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ABSTRACT 

Disassembly is an integral part of maintenance, upgrade, 
and remanufacturing operations to recover end-of-use products. 
Optimization of disassembly sequences and the capability of 
robotic technology are crucial for managing the resource-
intensive nature of dismantling operations. This study proposes 
an optimization framework for disassembly sequence planning 
under uncertainty considering human-robot collaboration. The 
proposed model combines three attributes: disassembly cost, 
disassembleability, and safety, to find the optimal path for 
dismantling a product and assigning each disassembly operation 
among humans and robots. The multi-attribute utility function 
has been employed to address uncertainty and make a tradeoff 
among multiple attributes. The disassembly time reflects the cost 
of disassembly and is assumed to be an uncertain parameter with 
a Beta probability density function; the disassembleability 
evaluates the feasibility of conducting operations by robot; 
finally, the safety index ensures the safety of human workers in 
the work environment. The optimization model identifies the 
best disassembly sequence and makes tradeoffs among multi-
attributes. An example of a computer desktop illustrates how the 
proposed model works. The model identifies the optimal 
disassembly sequence with less disassembly cost, high 
disassembleability, and increased safety index while allocating 
disassembly operations between human and robot. A sensitivity 
analysis is conducted to show the model's performance when 
changing the disassembly cost for the robot. 

Keywords: Human-robot collaboration, Disassembly 
sequence planning, Optimization, Uncertainty, Remanufacturing 

 
NOMENCLATURE 

𝑈(𝑦) The utility function of variable y 
𝑓(𝑦) The probability density function of attribute y 
𝑓(𝑡) The probability distribution of disassembly 

time 
Γ Gamma function 

𝑝, 𝑞 Shape parameters of the beta distribution 
𝐶𝑗(𝑡) Disassembly cost of task j 
𝑑, 𝑐 Constant parameters of the disassembly cost 

function 
𝑈𝑗 The overall utility of task j 
𝐷𝑆 Disassembleability scores 
𝑆𝐼 Strain index scores 

𝑡𝑈, 𝑡𝐿 Upper and lower bounds for disassembly 
time 

𝑡 disassembly time 
𝐶𝑚𝑎𝑥 Maximum disassembly cost 
𝐶𝑚𝑖𝑛 Minimum disassembly cost 

𝑆𝐼𝑚𝑎𝑥  Maximum strain index 
𝑆𝐼𝑚𝑎𝑥  Minimum strain index 
𝐷𝑆𝑚𝑎𝑥  Maximum disassembleability score 
𝐷𝑆𝑚𝑖𝑛 Minimum disassembleability score 

 
1. INTRODUCTION  

Proper recovery of electronic waste (e-waste) has 
considerable environmental and economic benefits [1]. Various 
financial and social strategies have been suggested for managing 
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the e-waste problem [2][3]. One approach to reducing e-waste is 
extending the product life cycle through reuse, remanufacture, or 
recovery of components [4]. Disassembly is an unavoidable step 
for the proper recovery of components. One question often 
facing remanufacturers is identifying the best way to dismantle 
a device or find the optimal disassembly sequences [5]. 

The optimal disassembly sequence provides cost-effective 
solutions to reduce the resource-intensive nature of recovery 
operations. Disassembly is an essential step for most recovery 
operations such as remanufacturing [6], maintenance [7], 
upgrade [8], and recycling [9]. Various normative models have 
been developed to find the optimal disassembly sequence. To 
name a few studies, Tseng et al. (2020) used the flatworm 
algorithm to lower disassembly times by reducing the amount of 
disassembly direction and required tools [10]. Fu et al. (2021) 
proposed a stochastic bi-objective disassembly planning to 
maximize profit while minimizing energy consumption [11]. Xia 
et al. (2020) developed a 3D-based multi-objective collaborative 
disassembly sequence planning method by prioritizing 
disassembly levels for parts [12]. Lee et al. (2020) applied a 
fuzzy scoring procedure to measure disassembly factors before 
using a genetic algorithm to select the best sequence [13]. 
Behdad and Thurston used multi-attribute utility theory to 
determine the optimal disassembly sequence considering 
multiple attributes of cost and probability of components damage 
during disassembly and reassembly [7], [14]. While the previous 
studies have investigated disassembly sequence planning, the 
number of studies considering robotic-assisted disassembly and 
human-robot collaboration is limited.  

