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ABSTRACT

Disassembly is an integral part of maintenance, upgrade,
and remanufacturing operations to recover end-of-use products.
Optimization of disassembly sequences and the capability of
robotic technology are crucial for managing the resource-
intensive nature of dismantling operations. This study proposes
an optimization framework for disassembly sequence planning
under uncertainty considering human-robot collaboration. The
proposed model combines three attributes: disassembly cost,
disassembleability, and safety, to find the optimal path for
dismantling a product and assigning each disassembly operation
among humans and robots. The multi-attribute utility function
has been employed to address uncertainty and make a tradeoff
among multiple attributes. The disassembly time reflects the cost
of disassembly and is assumed to be an uncertain parameter with
a Beta probability density function; the disassembleability
evaluates the feasibility of conducting operations by robot;
finally, the safety index ensures the safety of human workers in
the work environment. The optimization model identifies the
best disassembly sequence and makes tradeoffs among multi-
attributes. An example of a computer desktop illustrates how the
proposed model works. The model identifies the optimal
disassembly sequence with less disassembly cost, high
disassembleability, and increased safety index while allocating
disassembly operations between human and robot. A sensitivity
analysis is conducted to show the model's performance when
changing the disassembly cost for the robot.
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NOMENCLATURE
U(y) The utility function of variable y
fO) The probability density function of attribute y

f® The probability distribution of disassembly
time
r Gamma function
p.q Shape parameters of the beta distribution
Ci(®) Disassembly cost of task j
d,c Constant parameters of the disassembly cost
function
U; The overall utility of task j
DS Disassembleability scores
S Strain index scores
ty, tL Upper and lower bounds for disassembly
time
t disassembly time
Cnax Maximum disassembly cost
Cnin Minimum disassembly cost
Shnax Maximum strain index
Shax Minimum strain index
DSpax Maximum disassembleability score
DSpin Minimum disassembleability score

1. INTRODUCTION

Proper recovery of electronic waste (e-waste) has
considerable environmental and economic benefits [1]. Various
financial and social strategies have been suggested for managing
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the e-waste problem [2][3]. One approach to reducing e-waste is
extending the product life cycle through reuse, remanufacture, or
recovery of components [4]. Disassembly is an unavoidable step
for the proper recovery of components. One question often
facing remanufacturers is identifying the best way to dismantle
a device or find the optimal disassembly sequences [5].

The optimal disassembly sequence provides cost-effective
solutions to reduce the resource-intensive nature of recovery
operations. Disassembly is an essential step for most recovery
operations such as remanufacturing [6], maintenance [7],
upgrade [8], and recycling [9]. Various normative models have
been developed to find the optimal disassembly sequence. To
name a few studies, Tseng et al. (2020) used the flatworm
algorithm to lower disassembly times by reducing the amount of
disassembly direction and required tools [10]. Fu et al. (2021)
proposed a stochastic bi-objective disassembly planning to
maximize profit while minimizing energy consumption [11]. Xia
et al. (2020) developed a 3D-based multi-objective collaborative
disassembly sequence planning method by prioritizing
disassembly levels for parts [12]. Lee et al. (2020) applied a
fuzzy scoring procedure to measure disassembly factors before
using a genetic algorithm to select the best sequence [13].
Behdad and Thurston used multi-attribute utility theory to
determine the optimal disassembly sequence considering
multiple attributes of cost and probability of components damage
during disassembly and reassembly [7], [14]. While the previous
studies have investigated disassembly sequence planning, the
number of studies considering robotic-assisted disassembly and
human-robot collaboration is limited.

Human-robot collaboration in disassembly is becoming a
popular topic in recent years. Disassembly tasks' labor-intensive
and repetitive nature may lead to human musculoskeletal
disorders [15]. Robots can handle monotonous repetitive or
hazardous tasks more efficiently than humans [15], [16].
Although robots provide higher efficiency, human workers are
still needed in disassembly operations for handling tasks that are
difficult and inflexible for robots [17].

