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ABSTRACT: Bimetallic AgCu catalysts have gained considerable
interest, as both metals have demonstrated ability to perform
selective oxidation reactions. Many of these studies have shown
increased selectivity arising from the combination of Ag and Cu,
but the mode of selectivity enhancement for Cu in Ag remains
unclear. The AgCu near-surface alloy provides a well-defined
model system with which to study selective oxidation reactions. By
using a combination of high-resolution scanning tunneling
microscope imaging and temperature-programmed reaction
studies, we demonstrate that the addition of a single monolayer
of Ag to Cu increases the overall selectivity for the epoxidation of
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1,3-butadiene to 3,4-epoxy-1-butene from ~40% on Cu(111) to

L)
100% on the complete monolayer. Specifically, the near-surface

alloy undergoes dynamic restructuring that brings Cu atoms into the surface layer, which enhances oxygen dissociation on the Ag
surface, but the Ag overlayer inhibits the formation of extended Cu oxide domains that also catalyze the combustion pathway.
Together, these results indicate that high-surface-area catalysts comprised mostly of Ag with very small amounts of Cu may exhibit
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promising selective epoxidation chemistry.

Bl INTRODUCTION

Epoxides are important chemical intermediates in the
production of numerous value-added commodity chemicals,
and as such, alkene epoxidation reactions are of significant
interest both academically and commercially. Ag-based
catalysts are the industrial standard for many selective
oxidation reactions including ethylene epoxidation and form-
aldehyde production via partial methanol oxidation.'~” Atomic
oxygen on Ag has been identified as the active species in
ethylene epoxidation, and promotors such as Cl and alkalis
such as Cs have been shown to increase the selectivity, and
sometimes the activity, of the catalyst.”® Though Ag is
uniquely suited for selective oxidation reactions, it has several
limitations. The reactions are often operated at suboptimal
temperatures to avoid total combustion and formation of the
thermodynamically favored product CO,.”'® Another signifi-
cant limitation of Ag is the relatively high oxygen activation
barrier on the surface, which when coupled with the lower
operating temperatures that avoid total combustion, leads to
low conversion to products.''~"® There is therefore great
interest in methods that can modify both the intrinsic activity
and selectivity of Ag and, in particular, promote the activation
of molecular oxygen on the Ag surface.

In addition to ethylene, the epoxidation of higher olefins
such as 1,3-butadiene to form 3,4-epoxy-1-butene has also
gained much attention because epoxybutene is an important
precursor in the production of value-added chemicals."* 1,3-
Butadiene is similar to ethylene in that it is an unsaturated
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hydrocarbon with no allylic hydrogen atoms, and epoxidation
proceeds through the addition of an oxygen atom to one of the
C=C double bonds. Single crystal studies on Ag(110) have
shown that 1,3-butadiene reacts with oxygen on the
preoxidized surface to yield mostly 2,5-dihydrofuran and
furan.” While Ag catalysts have exhibited increased selectivity
and activity after the addition of Cs promotors,"® isotope
studies have demonstrated that the rate-limiting step for 1,3-
butadiene epoxidation on Cs-promoted Ag catalysts is still the
activation of molecular oxygen.'® Related to this point, Cu has
gained attention in the realm of selective oxidation reactions
for its ability to more easily activate molecular oxygen than
Ag.'”7* For example, the epoxidation of styrene has been
demonstrated on Cu(111),"” and the addition of Cs to the
surface led to an increase in conversion that was attributed to
the inhibition of oxide formation on Cu, the formation of
which prevented the reactant styrene from adsorbing.'’
Furthermore, the epoxidation of styrene has been demon-
strated on Ag single crystals through the use of an atomic
oxygen source.”' >* This demonstrates the ability of Ag to
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Figure 1. (a) Schematics showing layer-by-layer growth of Ag on Cu(111) and adsorption of CO exclusively on exposed Cu. Brown circles
represent Cu, gray represent Ag, and black and red represent CO. The graphical inset shows Ag deposition time on Cu(111) versus Ag coverage in
monolayer (ML), as calibrated via CO TPD. (b) STM image of the sub-ML AgCu NSA showing areas with exposed Ag and Cu. (c) STM image
showing regions of oxidized Cu and isolated oxygen adatoms on the Ag layer after exposing the NSA to 500 L of O, at 300 K.

perform selective epoxidation reactions and motivates the
addition of Cu to enable facile oxygen activation.

