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ABSTRACT

Disassembly is an essential process for the recovery of end-
of-life (EOL) electronics in remanufacturing sites. Nevertheless,
the process remains labor-intensive due to EOL electronics' high
degree of uncertainty and complexity. The robotic technology
can assist in improving disassembly efficiency, however, the
characteristics of EOL electronics pose difficulties for robot
operation, such as removing small components. For such tasks,
detecting small objects is critical for robotic disassembly
systems. Screws are widely used as fasteners in ordinary
electronic products while having small sizes and varying shapes
in a scene. To achieve robotic disassembly of screws, the location
information and the required tools need to be predicted. This
paper proposes a framework to automatically detect screws and
recommend related tools for disassembly. First, the YOLOv4
algorithm is used to detect screw targets in EOL electronic
devices, and then a screw image extraction mechanism is
executed based on the position coordinates predicted by
YOLOv4. Second, after obtaining the screw images, the
EfficientNetv2 algorithm is applied for screw shape
classification. In addition to proposing a framework for
automatic small-object detection, we explore how to modify the
object detection algorithm to improve its performance and
discuss the sensitivity of tool recommendations to the detection
predictions. A case study of three different types of screws is used
to evaluate the performance of the proposed framework.
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1. INTRODUCTION

Today's rapid consumption of consumer electronics results
in a faster waste generation rate. Remanufacturing is considered
a promising strategy for the efficient recovery of EOL products
[1]. Often consumer electronics need to be disassembled before
harvesting components and remanufacturing. Disassembly is an
inevitable step for most recovery operations [2].

Disassembly is often performed by human operators and is
a labor-intensive task. Manual disassembly is widely chosen due
to its high flexibility in handling traditional disassembly
processes [3]. However, manual disassembly operations are
costly and negatively affect human health. Robotic operations or
human-robot operations have been investigated to alleviate these
issues as an alternative. Disassembly automation has already
been incorporated into waste management [4], and topics such
as disassembly line balancing and work assignment among
humans and robots to satisfy demand while minimizing cost have
been investigated [5]. Besides cost-efficiency, it has been shown
that disassembly robots can perform repetitive tasks to reduce
human fatigue [6].

While the disassembly process can benefit from robots,
equipping robots with accurate detection capabilities is very
challenging, as robots need to be familiar with the structure of
EOL products before any operation. A computer vision system
can support robots in identifying and locating components before
disassembly actions [7]. Nevertheless, current computer vision
techniques are not robust in detecting small objects, especially
screws and fasteners. Moreover, when recognizing real objects
in industrial environments, lighting conditions or viewpoints are
not always consistent, and slight changes can alter the detected
features [8], [9]. Besides, the contrast ratio between the screw
head and other connected components is low, and there is less
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FIGURE 1: AUTOMATIC SCREW DETECTION AND TOOL RECOMMENDATION FRAMEWORK FOR ROBOTIC
DISASSEMBLY

information about deeper features [10]. In addition, imperfect
manufacturing processes and daily use under different conditions
can easily produce micro defects on the screw surface, affecting
the identification of the screw. Considering the challenge of
detecting screws, the template matching approach allows
detecting matches between the template database and the input
images [11], [12]; multiple two-stage object detection
algorithms, such as the faster R-CNN, are used to detect screws
[13]- [16]. While previous researchers have given attention to
detecting screws, consumer electronics being a complex design,
relying on a fixed template cannot generalize the dynamic state
of screws [17]. Furthermore, the detection process should be
efficient, as the speed and accuracy of the detection directly
determine the subsequent disassembly operation.

When it comes to robotic disassembly, it is also necessary
to determine relevant tools needed in each step; however,
existing disassembly models lack information about disassembly
tools. Corresponding to the screw detection, unscrewing tools
should be supported in time [18]. With the need for autonomous
decision-making tools, the tool recommendation function allows
the robot to perform disassembly tasks successfully.