Previous  studies have considered  human-robot
collaboration when deciding on disassembly sequence planning.
For example, Lee et al. (2020) considered disassembly rules,
disassembly cost, and the position between human worker and
robot and used a receding horizon control technique for real-time
disassembly planning [18]. Xu et al. (2020) applied a discrete
bees algorithm to determine disassembly sequence planning by
considering time, cost, and difficulty of disassembly [17]. Parsa
and Saadat (2021) used a genetic algorithm to optimize sequence
planning, considering cleanability, repairability, and economy
[19]. Xu et al. (2019) adopted a multi-objective artificial bee
colony algorithm and AND/OR graph to find the optimal
disassembly sequence considering disassembly failure risks,
disassembly priority, cycle time, and cost [20]. Li et al. (2019)
considered human fatigue to evaluate disassembly efficiency and
used the bees algorithm to arrange tasks among humans and
robots [15]. Xu et al. (2021) considered the safety strategy and
disassembly time and used the improved discrete bees algorithm
to allocate disassembly tasks [21]. Their safety strategy is to

consider the location between human workers and robots. As a
human worker approaches the robot, the operation speed of the
robot will slow down to avoid robot accidents.

Although previous researchers considered different factors
when allocating tasks in human-robot collaboration, no study has
considered disassembly cost, disassembleability, and safety to
the best of our knowledge. Combining additional attributes and
considering the uncertainty are the primary contributions of this
study. We propose a new optimization-based disassembly
sequence planning by considering multiple attributes, including
disassembly cost, disassembleability, and safety. The study uses
a multi-attribute utility function to combine these different
attributes. Moreover, it considers the disassembly time as an
uncertain variable with a Beta probability distribution [22].
Besides disassembly cost (time), we also consider
disassembleability, which defines the robotic capability on
disassembly [19], [23], and the operator safety, which is modeled
by using the strain index [24].

The objective of the study is to find the optimal disassembly
sequence and allocate tasks between humans and robots. The
feasible disassembly sequences for a given product can be
presented in the form of a graph, as shown in Figure 1, for a
simple product with three components. Each path has different
costs, safety, and difficulty.
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Figure 1: A simple product with three components (a) and feasible
disassembly sequences (b).
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2. METHODOLOGY

This section describes different attributes that have been
considered in the objective function and the proposed
optimization model. The concept of a multi-attribute utility
function is used to integrate the three attributes.

2.1 Utility function

The three objectives considered in this study include
disassembly cost, disassembleability, and safety. The individual
utility functions of these three attributes have been integrated to
form the overall utility function as shown in Egs. (1)-(3). Ug;
shows the utility function of attribute a for disassembly task j,
and k, is the scaling constant for attribute a. The scaling
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constant K is determined using Eq. (2). The implementation
details can be found in Refs [25]-[27].
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The scaling constant K is found through Eq. (2). Since some
attributes such as disassembly time are uncertain, we have used
the expected utility instead of utility function U(y). If the
attribute is uncertain with the probability density function
f (y)The utility function will be calculated by Eq. (3) to use the
expected value. For details, see [25]-[27].

In addition, each attribute is normalized by min-max
normalization since the unit and range of each attribute are
different. Also, each attribute is utility independent of other
attributes. According to Clemen and Reilly, an attribute is utility
independent of another attribute, if preferences for uncertain
choices possessing different attribute levels are independent of
the values of another attribute [28]. For example, disassembly
cost and disassembleability are preferentially independent and
utility independent since, regardless of the value of disassembly
cost, the user always prefers lower complexity (higher
disassembleability) over higher complexity. Even in the case of
uncertain  choices  involving  different  values  of
disassembleability, the user’s preference among the uncertain
cases is independent of disassembly cost. We should note that the
concept of preferential independence and utility independence is
separate from how attributes are calculated.

2.2 Disassembly cost

The disassembly cost depends on the disassembly time
which is modeled as an uncertain variable. Fischer et al. (2005)
showed that the disassembly time could be well described as a
Beta distribution [22]:

{f(t) _Te+a (t - tL)P—l (tu - t)q—l Fustsn
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The t; and t; is the range of disassembly time, p,q are
shape parameters, and I' is the gamma function.