Human-robot collaboration in disassembly is becoming a 
popular topic in recent years. Disassembly tasks' labor-intensive 
and repetitive nature may lead to human musculoskeletal 
disorders [15]. Robots can handle monotonous repetitive or 
hazardous tasks more efficiently than humans [15], [16]. 
Although robots provide higher efficiency, human workers are 
still needed in disassembly operations for handling tasks that are 
difficult and inflexible for robots [17].  

Previous studies have considered human-robot 
collaboration when deciding on disassembly sequence planning. 
For example, Lee et al. (2020) considered disassembly rules, 
disassembly cost, and the position between human worker and 
robot and used a receding horizon control technique for real-time 
disassembly planning [18]. Xu et al. (2020) applied a discrete 
bees algorithm to determine disassembly sequence planning by 
considering time, cost, and difficulty of disassembly [17]. Parsa 
and Saadat (2021) used a genetic algorithm to optimize sequence 
planning, considering cleanability, repairability, and economy 
[19]. Xu et al. (2019) adopted a multi-objective artificial bee 
colony algorithm and AND/OR graph to find the optimal 
disassembly sequence considering disassembly failure risks, 
disassembly priority, cycle time, and cost [20]. Li et al. (2019) 
considered human fatigue to evaluate disassembly efficiency and 
used the bees algorithm to arrange tasks among humans and 
robots [15]. Xu et al. (2021) considered the safety strategy and 
disassembly time and used the improved discrete bees algorithm 
to allocate disassembly tasks [21]. Their safety strategy is to 

consider the location between human workers and robots. As a 
human worker approaches the robot, the operation speed of the 
robot will slow down to avoid robot accidents. 

Although previous researchers considered different factors 
when allocating tasks in human-robot collaboration, no study has 
considered disassembly cost, disassembleability, and safety to 
the best of our knowledge. Combining additional attributes and 
considering the uncertainty are the primary contributions of this 
study. We propose a new optimization-based disassembly 
sequence planning by considering multiple attributes, including 
disassembly cost, disassembleability, and safety. The study uses 
a multi-attribute utility function to combine these different 
attributes. Moreover, it considers the disassembly time as an 
uncertain variable with a Beta probability distribution [22]. 
Besides disassembly cost (time), we also consider 
disassembleability, which defines the robotic capability on 
disassembly [19], [23], and the operator safety, which is modeled 
by using the strain index [24].  

The objective of the study is to find the optimal disassembly 
sequence and allocate tasks between humans and robots. The 
feasible disassembly sequences for a given product can be 
presented in the form of a graph, as shown in Figure 1, for a 
simple product with three components. Each path has different 
costs, safety, and difficulty.  

 
Figure 1: A simple product with three components (a) and feasible 

disassembly sequences (b). 
 
2. METHODOLOGY  

This section describes different attributes that have been 
considered in the objective function and the proposed 
optimization model. The concept of a multi-attribute utility 
function is used to integrate the three attributes.  

 
2.1 Utility function 

The three objectives considered in this study include 
disassembly cost, disassembleability, and safety. The individual 
utility functions of these three attributes have been integrated to 
form the overall utility function as shown in Eqs. (1)-(3). 𝑈𝑎,𝑗 
shows the utility function of attribute a for disassembly task j, 
and 𝑘𝑎  is the scaling constant for attribute a. The scaling 



              3 © 2022 by ASME 

constant K is determined using Eq. (2). The implementation 
details can be found in Refs [25]–[27]. 

  𝑈𝑗 = ∑
1

𝐾
{∏[𝐾𝑘𝑎𝑈𝑎,𝑗 + 1] − 1

𝑎∈𝐴

}

𝑗∈𝐽

 (1) 

1 + 𝐾 = ∏ [𝐾𝑘𝑎 + 1]𝑎∈𝐴    (2) 

𝑈𝑎,𝑗 =  𝐸[𝑈(𝑦)] = ∫ 𝑈(𝑦)𝑓(𝑦)𝑑𝑦 (3) 

The scaling constant K is found through Eq. (2). Since some 
attributes such as disassembly time are uncertain, we have used 
the expected utility instead of utility function U(y). If the 
attribute is uncertain with the probability density function 
𝑓(𝑦)The utility function will be calculated by Eq. (3) to use the 
expected value. For details, see [25]–[27].  