To facilitate robotic-assisted disassembly, this paper
proposes a framework for screw detection in EOL electronics
using YOLOvV4 (You Only Look Once) and disassembly tools
classification using EfficientNetv2. The paper is organized as
follows: Section 2 provides an overview of the proposed
automated framework. Section 3 presents the methodology
consisting of deep learning and machine learning algorithms.
The results and analysis are presented in Section 4, and Section
5 summarizes the conclusion and future work.

2. THE FRAMEWORK OVERVIEW

There are several challenges with robotic disassembling
screws in EOL electronics. First, the size of screws is usually
smaller than other components, requiring higher accuracy of
position information. Second, the screws on EOL products may
be deformed or damaged, making them missing or difficult to
identify. Third, although screw heads look similar, only the
specific tools that match the screws can remove them.

This work proposes an image-based robotic screw
disassembly framework as shown in Figure 1. First, a YOLOv4

network is fine-tuned to achieve accurate detection of screws in
consumer electronics. After obtaining the positioning
coordinates of the screws, an image extractor is added to separate
the screws from the EOL electronics to further refine the screw
head features. Then, the EfficientNetv2 network was employed
for screw classification and recommendation of disassembly
tools. Several optimization strategies are applied, including
modifying the detection algorithm and eliminating the sensitivity
of the tool recommendation model to the detection prediction
results, which could better inform the robot and prepare it for
disassembly operations.

3. METHODOLOGY
3.1 Object Detection Model
Algorithm

Object detection is the first step for robots to locate an object
for disassembly. There are two categories of object detection:
one-stage detectors, such as the YOLO series, and two-stage
detectors, such as the R-CNN series. One-stage detectors are
presented as a single convolutional network and simultaneously
predict bounding box localization and classification. Two-stage
detectors first generate bounding box candidates and then
implement object localization and classification. The one-stage
detectors are faster, while the accuracy of two-stage detectors is
higher. However, starting from YOLOv3, YOLO series has
achieved a better trade-off between localization and recognition
accuracy and speed [19]. In the present paper, we select the
YOLOvV4 algorithm as an object detection model to realize the
task of detecting screws from EOL products. Compared with
YOLOvV3, YOLOvV4 uses Path Aggregation Network (PANet) as
a parameter aggregation method for different detector levels
instead of the Feature Pyramid Network (FPN) used in YOLOV3,
so the detection accuracy of YOLOV4 is higher than YOLOV3 in
the MS COCO dataset [20][21]. Although YOLOVS has recently
been released, the YOLOvVS benchmark is not standardized yet,
and more comparisons are needed. Furthermore, YOLOV4 is a
good choice for adding more custom configurations than
YOLOVS, which facilitates training and tuning the detection
architecture on custom datasets.

Based on YOLOv4
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FIGURE 2: OBJECT DETECTION MODEL BASED ON YOLOV4 ALGORITHM

YOLOv4 is a one-stage detector composed of
CSPDarknet53 network (backbone), Spatial Pyramid Pooling
layer (SPP), PANet, and three YOLO heads. The structure of
YOLOvV4 and its feature size corresponding to our dataset are
shown in Figure 2. The specific feature size parameters are
useful for understanding how custom datasets work in the
architecture. The detailed workflows of each module of
YOLOvV4 mainly include the following. First, CSPDarknet53, as
the backbone of YOLOV4, is responsible for extracting deep
features of the input image [22]. This convolution neural network
consists of five residual blocks; each block contains convolution
layers with 1x1 and 3x3 sizes and a Mish activation function.
Second, the SPP layer participates in the convolution of the last
feature layer of CSPdarknet53, followed by a maximum pooling
with three kernel sizes of 5x5, 9x9, and 13x13 [23]. The SPP can
increase the perceptual field and enhance feature extraction by
separating the most important features from the backbone. Third,
PANet adopts a bottom-up path, reducing the difficulty of
extracting precise localization information. After shortening the
information path between lower layers and topmost features, it
is easier for the feature pyramid and solid localization features
existing in the lower layer to propagate to the top [24]. Finally,
three YOLO heads with sizes of 10x10, 20x20, and 40x40 are
deployed to complete detection. The input of the heads contains
rich semantic and spatial information from previous modules,
which guarantees a better performance for small target detection
in complex backgrounds.

