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ABSTRACT 
Disassembly is an essential process for the recovery of end-

of-life (EOL) electronics in remanufacturing sites. Nevertheless, 
the process remains labor-intensive due to EOL electronics' high 
degree of uncertainty and complexity. The robotic technology 
can assist in improving disassembly efficiency, however, the 
characteristics of EOL electronics pose difficulties for robot 
operation, such as removing small components. For such tasks, 
detecting small objects is critical for robotic disassembly 
systems. Screws are widely used as fasteners in ordinary 
electronic products while having small sizes and varying shapes 
in a scene. To achieve robotic disassembly of screws, the location 
information and the required tools need to be predicted. This 
paper proposes a framework to automatically detect screws and 
recommend related tools for disassembly. First, the YOLOv4 
algorithm is used to detect screw targets in EOL electronic 
devices, and then a screw image extraction mechanism is 
executed based on the position coordinates predicted by 
YOLOv4. Second, after obtaining the screw images, the 
EfficientNetv2 algorithm is applied for screw shape 
classification. In addition to proposing a framework for 
automatic small-object detection, we explore how to modify the 
object detection algorithm to improve its performance and 
discuss the sensitivity of tool recommendations to the detection 
predictions. A case study of three different types of screws is used 
to evaluate the performance of the proposed framework. 

Keywords: screw detection, YOLOv4, EfficientNetv2, 
robotic disassembly 

 

1. INTRODUCTION 
 Today's rapid consumption of consumer electronics results 
in a faster waste generation rate. Remanufacturing is considered 
a promising strategy for the efficient recovery of EOL products 
[1]. Often consumer electronics need to be disassembled before 
harvesting components and remanufacturing. Disassembly is an 
inevitable step for most recovery operations [2]. 

Disassembly is often performed by human operators and is 
a labor-intensive task. Manual disassembly is widely chosen due 
to its high flexibility in handling traditional disassembly 
processes [3]. However, manual disassembly operations are 
costly and negatively affect human health. Robotic operations or 
human-robot operations have been investigated to alleviate these 
issues as an alternative. Disassembly automation has already 
been incorporated into waste management [4], and topics such 
as disassembly line balancing and work assignment among 
humans and robots to satisfy demand while minimizing cost have 
been investigated [5]. Besides cost-efficiency, it has been shown 
that disassembly robots can perform repetitive tasks to reduce 
human fatigue [6].  

While the disassembly process can benefit from robots, 
equipping robots with accurate detection capabilities is very 
challenging, as robots need to be familiar with the structure of 
EOL products before any operation. A computer vision system 
can support robots in identifying and locating components before 
disassembly actions [7]. Nevertheless, current computer vision 
techniques are not robust in detecting small objects, especially 
screws and fasteners. Moreover, when recognizing real objects 
in industrial environments, lighting conditions or viewpoints are 
not always consistent, and slight changes can alter the detected 
features [8], [9]. Besides, the contrast ratio between the screw 
head and other connected components is low, and there is less
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FIGURE 1: AUTOMATIC SCREW DETECTION AND TOOL RECOMMENDATION FRAMEWORK FOR ROBOTIC 

DISASSEMBLY 
 
information about deeper features [10]. In addition, imperfect 
manufacturing processes and daily use under different conditions 
can easily produce micro defects on the screw surface, affecting 
the identification of the screw. Considering the challenge of 
detecting screws, the template matching approach allows 
detecting matches between the template database and the input 
images [11], [12]; multiple two-stage object detection 
algorithms, such as the faster R-CNN, are used to detect screws 
[13]– [16]. While previous researchers have given attention to 
detecting screws, consumer electronics being a complex design, 
relying on a fixed template cannot generalize the dynamic state 
of screws [17]. Furthermore, the detection process should be 
efficient, as the speed and accuracy of the detection directly 
determine the subsequent disassembly operation.       

When it comes to robotic disassembly, it is also necessary 
to determine relevant tools needed in each step; however, 
existing disassembly models lack information about disassembly 
tools. Corresponding to the screw detection, unscrewing tools 
should be supported in time [18]. With the need for autonomous 
decision-making tools, the tool recommendation function allows 
the robot to perform disassembly tasks successfully. 

