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The Effect of Different
Occupational Background Noises
on Voice Recognition Accuracy
Voice recognition has become an integral part of our lives, commonly used in call centers
and as part of virtual assistants. However, voice recognition is increasingly applied to more
industrial uses. Each of these use cases has unique characteristics that may impact the effec-
tiveness of voice recognition, which could impact industrial productivity, performance, or
even safety. One of the most prominent among them is the unique background noises that
are dominant in each industry. The existence of different machinery and different work
layouts are primary contributors to this. Another important characteristic is the type of
communication that is present in these settings. Daily communication often involves
longer sentences uttered under relatively silent conditions, whereas communication in
industrial settings is often short and conducted in loud conditions. In this study, we demon-
strated the importance of taking these two elements into account by comparing the perfor-
mances of two voice recognition algorithms under several background noise conditions: a
regular Convolutional Neural Network (CNN)-based voice recognition algorithm to an
Auto Speech Recognition (ASR)-based model with a denoising module. Our results indicate
that there is a significant performance drop between the typical background noise use
(white noise) and the rest of the background noises. Also, our custom ASR model with
the denoising module outperformed the CNN-based model with an overall performance
increase between 14–35% across all background noises. Both results give proof that spe-
cialized voice recognition algorithms need to be developed for these environments to reli-
ably deploy them as control mechanisms. [DOI: 10.1115/1.4053521]

Keywords: human computer interfaces/interactions, machine learning for engineering
applications

1 Introduction
Voice recognition has become a ubiquitous phenomenon in the

past decade. The introduction of virtual assistants such as Siri and
Alexa has propelled the use of voice recognition. These virtual
assistants can execute search queries, dictate texts, order food and
groceries, and even control lighting and temperature in houses,
among many other applications. This breadth of applications has
allowed voice recognition to be used in healthcare for accurately
recording data [1], smart transportation systems [2], and smart
homes [3]. The global voice recognition market size is predicted

to grow by 17.2% between 2020 and 2025, reaching a size of
$26.79 billion [4]. The fact that voice recognition allows for hands-
free interaction with many systems provides ample opportunities
making it a promising technology in many occupational scenarios,
in which workers need constant interaction with the environment
and machine while their other communication modalities (hands,
visual, etc.) are heavily taxed.
Voice recognition to control industrial machinery has different

requirements than the algorithms that are used in everyday settings.
Rogowski [5] emphasizes the correct recognition of phrases as a
crucial element in voice recognition for industrial settings. The
main factor that affects the performance of the voice recognition
algorithm is the existence of background noise, which significantly
affected the accuracy of Rogowski’s study. Occupational settings
such as factory floors and construction sites for example have
ambient noise sources (crushing, riveting, blasting, cutting
torches, etc.) that are much different than homes and airports [6].
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Hence, applying current models to these settings will result in
lower accuracy rates as they are developed for quasi-silent
environments.
Another important element of voice recognition in industrial set-

tings is the unique type of communication that is present compared to
everyday life. Unlike the communication and information exchange
that happens in our daily lives, communication in occupational
settings is often short and imperative. The margin for error in occu-
pational settings is much lower, and there is a finite set of commands.
In this setting, the voice recognition software’s main purpose is to
detect these short phrases reliably and quickly with as few false pos-
itives as possible. This is not without its challenges though. High
network latency that is caused by external factors such as electro-
magnetic interference (EMI) from nearby machines will affect the
data quality. Therefore, these voice recognition models should be
based on “keyword spotting,” not the more common “full sentence
recognition” approach. It is also important to consider that even
though these words are rather short they have different sound com-
positions that combined with the existence of background noise
and other sources of interference can translate into different levels
of accuracy.
By considering the two aspects of voice recognition that are dis-