This study assumes that the cost and time have an
exponential function, as expressed in Eq. (6) since the higher
time results in more human fatigue, lower performance, and
higher opportunity costs. Glock et al. used exponential function
to describe human fatigue [29], and Potkonjak et al. introduced
robot fatigue and mentioned that fatigue quantification is often
assumed to be exponential [30].

Ci(t) = de® ©)

where C;(t) is the disassembly cost of task j with disassembly
time ¢, and d, and c are the constant parameters. The utility
function for disassembly cost has been considered as follows:

_ C'(t)_cmin 7
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where Cp 4, = detmex and C,,;,, = deCtmin (8)

The utility function of cost is normalized between 0 and 1.
Cax and Gy, are the maximum and minimum disassembly
costs. Given the uncertain disassembly time, the expected
disassembly cost is described as:
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2.3 Operator safety

Besides disassembly cost, operator safety is another
important attribute. The Strain Index (SI), proposed by Moore
and Garg in 1995 [24], is a well-known tool to evaluate the risk
of developing musculoskeletal disorders in distal upper
extremities, including the hand, wrist, forearm, and elbow. Given
that the e-waste disassembly task requires a lot of upper limb
movements, such as disconnecting cables and loosening screws,
the SI score is a suitable method to quantify human physical
stress in our study. The disassembly tasks are assigned to human
and robot based on SI scores to release human physical stress.

The SI score is determined based on the subjective ratings
of six task variables, including 1) intensity of exertion (IE), 2)
duration of exertion (DE), 3) efforts per minute (EM), 4)
hand/wrist posture (HWP), 5) speed of work (SW), and 6)
duration per day (DD). A multiplier is then assigned to each task
variable based on the ratings. Based on Moore and Garg [24], the
rating criteria of the six task variables and their corresponding
multipliers are summarized in Tables 1 and 2, respectively.
Finally, the SI score is computed by taking the product of the six
multipliers:

SI=IE’ X DE’ x EM’ x HWP' x SW’ x DD’ (11)

Table 1: The rating criterion of the six SI task variables [24].

Rating IE DE EM HWP SW DD
1 Light <10 <4 Yy Vey
good slow

2 Somewhat 1559 48  Good Slow 12
hard

3 Hard 30-49 9-14 Fair Fair 2-4

4 Very Hard  50-79 15-19 Bad Fast 4-8

5 Near > 80 90 Very Very =g
Maximal - - bad fast
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Table 2: The multipliers of the six SI task variables [24].
Rating IE° DE> EM’ HWP SwW’> DD’

1 1 0.5 0.5 1.0 1.0 0.25
2 1.0 1.0 1.0 1.0 0.50
3 6 1.5 1.5 1.5 1.0 0.75
4 9 2.0 2.0 2.0 1.5 1.00
5 13 3.0 3.0 3.0 2.0 1.50

2.4 Disassembleability

The third attribute considered for determining optimal
sequence is disassembleability. The disassembleability describes
the level of complexity of each disassembly task. Tasks with
lower disassembleability are not feasible for the robot. The
parameters describing disassembleability are introduced in [19],
[23] which include: 1) component size (CS), 2) component
weight (CW), 3) requirement of tools (T), 4) accessibility (AC),
5) component shape (CSH), 6) operation complexity (OC), 7)
positioning (P), and 8) operation force (OF). The scores of each
parameter are described in Table 3.

Table 3: The eight disassembleability parameters [19], [23].
CS Easily grasped

Moderately difficult to grasp 3.5
Difficult to grasp 4
CW  Light 2
Moderately heavy 2.2
Very heavy 2.4
T No tools required 1
Common tools required 2
Specialized tools required 3
AC Shallow and broad fastener recesses 1
Deep and narrow fastener recesses 1.6
Very deep and very narrow fastener recesses 2
CSH Symmetric 0.8
Semi-symmetric 1.2
Asymmetric 1.4
OC Low 1
Moderate 4.5
High 6.5
P No accuracy required 1.2
Some accuracy required 2
High accuracy required 5
OF Low 1
Moderate 2
High 4

The disassembleability score (DS) is computed by
summing up the eight parameters:

DS=CS+CW+T+AC+CSH+0C+P+0F (12)

According to [19], [23], if DS is higher than 14.2 or the
robot's capability, the tasks are assigned to the human worker
since they exceed the robot's capability. For example, if the
object is too small or too heavy, the robot cannot hold and locate
the position; therefore, those tasks are assigned to the human
worker.