Given that oxygen activation is more facile on Cu than Ag,
but Cu is prone to deep oxidation, we focus this study on a
combination of the two metals in an attempt to harness the
selectivity of Ag while using Cu to increase oxygen activation.
Such bimetallic AgCu catalysts have gained considerable
interest, as both metals have demonstrated ability to perform
oxidation reactions.”'~*® Many of these studies have shown
increased selectivity using a combination of Ag and Cu, but the
mode of selectivity enhancement for Cu in Ag remains unclear,
which has motivated studies on well-defined single crys-
tals.”'>**7>! When Cu is deposited on Ag(111), the Ag tends
to cap the exposed Cu.*” Therefore, we focused on the AgCu
near-surface alloy (NSA), which is composed of a single-atom-
thick monolayer (ML) of Ag on Cu(111). We have previously
shown using model single-crystal studies that Ag remains on
the surface of the AgCu NSA after exposure to oxygen at
room-temperature.”” Importantly for the current work, this
alloy dynamically restructures upon oxygen exposure, and the
appearance of isolated oxygen adatoms on Ag is linked with Cu
that is able to reverse segregate to the Ag surface where it aids
molecular oxygen dissociation.”” In this study, we perform
model single-crystal experiments combining high-resolution
imaging and quantitative temperature-programmed reaction
(TPR) studies in order to relate the atomic-scale structure of
AgCu model catalysts to their activity and selectivity for the
epoxidation of butadiene. Specifically, in our TPR studies,
reactants are adsorbed on the crystal surface at low
temperature, and then the sample temperature is ramped,
and both reactants and products are observed desorbing by
quantitative mass spectrometry, thus enabling us to report
yields of epoxide and CO, and the overall reaction selectivity.
This surface science approach to building structure—function
relationships in model systems that then inform catalyst design
has previously contributed to the discovery of new selective
hydrogenation catalysts.”**>> The results presented herein
demonstrate that the addition of Ag to Cu in the form of a
NSA increases the overall selectivity for the epoxidation of 1,3-
butadiene to 3,4-epoxy-1-butene.

B METHODS

Temperature-programmed desorption (TPD) experiments
were performed in a UHV chamber with a base pressure of

<1.0 X 107" mbar. The chamber was equipped with a Hiden
HAL 3F 301 quadrupole mass spectrometer mounted on a
linear drive capable of being advanced to within 1 mm of the
crystal face. A Cu(111) single crystal was cleaned via repeated
cycles of Ar* sputtering (1.5 keV, 2 pA) and annealing to 750
K. Ag was deposited using a flux-monitored Omicron
Nanotechnology EFM 3 electron beam evaporator at a
constant deposition rate of 0.05 ML min~' with the
Cu(111) crystal at room temperature. Liquid nitrogen was
used to cool the crystal to 90 K. Leak valves were used to
introduce O, and butadiene into the chamber. A linear heating
ramp of 1.5 K s™! was used for the TPD experiments.

The yields of epoxybutene and CO, were calculated with
quantitative mass spectrometry by integrating the relevant
desorption peaks. The areas were then corrected for the
ionization cross section, mass spectrometer quadrupole
sensitivity falloff, and fragmentation pattern, consistent with
the procedure from Siler et al.’® Butadiene was tracked at m/z
= 54, epoxybutene at m/z = 42, and CO, at m/z = 44, and
fragmentation patterns for these molecules can be found in
Table SI in the Supporting Information. The exposures are
quoted in Langmuirs (L) (1 L=1x10"° Torrs).

STM experiments were performed on an Omicron Nano-
technology variable-temperature STM with a base pressure of
<1.0 X 107" mbar. A Cu(111) single crystal was cleaned via
repeated cycles of Ar" sputtering (1.5 keV, 15 uA) and
annealing to 1000 K. The STM sputtering conditions differ
from the TPD experiments because of the different sputter
source, and the anneal temperature was higher to achieve a
smoother surface for imaging. The TPD cleaning procedure
was replicated in the STM chamber and revealed no significant
changes to surface morphology. Ag was deposited at a rate of
approximately 0.05 ML min~' by resistively heating a Ag-
wrapped W filament. O, was introduced into the chamber
using a leak valve with the surface at 300 K.