cussed, background noise and communication method, we believe a
robust voice recognition algorithm can be developed that could be
used in occupational settings. As interactions within occupational
settings start to diversify with the increase of interactions between
humans and machines [7,8], the need for reliable voice recognition
software will continue to grow. Hence, the purpose of our study is to
demonstrate the necessity of a specialized voice recognition algo-
rithm by comparing it to a generic machine learning-based algo-
rithm. Through the results of this study, we aim to guide
occupational safety professionals and safety managers a guideline
as to which sound levels and what types of background noise
need to be dampened to implement voice-controlled systems
safely and reliably. Additionally, we encourage researchers and pro-
fessionals in the computer science field to consider developing
voice recognition algorithms that are tailored to the background
noise present in workplaces. We also highlight the importance of
choosing the right set of command words as some words get con-
fused for one another by the voice recognition algorithm, which
may cause unintended consequences.
The manuscript is structured as follows: We first introduce the

existing publicly available datasets, speech recognition algorithms,
and denoising solutions and highlight their shortcomings. Then, we
introduce our algorithm and explain how it is structured. This is fol-
lowed by the comparison with the generic algorithm. Finally, we
discuss the results and talk about future directions and the limita-
tions of the study.

2 Relevant Work
Using voice control to interact with machines is not a new

concept, with research dating back to 1995 [9]. However, with
the rise of Industry 4.0, humans and machines are becoming more
interconnected. Voice recognition research pertaining to this new
paradigm is mostly focused on evaluating the feasibility of using
voice recognition to interact with a number of systems. Longo
and Padovano explored the possibility of using a virtual assistant
akin to Siri and Alexa to safely operate machines and detect failures
[10]. Rains also explored using voice recognition for safety, in this
case as an emergency shut-off mechanism for tractors [11]. Two
groups suggested using voice recognition as part of a cloud-based
control system to interact with autonomous industrial systems
[12] and semi-autonomous vehicles [13]. Voice-activated Human
Robot Interaction (HRI) systems were also used in training
novice users how to interact with robots [14].
The reliability of voice recognition software in industrial settings

has just become a topic of interest in recent years, albeit the research
on the topic is still very limited. Most studies that have investigated
the effects of background noise were conducted in the context of

voice-activated assistants in cars, [15–18], autonomous vehicles
[19], virtual home assistants [20], and more recently cough detec-
tion [21]. Although the speech patterns inside these settings bear
resemblance to the words we have selected in this study (short
phrases such as place names or commands such as “call” or
“open”), the background noise profile is completely different than
the industrial settings we have included in this study. For
example, the typical noise level for a chainsaw is 108 dB [22].
Other pieces of equipment we also included have noise levels
between 90–100 dB. Compared to these levels, the noise level
inside a car that is going 60 mph (which is not a typical speed in
everyday urban settings) is 70 dB.

2.1 Speech Recognition Network. There are two main
methods for developing voice recognition algorithms. One
method is pattern-based and a second, more recent one is
knowledge-based. Voice recognition algorithms that use pattern-
based techniques rely on matching speech or voice patterns with
existing templates [23]. Pattern-based templates have been the
mainstay for voice recognition software for many years. The
advent of artificial intelligence (AI) and machine learning
methods has changed this, however. Compared to pattern-based
methods, knowledge-based methods rely on breaking down the
voice into features and then identifying which ones are the most rel-
evant in recognizing different speech patterns [23]. Machine
learning-based voice recognition research has attracted significant
attention in recent years [24]. One study constructed a voice
command database with background noises from three separate
databases, Chime-3 and Aurora-2 which have noises from public
spaces such as streets, sidewalks, airports, and pink noise samples
from the Noisex−92 database [25]. This and similar studies have
used machine learning to develop voice recognition algorithms
that have high accuracy rates [26–28], yet all of them suffer from
a common problem that affects their applicability, the dataset itself.
Deep learning has been recently applied to automatic speech rec-

ognition as cloud-based services that provide end-to-end speech
recognition solutions. They often utilize multiple models together
to solve problems. The main function of a speech recognition algo-
rithm is to take the input of a sequence of signals and translate that
into the target word. The most straightforward way to do this is to
extend the Seq2seq model scientists have used in machine transla-
tion [29]. Seq2Seq is composed of two parts: an encoder and a
decoder with an attention mechanism. It can use different models
to be its encoder and decoder such as RNN and Transformer
[30,31]. However, the traditional Seq2Seq model and other
end-to-end deep learning models lack denoising ability in a noisy
environment. Auto Speech Recognition (ASR) and the front-end
denoise module are designed to solve the problem.