2.5 The optimization-based disassembly sequence

planning framework for human-robot collaboration

The multi-attribute utility function U; shows the overall
utility of disassembly operation j, which incorporates the three
individual  utility = functions of  disassembly  cost,
disassembleability, and safety. U; will be used to formulate the
objective function of the optimization model. The objective is to
maximize the overall utility of the whole sequence. A binary
decision variable x; is defined to determine whether
disassembly operation j should be conducted or not. The safety
SI scores are used to assign each task to the human worker or
robot. Due to the high complexity and uncertainty, the tasks with
high DS values are given to the human worker. The index set,
decision variable, and model parameters are expressed as
follows:

Index set

i Feasible disassembly transition j (task)

The set of all feasible disassembly transitions
Attribute a

The set of all attributes

The set of all disassembly transitions going to
node n

The set of all disassembly transitions outgoing
from node n

The set of all feasible initial disassembly
transitions

The set of all feasible finial disassembly
transitions

~ Q ;wa&\

!

Decision Variables

X; Binary variable {0, 1} = {not performed,
performed} whether disassembly transition j is
performed.

a; Binary variable {0, 1} = {performed by robot,

performed by human} whether disassembly
transition j is performed by robot or human.

Parameters

Ug,j The single utility function of attribute a for
transition j

E[U(Cr)] The expected disassembly cost of a robot

E[U(Cy;)] The expected disassembly cost of human

workers
kg The scaling constant (a value between 0 to 1)
K The overall scaling constant (between 0 to 1)
ST, DT The threshold of SI scores and DS
M A large enough number. Ex. 101°
Yj Binary variable {0, 1}

The proposed optimization model for disassembly sequence
planning is expressed as:
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Max Z%{H[Kkaua,j +1] - 1}xj (13)

JEJ aes
Subject to:

Upj = (1= a)E[U(C,)] + ¢E[U(Cy )] (14)
Uy = (15)

Shnax = Shnin
Us, = _DSmax = DS; (16)

' DSimax = DSmin
(1-q;) - (DT —DS;) =0 17)
M(1—-y;) = (DT - DS;) (18)
a;(ST—SI[)+M-y; >0 (19)
Yjer%; = 1 (initial node) (20)
Yjem, Xj = Ljeo, X; (transit nodes) (21)
YjerXj = 1 (target node) (22)
Ugj €{Us;, Uz, Usj} (23)
0<Ug; <1 VaVvj 24)

Eq. (14) shows the expected disassembly cost of the human
worker and robot can be derived from Eq. (9). Egs. (15) and (16)
reflect each task's SI scores and DS normalizing between 0 and
1. Eq. (17) to (19) is a set of inequalities representing an if-then
statement when solving the task assignment between human and
robot. When the task has high safety and high disassembleability,
it can be assigned to either robot or human; if the expected
disassembly cost of the robot is less than the expected
disassembly cost of the human worker, the a; will be 0. In
addition, the SI scores and DS also determine the @; based on
the condition of safety and disassembleability.

3. CASE STUDY

The study uses data collected from the disassembly of a Dell
desktop computer as a case study.

Three main components are targeted for disassembly (as
shown in Figure 2a), i.e., component A - heatsink assembly,
component B - optical disc drive & hard drive assembly, and
component C - memory module. The heatsink assembly, as
illustrated in Figure 2b, is made up of a fan shroud (Al) and a
heat sink (A2), whereas component B consists of an optical disc
drive (B1) and a hard drive (B2).

The number of possible disassembly sequences of the three
components could be understood as a permutation problem, i.e.,
there are six permutations of the set {A, B, C}, namely (A, B,
0), (A,C,B), (B,A, C),(B,C,A), (C,A,B),and (C, B, A).