To facilitate robotic-assisted disassembly, this paper 
proposes a framework for screw detection in EOL electronics 
using YOLOv4 (You Only Look Once) and disassembly tools 
classification using EfficientNetv2. The paper is organized as 
follows: Section 2 provides an overview of the proposed 
automated framework. Section 3 presents the methodology 
consisting of deep learning and machine learning algorithms. 
The results and analysis are presented in Section 4, and Section 
5 summarizes the conclusion and future work.  

 
2. THE FRAMEWORK OVERVIEW 

There are several challenges with robotic disassembling 
screws in EOL electronics. First, the size of screws is usually 
smaller than other components, requiring higher accuracy of 
position information. Second, the screws on EOL products may 
be deformed or damaged, making them missing or difficult to 
identify. Third, although screw heads look similar, only the 
specific tools that match the screws can remove them.  

This work proposes an image-based robotic screw 
disassembly framework as shown in Figure 1. First, a YOLOv4 

network is fine-tuned to achieve accurate detection of screws in 
consumer electronics. After obtaining the positioning 
coordinates of the screws, an image extractor is added to separate 
the screws from the EOL electronics to further refine the screw 
head features. Then, the EfficientNetv2 network was employed 
for screw classification and recommendation of disassembly 
tools. Several optimization strategies are applied, including 
modifying the detection algorithm and eliminating the sensitivity 
of the tool recommendation model to the detection prediction 
results, which could better inform the robot and prepare it for 
disassembly operations. 

 
3. METHODOLOGY 
3.1 Object Detection Model Based on YOLOv4 
Algorithm 

Object detection is the first step for robots to locate an object 
for disassembly. There are two categories of object detection: 
one-stage detectors, such as the YOLO series, and two-stage 
detectors, such as the R-CNN series. One-stage detectors are 
presented as a single convolutional network and simultaneously 
predict bounding box localization and classification. Two-stage 
detectors first generate bounding box candidates and then 
implement object localization and classification. The one-stage 
detectors are faster, while the accuracy of two-stage detectors is 
higher. However, starting from YOLOv3, YOLO series has 
achieved a better trade-off between localization and recognition 
accuracy and speed [19]. In the present paper, we select the 
YOLOv4 algorithm as an object detection model to realize the 
task of detecting screws from EOL products. Compared with 
YOLOv3, YOLOv4 uses Path Aggregation Network (PANet) as 
a parameter aggregation method for different detector levels 
instead of the Feature Pyramid Network (FPN) used in YOLOv3, 
so the detection accuracy of YOLOv4 is higher than YOLOv3 in 
the MS COCO dataset [20][21]. Although YOLOv5 has recently 
been released, the YOLOv5 benchmark is not standardized yet, 
and more comparisons are needed. Furthermore, YOLOv4 is a 
good choice for adding more custom configurations than 
YOLOv5, which facilitates training and tuning the detection 
architecture on custom datasets. 
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FIGURE 2: OBJECT DETECTION MODEL BASED ON YOLOV4 ALGORITHM 

 
YOLOv4 is a one-stage detector composed of 

CSPDarknet53 network (backbone), Spatial Pyramid Pooling 
layer (SPP), PANet, and three YOLO heads. The structure of 
YOLOv4 and its feature size corresponding to our dataset are 
shown in Figure 2. The specific feature size parameters are 
useful for understanding how custom datasets work in the 
architecture. The detailed workflows of each module of 
YOLOv4 mainly include the following. First, CSPDarknet53, as 
the backbone of YOLOv4, is responsible for extracting deep 
features of the input image [22]. This convolution neural network 
consists of five residual blocks; each block contains convolution 
layers with 1×1 and 3×3 sizes and a Mish activation function. 
Second, the SPP layer participates in the convolution of the last 
feature layer of CSPdarknet53, followed by a maximum pooling 
with three kernel sizes of 5×5, 9×9, and 13×13 [23]. The SPP can 
increase the perceptual field and enhance feature extraction by 
separating the most important features from the backbone. Third, 
PANet adopts a bottom-up path, reducing the difficulty of 
extracting precise localization information. After shortening the 
information path between lower layers and topmost features, it 
is easier for the feature pyramid and solid localization features 
existing in the lower layer to propagate to the top [24]. Finally, 
three YOLO heads with sizes of 10×10, 20×20, and 40×40 are 
deployed to complete detection. The input of the heads contains 
rich semantic and spatial information from previous modules, 
which guarantees a better performance for small target detection 
in complex backgrounds. 

