learning context might not only allow 
students to rely on the experience of all the members of the team 
to identify relevant problem states but, when designed 
appropriately, can require students to make their reasoning 

2 https://aws.amazon.com/cloud9/  

Fig. 1. Course structure, pre-test, post-test, and delayed post-test alignment 
 
. 
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explicit. One student articulating their idea then provides an 
opportunity for other students in the team to challenge, extend, 
or integrate that idea with their own, resulting in transactive 
exchange that is associated with learning [23]. Indeed, prior 
work in other contexts has provided evidence for the strategic 
use of conversational agent-based prompts to productively 
impact student behavior for supporting their learning [24]. 

For structuring the collaboration in the problem-solving 
portion of the activity, we turn to a collaborative programming 
paradigm used in the industry called Mob Programming [25] – 
[26]. Structuring collaboration is necessary as research has 
shown that students do not utilize collaborative learning 
opportunities without intentional design [27]. Further, a 
structured collaboration prevents the possible breakdown of 

group processes. A well-structured collaborative problem-
solving portion of the intervention can serve as a strong baseline 
for the comparison. Based on the Mob Programming paradigm 
used in the industry, prior studies have designed roles for use in 
online instructional contexts [5] – [8] Students are assigned to 
roles that are tasked with different aspects of problem-solving 
with the roles rotating over the course of the task. Well-defined 
responsibilities for each student prevents group process 
breakdown, while the interdependent nature of the roles ensures 
collaboration for problem-solving. The roles are described 
further in the following section. 
1) Role Scaffolding 

During the problem-solving phase, students are assigned to 
four interdependent roles designed based on the industry 

TABLE I 
LEARNING OBJECTIVES, AND EXAMPLES OF CORRESPONDING PRE/POST TEST QUESTIONS AND COLLABORATIVE REFLECTION 

PROMPTS 

# Learning Objective 
Example Pre/Post-Test Question 

(Multiple-Choice) 
Example Collaborative Reflection Prompt 

1 

Utilize the suitable map and 
reduce operations in Spark to 

transform and aggregate 
data. 

Examine the following ways of 
computing the sum by key of the 

exampleRDD. Which of them is the 
most efficient? 

Think of the solution you were attempting. Is 
this the same as what the bot presented in the 
chat? Take this time to explain the solution to 

each other. 

2 
Utilize suitable functional 

operations in Scala to 
transform data structures. 

Which of the following is a right 
way of transforming srcList to 

destList? 

There are a few different ways of doing 
element indexing such as dot indexing or the 

scala case() function. Which of these is shown 
in the example and which would be better 

aligned with best practice? 

3 

Identify the use case of a 
JOIN operation and utilize 

JOIN to combine and 
transform different RDDs in 

Spark. 

Calling JOIN on two RDDs of type 
(K, V1) and (K, V2) results in 
which of the following types? 

How is the combining of values implemented 
here? Can you unpack the working based on 

the example presented? 

4 

Identify the use case of the 
cache() method and utilize it 
to improve the performance 

of a Spark application. 

What is caching in memory meant 
to achieve in Spark? 

What factors do you need to keep in mind 
while deciding what to cache? See if you can 
discover the list of factors from the example. 

 
 

TABLE II 
THE BOUNDARY BETWEEN COLLABORATIVE PROGRAMMING PRACTICE AND WORKED EXAMPLE DISCUSSION ACROSS TASKS. 

Task # 
Mostly Problem-

Solving 
Equal 

Mostly Worked 
Example Reflection 

Only Worked 
Example Reflection 

1 12 + 6 9 + 9 6 + 12 0 + 18 

2 12 + 6 9 + 9 6 + 12 0 + 18 

3 8 + 4 6 + 6 4 + 8 0 + 12 

4 4 + 2 3 + 3 2 + 4 0 + 6 

Legend: a + b, where ‘a’ indicates time spent on collaborative programming, and ‘b’ represents the time spent on collaborative reflection. 
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practice of Mob Programming. Mob Programming involves a 
team of co-located developers assuming interdependent roles to 
work synchronously on a single problem, on one computer. For 
our task, students are assigned to the following four roles that 
have been adapted for an online instructional context in prior 
work [5] – [8].  