In addition, each attribute is normalized by min-max 
normalization since the unit and range of each attribute are 
different. Also, each attribute is utility independent of other 
attributes. According to Clemen and Reilly, an attribute is utility 
independent of another attribute, if preferences for uncertain 
choices possessing different attribute levels are independent of 
the values of another attribute [28]. For example, disassembly 
cost and disassembleability are preferentially independent and 
utility independent since, regardless of the value of disassembly 
cost, the user always prefers lower complexity (higher 
disassembleability) over higher complexity. Even in the case of 
uncertain choices involving different values of 
disassembleability, the user’s preference among the uncertain 
cases is independent of disassembly cost. We should note that the 
concept of preferential independence and utility independence is 
separate from how attributes are calculated.  
 
2.2 Disassembly cost 

The disassembly cost depends on the disassembly time 
which is modeled as an uncertain variable. Fischer et al. (2005) 
showed that the disassembly time could be well described as a 
Beta distribution [22]: 

{𝑓(𝑡) =
Γ(𝑝 + 𝑞)

𝑟Γ(p)Γ(q)
(

𝑡 − 𝑡𝐿

𝑟
)

𝑝−1

(
𝑡𝑈 − 𝑡

𝑟
)

𝑞−1

𝑖𝑓 𝑡𝐿 ≤ 𝑡 ≤ 𝑡𝑈

= 0                                                         𝑂𝑡ℎ𝑒𝑡𝑤𝑖𝑠𝑒

 (4) 

𝑤ℎ𝑒𝑟𝑒 𝑟 =  𝑡𝑈 − 𝑡𝐿 (5) 

The 𝑡𝑈 and 𝑡𝐿 is the range of disassembly time, 𝑝, 𝑞 are 
shape parameters, and Γ is the gamma function.  

This study assumes that the cost and time have an 
exponential function, as expressed in Eq. (6) since the higher 
time results in more human fatigue, lower performance, and 
higher opportunity costs. Glock et al. used exponential function 
to describe human fatigue [29], and Potkonjak et al. introduced 
robot fatigue and mentioned that fatigue quantification is often 
assumed to be exponential [30].  

𝐶𝑗(𝑡) = 𝑑𝑒𝑐𝑡 (6) 

where 𝐶𝑗(𝑡) is the disassembly cost of task j with disassembly 
time t, and d, and c are the constant parameters. The utility 
function for disassembly cost has been considered as follows: 

𝑈(𝐶𝑗) =
𝐶𝑗(𝑡)−𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥−𝐶𝑚𝑖𝑛
   (7) 

𝑤ℎ𝑒𝑟𝑒  𝐶𝑚𝑎𝑥 = 𝑑𝑒𝑐𝑡𝑚𝑎𝑥  and 𝐶𝑚𝑖𝑛 = 𝑑𝑒𝑐𝑡𝑚𝑖𝑛     (8) 

    The utility function of cost is normalized between 0 and 1. 
𝐶𝑚𝑎𝑥  and 𝐶𝑚𝑖𝑛  are the maximum and minimum disassembly 
costs. Given the uncertain disassembly time, the expected 
disassembly cost is described as: 

𝐸[𝑈(𝐶𝑗)] = ∫ (
𝐶𝑗(𝑡) − 𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛
) 𝑓(𝑡)𝑑𝑡

𝑡𝑈

𝑡𝐿

 

( 9 ) 
= 𝑔 ∫ (

𝐶𝑗(𝑡) − 𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛
) (

𝑡 − 𝑡𝐿

𝑟
)

𝑝−1

(
𝑡𝑈 − 𝑡

𝑟
)

𝑞−1

𝑑𝑡
𝑡𝑈

𝑡𝐿

 

𝑤ℎ𝑒𝑟𝑒  𝑔 =
Γ(𝑝+𝑞)

𝑟Γ(p)(q)
   (10) 

2.3 Operator safety  
Besides disassembly cost, operator safety is another 

important attribute. The Strain Index (SI), proposed by Moore 
and Garg in 1995 [24], is a well-known tool to evaluate the risk 
of developing musculoskeletal disorders in distal upper 
extremities, including the hand, wrist, forearm, and elbow. Given 
that the e-waste disassembly task requires a lot of upper limb 
movements, such as disconnecting cables and loosening screws, 
the SI score is a suitable method to quantify human physical 
stress in our study. The disassembly tasks are assigned to human 
and robot based on SI scores to release human physical stress. 