2.2 Dataset. There are several large, publicly available voice
datasets. Mozilla’s Common Voice dataset [32] contains over
500 h of recording with 20,000 different people’s voices. Although
the size of the dataset is remarkable, the recording lack background
noise. The Speech Commands Dataset [33] from TensorFlow pro-
vides a dataset with 35 single word commands with thousands of
utterances for each word. This database has some background
noise present, both digitally generated and recorded, however, the
author does not elaborate on how and why he selected the back-
ground noises. Microsoft Scalable Noisy Speech Dataset [34] col-
lected 56 speakers’ speech clips under a clean environment and
provided 14 types of daily noises including air-conditioner,
eating, shutting the door, and so on. Speech Commands Dataset
and Microsoft Scalable Noisy Speech Dataset [33,34] both
include background noises from daily living. However, a very
limited number of datasets have addressed the ambient noise situa-
tion under industry, agriculture, and other occupational settings.
This could be an issue as in occupational settings noise exposure
may represent different profiles as domestic living scenarios [35].
This especially holds true when using machine learning models.
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If the data that are used to train the model do not represent the sound
profile of the environment the algorithm is deployed in, the perfor-
mance of the model will be significantly affected when it is
deployed.
One of the few studies that has researched the effect of back-

ground noise in industrial settings is a study done by Birch et al.
[36]. Their word selection also consisted of short command
words; up, down, left, and right. The background noises they
selected were the operating noise of a drilling robot (just the move-
ment), speech, drilling, and a sample of machine noises in the
general vicinity. They reported a significant decrease in levels of
noise above 61.2 dB due to ambient machine noise whereas other
noise types did not have a significant effect. This finding matches
with our results, as accuracy levels above 60 dB for both algorithms
drop significantly. Their study is important in demonstrating the
effect of ambient machine noise and recognizing the utility of
voice recognition in the context of HRI, which has already been rec-
ognized by other researchers as well [10,37].

2.3 Denoising Solution. Sound enhancement algorithms have
introduced ways to recognize speech under noisy circumstances.
Among them, a few algorithms introduced have already gained trac-
tion in the speech recognition and sound enhancement community.
RNNoise [38] is a low-complexity noise suppression algorithm that
uses recurrent neural networks. The method estimates noise sup-
pression gains in relevant critical bands. WaveNet [39] takes a
series of convolutional filters with exponentially increasing dilation
factors and predicts target fields. Speech enhancement generative
adversarial network (SEGAN) [40] is an end-to-end model where
input is directly the raw data. It combines two different models: a
generative model that transfers the noisy speech into a clean one
and a discriminative network that distinguishes whether inputs
come from clean or enhanced speech. These models prove to be
effective under white noise, noise with equal intensities, and back-
ground noise. However, little research has been done to test these
denoise models on datasets with specific noise patterns such as data-
sets collected from occupational settings.

3 Methodology
3.1 Background Noise Selection. As mentioned earlier, our

goal was to construct a database that would be representative of
occupation settings that have harmful ambient noise. Considering
the nature of speech that is present in those environments, we
elected to construct a voice command database with a variety of
background noises that would reflect different occupational con-
texts. For this, we first started surveying occupational settings that
typically have higher levels of ambient noise. As high levels of
ambient noise can have detrimental effects on a person’s hearing
[41], we focused on industries that had the highest reported levels
of hearing loss. We also surveyed existing literature about occupa-
tional noise pollution to determine what ambient sounds we need to
include. According to NIOSH’s Occupational Hearing Loss Sur-
veillance Data, the highest reported cases of hearing loss are in
the mining/oil industries and the construction industries with 25%
of workers reporting a hearing loss in both industries [42]. This is
followed by manufacturing and agriculture/forestry industries.
Hence, we chose these industries as our occupational settings. Sub-
sequently, we surveyed the equipment used in these industries that
are both common and have a prominent noise output. For the con-
struction and mining/oil industries, we selected piling (or pile
driving) as it is common in both offshore drilling operations for
oil rig construction [43] and land-based construction [44]. Also,
for the construction industry, we selected concrete mixing opera-
tions as concrete is universally used in many construction sites,
and in many sites, the concrete is mixed onsite. For forestry/agricul-
ture industries, we selected weeding and chainsaw operation as the
representative ambient noise. Finally, we wanted to select an activ-
ity that is universally common across all industries; hence, we