Although YOLOv4 performs satisfactorily in object
detection, it is still not optimized for all scenarios. This affects
the detection of small objects, as the average resolution of screws
in the dataset is below 2x2 pixels. To improve the accuracy, we
modify the baseline network with two adjustments. First, the
network is optimized by using the low-level semantic
information of the backbone. The convolutional layers of the
backbone are rich in semantic information on the low-level

feature maps and rich in spatial information on the high-level
feature maps. The low-level layers in the backbone retain the
high semantic values, which is partially beneficial for extracting
the semantic information of small objects. The second
adjustment is to prune the unimportant connections in PANet.
Too frequent convolution reduces the spatial dimension and
resolution, which is detrimental to detecting small objects. Since
screws are the only target in our study, we can reduce the
convolution operations. The difference between the baseline
network and the optimized network is shown in Figure 2.

3.2 Tools Recommendation Model
EfficientNetv2 Algorithm

The next stage in the proposed system is to utilize the results
of the screw detection process and classify the screw types and
further recommend a disassembly tool. It also fine-tunes the
screw detection results by identifying false detections. The tool
recommendation system consists of a screw image extraction
mechanism and an image classifier. The two stages of the
proposed framework are shown in Figure 3.

Screws are inherently small relative to the input images. A
single screw could occupy as low as 0.02% of the image area. To
alleviate this disadvantage, we propose the following screw
extractor. Leveraging the bounding boxes predicted by the
YOLO network, the screw extractor can extract square regions
each containing a single screw from the input image at full
resolution.

Since YOLOv4’s bounding boxes are rectangular, the
region is first modified using a square bounding box with an
equivalent area and centroid to the original one. Additionally,
before extraction, the bounding boxes area is increased by aratio,
typically 20% of the original box area. This provides a tolerance
for deviation in the bounding boxes predicted by the YOLOv4
algorithm.

Based on
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The extracted screw image is directly fed into a pre-
trained image classifier based on EfficientNetV2 [25].
EfficientNetV2 is a family of state-of-the-art deep learning
architectures that are built with training and inference speed in
mind. The network family is an upgrade to the original
EfficientNets [26] through utilizing the Fused-MBConv
operator, applying training-aware neural architecture search, and
using a progressive learning strategy. EfficientNetV2 achieved
competitive results on ImageNet [27] and CIFAR datasets while
maintaining a relatively low number of parameters. In this
framework, we use the EfficientNetV2-S variant, which has
approximately 22 million parameters making it suitable for real-
time application. The architecture of the EfficientNetV2-S is
shown in Figure 4.
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STAGE 1

The building blocks of the EfficientNetV2 network are the
MBConv operator and its modified variant, the Fused-MBConv
operator. MBConv, first introduced in MobileNetV2 [2§]
follows the concept of inverted residuals. It starts with narrow
layers, expands them through a regular 1x1 convolution, applies
a 3x3 depth-wise convolution, performs a squeeze-and-
excitation operation [29], then squeezes the layers back to the
original depth through another 1x1 convolution. The skip
connections exist between the two starting and ending narrow
layers, in contrast to regular residual blocks. The Fused-
MBConv replaces the expansion and depth-wise convolution
layers with a single regular 3x3 convolution as it was found that
it boosts the training speed in the model’s early stages.

Using transfer learning [30], the network is first pre-trained
with the ImageNet dataset and then fine-tuned to the screw
images dataset. The benefit of using transfer learning is that they
provide general model parameters which can be used in other
deep learning applications. While ImageNet only contains over
a thousand screw images, it encompasses almost 1.3 million
images and 1000 classes, including various animals, plants,
vehicles, and other objects. The images and classes are generic
enough to provide a good start for the model parameters. In the
fine-tuning phase, the network’s final SoftMax layer is replaced
with another corresponding to the number of screw types
available in the fine-tuning dataset. Thus, the network can be
trained by using a limited number of screw images by improving
the network’s parameter initialization procedure.