The SI score is determined based on the subjective ratings 
of six task variables, including 1) intensity of exertion (IE), 2) 
duration of exertion (DE), 3) efforts per minute (EM), 4) 
hand/wrist posture (HWP), 5) speed of work (SW), and 6) 
duration per day (DD). A multiplier is then assigned to each task 
variable based on the ratings. Based on Moore and Garg [24], the 
rating criteria of the six task variables and their corresponding 
multipliers are summarized in Tables 1 and 2, respectively. 
Finally, the SI score is computed by taking the product of the six 
multipliers: 

SI = IE’ × DE’ × EM’ × HWP’ × SW’ × DD’ (11) 

 
Table 1: The rating criterion of the six SI task variables [24]. 

Rating IE DE EM HWP SW DD 

1 Light < 10 < 4 Very 
good 

Very 
slow ≤ 1 

2 Somewhat 
hard 10-29 4-8 Good Slow 1-2 

3 Hard 30-49 9-14 Fair Fair 2-4 
4 Very Hard 50-79 15-19 Bad Fast 4-8 

5 Near 
Maximal ≥ 80 ≥ 20 Very 

bad 
Very 
fast > 8 
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Table 2: The multipliers of the six SI task variables [24]. 
Rating IE’ DE’ EM’ HWP’ SW’ DD’ 
1 1 0.5 0.5 1.0 1.0 0.25 
2 3 1.0 1.0 1.0 1.0 0.50 
3 6 1.5 1.5 1.5 1.0 0.75 
4 9 2.0 2.0 2.0 1.5 1.00 
5 13 3.0 3.0 3.0 2.0 1.50 

 
2.4 Disassembleability 

The third attribute considered for determining optimal 
sequence is disassembleability. The disassembleability describes 
the level of complexity of each disassembly task. Tasks with 
lower disassembleability are not feasible for the robot. The 
parameters describing disassembleability are introduced in [19], 
[23] which include: 1) component size (CS), 2) component 
weight (CW), 3) requirement of tools (T), 4) accessibility (AC), 
5) component shape (CSH), 6) operation complexity (OC), 7) 
positioning (P), and 8) operation force (OF). The scores of each 
parameter are described in Table 3. 

 
Table 3: The eight disassembleability parameters [19], [23]. 

CS Easily grasped 2 
  Moderately difficult to grasp  3.5 
  Difficult to grasp  4 
CW Light 2 
  Moderately heavy 2.2 
  Very heavy 2.4 
T No tools required 1 
  Common tools required  2 
  Specialized tools required 3 
AC Shallow and broad fastener recesses  1 
  Deep and narrow fastener recesses 1.6 
  Very deep and very narrow fastener recesses  2 
CSH Symmetric 0.8 
  Semi-symmetric 1.2 
  Asymmetric  1.4 
OC Low 1 
  Moderate 4.5 
  High 6.5 
P No accuracy required 1.2 
  Some accuracy required 2 
  High accuracy required 5 
OF Low 1 
  Moderate 2 
  High 4 

 
The disassembleability score (DS) is computed by 

summing up the eight parameters: 

𝐷𝑆 = 𝐶𝑆 + 𝐶𝑊 + 𝑇 + 𝐴𝐶 + 𝐶𝑆𝐻 + 𝑂𝐶 + 𝑃 + 𝑂𝐹 (12) 

According to [19], [23], if DS is higher than 14.2 or the 
robot's capability, the tasks are assigned to the human worker 
since they exceed the robot's capability. For example, if the 
object is too small or too heavy, the robot cannot hold and locate 
the position; therefore, those tasks are assigned to the human 
worker. 
 

2.5 The optimization-based disassembly sequence 
planning framework for human-robot collaboration 
The multi-attribute utility function 𝑈𝑗  shows the overall 

utility of disassembly operation j, which incorporates the three 
individual utility functions of disassembly cost, 
disassembleability, and safety. 𝑈𝑗 will be used to formulate the 
objective function of the optimization model. The objective is to 
maximize the overall utility of the whole sequence. A binary 
decision variable 𝑥𝑗   is defined to determine whether 
disassembly operation j should be conducted or not. The safety 
SI scores are used to assign each task to the human worker or 
robot. Due to the high complexity and uncertainty, the tasks with 
high DS values are given to the human worker. The index set, 
decision variable, and model parameters are expressed as 
follows: 

 
Index set 
j Feasible disassembly transition j (task) 
J The set of all feasible disassembly transitions 
a Attribute a 
S The set of all attributes 
Mn The set of all disassembly transitions going to 

node n 
On The set of all disassembly transitions outgoing 

from node n 
I The set of all feasible initial disassembly 

transitions 
F The set of all feasible finial disassembly 

transitions 
 
Decision Variables 
𝑥𝑗 Binary variable {0, 1} = {not performed, 

performed} whether disassembly transition j is 
performed. 