(a) (b)

Figure 2: The desktop components targeted for disassembly.

All six possible sequences are verified to be feasible in our
pilot tests. However, the removal of sub-assemblies had to be in
specific orders due to physical constraints. Specifically, to
remove the heatsink assembly (A) from the computer, the fan
shroud (A1) had to be removed before the heat sink (A2) so that
the cable of A2 could be disconnected from the system board.
Similarly, to remove component B from the computer, one had
to remove the optical disc drive (B1) first to get access to the
hard drive (B2). Figure 4 shows the possible disassemble
sequences.

To evaluate the SI and DS scores, a participant was tasked
with removing the heatsink assembly, the optical disc drive, the
hard drive, and the memory module from the desktop computer.
Adequate training was given to the participant before the formal
data collection. The manufacturer’s service manual guided the
disassembly procedure. The participant was videotaped during
the data collection, performing the disassembly task. After the
task was accomplished, the participant was interviewed about
their subjective rating of force-related variables, i.e., IE of ST and
OF of DI, for every work element. The disassembly of each
component is composed of different tasks as shown in Table 4.

Two researchers independently analyzed the video taken
during the data collection to obtain the remaining variables.
Instead of computing the SI score for the entire job, SI scores for
every work task were calculated in the study to validate our
optimization model. Furthermore, a default rating value of 4 was
assigned to DD, representing a worker performing a given task
for 4-8 h [31].

Table 5 shows the disassembly time for human and robot. In
this example, the lower bound of disassembly time, t; for
human is determined from experiments. The upper bound of
disassembly time for human, t;;, and disassembly times of robot
are assumed.

The disassembly time by the robot is assumed to be greater
than human due to the current software and hardware limitations
of the robots in handling disassembly tasks. The robotic
technology for disassembly tasks is not well developed, and most
disassembly operations are still conducted manually, so we
assume a higher operation time for robots to handle tasks. This
may change in the future with more advancements in robotics.
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Table 4: The disassembly tasks of each component.

Component Task Action

1 Push away the two release handles while lifting the fan shroud upward and off the computer
Remove Heatsink Assembly (A) (For paths  J2 Disconnect the fan cable (with clip) from the system board.
1to 6) J3 Loosen the captive screws (x4).

J4 Lift the heat sink assembly and remove it from the computer.

J5 Disconnect the data cable from the back of the optical drive.

J6 Disconnect the power cable from the back of the optical drive.

Remove Optical Disc Drive & Hard Drive
Assembly (B) (For paths 1 to 6)

7 Lift the tab and slide the optical drive out.
J8 Disconnect the data cable from the back of the optical drive.
19 Disconnect the power cable from the back of the optical drive.

J10 Slide the blue drive-cage handle toward the unlocking position.
J11 Lift the hard drive cage from the computer.

Remove RAM (C) (For paths 1 & 2, J12 Press down on the memory retaining tabs on each side of the memory module.
Remove C after removing A and B) J13 Lift the memory module out of the connectors on the system board.
Remove RAM (C) (For paths 3 & 4, J14 Press down on the memory retaining tabs on each side of the memory module.
Remove C between A and B) J15 Lift the memory module out of the connectors on the system board.
Remove RAM (C) (For paths 5 & 6, J16 Press down on the memory retaining tabs on each side of the memory module.
Remove C before removing A and B) J17 Lift the memory module out of the connectors on the system board.

Table 5: The disassembly time by human and robot.

Human worker Robot
Task ty ty t) ty
J1 3 8 4 9
2 3 8 11 16
3 53 58 87 92
J4 2 7 3 8
J5 3 8 11 16
J6 3 8 11 16
17 3 8 4 9
J8 3 8 15 20
J9 3 8 15 20
J10 2 7 3 8
J11 4 9 5 10
J12 3 8 8 13
J13 2 7 3 8
J14 3 8 9 14
J15 2 7 3 8
J16 4 9 16 21
J17 2 7 6 11

Table 6 summarizes the SI scores and DS for each task.
While the component A removal and component B removal of SI
scores and DS are the same in each possible disassembly
sequence planning, the disassembly of component C was highly
dependent on the disassembly order of component A removal and
component B removal.