B RESULTS AND DISCUSSION

Ag was deposited on Cu(111) at 300 K, and the coverage was
determined by CO temperature-programmed desorption
(TPD), as shown in Figure la. These TPDs were performed
by cooling the sample to ~90 K with liquid nitrogen and then
exposing it to a saturation coverage of CO. At these
temperatures, CO adsorbs only on the exposed Cu(111) but
not any deposited Ag, which means that any decrease in the
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CO desorption signal is directly proportional to the area of the
Cu(111) surface covered with Ag (individual CO TPDs are
shown in Figure S1).”” The graph in Figure la shows Ag on
Cu(111) as a function of Ag deposition time, as determined
from the CO titration experiments. Since the Ag coverage is
determined on the basis of CO adsorption on the exposed Cu,
the growth appears to saturate at a monolayer; however, on the
basis of previous studies, which have shown the layer-by-layer
growth of Ag on Cu(111),>*7* the surface continues
multilayer growth after the Ag monolayer is saturated. The
schematics in Figure 1la illustrate this and show the adsorption
of CO on the exposed Cu(111), but not on regions where Ag
has been deposited. Figure 1b shows a room-temperature STM
image of submonolayer Ag on Cu(111), where Ag can be seen
protruding outward from the step edges to form one-
monolayer-high islands with a repeating triangular pattern
because of the 9 X 9 reconstruction in the underlying
Cu(111).>*7* This 9 X 9 reconstruction forms in the topmost
layer of Cu underlying the Ag as a strain relieving mechanism
because of the large lattice mismatch between Cu and Ag.
Formation of this reconstruction has been described in detail
elsewhere.”>**~* Figure 1c shows an STM image of a AgCu
NSA after exposure to 500 L of oxygen at 300 K. Regions of
oxidized Cu can be seen along with oxygen adatoms on the Ag
monolayer. There are two distinct features present in the Cu
region, consistent with previous studies of oxide formation in
Cu(111).%~* One type of oxide originates from the ejection
of Cu atoms and follows the 3-fold symmetry of the Cu(111)
surface to form structured regions with a preference for (100)-
type steps.”” This oxide appears as darker oxide portions in the
STM image. A second type of oxide forms from the ejected Cu
atoms that are deposited on top of the terrace. This forms the
lighter colored amorphous regions of oxide. Most importantly,
in the Ag region, oxygen adatoms are visible as depressions on
the Ag layer, and the black arrows point to two of these
features. This is due to the presence of oxygen, which reverses
the segregation energy for AgCu and stabilizes Cu atoms in the
Ag layer. These single Cu atoms in the Ag surface significantly
lower the O, dissociation barrier on the AgCu NSA surface.*

In order to examine how the Ag and Cu content of the
surface changed the butadiene epoxidation reactivity and
selectivity, we performed a series of TPR measurements as a
function of Ag coverage on Cu(111), as shown in Figure 2. We
present the raw data in the TPR figures and then correct the
mass spectrometer signals for the ionization cross section,
fragmentation pattern, and mass spectrometer quadrupole
sensitivity before quoting product yield and selectivities. These
TPRs were recorded after exposure of different coverages of Ag
on Cu(111) to S00 L of oxygen at 300 K and 0.1 L of
butadiene at 90 K. The 500 L exposure to oxygen was selected
to ensure that enough oxygen would be present at the surface
to form a measurable amount of product while limiting the
formation of Cu oxide patches in the Ag layer, which can occur
at higher exposures (effects of oxygen exposure on
epoxybutene yield are shown in Figure S4).*° This oxygen
exposure was also demonstrated previously to be in a regime
where small amounts of Cu reverse segregate to the surface of
the Ag monolayer where it significantly enhances the O,
dissociation probability.”” The Ag coverage varied from pure
Cu(111) (black trace) to the 1 ML AgCu NSA (top trace)
with the intermediate coverages of Ag corresponding to 0.20,
0.42, and 0.87 ML.
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Figure 2. Epoxybutene (m/z = 42) yield from AgCu surfaces ranging
from pure Cu(111) to the 1 ML AgCu NSA. All TPR experiments
were performed by dosing 500 L of O, at 300 K and 0.1 L of
butadiene at 90 K with a heating rate of 1.5 K s™'. Coverages of Ag
starting with the bottom (black) trace are 0, 0.20, 0.42, 0.87, and 1
ML.

Figure 2 clearly shows that the epoxide yield increases, and
its desorption temperature decreases, with increasing Ag
coverage. Specifically, we observe a 42 K shift in epoxybutene
desorption from Cu(111) (167 K) to 1 ML AgCu NSA (125
K). Epoxybutene formation (monitored at m/z = 42)'° was
not observed in the absence of codeposited oxygen, thereby
enabling us to rule out the possibility that it was an impurity in
the butadiene sample. Furthermore, this reactively formed
epoxybutene desorbed at a different temperature from
chemisorbed epoxybutene, which we measured desorbing
from Cu(111) at 151 K and 1 ML of Ag on Cu(111) at 168
K. The lower desorption temperature of the reactively formed
epoxybutene could be related to the incomplete equilibration
of an intermediate on the Ag overlayer prior to desorption.
The formation of other C;HO oxidation products such as 2-
butenal (crotonaldehyde) and 2,5-dihydrofuran was inves-
tigated by tracking m/z = 70, 68, and 41, but these species
were not observed.