selected hammering. All noise samples are downloaded from Free-
Sound.2 In total there are 8 different samples with white noise and
noise-free samples included. It is worth noting that extra noise
sources can be added, and new models can be trained easily via
transfer learning techniques. In total, we have 6 different occupa-
tional background noises (Fig. 1): (1–2) high and low-frequency
piling, (3) concrete mixer, (4) hammering, (5) weeder, and (6) chain-
saw. As a control, we added a white noise background containing
frequencies with equal intensities (Fig. 2).

3.2 CommandWord Dataset. The Speech Command Dataset
provided by TensorFlow [32] is used as the basis of our voice
command dataset (Fig. 2). It is one of the most widely used voice
command datasets and has been used in previous studies exten-
sively [45–48]. The dataset consists of repetition voice snippets
of 35 different word commands from different participants. Each
of the voice clips has approximately a 1-s duration. The speakers
who gave the commands were native English speakers. The
dataset also has a copy of the original dataset with white noise back-
ground. There are essentially two types of words in this dataset
(Table 1). The first type of words is command words which indicate
either a direction, action, quantity, or affirmation/negation. Exam-
ples of such words are up, down, one, two, stop, and yes. The
second set of words are not command words but words that either
have a similar pronunciation to the command words (three versus
tree) or other words that cover different types of pronunciations,
such as visual/sheila and happy/house. We believe by adding
more words with different vowel sounds, we have increased the ver-
satility of the algorithm. This is important as not everybody will
pronounce the words in this database the same way, especially
people with English as their second language [49]. We randomly
split out our data in an 8/2 split; that is, each of the 36 trials will
have 80% data in the training set and 20% in the testing set.

3.3 Voice and Noise Mixture. To test how noise under spe-
cific occupational settings will affect the performance of deep learn-
ing models, we needed to create new datasets that had the ambient
noise overlaid on top of the clean dataset. We hypothesized two
factors that will influence model performance: noise pattern and
volume level. We determined an origin level for each noise which
was between 50 and 60 dB. Then, noise levels that were 10 times
(+10 dB) and 100 times (+20 dB) louder were tested. This was
also done at the opposite trend (10 and 100 times less loud).
Overall, the new dataset has 36 different background noise instances
(seven types of background noise that claim at Sec. 3.1 × five volume
levels, plus the original database).

Fig. 1 Seven different occupational background noises

2https://freesound.org
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3.4 Deep Learning Models Performance on New Datasets.
We chose Convolutional Neural Network (CNN) as the baseline
model of our new datasets as in the command set study, we have
selected it as the baseline model. Additionally, in that study,
CNN had a strong performance on classification tasks [32]. We
built our own CNN using Tensorflow and PYTHON (Fig. 3). A noise-
free reduction design was added to this model. We first applied a
short-time Fourier transform (STFT) to transform the waveform
into a spectrogram to expand features of the input audio before
inputting it into the model. The model design was based on
VGG16 that always has convolution layers of a 3 × 3 filter with a

stride 1 and maxpool layer of a 2 × 2 filter of stride 2. The model
was first trained and tested on all 36 backgrounds separately to eval-
uate how much performance will the noise affect the model using
the CNN model. After that, we use the same model design to
train the new dataset based on our new ASR-based model with all
36 background noises together and see if the test result has a perfor-
mance increase. We developed our ASR model based on the Kaldi,
the most widely used open-source ASR development framework.
We use a similar ASR design to DeepSpeech2 [50]. It has a straight-
forward design of CNN layer, long short-term memory (LSTM)
layer, Fully connected Layer and Softmax, respectively (Fig. 4)
We also created a decoder to decode and get the final output. We
wanted to show that End-to-End models perform better on our
new datasets than baseline methods such as CNN. Modern E2E
models may have too many blackbox functions that are hard to
explain. So, we chose this naive and understandable model design.