Although YOLOv4 performs satisfactorily in object 
detection, it is still not optimized for all scenarios. This affects 
the detection of small objects, as the average resolution of screws 
in the dataset is below 2×2 pixels. To improve the accuracy, we 
modify the baseline network with two adjustments. First, the 
network is optimized by using the low-level semantic 
information of the backbone. The convolutional layers of the 
backbone are rich in semantic information on the low-level 

feature maps and rich in spatial information on the high-level 
feature maps. The low-level layers in the backbone retain the 
high semantic values, which is partially beneficial for extracting 
the semantic information of small objects. The second 
adjustment is to prune the unimportant connections in PANet. 
Too frequent convolution reduces the spatial dimension and 
resolution, which is detrimental to detecting small objects. Since 
screws are the only target in our study, we can reduce the 
convolution operations. The difference between the baseline 
network and the optimized network is shown in Figure 2. 

 
3.2 Tools Recommendation Model Based on 
EfficientNetv2 Algorithm 

The next stage in the proposed system is to utilize the results 
of the screw detection process and classify the screw types and 
further recommend a disassembly tool. It also fine-tunes the 
screw detection results by identifying false detections. The tool 
recommendation system consists of a screw image extraction 
mechanism and an image classifier. The two stages of the 
proposed framework are shown in Figure 3.  

Screws are inherently small relative to the input images. A 
single screw could occupy as low as 0.02% of the image area. To 
alleviate this disadvantage, we propose the following screw 
extractor. Leveraging the bounding boxes predicted by the 
YOLO network, the screw extractor can extract square regions 
each containing a single screw from the input image at full 
resolution.  

Since YOLOv4’s bounding boxes are rectangular, the 
region is first modified using a square bounding box with an 
equivalent area and centroid to the original one. Additionally, 
before extraction, the bounding boxes area is increased by a ratio, 
typically 20% of the original box area. This provides a tolerance 
for deviation in the bounding boxes predicted by the YOLOv4 
algorithm. 
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FIGURE 3: THE PROPOSED FRAMEWORK FOR SCREW 

DETECTION AND TOOL RECOMMENDATION 
 

 The extracted screw image is directly fed into a pre-
trained image classifier based on EfficientNetV2 [25]. 
EfficientNetV2 is a family of state-of-the-art deep learning 
architectures that are built with training and inference speed in 
mind. The network family is an upgrade to the original 
EfficientNets [26] through utilizing the Fused-MBConv 
operator, applying training-aware neural architecture search, and 
using a progressive learning strategy. EfficientNetV2 achieved 
competitive results on ImageNet [27] and CIFAR datasets while 
maintaining a relatively low number of parameters. In this 
framework, we use the EfficientNetV2-S variant, which has 
approximately 22 million parameters making it suitable for real-
time application. The architecture of the EfficientNetV2-S is 
shown in Figure 4. 

 

 
FIGURE 4: TOOL RECOMMENDATION MODEL BASED 

ON EFFICIENTNETV2 ALGORITHM 

The building blocks of the EfficientNetV2 network are the 
MBConv operator and its modified variant, the Fused-MBConv 
operator. MBConv, first introduced in MobileNetV2 [28] 
follows the concept of inverted residuals. It starts with narrow 
layers, expands them through a regular 1×1 convolution, applies 
a 3×3 depth-wise convolution, performs a squeeze-and-
excitation operation [29], then squeezes the layers back to the 
original depth through another 1×1 convolution. The skip 
connections exist between the two starting and ending narrow 
layers, in contrast to regular residual blocks. The Fused-
MBConv replaces the expansion and depth-wise convolution 
layers with a single regular 3×3 convolution as it was found that 
it boosts the training speed in the model’s early stages. 

Using transfer learning [30], the network is first pre-trained 
with the ImageNet dataset and then fine-tuned to the screw 
images dataset. The benefit of using transfer learning is that they 
provide general model parameters which can be used in other 
deep learning applications. While ImageNet only contains over 
a thousand screw images, it encompasses almost 1.3 million 
images and 1000 classes, including various animals, plants, 
vehicles, and other objects. The images and classes are generic 
enough to provide a good start for the model parameters. In the 
fine-tuning phase, the network’s final SoftMax layer is replaced 
with another corresponding to the number of screw types 
available in the fine-tuning dataset. Thus, the network can be 
trained by using a limited number of screw images by improving 
the network’s parameter initialization procedure. 