As shown in Figure 2a, if component C is removed before B
and A, the limited space could negatively impact variables such
as HWP of SI scores and AC and P of DS. Moreover, poor
hand/wrist posture and accessibility made the force exertion
more difficult, increasing the subjective ratings of IE of SI and
of DS. Consequently, the SI scores and DS are higher when
component C was removed before A and B, performing tasks J16
and J17, and they dropped if A or B was removed before C,
performing tasks J12 and J13.

Table 6: The results of SI scores and DS for each task.
Task SI scores DS Task SI scores DS

J1 9 11.2 110 9 12
J2 18 163  J11 18 12
I3 13.5 198  J12 9 15.3
J4 9 10 J13 9 10.8
J5 40.5 163 J14 13.5 15.9
Jo 40.5 163 J15 13.5 11.4
7 9 10.8  J16 54 17.3
J8 54 173 117 18 14.8
J9 54 17.3

Regarding input parameters, the parameter d in disassembly
cost for human and robot is assumed to be 5 and 2, respectively,
and parameter ¢ is 0.01 in Eq. (6). Due to this study's limited time
and scope, we run each disassembly operation only once;
however, one experiment is not enough to obtain the exact shape
of the distribution function. In practice, comprehensive data
collection is needed to experimentally gather disassembly time,
fit the proper distribution, and estimate the parameters of the
distribution functions. The relation between disassembly cost
and time is plotted in Figure 3.

—Human worker
---Robot

580.01t

Disassembly cost C(t)

Disassembly time (t)
Figure 3: The disassembly cost of human and robot.
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The robot costs less than the human worker due to its
capability in handling long-term monotonous, repetitive tasks
[15], [16]. Also, the scaling constants K, k;, k,, and ks are
considered as 1.68, 0.17, 0.3, 0.23. According to Table 6, the
tasks with SI scores higher than 18 are assigned to the robot to
reduce musculoskeletal disorders damage to the human worker.

4. RESULTS AND DISCUSSIONS

This section shows the results of the work assignments
between human and robot for the case of disassembling a Dell
desktop computer. In addition, several sensitivity analyses on
parameters (d and ¢) of the cost function have been conducted.

4.1 The Optimal disassembly sequence for the

desktop components

The utility of each attribute and the task assignment among
human and robot is shown in Table 7. Some utilities are 0 due to
normalization. These tasks reflect either a high SI or high DS
score. For example, U;; of task J3 equals 0, meaning this task
has high values of DS that the robot cannot implement. The
action of J3 is to loosen the captive four screws. This task needs
high positioning with these small object screws with high
complexity and uncertainty. Thus, the task is assigned to the
human worker. Some tasks are decided by expected cost when
the tasks have low SI scores and high disassembleability. For
example, task J4 is to lift the heat sink assembly and remove it
from the computer with low SI scores and low DS. The task is
assigned to the robot due to cost-efficiency. Although the robot's
disassembly time is higher than that of human workers, the
expected disassembly cost of the robot is less than the expected
disassembly cost of humans, as previously discussed in Figure 3.
However, tasks with high ST and DS scores, for example, J9, are
assigned to the human worker. Although task J9 has a safety

issue, it is still assigned to humans due to the high operational
complexity and infeasibility.

Table 7: The results of multi-attribute utilities and overall utility for
each task (R: robot; H: human worker).

Overall Work
Utility U;  Assign
J1 0.98 1.00 0.88 0.94
J2 0.97 0.80 0.36 0.62
I3 0.08 090 0.00 0.29
J4 0.99 1.00 1.00 1.00
J5 0.97 030 0.36 0.40
J6 0.97 030 0.36 0.40
17 0.98 1.00 0.92 0.96
J8 0.97 0.00 0.26 0.24
19 0.97 0.00 0.26 0.24
J10 0.99 1.00 0.80 0.90
J11 0.97 0.80 0.80 0.80
J12 0.97 1.00 0.46 0.75
J13 0.99 1.00 0.92 0.96
J14 0.97 090 0.40 0.68
J15 0.99 090 0.86 0.88
J16 0.95 0.00 0.26 0.24
J17 0.98 0.80 0.51 0.68