3.5 Specific Command Word Performance. After we deter-
mined the accuracy levels of the models dependent on the back-
ground noise type, we wanted to know the performance for
specific command words within the dataset. We selected four pairs

Fig. 2 The workflow of the experiment

Table 1 List of command words

Command words

Backward Bed Bird Cat Dog Down Eight
Five Follow Forward Four Go Happy House
Learn Left Marvin Nine No Off On
One Right Seven Sheila Six Stop Three
Tree Two Up Visual Wow Yes Zero

Fig. 3 CNN model structure

050905-4 / Vol. 22, OCTOBER 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/5/050905/6869354/jcise_22_5_050905.pdf by U
niversity of Florida Sm

athers Libraries user on 19 Septem
ber 2022



of opposite command words: up and down, left, and right, stop and
go, and finally yes and no. In order not to influence the performance
in any other fashion, we kept the type of background noise (blender)
and the level of noise constant and constructed two confusion matri-
ces for each model. Confusion matrices are used to compare directly
between to different words about their True Positives, False Posi-
tives, True Negatives, and False Negatives. They can clearly show
which two commands are mixing up together. Hence by looking at
the confusion matrices, we determined which command words
should be used together in a real-world scenario.

4 Results
Tables 1 and 2 present the comparison between the CNN model

and our ASR model using a pretrained DeepSPeech2 model on the
Kaldi framework. The volume of the original sound was controlled
between 50–60 dB and four different loudness levels were tested:
+10 dB, +20 dB and −10 dB, −20 dB, respectively. Both models
performed at higher levels of accuracy (89% and 91% for CNN
and our model respectively) under noise-free conditions.
Other background noise types had more of an effect compared to

white noise in all instances, with the weeder (Fig. 7) and blender
noise (Fig. 8) having a 68% and 69% accuracy at the lowest noise
level for CNN and 76% and 81% for ASR, compared to the 81%
and 88% accuracy levels, respectively, for white noise at the same

level. The −10 dB level also represented a precipitous drop for all
selected background noises, with a 27% drop in accuracy level
across all noise types for the CNN, but the drop was not as severe
for ASR values. We have also depicted the declining trend of both
ASR and CNN models for all background noises in Figs. 5–8.
Figures 9 and 10 show the confusion matrices for the CNN and

ASR models, respectively. For the CNN model, the top three
words with the highest instances of correct identification were for
“down,” “no,” and “up” with correct instances ranging from 50 to
65. The ASR model’s top three was also the same as the CNN
model’s however the best-performing word was “no” compared
to “down” in CNN. The word that showed the poorest performance
was “right,” with only 15 instances of correct recognition of the
CNN model and 34 for the ASR model. There was a non-negligible
number of mischaracterizations for the top-performing words
though. For example, for the ASR model, compared to the high
number of characterizations for “no,” there were 29 instances
where “no” was recognized as “go.” The same phenomenon was
true for the CNN model, with 23 “go” recognitions compared to
55 correct “no” recognitions. In words with lower performances,
this disparity was even more pronounced. The word “right” had
12 instances where it was recognized as “yes” of the CNN model
compared to 15 correct instances. The ratio for the ASR model
was better, with 16 “yes” recognitions to 32 correct ones.

5 Discussion
The purpose of this study is to demonstrate the need to develop

dedicated voice recognition algorithms for ambient noise conditions
that are typically found in occupations settings that have high levels
of noise as typical voice recognition algorithms perform poorly in
these conditions. As such in our study, we have investigated two
things, the effect of different types of background noise on model
performance and comparing the performance of a rough
CNN-based voice recognition model to our model which was an
ASR module with a denoising module. The discussion of the
effect of different background noises in industrial settings is rare
in the voice recognition domain with many studies focusing on
civilian settings. Our study represents one of the first attempts to

Fig. 4 ASR model structure

Table 2 Recognition accuracy of the CNN-based model

−20 dB −10 dB Origin +10 dB +20 dB

Noise free 0.89
White noise 0.81 0.62 0.49 0.37 0.24
Low-frequency pile 0.78 0.51 0.46 0.31 0.18
High-frequency pile 0.77 0.5 0.42 0.29 0.18
Blender 0.69 0.42 0.34 0.25 0.15
Weeder 0.68 0.41 0.33 0.24 0.15
Chainsaw 0.71 0.44 0.36 0.26 0.16
Hammer 0.79 0.54 0.48 0.33 0.21