Besides classifying the screw types, two main aspects are 
desired from the tool recommendation system. First, it should 
identify false screw detections to fine-tune the YOLOv4 
detection results. Second, the model classification predictions 
should be robust to deviated bounding boxes predicted by 
YOLOv4. We implement these aspects by 1) adding a ‘none’ 
class which allows the model to flag false positives resulting 
from the screw detection model, and 2) implementing data 
augmentation techniques in model training that simulate the 
deviated bounding box predictions. 
 
4. EXPERIMENTS AND RESULTS 
4.1 Experimental Environment and Dataset 

To start training the models, we have taken photos of screws 
in different simulated environments close to a real 
remanufacturing workstation. The experimental workstation 
consists of the EOL electronics, a disassembly toolkit, and 
multiple target-independent components. Variability in the 
working environments can increase the authenticity of the 
experiment and the complexity of detection. Since the screws 
come from EOL electronics, the condition of the screws, such as 
damaged, tilted, twisted, etc., will not be predicted in advance. 
The information of the screws will be learned entirely by the 
model. A Canon EOS M200 camera equipped with a 15-45 mm 
lens has been used to take photos from any angle at 30 cm above 
the electronics.  

The dataset includes three types of screws, Torx security 
screws on the desktop hard drive, Phillips screws on the back 
cover of a Dell laptop, and Pentalobe screws on the back cover 
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of a Mac laptop. Three types of screws are available in different 
sizes, quantities, colors, and textures. A total of 300 images are 
recorded at a resolution of 4000x6000 pixels and divided into an 
80% training set and a 20% test set. The training dataset is then 
manually annotated by the LabelImg, a graphical image 
annotation tool. The rectangular bounding boxes only contain 
target objects and are labeled as a single class named ‘screw’, 
which are stored as .txt files in YOLO format. Specifically, the 
object coordinates are the x-y coordinates of the center of each 
bounding box relative to the width and height of each image.  

 
4.2 Object Detection Model Training and Evaluation 
Metrics 

We have implemented the transfer learning technique to use 
the pre-trained weights for YOLOv4. Beforehand training, 
YOLOv4 network adjusts images to a square format with 
320x320 pixel resolution, where the cropped images do not 
maintain the aspect ratio of the original photos. During training, 
the network resizes input and output sizes for every 10 iterations. 
Although the different images increase the complexity of the 
dataset, four data augmentation techniques amended in the 
network, including hue, exposure, saturation, and mosaic, are 
used to overcome the deficiency of the small dataset. The mosaic 
data augmentation is first introduced in YOLOv4. It combines 
four images into one single image, which leads to identifying 
objects on a smaller scale during the training process. Figure 5 
visualizes the effect of employing the four data augmentation 
techniques on an original image.  

 

 
FIGURE 5: DATA AGUMENTATION METHODS 
(HUE=0.1, EXPOSURE=1.5, SATURATION=1.5) 

 

A GPU NVIDIA GeForce RTX 3060Ti is used for training. 
The training hyperparameters are set as follows. The batch size 
is 32, which means 32 images are used in one iteration. The 
maximum training batches are initially set to 2000, suggesting 
the network terminate the training at 2000 batches. The adaptive 
moment estimation (Adam) optimizer is used for iterative 
parameter updates and fast training convergence. The initial 
learning rate is 0.001 and decays as training proceeds. The 
momentum is 0.949, which means the previous update strongly 
influences the current network update. The weight decay of 
0.0005 is added as a regularization for the decreasing weight 
values. 

To evaluate the performance of the object detection model, 
precision, recall, 𝐹1 score, and mean Average Precision (mAP) 
have been used as the evaluation indicators listed below. The 
Intersection over Union (IoU) threshold of 0.5 is also set to 
classify whether the prediction is a true positive or a false 
positive. 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                          (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                (2) 

𝐹1 =  
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                     (3) 

𝑚𝐴𝑃 = 𝐴𝑃 =  ∫ 𝑃(𝑅)𝑑𝑅                                                              
1

0
(4) 

where TP, FP, FN, and AP are abbreviations for True Positive, 
False Positive, False Negative, and Average Precision.  
 