a) The Driver writes the code based on a high-level 
consensus decision of the team arrived at by the 
Navigator.  

b) The Navigator arrives at the team consensus on the 
next course of action based on a discussion with the 
rest of the team members and communicates that to the 
Driver to implement into code. The Driver and 
Navigator are assisted in this endeavor by students in 
two supporting roles.  

c) The Researcher consults resources such as a provided 
task primer and other web-accessible external support 
material, as necessary, to assist the team in idea-
generation as well as implementation.  

d) The Project Manager is responsible for making sure 
the rest of the team members are complying with and 
adequately performing their roles.  

The roles rotate after each task such that each team member 
gets to play the Driver role once during the exercise. Knowing 
that the roles will rotate encourages all participants, including 
those in the support-oriented roles, to pay attention in case they 
are called on to work on the implementation for the next task. 
The role rotation also provides an opportunity for individuals to 
contribute in various capacities over the course of the exercise. 
The separation of responsibilities between roles requires the 
externalization of thinking while discussing implementation 
alternatives, which provides opportunities for knowledge gaps 
to be revealed and addressed. 

C. Instructional Design 

For instrumenting the collaborative task to best support 
student learning, we turn to instructional design best practices. 
These practices are about aligning the learning goal with 
instruction positioned to explicitly target that goal, and the 
assessment that measures what was targeted [28] –[29]. 
Actualizing this best practice, the collaborative programming 
exercise is divided into four tasks, each targeting a learning 
objective (LO). Each task is divided into a problem-solving 
phase where students, assigned to four interdependent roles, 
work on the programming problem, and a collaborative 
reflection phase where they are guided by conversational agent-
based prompts to reflect based on a presented worked-example. 
Completing a task provides the opportunity for students to 
encounter and practice content related to the learning objective 
and then collaboratively reflect on what was learned before 
work on the next task begins. Students are assigned to four 
interdependent roles during the problem-solving phase by the 
conversational agent and the collaborative reflection is guided 
using conversational agent-based discourse-level prompts. 
Table I shows examples of these collaborative reflection 
prompts. While the focus of the prompts may seem to be 
procedures specific to the programming language, they are 

meant to evoke a conceptual discussion in response. As an 
example – the entry in the second row “dot indexing versus the 
scala case() function ” is meant to evoke a discussion about 
different ways indexing can happen and which one turns out to 
be more efficient. Another way to think about the separation 
between the conceptual and the procedural is that once the 
learner has understood this difference, they will be able to 
identify which method is more efficient even in a completely 
new programming language, once they learn what each relevant 
procedure in that language does. The conceptual learning, 
therefore, is independent of the programming language 
paradigm i.e., the procedural aspects of implementing the 
concept, once learned.  

D. Measurement 

Before and immediately after the task, students take a pre- 
and post-test respectively, where two multiple-choice questions 
are assigned for each learning objective. The pre-test score and 
post-test score for each LO is the average of the scores of the 
two questions targeting that LO, and thus ranges between 0 and 
1. Performance improvement from pre- to post-test is used as a 
measure of students’ conceptual learning from the task. 
Students subsequently work on an individual programming 
project. Since this project involves implementing the concepts 
learned from the collaborative exercise, it can serve as a delayed 
measure of conceptual as well as procedural knowledge. The 
project contains six tasks that map directly to the learning 
objectives of the collaborative activity. Table I shows the 
learning objectives and examples of pre- and post-test questions 
corresponding to each task, while Fig. 1. shows the position of 
pre-, post-, and delayed post-tests within the course. 

E. Study Design 

In the weeks before the synchronous collaborative activity in 
which the study was conducted, students first read text and 
watched video content explaining the activity, the collaborative 
programming environment, and the roles that they were to be 
assigned to. After that, students, in groups of 4, participated in 
a pilot activity that mimicked the activity in which the actual 
study would be conducted from end-to-end. The content for this 
pilot activity was kept relatively lightweight so that the focus 
could remain on helping students familiarize themselves with 
the collaborative programming environment and interacting in 
their roles. For both the pilot, and the study, groups were formed 
based on students’ time-availability that they were polled about 
earlier in the course. 