Fig. 5 Recognition accuracy for white noise

Journal of Computing and Information Science in Engineering OCTOBER 2022, Vol. 22 / 050905-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/5/050905/6869354/jcise_22_5_050905.pdf by U
niversity of Florida Sm

athers Libraries user on 19 Septem
ber 2022



Fig. 6 Recognition accuracy for high- and low-frequency pile driver

Fig. 7 Recognition accuracy for weeder and chainsaw

Fig. 8 Recognition accuracy for blender and hammer
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display how different industrial background noises will need differ-
ent voice recognition algorithms.
As we expected before the study, the type and the level of back-

ground noise had a significant impact on model performance. Both
models performed well under noise-free conditions with high levels

of accuracy. Our accuracy levels match existing studies that have
used neural networks to build voice recognition algorithms.
Hamza et al. for their voice recognition model with Gaussian
Mixture Models reported 100% accuracy in their model [51]. In a
similar study, Song et al. reported 95% accuracy in a quiet office

Fig. 9 Confusion matrix for the CNN model (blender, no dB adjustment)

Fig. 10 Confusion matrix for the ASR model (blender, no dB adjustment)
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setting with their Hidden Markov Model-based model [52]. The
introduction of white noise did affect the accuracy of the models
but not as much, at least in lower noise levels. Our industrial back-
ground noises, however, had a more significant effect on model
accuracy even at the lowest sound level we selected. This effect
was even more pronounced as the sound levels were increased.
This means that using white noise to simulate noise in occupational
settings is not a feasible approach. Another important point is that in
higher levels of noise both models performed poorly. Considering
typical noise levels in the industries we included, this problem
needs to be alleviated before any voice-activated systems are
implemented.
An additional issue that is present is the accuracy difference

between the background noises that we included in our study,
regardless of the noise level. At the −20 dB noise level for the
CNN-based model, there is a 10% difference between the highest
(hammer) and the lowest (weeder). This difference is also present
for the ASR-based model but not as pronounced. Although the
accuracy values for both models seem to converge at higher noise
levels, the difference between the lowest and the highest accuracy
values does not get below 5%. We surmise that the different
sound profiles of each background noise contribute to this differ-
ence. Taking the two extremes as an example, weeder noise and
hammering noise, the weeder noise sample has higher frequency
levels, and the noise is produced continuously, whereas the
hammer noise has a lower frequency level, and it is produced in
fixed intervals. All these noise profiles have practical representa-
tions and cannot be replaced with simple white noise during the
model training phase. As such, voice recognition algorithms and
denoising solutions need to be tailored to the specific noise
profile of the environment they will be applied to.
We also identified from the results of the confusion matrices the

importance of selecting command words that will not negatively
affect each other in terms of recognition accuracy. If the algorithm
cannot distinguish between the commands “no” and “go,” for
example, this might result in the machine activating in such a
manner that could pose danger to the worker. From our observa-
tions, we determined that the biggest contributor to misrecognition
is the similarity of vowel sounds in words. Pairs such as left-yes,
up-stop, and no-go had either close to or higher than 20 instances
of misrecognition. Hence, extra attention needs to be given to
selecting words that have sufficiently different sounds from each
other. On top of words affecting each other, the voice recognition
accuracy of the words themselves needs to be considered while

populating selecting command words. If one word consistently
underperforms in a set of conditions, alternative phrases need to
be considered, and this process should happen before the algorithm
is fully deployed.
The ASR model is built using the Kaldi speech recognition

toolkit. More features have been extracted from the audio file
using the toolkit automatically and the data can be trained on pre-
trained ASR models. The pretrained model we chose is a deep
neural network (DNN) model called DeepSpeech2 [50]. The advan-
tage of the ASR model compared to normal deep learning models
like CNN is that it uses end-to-end speech recognition to substitute
multiple complicated feature engineering modules such as align-
ment, clustering, and Hidden Markov Models (HMM) that let the
model structure be more stable and reasonable and can be trained
bigger. As a result, compared to our CNN model, which only has
1.6 million parameters, the DeepSpeech2 has 35 million parame-
ters. More parameters allow the model to extract more features
even under noisy environments. The results of the ASR model
have a large improvement compared to the CNN model, especially
under large noise conditions. This demonstrates that even with a
standard denoising model, model accuracy increases regardless of
background noise type. It is important to note the +20 dB level
proved challenging for both models. As industrial machines tend
to produce sound levels that are higher than 70 dB, this accuracy
issue needs to be resolved before any type of voice-activated
machine control measure is implemented.