Besides classifying the screw types, two main aspects are
desired from the tool recommendation system. First, it should
identify false screw detections to fine-tune the YOLOv4
detection results. Second, the model classification predictions
should be robust to deviated bounding boxes predicted by
YOLOv4. We implement these aspects by 1) adding a ‘none’
class which allows the model to flag false positives resulting
from the screw detection model, and 2) implementing data
augmentation techniques in model training that simulate the
deviated bounding box predictions.

4. EXPERIMENTS AND RESULTS
4.1 Experimental Environment and Dataset

To start training the models, we have taken photos of screws
in different simulated environments close to a real
remanufacturing workstation. The experimental workstation
consists of the EOL electronics, a disassembly toolkit, and
multiple target-independent components. Variability in the
working environments can increase the authenticity of the
experiment and the complexity of detection. Since the screws
come from EOL electronics, the condition of the screws, such as
damaged, tilted, twisted, etc., will not be predicted in advance.
The information of the screws will be learned entirely by the
model. A Canon EOS M200 camera equipped with a 15-45 mm
lens has been used to take photos from any angle at 30 cm above
the electronics.

The dataset includes three types of screws, Torx security
screws on the desktop hard drive, Phillips screws on the back
cover of a Dell laptop, and Pentalobe screws on the back cover
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of a Mac laptop. Three types of screws are available in different
sizes, quantities, colors, and textures. A total of 300 images are
recorded at a resolution of 4000x6000 pixels and divided into an
80% training set and a 20% test set. The training dataset is then
manually annotated by the Labellmg, a graphical image
annotation tool. The rectangular bounding boxes only contain
target objects and are labeled as a single class named ‘screw’,
which are stored as .txt files in YOLO format. Specifically, the
object coordinates are the x-y coordinates of the center of each
bounding box relative to the width and height of each image.

4.2 Object Detection Model Training and Evaluation
Metrics

We have implemented the transfer learning technique to use
the pre-trained weights for YOLOv4. Beforehand training,
YOLOv4 network adjusts images to a square format with
320x320 pixel resolution, where the cropped images do not
maintain the aspect ratio of the original photos. During training,
the network resizes input and output sizes for every 10 iterations.
Although the different images increase the complexity of the
dataset, four data augmentation techniques amended in the
network, including hue, exposure, saturation, and mosaic, are
used to overcome the deficiency of the small dataset. The mosaic
data augmentation is first introduced in YOLOV4. It combines
four images into one single image, which leads to identifying
objects on a smaller scale during the training process. Figure 5
visualizes the effect of employing the four data augmentation
techniques on an original image.

(1) Original image (4) Saturation

(5) Mosaic

FIGURE 5: DATA AGUMENTATION METHODS
(HUE=0.1, EXPOSURE=1.5, SATURATION=1.5)

(3) Exposure

A GPU NVIDIA GeForce RTX 3060Ti is used for training.
The training hyperparameters are set as follows. The batch size
is 32, which means 32 images are used in one iteration. The
maximum training batches are initially set to 2000, suggesting
the network terminate the training at 2000 batches. The adaptive
moment estimation (Adam) optimizer is used for iterative
parameter updates and fast training convergence. The initial
learning rate is 0.001 and decays as training proceeds. The
momentum is 0.949, which means the previous update strongly
influences the current network update. The weight decay of
0.0005 is added as a regularization for the decreasing weight
values.

To evaluate the performance of the object detection model,
precision, recall, F; score, and mean Average Precision (mAP)
have been used as the evaluation indicators listed below. The
Intersection over Union (IoU) threshold of 0.5 is also set to
classify whether the prediction is a true positive or a false

positive.
TP

Precision = (D
TP+FP
Recall = —=~ 2)
TP+FN
f = g
mAP = AP = [ P(R)dR o

where TP, FP, FN, and AP are abbreviations for True Positive,
False Positive, False Negative, and Average Precision.