For the activity where the study took place, students, in 
groups of 4, were assigned to 4 different conditions. The 
conditions were as follows – 
1) Mostly problem-solving 
Students spend two-thirds of the time on collaborative problem-
solving before being cut-off and presented with a worked 
example solution for collaboration reflection. 
2) Equal problem solving and worked example discussion 
Students spend equal amounts of time on collaborative 
problem-solving and reflection based on the presented worked 
example. 
3) Mostly worked example discussion 
Students spend one-third of the time on problem-solving and 
the rest of collaborative reflection. 
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4) Only worked example discussion 
Students spend all of the time reflecting based on the presented 
worked example. 

The total activity duration was 80 minutes. 5 minutes in the 
beginning were allocated for setup and helping students 
familiarize themselves with each other. Another 5 minutes were 
allocated at the end of the activity for students to submit their 
solution. 10 minutes was the buffer allocated for context-

switching from problem-solving to worked example discussion 
and rotating roles. The remaining 60 minutes was for the actual 
tasks which was split according to the conditions that students 
were assigned to as shown in Table II. A few minutes in the 
beginning and end were used for becoming acquainted with 
teammates and submitting the completed solution respectively. 
A total of 48 students participated in the activity in groups of 4 
with 3 groups students i.e., 12 students in each of the four 
conditions. 

An example student interaction facilitated by the 
conversational agent during the collaborative programming 

phase is shown in Fig. 2. An example interaction during the 
collaborative reflection phase is shown in Fig. 3. 

IV. HYPOTHESES 

1) Hypothesis 1: The Online Programming Exercises (OPEs) 
result in pre- to post-test learning gains 

Regardless of whether students participate in more problem-
solving or worked example discussion, the activity results in 
pre- to post-test learning gains. 
2) Hypothesis 2: Worked example discussion contributes 
more to conceptual learning as measured by the pre- to post-
test learning gains than problem solving. 

Thus, we expect the most learning where students maximize 
time on worked example study, and less learning as students 
spend more of their time on problem solving. 

Fig.  2. Example student interaction facilitated by the conversational agent 
during the collaborative programming phase. 

 
 

Fig. 3. Example interaction in the collaborative reflection phase.  
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3) Hypothesis 3: Programming practice contributes most to 
ability to program.  

Thus, we expect students who practice more at writing code 
to perform better on a subsequent authentic programming task 
than students who spent more time on worked example 
discussion. 

V. ANALYSIS AND RESULTS 

1) Hypothesis 1: Students learned in all conditions. 
We first tested to ensure that there was significant pre- to 

post-test learning in evidence across conditions. For this 
analysis, we built an ANOVA model with Time Point (pre- vs 
post-), Learning Objective, Group, and Condition as well as all 
two- and three-way interactions of Time Point, Learning 
Objective, and Condition as independent variables, and the test 
score as the dependent variable. There was a main effect of time 
point such that test scores were higher on average at post-test 
time F(1, 371) = 1.51, p < .0003, effect size .21 s.d. None of the 
two- or three-way interactions were significant. Therefore, 
students learned for all learning objectives in all conditions 
between the pre- and post-test. Thus, Hypothesis 1 is fully 
supported. 
2) Hypothesis 2: Worked example study contributes more to 
conceptual learning as measured by the pre- to post-test 
learning gains than problem solving. 