𝛼𝑗 Binary variable {0, 1} = {performed by robot, 
performed by human} whether disassembly 
transition j is performed by robot or human. 

 
Parameters 
𝑈𝑎,𝑗  The single utility function of attribute a for 

transition j 
𝐸[𝑈(𝐶𝑅,𝑗)] The expected disassembly cost of a robot 
𝐸[𝑈(𝐶𝐻,𝑗)] The expected disassembly cost of human 

workers 
𝑘𝑎 The scaling constant (a value between 0 to 1) 
𝐾 The overall scaling constant (between 0 to 1) 
ST, DT The threshold of SI scores and DS 
𝑀 A large enough number. Ex. 1010 
𝑦𝑗 Binary variable {0, 1} 

 
The proposed optimization model for disassembly sequence 

planning is expressed as: 
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𝑀𝑎𝑥 ∑
1

𝐾
{∏[𝐾𝑘𝑎𝑈𝑎,𝑗 + 1] − 1

𝑎∈𝑆

} 𝑥𝑗

𝑗∈𝐽

 (13) 

 
Subject to:  

𝑈1,𝑗 = (1 − 𝛼𝑗)𝐸[𝑈(𝐶𝑅,𝑗)] + 𝛼𝑗𝐸[𝑈(𝐶𝐻,𝑗)]  (14) 

𝑈2,𝑗 =  
𝑆𝐼𝑚𝑎𝑥 − 𝑆𝐼𝑗

𝑆𝐼𝑚𝑎𝑥 − 𝑆𝐼𝑚𝑖𝑛

 (15) 

𝑈3,𝑗 =
𝐷𝑆𝑚𝑎𝑥 − 𝐷𝑆𝑗

𝐷𝑆𝑚𝑎𝑥 − 𝐷𝑆𝑚𝑖𝑛

  (16) 

(1-𝛼𝑗) ∙ (𝐷𝑇 − 𝐷𝑆𝑗) ≥ 0 (17) 

𝑀(1 − 𝑦𝑗)  ≥ (𝐷𝑇 − 𝐷𝑆𝑗) (18) 

𝛼𝑗(𝑆𝑇 − 𝑆𝐼𝑗) + 𝑀 ∙ 𝑦𝑗 ≥ 0 (19) 

∑ 𝑥𝑗𝑗∈𝐼 = 1 (initial node) (20) 

∑ 𝑥𝑗𝑗∈𝑀𝑛
= ∑ 𝑥𝑗𝑗∈𝑂𝑛

 (transit nodes) (21) 

∑ 𝑥𝑗𝑗∈𝐹 = 1 (target node) (22) 

𝑈𝑎,𝑗 ∈ {𝑈1,𝑗  ,  𝑈2,𝑗 ,  𝑈3,𝑗} (23) 

0 ≤ 𝑈𝑎,𝑗 ≤ 1   ∀𝑎, ∀𝑗 (24) 

 
Eq. (14) shows the expected disassembly cost of the human 

worker and robot can be derived from Eq. (9). Eqs. (15) and (16) 
reflect each task's SI scores and DS normalizing between 0 and 
1. Eq. (17) to (19) is a set of inequalities representing an if-then 
statement when solving the task assignment between human and 
robot. When the task has high safety and high disassembleability, 
it can be assigned to either robot or human; if the expected 
disassembly cost of the robot is less than the expected 
disassembly cost of the human worker, the 𝛼𝑗  will be 0. In 
addition, the SI scores and DS also determine the 𝛼𝑗 based on 
the condition of safety and disassembleability.  
 
3. CASE STUDY 

The study uses data collected from the disassembly of a Dell 
desktop computer as a case study.  

Three main components are targeted for disassembly (as 
shown in Figure 2a), i.e., component A - heatsink assembly, 
component B - optical disc drive & hard drive assembly, and 
component C - memory module. The heatsink assembly, as 
illustrated in Figure 2b, is made up of a fan shroud (A1) and a 
heat sink (A2), whereas component B consists of an optical disc 
drive (B1) and a hard drive (B2).  