4.3 Tool Recommendation Model Training and 
Evaluation Metrics 

The dataset for training the tool recommendation model is 
built by extracting images of all screws in the original dataset 
using the actual labels and bounding boxes. For each screw, the 
extracted image has the same centroid of its corresponding 
bounding box and an increased area (e.g., 20%). The screw 
extractor also resizes the square images to 128 × 128 resolution. 
The dataset has three screw types: Pentalobe, Phillips, and Torx 
security. The total size of the result dataset is 1,240 screw images 
which are split into 1,115 images for backpropagation and the 
remaining 125 for validation. Additionally, the images reserved 
for evaluating the screw detection model are also used for testing 
the tool recommendation system.  

The EfficientNetV2-S variant is initially pre-trained for the 
ImageNet dataset for the image classification model. Then, the 
input dimensionality was adjusted for images of size 128, and 
replaced the network’s fully connected softmax layer with three 
nodes (or four), each representing a class probability. The model 
is then fine-tuned to the screw images using a categorical cross-
entropy loss function with a batch size of 5 images. This fine-
tuning process is optimized using an Adam optimizer [31] with 
a learning rate of 1E-5 and the exponential decay rates for the 1st 
and 2nd-moment estimates of 0.9 and 0.999, respectively. In 
addition, the validation loss is monitored at each epoch through 
an early stopping criterion. 
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To evaluate the model performance, we use the F1-score, 
which is the harmonic mean of the recall and precision, 
representing a trade-off between the two metrics. A confusion 
matrix is generated for each model to understand better the 
models’ classification patterns and the type of errors prevalent in 
testing. 

 
4.4 Main Results 

After training, the YOLOv4 model is used on the testing 
dataset. The detection results are shown in Figure 6. The 
illustration of the feature extraction process leads how YOLOv4 
learns target features from big, middle, and small scales. Final 
detection results consist of object categories, bounding boxes, 
and detection accuracy.  
 

 
FIGURE 6: DETECTION PROCESS 

 
After training the two models separately, the test results are listed 
in Table 1. Compared with the baseline model, the optimized 
model has better detection results in terms of evaluation metrics. 
 

TABEL 1: DETECTION RESULTS OF TWO MODELS 
 Precision Recall 𝑭𝟏 score mAP  
Baseline 
model 0.92 0.92 0.92 0.9132 

Optimized 
model 0.94 0.95 0.94 0.9424 

 
Three models have been trained, tested, and compared for 

the tool recommendation model. The first model (M-3c) is 
tasked only with screw-type classification. The second model 
(M-4c) has an additional task of fine-tuning the screw detection 
results by identifying false detections. Finally, the third model 
(M-4c-aug) adds data augmentation techniques to account for 
deviations in screw bounding boxes predictions. A summary of 
these models is shown in Figure 7. For the M-3c model, a single 
model is trained, but two tests are made. One is based on ground-
truth screw detection and bounding boxes, and the other is based 
on detected screws and their bounding boxes predictions from 
the YOLOv4 model. The M-3c model's primary goal is to predict 
the screw-type out of the available three classes and thus has 
three nodes at its softmax layer. The model is fine-tuned to the 
1,240 screw image dataset and converged after 83 epochs with a 

validation loss value of 2.4E-4. Note that the training dataset for 
this model is perfectly centered screw images with no false 
screws within the dataset as they purely rely on a manually 
labeled dataset. 

 
 
FIGURE 7: OVERVIEW OF TOOL RECOMMENDATION 

MODELS: a) M-3c, b) M-4c, c) M-4c-aug. 
 

The ground-truth testing dataset contains a total of 311 
screw images, while the screw detection prediction dataset 
contains 314 screw images. The class F1 scores of M-3c for both 
datasets are presented in Table 2. Also, the confusion matrices 
for the two datasets are shown in Figures 8a and 8b.  

The average F1-scores for the ground-truth and predicted 
screws datasets are 98.48% and 97.83%, respectively. These 
results show good performance achieved by the M-3c model for 
both datasets.  