4.3 Tool Recommendation Model Training and
Evaluation Metrics

The dataset for training the tool recommendation model is
built by extracting images of all screws in the original dataset
using the actual labels and bounding boxes. For each screw, the
extracted image has the same centroid of its corresponding
bounding box and an increased area (e.g., 20%). The screw
extractor also resizes the square images to 128 x 128 resolution.
The dataset has three screw types: Pentalobe, Phillips, and Torx
security. The total size of the result dataset is 1,240 screw images
which are split into 1,115 images for backpropagation and the
remaining 125 for validation. Additionally, the images reserved
for evaluating the screw detection model are also used for testing
the tool recommendation system.

The EfficientNetV2-S variant is initially pre-trained for the
ImageNet dataset for the image classification model. Then, the
input dimensionality was adjusted for images of size 128, and
replaced the network’s fully connected softmax layer with three
nodes (or four), each representing a class probability. The model
is then fine-tuned to the screw images using a categorical cross-
entropy loss function with a batch size of 5 images. This fine-
tuning process is optimized using an Adam optimizer [31] with
a learning rate of 1E-5 and the exponential decay rates for the 1st
and 2nd-moment estimates of 0.9 and 0.999, respectively. In
addition, the validation loss is monitored at each epoch through
an early stopping criterion.
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To evaluate the model performance, we use the Fl-score,
which is the harmonic mean of the recall and precision,
representing a trade-off between the two metrics. A confusion
matrix is generated for each model to understand better the
models’ classification patterns and the type of errors prevalent in
testing.

4.4 Main Results

After training, the YOLOv4 model is used on the testing
dataset. The detection results are shown in Figure 6. The
illustration of the feature extraction process leads how YOLOv4
learns target features from big, middle, and small scales. Final
detection results consist of object categories, bounding boxes,
and detection accuracy.

(a) Original image (c) Detection result

(b) Feature extraction

" Stage 1 Stage 2 Stage3

FIGURE 6: DETECTION PROCESS
After training the two models separately, the test results are listed
in Table 1. Compared with the baseline model, the optimized

model has better detection results in terms of evaluation metrics.

TABEL 1: DETECTION RESULTS OF TWO MODELS

Precision | Recall | F{ score | mAP
Baseline 0.92 0.92 0.92 0.9132
model
Optimized 0.94 0.95 0.94 0.9424
model

Three models have been trained, tested, and compared for
the tool recommendation model. The first model (M-3c) is
tasked only with screw-type classification. The second model
(M-4c) has an additional task of fine-tuning the screw detection
results by identifying false detections. Finally, the third model
(M-4c-aug) adds data augmentation techniques to account for
deviations in screw bounding boxes predictions. A summary of
these models is shown in Figure 7. For the M-3c model, a single
model is trained, but two tests are made. One is based on ground-
truth screw detection and bounding boxes, and the other is based
on detected screws and their bounding boxes predictions from
the YOLOv4 model. The M-3c model's primary goal is to predict
the screw-type out of the available three classes and thus has
three nodes at its softmax layer. The model is fine-tuned to the
1,240 screw image dataset and converged after 83 epochs with a

validation loss value of 2.4E-4. Note that the training dataset for
this model is perfectly centered screw images with no false
screws within the dataset as they purely rely on a manually
labeled dataset.
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FIGURE 7: OVERVIEW OF TOOL RECOMMENDATION
MODELS: a) M-3c, b) M-4c, ¢) M-4c-aug.

The ground-truth testing dataset contains a total of 311
screw images, while the screw detection prediction dataset
contains 314 screw images. The class F1 scores of M-3c¢ for both
datasets are presented in Table 2. Also, the confusion matrices
for the two datasets are shown in Figures 8a and 8b.

The average Fl-scores for the ground-truth and predicted
screws datasets are 98.48% and 97.83%, respectively. These
results show good performance achieved by the M-3¢c model for
both datasets.