6 Limitations and Future Work
There are several limitations in the study that need to be men-

tioned. To start, we used pre-recorded samples as our background
noises for the model. Although this is convenient in terms of
testing multiple types of background noises at once, they do not
completely encapsulate the occupational settings they occupy. For
example, there could be both a pile driver and a blender working
at the same time at a construction site. The same thing could be
said for chainsaws and weeders for the forestry industry. The com-
bination of these background noises would give a more accurate
representation of the ambient noise that is present. A related limita-
tion to this is our use of singular noise sources for model training.
As mentioned, there are multiple noise sources in every workplace,
and using a representative noise sample will undoubtedly affect per-
formance. To counteract both limitations, we plan to record samples

Table 3 Recognition accuracy of the ASR-based model

−20 dB −10 dB Origin +10 dB +20 dB

Noise free 0.91
White noise 0.88 0.81 0.73 0.56 0.41
Low-frequency pile 0.84 0.76 0.53 0.44 0.29
High-frequency pile 0.82 0.78 0.49 0.41 0.25
Blender 0.8 0.76 0.51 0.39 0.28
Weeder 0.76 0.64 0.43 0.29 0.17
Chainsaw 0.81 0.77 0.57 0.42 0.26
Hammer 0.82 0.71 0.51 0.39 0.27

Table 4 Percentage performance increase for ASR model compared to CNN

−20 dB −10 dB Origin +10 dB +20 dB Average

White noise 7.95 23.46 32.88 33.93 41.46 27.94
Low-frequency pile 7.14 32.89 13.21 29.55 37.93 24.14
High-frequency pile 6.10 35.90 14.29 29.27 28.00 22.71
Blender 13.75 44.74 33.33 35.90 46.43 34.83
Weeder 10.53 35.94 23.26 17.24 11.76 19.75
Chainsaw 12.35 42.86 36.84 38.10 38.46 33.72
Hammer 3.66 23.94 5.88 15.38 22.22 14.22
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at their respective occupational settings in our future model devel-
opment. Another limitation is our limited use of different machine
learning methods. As the focus of our study was to highlight the
need to use industry-specific background noises, we wanted to
keep the methodology consistent. However, in future studies, we
will explore the different ML techniques and determine whether
they have different performance levels.

7 Conclusion
In this study, we aimed to demonstrate the need to develop voice

recognition algorithms that are designed for specific occupational
settings. We focus on two aspects of voice recognition, the type
of background noise representing different occupational settings
and the effect of a denoising module on a machine learning-based
voice recognition algorithm. We identified occupational settings
that tend to have higher levels of ambient noise and selected the
most ubiquitous items that belong to that setting. Then, we selected
the phrases that we are going to use and the background noise
levels. We compared the accuracy rates of a CNN-based voice
control algorithm and an ASR-based model with a standard denois-
ing module. After this, we selected a subset of the command word
dataset and investigated the accuracy rates of specific words using
confusion matrices for the two models. We found that using
white noise to train algorithms to represent background noises
from occupational settings would not be accurate, as the back-
ground noises we selected affected the accuracy rates more than
white noise. We also found that even a standard denoising
module had a positive effect on the accuracy level, with our ASR
module that had the denoising module outperforming the
CNN-based model on average by 14–35% across all background
noises. The improvement percentages did vary across different
noise levels/background noise combinations which warrant
further investigation. The confusion matrices showed differences
between words that were sometimes quite significant, and it the
effect on accuracy some words could have over other, similar
sounding command words. These results indicated that to apply
voice recognition-based controls in occupational settings, the
noise level, the noise profile of the environment, the machine that
is controlled by voice recognition, and the selection of command
words need to be considered to create algorithms that are tailored
to them.
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