The number of possible disassembly sequences of the three 
components could be understood as a permutation problem, i.e., 
there are six permutations of the set {A, B, C}, namely (A, B, 
C), (A, C, B), (B, A, C), (B, C, A), (C, A, B), and (C, B, A). 

 
(a) 

 
(b) 

Figure 2: The desktop components targeted for disassembly. 
 

All six possible sequences are verified to be feasible in our 
pilot tests. However, the removal of sub-assemblies had to be in 
specific orders due to physical constraints. Specifically, to 
remove the heatsink assembly (A) from the computer, the fan 
shroud (A1) had to be removed before the heat sink (A2) so that 
the cable of A2 could be disconnected from the system board. 
Similarly, to remove component B from the computer, one had 
to remove the optical disc drive (B1) first to get access to the 
hard drive (B2). Figure 4 shows the possible disassemble 
sequences.  

To evaluate the SI and DS scores, a participant was tasked 
with removing the heatsink assembly, the optical disc drive, the 
hard drive, and the memory module from the desktop computer. 
Adequate training was given to the participant before the formal 
data collection. The manufacturer’s service manual guided the 
disassembly procedure. The participant was videotaped during 
the data collection, performing the disassembly task. After the 
task was accomplished, the participant was interviewed about 
their subjective rating of force-related variables, i.e., IE of SI and 
OF of DI, for every work element. The disassembly of each 
component is composed of different tasks as shown in Table 4. 

Two researchers independently analyzed the video taken 
during the data collection to obtain the remaining variables. 
Instead of computing the SI score for the entire job, SI scores for 
every work task were calculated in the study to validate our 
optimization model. Furthermore, a default rating value of 4 was 
assigned to DD, representing a worker performing a given task 
for 4–8 h [31].  

Table 5 shows the disassembly time for human and robot. In 
this example, the lower bound of disassembly time, 𝑡𝐿  for 
human is determined from experiments. The upper bound of 
disassembly time for human, 𝑡𝑈, and disassembly times of robot 
are assumed.  

The disassembly time by the robot is assumed to be greater 
than human due to the current software and hardware limitations 
of the robots in handling disassembly tasks. The robotic 
technology for disassembly tasks is not well developed, and most 
disassembly operations are still conducted manually, so we 
assume a higher operation time for robots to handle tasks. This 
may change in the future with more advancements in robotics. 
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  Table 4: The disassembly tasks of each component. 
Component Task Action 

Remove Heatsink Assembly (A) (For paths 
1 to 6) 

J1 Push away the two release handles while lifting the fan shroud upward and off the computer 
J2 Disconnect the fan cable (with clip) from the system board.  
J3 Loosen the captive screws (x4). 
J4 Lift the heat sink assembly and remove it from the computer. 

Remove Optical Disc Drive & Hard Drive 
Assembly (B) (For paths 1 to 6) 

J5 Disconnect the data cable from the back of the optical drive. 
J6 Disconnect the power cable from the back of the optical drive. 
J7 Lift the tab and slide the optical drive out. 
J8 Disconnect the data cable from the back of the optical drive. 
J9 Disconnect the power cable from the back of the optical drive. 
J10 Slide the blue drive-cage handle toward the unlocking position. 
J11 Lift the hard drive cage from the computer. 

Remove RAM (C) (For paths 1 & 2, 
Remove C after removing A and B) 

J12 Press down on the memory retaining tabs on each side of the memory module. 
J13 Lift the memory module out of the connectors on the system board. 

Remove RAM (C) (For paths 3 & 4, 
Remove C between A and B) 

J14 Press down on the memory retaining tabs on each side of the memory module. 
J15 Lift the memory module out of the connectors on the system board. 

Remove RAM (C) (For paths 5 & 6, 
Remove C before removing A and B) 

J16 Press down on the memory retaining tabs on each side of the memory module. 
J17 Lift the memory module out of the connectors on the system board. 

Table 5: The disassembly time by human and robot. 