There is a slight drop in all F1 scores in the predicted screw
datasets due to possible bounding box off-center deviations,
which makes the test set marginally different from what the
model was trained on. The screw detection algorithm
successfully avoided false screw detections in this dataset.
However, M-3c will assign a screw-type to the empty bounding
box if it happens during operation, resulting in an error. This is
due to the nature of the three-class training dataset described
earlier and because the model was built to predict the screw-type
out of the three given types. We label the false detections as
‘None’, meaning that the network detected the screw, but no
screw appeared in the image.
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TABLE 2: TEST RESULTS OF THE TOOL
RECOMMENDATION MODELS

Note: (G) and (P) indicate the usage of ground-truth or the
predicted screw testing datasets, respectively.

Class M-3c¢ (G) | M-3¢ (P) | M-dc (P) M"g,')a“g
Pentalobe | 97.44% 96.72% 95.94% 99.17%
Phillips | 99.24% | 98.50% | 99.62% 100.0%
Torx 1 o0 760 | 98.33% | 92.17% 99.59%
security
None - - 88.24% 98.36%
Average | 98.48% | 97.83% | 93.99% 99.28%

The second model, M-4c, is trained to detect false alarms,
thus addressing one of the issues of M-3c and fine-tuning the
screw detection model. This is done by introducing an additional
240 images to the training and 60 images to the testing dataset
representing the false detections. These images are cropped at
random locations with a fixed small window from the original
components dataset such that they include no screws. We also
replace the three-node softmax layer at the head with a four-node
softmax layer, thus introducing a 4th class labeled ‘none’. The
M-4¢ model converged after 69 epochs with a validation loss
value of 8.47E-4. While the model successfully identified the
false screw detections, it achieved an average Fl-score of
93.99% (Table 2). Upon inspecting the confusion matrix in
Figure 8c, the newly introduced class confuses the M-4c model
predictions since a number of the slightly deviated bounding
boxes, mainly Torx security type, are labeled as false detections.
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FIGURE 8: CONFUSION MATRICES FOR THE TOOL
RECOMMENDATION MODELS: a) M-3c (ground-truth
dataset), b) M-3c (predicted screw dataset), ¢c) M-4c, d) M-4c-

aug.

Finally, M-4c-aug introduces training data augmentation
techniques, including random rotation, horizontal shift, vertical
shift, and zoom. The main goal is to imitate possible bounding
box deviations caused by the screw detection model. Thus, cases
that are not present in the training data, such as partially visible
screws and off-center screws, can be learned during the training
process. This, however, made the training process lengthier, and
the model converged after 155 epochs with a validation loss of
1.5E-4. This model addressed the issues of the other proposed
models and achieved an average Fl-score of 99.28% and
improved class F1-scores, as shown in Table 2 and Figure 8d.
Only two screws (out of 374) were mislabeled in this model.

The case study outcomes show the application of object
detection techniques for detecting small objects in consumer
electronics recycling. The combination of computer vision
algorithms can help robots recognize tiny objects and identify
the tools required for disassembly based on the type of screws
and fasteners used in designing electronics.

5. CONCLUSION AND FUTURE WORK

This study proposes a framework for detecting small
objects and recommending tools for robotic-assisted
disassembly. The proposed framework consists of a YOLOv4-
based screw detection and an EfficientNetv2-based tool
recommendation. The modified YOLOv4 algorithm can improve
the accuracy of screw detection; the screw detection coordinates
help crop and extract only screw images; the three models based
on EfficientNetv2 can eliminate the effect of detection errors on
screw classification. The application of the proposed work is
demonstrated on a dataset of three different types of screws
commonly used in consumer electronics. The proposed work
opens the opportunity for better design of remanufacturing
workflows to facilitate robotic disassembly and human-robot
collaboration for waste stream management.

The proposed framework can be extended in several ways.
First, the current complex electronics design and multi-layer
disassembly make it challenging to detect screws hidden in
deeper spaces or covered by other components, so more efficient
algorithms are needed to detect overlapping objects. Second, the
proposed framework can be tested with proper prototypes and
user interfaces in a factory setting. Third, to achieve fully
automated robot disassembly, the proposed framework can be
integrated with other sensor-based technologies to collect data in
real-time data while feeding it to robot control and planning
algorithms.
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