In order to test the second hypothesis, we computed an 
ANCOVA model with Condition and Learning Objective as 
independent variables, Group nested within Condition, pre-test 
score as a covariate, and post-test score as the dependent 
variable. When we treat Condition as a nominal variable with 4 
levels, there is no significant effect of condition. However, if 

we transform the Condition variable to simply compare the no 
programming condition to the others, there is a significant 
effect in favor of no programming F(1,171) = 4.2, p < .05, effect 
size .18, with an advantage for no programming. For a finer 
grained analysis, we checked the relationship between 
percentage of time spent on problem solving and learning and 
found a significant negative correlation. For this analysis, we 
built an ANCOVA model with post-test score as the dependent 
variable, pre-test score and percentage of time spent on problem 
solving as covariates, and Learning Objective as an independent 
variable. In this analysis, there was a significant negative 
correlation between percentage of time spent on problem 
solving and post-test score in this analysis, indicating that as we 
manipulated amount of time spent on problem solving, the more 
time spent on problem solving, the less learning took place, F(1, 
182) = 5.42, p < .05. The partial correlation accounting for just 
the effect of percentage of time spent on problem solving is 
R=.17. Thus, Hypothesis 2 is supported, though the effect may 
be weak. 
3) Hypothesis 3: Programming practice contributes most to 
ability to program. 

In order to test the third hypothesis, we constructed a 
repeated measures dependent variable that is comprised of the 
6 separate scores assigned to evaluate the quality of the 
authentic problem-solving task. The Construct variable 
distinguished between the 6 different criterion scores. We built 
an ANCOVA model with pre-test score and percentage of time 
spent on problem solving as covariates and Construct as the 
independent variable. The criterion score for each of the 
Construct labels was the dependent variable. There was no 
effect of Construct or Condition. We also tested the model with 
percentage of time nested within Construct in case the condition 

TABLE III 
LEARNING OBJECTIVES, AND EXAMPLES OF CORRESPONDING PRE/POST TEST QUESTIONS AND COLLABORATIVE REFLECTION 

PROMPTS 

# Learning Objective 
Example Pre/Post-Test Question 

(Multiple-Choice) 
Example Collaborative Reflection Prompt 

1 

Utilize the suitable map and 
reduce operations in Spark to 

transform and aggregate 
data. 

Examine the following ways of 
computing the sum by key of the 

exampleRDD. Which of them is the 
most efficient? 

Think of the solution you were attempting. Is 
this the same as what the bot presented in the 
chat? Take this time to explain the solution to 

each other. 

2 
Utilize suitable functional 

operations in Scala to 
transform data structures. 

Which of the following is a right 
way of transforming srcList to 

destList? 

There are a few different ways of doing 
element indexing such as dot indexing or the 

scala case() function. Which of these is shown 
in the example and which would be better 

aligned with best practice? 

3 

Identify the use case of a 
JOIN operation and utilize 

JOIN to combine and 
transform different RDDs in 

Spark. 

Calling JOIN on two RDDs of type 
(K, V1) and (K, V2) results in 
which of the following types? 

How is the combining of values implemented 
here? Can you unpack the working based on 

the example presented? 

4 

Identify the use case of the 
cache() method and utilize it 
to improve the performance 

of a Spark application. 

What is caching in memory meant 
to achieve in Spark? 

What factors do you need to keep in mind 
while deciding what to cache? See if you can 
discover the list of factors from the example. 
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variable had a differential effect across construct levels, but 
there was still no effect. Thus, Hypothesis 3 was not supported. 
What this means is that not only did students learn more 
conceptual knowledge from spending more time studying 
worked examples, but they did also not incur any deficit in 
terms of their ability to perform on the authentic task, either 
overall, or on any single criterion score. 

The verbose results from the analyses are shown in Table III. 

VI. DISCUSSION 

We find, interestingly, that the condition where students 
spent all of their time on collaborative reflection based on the 
presented worked example was best for conceptual learning 
from the task and did not incur any deficit in terms of their 
ability to perform on the authentic task. The finding about 
conceptual learning impact is in line with what the literature on 
example-based learning would predict. For maximally 
impacting conceptual learning from the task, it is best to do 
away with superfluous production steps that might draw student 
attention away from conceptual learning and focus all of their 
time instead on highlighting problem states relevant to 
conceptual learning. In the synchronous collaborative learning 
task that students participated in as a part of this study, this was 
achieved using a two-fold mechanism. In addition to simply 
being presented with a worked example, conversational agent 
prompts were used to direct student attention to the problem 
states relevant to their conceptual learning. In response to these 
prompts, students, in their groups were required to direct their 
attention to finding and discussing the relevant problem states. 
The discussion meant that any misconceptions could be 
revealed and addressed for the group as a whole. An example 
of such an interaction in response to the collaborative reflection 
prompt was shown in Fig. 3. 