Task 
Human worker Robot 
𝒕𝑳 𝒕𝑼 𝒕𝑳 𝒕𝑼 

J1 3 8 4 9 
J2 3 8 11 16 
J3 53 58 87 92 
J4 2 7 3 8 
J5 3 8 11 16 
J6 3 8 11 16 
J7 3 8 4 9 
J8 3 8 15 20 
J9 3 8 15 20 
J10 2 7 3 8 
J11 4 9 5 10 
J12 3 8 8 13 
J13 2 7 3 8 
J14 3 8 9 14 
J15 2 7 3 8 
J16 4 9 16 21 
J17 2 7 6 11 
 
Table 6 summarizes the SI scores and DS for each task. 

While the component A removal and component B removal of SI 
scores and DS are the same in each possible disassembly 
sequence planning, the disassembly of component C was highly 
dependent on the disassembly order of component A removal and 
component B removal.  

As shown in Figure 2a, if component C is removed before B 
and A, the limited space could negatively impact variables such 
as HWP of SI scores and AC and P of DS. Moreover, poor 
hand/wrist posture and accessibility made the force exertion 
more difficult, increasing the subjective ratings of IE of SI and 
of DS. Consequently, the SI scores and DS are higher when 
component C was removed before A and B, performing tasks J16 
and J17, and they dropped if A or B was removed before C, 
performing tasks J12 and J13. 

Table 6: The results of SI scores and DS for each task. 
Task SI scores  DS Task SI scores  DS 
J1 9 11.2 J10 9 12 
J2 18 16.3 J11 18 12 
J3 13.5 19.8 J12 9 15.3 
J4 9 10 J13 9 10.8 
J5 40.5 16.3 J14 13.5 15.9 
J6 40.5 16.3 J15 13.5 11.4 
J7 9 10.8 J16 54 17.3 
J8 54 17.3 J17 18 14.8 
J9 54 17.3       

 
Regarding input parameters, the parameter d in disassembly 

cost for human and robot is assumed to be 5 and 2, respectively, 
and parameter c is 0.01 in Eq. (6). Due to this study's limited time 
and scope, we run each disassembly operation only once; 
however, one experiment is not enough to obtain the exact shape 
of the distribution function. In practice, comprehensive data 
collection is needed to experimentally gather disassembly time, 
fit the proper distribution, and estimate the parameters of the 
distribution functions. The relation between disassembly cost 
and time is plotted in Figure 3.  

 

 
Figure 3: The disassembly cost of human and robot. 
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The robot costs less than the human worker due to its 
capability in handling long-term monotonous, repetitive tasks 
[15], [16]. Also, the scaling constants K, 𝑘1 , 𝑘2 , and 𝑘3  are 
considered as 1.68, 0.17, 0.3, 0.23. According to Table 6, the 
tasks with SI scores higher than 18 are assigned to the robot to 
reduce musculoskeletal disorders damage to the human worker. 

 
4. RESULTS AND DISCUSSIONS  

This section shows the results of the work assignments 
between human and robot for the case of disassembling a Dell 
desktop computer. In addition, several sensitivity analyses on 
parameters (d and c) of the cost function have been conducted. 

 
4.1 The Optimal disassembly sequence for the 

desktop components 
The utility of each attribute and the task assignment among 

human and robot is shown in Table 7. Some utilities are 0 due to 
normalization. These tasks reflect either a high SI or high DS 
score. For example, 𝑈3,𝑗 of task J3 equals 0, meaning this task 
has high values of DS that the robot cannot implement. The 
action of J3 is to loosen the captive four screws. This task needs 
high positioning with these small object screws with high 
complexity and uncertainty. Thus, the task is assigned to the 
human worker. Some tasks are decided by expected cost when 
the tasks have low SI scores and high disassembleability. For 
example, task J4 is to lift the heat sink assembly and remove it 
from the computer with low SI scores and low DS. The task is 
assigned to the robot due to cost-efficiency. Although the robot's 
disassembly time is higher than that of human workers, the 
expected disassembly cost of the robot is less than the expected 
disassembly cost of humans, as previously discussed in Figure 3. 
However, tasks with high SI and DS scores, for example, J9, are 
assigned to the human worker. Although task J9 has a safety 

issue, it is still assigned to humans due to the high operational 
complexity and infeasibility. 

 
Table 7: The results of multi-attribute utilities and overall utility for 
each task (R: robot; H: human worker). 