Examples of the TPRs of the reaction products for butadiene
epoxidation on Cu(111) and the 1 ML AgCu(111) NSA can
be seen in Figure 3. Both surfaces produce the desired
epoxybutene product; however, the total oxidation product of
CO, is produced in much smaller amounts on the AgCu NSA
than on Cu(111). The schematics below the TPR profiles
depict the surfaces after exposure to 500 L of oxygen at 300 K.
The Cu(111) surface is covered in oxide patches (seen in
Figure 1c) and is indicated by the light brown circles in Figure
3a. This oxide is capable of epoxidation, but also leads to the
production of CO, above 400 K. In contrast, under the same
conditions the AgCu NSA is covered in a mixture of isolated
oxygen adatoms and small, isolated Cu oxide sites, as seen
schematically in Figure 3b. From these data, it is clear that the
addition of a monolayer of Ag to Cu(111) enables selectivity
control by shutting down the total oxidation pathway.

This point is illustrated in more detail in Figure 4, which
shows the yield of CO, and epoxybutene as a function of Ag
coverage on the Cu(111) surface. The CO, yields shown in
Figure 4a demonstrate the decrease in total oxidation of
butadiene to CO, as the Ag coverage increases (individual
TPR traces for CO, are shown in Figure S3). Figure 4b shows
an increasing epoxybutene yield with increasing coverage of
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Figure 3. Butadiene (m/z = 54), epoxybutene (m/z = 42), and CO,
(m/z = 44) desorption from 1,3-butadiene oxidation on Cu(111) and
the 1 ML AgCu NSA. (a) TPR of butadiene oxidation products from
oxidized Cu(111) with significant CO, desorption. (b) TPR of 1 ML
AgCu NSA butadiene oxidation products showing a significant
decrease in CO, production. All experiments were performed by
dosing 500 L of O, at 300 K and 0.1 L of butadiene at 90 K with a
heating rate of 1.5 K s™'. Schematics show the formation of Cu oxide
on the pure Cu(111) surface and Ag-capped Cu on the AgCu NSA
surface with isolated Cu oxide sites. Dark and light brown and gray
circles represent metallic and oxidized Cu and metallic Ag atoms,
respectively.
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Figure 4. (a) CO, (m/z = 44) and (b) epoxybutene (m/z = 42)
desorption products as a function of Ag coverage on Cu(111). All
experiments were performed by dosing 500 L of O, at 300 K and 0.1
L of butadiene at 90 K with a heating rate of 1.5 K s™".

Ag. These trends illustrate that Ag increases both the selectivity
toward epoxybutene and the epoxybutene yield in a single TPR
cycle, and the epoxide yields in Figure 2 give a selectivity to
epoxybutene of ~40% on Cu(111) that rises to 100% at a full 1
ML of Ag coverage. Table S2 provides the full selectivity data
as a function of Ag coverage. Furthermore, the presence of Ag
in the current system appears to mirror the behavior of the Cs
promotor that previous studies have attributed to Cs
preventing the formation of extended oxide patches on Cu,"
which have been linked to unselective total oxidation.”’ Taken
together, these results suggest that small amounts of Cu in the
Ag surface aid in the selective epoxidation reaction by
facilitating O, activation® and, because of their small size, in
keeping the adsorbed oxygen in a form that is highly selective
for epoxidation over combustion to CO,.

B CONCLUSIONS

We have shown that the addition of Ag to Cu(111) increases
the selectivity of the butadiene epoxidation reaction and leads

13091

to a higher yield of epoxybutene than Cu(111). It appears that
Ag on Cu(111) inhibits the formation of extended Cu oxide
domains that also catalyze the combustion pathway. Oxygen
activation on the AgCu NSA is facilitated by the reverse
segregation of small amounts of Cu atoms to the surface layer
where O, dissociates to leave oxygen atoms but not extended
Cu oxide domains.” In this way, the AgCu NSA is active in
the selective oxidation of butadiene and enhances the
selectivity of the reaction over pure Cu. These results indicate
that high-surface-area catalysts comprised mostly of Ag with
small amounts of Cu may exhibit promising epoxidation
chemistry without the need for additives like Cs.*""
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