Task Ul,j UZ,] U3’]-

eofeo il iR Bl R ol e Bl e

Figure 5 shows the optimal sequence. Paths 1-2-8-14 and 1-
3-9-14 have the same overall utilities, 8.49, so either path is
optimum. The difference between them is that path 1-2-8-14
removes component A before B, and path 1-3-9-14 removes B
before A. Paths 1-4-10-14 and 1-5-11-14 have the same utility,
8.34. Both paths remove component C after A or B. Paths 1-6-
12-14 and 1-7-13-14 have the lowest utility of 7.70 since
component C is removed first in both paths with limited space.

Remove B

Remove A
1

;Path :A>B->C

Root node: A+B+C

Figure 4: The three possible disassemble sequences for components A (heatsink assembly), B (optical disc drive & hard drive assembly), and
C (memory module)
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Figure 5: The summary of feasible and optimal disassembly paths.

4.2 Sensitivity analysis of the cost function
Three different conditions of the cost function are discussed
by considering different combinations of parameters d and c. The
cost function of the human worker is the same as in the previous
section, with parameters d =5 and ¢ = 0.01. Figures 6 to 8 show
the three different conditions for the robot cost function.
—Human worker -7
- -Robot (d = 3, ¢ =0.01) 72001
--Robot (d=0.01, ¢ =-0.000001) -7
—-Robot (d=7,¢c=10.01) =T
— Robot (d=20,c= 0.1’)_, -

0 010—0.00000“

Disassembly cost C (t)

Disassembly time (t)

Figure 6: Condition 1: The robot cost function is either higher or
lower than that of the human worker.
—Human worker ! i ! /

--Robot (d=1,¢=0.015) | | ! /
—-Robot (d=1,c=0.02) | | ! !
- Robot(d=1,c=0.025){ | ! /
~Robot (d=1,¢=0.03) { [ 00850 /

---Robot (d = 1, ¢ = 0.035)/

160.0351?,"

Disassembly cost C (t)

e ===

Disassembly time (t)

Figure 7: Condition 2: the robot cost function is lower than the
human worker at the beginning and higher at the end.
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Figure 8: Condition 3: The cost function of the robot is higher than
the human worker at the beginning and lower at the end.

In the first condition, the cost of the robot is either higher or
lower than the human worker; in the second condition, the cost
of the robot is lower than the human worker at the beginning but
will be higher than human worker as the disassembly time
increases; The third condition is the opposite of the second
condition.

Table 8 summarizes the results of these three conditions for
the work assignments between human and robot. In condition 1,
when the parameters change slightly and the robot cost function
is close to the human, the results are the same as in the previous
section. However, the work assignments will change when the
cost function deviates from humans. In condition 2, the work
assignments are changed from the human worker to the robot as
the parameter ¢ increases. In condition 3, the work assignments
are switched from robot to human as the parameter ¢ decreases.

In reality, the cost function may vary from one case to
another depending on the type of products, robots, and factory
configurations. When estimating the operating cost of a robot,
various factors should be considered, such as procurement cost,
utilization rate, the efficiency of scheduling, tooling, and setup
time. More accurate cost functions should incorporate these
factors.

5. CONCLUSION

The study proposes a new optimization-based disassembly
sequence planning framework for human-robot collaboration. It
uses the multi-attribute theory to combine three attributes
namely disassembly cost, disassembleability, and safety to
determine the optimal disassembly sequence. The disassembly
cost is modeled as an uncertain variable with a beta probability
distribution. The safety and disassembleability are modeled
using SI and DS scores. The model determines the task
assignments among human and robot and determines the optimal
disassembly sequence. An example of a desktop computer is
used to show the application of the proposed model. In addition,
a sensitivity analysis of the robot cost function is discussed.
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Table 8: The work assignment results of the three sensitivity analysis conditions (R: robot; H: human worker).

Condition 1 Condition 2 Condition 3
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