Task 𝑼𝟏,𝒋 𝑼𝟐,𝒋 𝑼𝟑,𝒋 
Overall  
Utility 𝑼𝒋 

Work  
Assign 

J1 0.98 1.00 0.88 0.94 R 
J2 0.97 0.80 0.36 0.62 H 
J3 0.08 0.90 0.00 0.29 H 
J4 0.99 1.00 1.00 1.00 R 
J5 0.97 0.30 0.36 0.40 H 
J6 0.97 0.30 0.36 0.40 H 
J7 0.98 1.00 0.92 0.96 R 
J8 0.97 0.00 0.26 0.24 H 
J9 0.97 0.00 0.26 0.24 H 
J10 0.99 1.00 0.80 0.90 R 
J11 0.97 0.80 0.80 0.80 R 
J12 0.97 1.00 0.46 0.75 H 
J13 0.99 1.00 0.92 0.96 R 
J14 0.97 0.90 0.40 0.68 H 
J15 0.99 0.90 0.86 0.88 R 
J16 0.95 0.00 0.26 0.24 H 
J17 0.98 0.80 0.51 0.68 H 

 
Figure 5 shows the optimal sequence. Paths 1-2-8-14 and 1-

3-9-14 have the same overall utilities, 8.49, so either path is 
optimum. The difference between them is that path 1-2-8-14 
removes component A before B, and path 1-3-9-14 removes B 
before A. Paths 1-4-10-14 and 1-5-11-14 have the same utility, 
8.34. Both paths remove component C after A or B. Paths 1-6-
12-14 and 1-7-13-14 have the lowest utility of 7.70 since 
component C is removed first in both paths with limited space.   

 
Figure 4: The three possible disassemble sequences for components A (heatsink assembly), B (optical disc drive & hard drive assembly), and 

C (memory module) 
.
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Figure 5: The summary of feasible and optimal disassembly paths. 
 
4.2 Sensitivity analysis of the cost function 

Three different conditions of the cost function are discussed 
by considering different combinations of parameters d and c. The 
cost function of the human worker is the same as in the previous 
section, with parameters d = 5 and c = 0.01. Figures 6 to 8 show 
the three different conditions for the robot cost function.  

 

 
Figure 6: Condition 1: The robot cost function is either higher or 
lower than that of the human worker. 

 
Figure 7: Condition 2: the robot cost function is lower than the 
human worker at the beginning and higher at the end. 

Figure 8: Condition 3: The cost function of the robot is higher than 
the human worker at the beginning and lower at the end. 

 
In the first condition, the cost of the robot is either higher or 

lower than the human worker; in the second condition, the cost 
of the robot is lower than the human worker at the beginning but 
will be higher than human worker as the disassembly time 
increases; The third condition is the opposite of the second 
condition. 

Table 8 summarizes the results of these three conditions for 
the work assignments between human and robot. In condition 1, 
when the parameters change slightly and the robot cost function 
is close to the human, the results are the same as in the previous 
section. However, the work assignments will change when the 
cost function deviates from humans. In condition 2, the work 
assignments are changed from the human worker to the robot as 
the parameter c increases. In condition 3, the work assignments 
are switched from robot to human as the parameter c decreases.  

In reality, the cost function may vary from one case to 
another depending on the type of products, robots, and factory 
configurations. When estimating the operating cost of a robot, 
various factors should be considered, such as procurement cost, 
utilization rate, the efficiency of scheduling, tooling, and setup 
time. More accurate cost functions should incorporate these 
factors.  
 
5. CONCLUSION 

The study proposes a new optimization-based disassembly 
sequence planning framework for human-robot collaboration. It 
uses the multi-attribute theory to combine three attributes 
namely disassembly cost, disassembleability, and safety to 
determine the optimal disassembly sequence. The disassembly 
cost is modeled as an uncertain variable with a beta probability 
distribution. The safety and disassembleability are modeled 
using SI and DS scores. The model determines the task 
assignments among human and robot and determines the optimal 
disassembly sequence. An example of a desktop computer is 
used to show the application of the proposed model. In addition, 
a sensitivity analysis of the robot cost function is discussed. 
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This study can be extended in several ways. First, the SI 
scores and DS are currently decided subjectively using standard 
metrics and conducting lab experiments. However, computer 
vision techniques can be utilized to quantify the SI scores and 
DS by observing human and robot disassembly operations. 
Second, the model can be extended to a real-time sequence 
planner. Third, other attributes such as distance between the 
removal component and robotic arm position can be further 
considered in the real-time sequence planner. Fourth, 
experimental studies can be conducted to provide real 
disassemble time by robot and the feasibility analysis of each 
disassembly task.  
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