The finding about the lack of differential impact on authentic 
task performance is interesting. Since students are new to the 
procedural aspects of writing working programs in the new 
language, Scala, that is introduced in this unit, we hypothesized 
that hands-on practice would serve students better for 
performance on the authentic task. However, there turned out 
to not be a significant difference. When we asked students to 
understand why this might be the case, we found that most 
students were comfortable learning the syntactic and semantic 
aspects of programming, even in a new language, all on their 
own. Additionally, some foundational knowledge they had 
gained from working on other programming languages with a 
similar paradigm was useful in orienting them towards learning 
relevant syntactic and semantic aspects in this new language. 
Students preferred that their time in the collaborative activity 
was instead spent on learning concepts that they find harder to 
learn on their own. It should be noted, however, that the 
intervening week between the end of the collaborative activities 
and when the project was due could have served to wash out 
some of the differential impact. Since students said that they are 
comfortable searching for syntactic and semantic issues on their 
own, this could indeed have been the case. It is possible, 
however, that students who received less problem-solving 
practice spent more time searching, and less time on the 
implementation while those who participated in worked 
example study had to do more of the heavy lifting around 

implementation themselves. This can only be confirmed by a 
process analysis of the data about how students split their time 
while working on the individual project. Since this study was 
not instrumented to collect this data, this is a caveat for the 
findings, and a factor to investigate in future work. 

Even so, the evidence presented in this study starts to make 
it possible to recommend better integrating worked example 
study into the advanced computer science curriculum. While 
the value that hands-on software development brings to 
learning software engineering is not disputed, a nuanced view 
of the separation of programming knowledge into its procedural 
and conceptual components was used for isolating the impact 
on conceptual learning in this study. We see clearly the role of 
conceptual learning in advanced computer science and the 
value of reflection over practice for this learning. At the same 
time, we see that maximizing hands on work is not necessary 
for supporting needed learning of the hands-on skills of 
computer programming. The evidence supports a view that 
shifting more time towards reflection would be beneficial. More 
work to pinpoint the ideal balance and placement of reflection 
versus practice is still needed. 

The study also presented a way to actualize the theory of 
example-based learning in a collaborative learning environment 
at scale using conversational agent-based prompts to take 
advantage of the different perspectives that could be 
contributed by the students in the text-chat. Based on these 
results and the additional questions that the findings have 
raised, future work to further this research agenda is warranted. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we present first fruits of a research agenda 
investigating the trade-off between problem-solving practice 
and worked example study in collaborative programming 
activities offered at scale in advanced courses teaching work-
relevant computer science skills. We find results pointing to 
the positive impact of worked example discussions on 
conceptual learning from a task, thereby challenging the 
dominant place of problem-solving practice in the advanced 
computer science curriculum. Further, the study found no 
difference in the impact of worked example discussions and 
problem-solving practice on authentic hands-on task 
performance. A nuanced view of the separation of 
programming knowledge into its procedural and conceptual 
aspects was put forth and actualized in a collaborative learning 
environment. Further research is needed to confirm the results 
obtained, especially with respect to the lack of differential 
impact on authentic task performance, but evidence has been 
obtained to start to recommend a stronger integration of 
worked example study into the advanced computer science 
curriculum.  

The literature on example-based learning points also to the 
effects of sequencing worked example study and problem-
solving practice. Improved impact has been found by using 
worked example study first, to help students learn the relevant 
problem states, and then implement them during problem-
solving practice. The study presented in this paper investigated 
only problem-solving practice followed by worked example 
study due to a lack of statistical power. This comparison has 
been planned for the next study in this sequence. The design 
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informed by the results presented in this paper are expected to 
be carried forward in forthcoming offerings of this course in 
community college and corporate learning contexts. 
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