There is a slight drop in all F1 scores in the predicted screw 
datasets due to possible bounding box off-center deviations, 
which makes the test set marginally different from what the 
model was trained on. The screw detection algorithm 
successfully avoided false screw detections in this dataset. 
However, M-3c will assign a screw-type to the empty bounding 
box if it happens during operation, resulting in an error. This is 
due to the nature of the three-class training dataset described 
earlier and because the model was built to predict the screw-type 
out of the three given types. We label the false detections as 
‘None’, meaning that the network detected the screw, but no 
screw appeared in the image. 
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TABLE 2: TEST RESULTS OF THE TOOL 
RECOMMENDATION MODELS 

Note: (G) and (P) indicate the usage of ground-truth or the 
predicted screw testing datasets, respectively. 

Class M-3c (G) M-3c (P) M-4c (P) M-4c-aug 
(P) 

Pentalobe 97.44% 96.72% 95.94% 99.17% 
Phillips 99.24% 98.50% 99.62% 100.0% 

Torx 
security 98.76% 98.33% 92.17% 99.59% 

None - - 88.24% 98.36% 
Average 98.48% 97.83% 93.99% 99.28% 

 
The second model, M-4c, is trained to detect false alarms, 

thus addressing one of the issues of M-3c and fine-tuning the 
screw detection model. This is done by introducing an additional 
240 images to the training and 60 images to the testing dataset 
representing the false detections. These images are cropped at 
random locations with a fixed small window from the original 
components dataset such that they include no screws. We also 
replace the three-node softmax layer at the head with a four-node 
softmax layer, thus introducing a 4th class labeled ‘none’. The 
M-4c model converged after 69 epochs with a validation loss 
value of 8.47E-4. While the model successfully identified the 
false screw detections, it achieved an average F1-score of 
93.99% (Table 2). Upon inspecting the confusion matrix in 
Figure 8c, the newly introduced class confuses the M-4c model 
predictions since a number of the slightly deviated bounding 
boxes, mainly Torx security type, are labeled as false detections. 

 

 
FIGURE 8: CONFUSION MATRICES FOR THE TOOL 
RECOMMENDATION MODELS: a) M-3c (ground-truth 

dataset), b) M-3c (predicted screw dataset), c) M-4c, d) M-4c-
aug. 

Finally, M-4c-aug introduces training data augmentation 
techniques, including random rotation, horizontal shift, vertical 
shift, and zoom. The main goal is to imitate possible bounding 
box deviations caused by the screw detection model. Thus, cases 
that are not present in the training data, such as partially visible 
screws and off-center screws, can be learned during the training 
process. This, however, made the training process lengthier, and 
the model converged after 155 epochs with a validation loss of 
1.5E-4. This model addressed the issues of the other proposed 
models and achieved an average F1-score of 99.28% and 
improved class F1-scores, as shown in Table 2 and Figure 8d. 
Only two screws (out of 374) were mislabeled in this model. 

The case study outcomes show the application of object 
detection techniques for detecting small objects in consumer 
electronics recycling. The combination of computer vision 
algorithms can help robots recognize tiny objects and identify 
the tools required for disassembly based on the type of screws 
and fasteners used in designing electronics. 
 
5. CONCLUSION AND FUTURE WORK 

This study proposes a framework for detecting small 
objects and recommending tools for robotic-assisted 
disassembly. The proposed framework consists of a YOLOv4-
based screw detection and an EfficientNetv2-based tool 
recommendation. The modified YOLOv4 algorithm can improve 
the accuracy of screw detection; the screw detection coordinates 
help crop and extract only screw images; the three models based 
on EfficientNetv2 can eliminate the effect of detection errors on 
screw classification. The application of the proposed work is 
demonstrated on a dataset of three different types of screws 
commonly used in consumer electronics. The proposed work 
opens the opportunity for better design of remanufacturing 
workflows to facilitate robotic disassembly and human-robot 
collaboration for waste stream management.  

The proposed framework can be extended in several ways. 
First, the current complex electronics design and multi-layer 
disassembly make it challenging to detect screws hidden in 
deeper spaces or covered by other components, so more efficient 
algorithms are needed to detect overlapping objects. Second, the 
proposed framework can be tested with proper prototypes and 
user interfaces in a factory setting. Third, to achieve fully 
automated robot disassembly, the proposed framework can be 
integrated with other sensor-based technologies to collect data in 
real-time data while feeding it to robot control and planning 
algorithms.  
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