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Randomized singular value decomposition (RSVD) is by now a well-established technique for efficiently
computing an approximate singular value decomposition of a matrix. Building on the ideas that underpin
RSVD, the recently proposed algorithm “randUTV” computes a full factorization of a given matrix that pro-
vides low-rank approximations with near-optimal error. Because the bulk of RANDUTV is cast in terms of
communication-efficient operations such as matrix-matrix multiplication and unpivoted QR factorizations,
it is faster than competing rank-revealing factorization methods such as column-pivoted QR in most high-
performance computational settings. In this article, optimized RANDUTV implementations are presented for
both shared-memory and distributed-memory computing environments. For shared memory, RANDUTV is
redesigned in terms of an algorithm-by-blocks that, together with a runtime task scheduler, eliminates bottle-
necks from data synchronization points to achieve acceleration over the standard blocked algorithmbased on a
purely fork-join approach. The distributed-memory implementation is based on the ScaLAPACK library. The
performance of our new codes compares favorably with competing factorizations available on both shared-
memory and distributed-memory architectures.
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1 INTRODUCTION

Computational linear algebra faces significant challenges as high-performance computing moves
further away from the serial into the parallel. Classical algorithms were designed to minimize
the number of floating point operations and do not always lead to optimal performance on mod-
ern communication-bound architectures. The obstacle is particularly apparent in the area of rank-
revealing matrix factorizations. Traditional techniques based on column-pivoted QR factorizations
or Krylov methods tend to make efficient parallelization challenging, as they are most naturally
viewed as a sequence of matrix-vector operations.

In this article, we describe techniques for efficient implementations of a randomized algorithm
for computing a so-called rank-revealing UTV decomposition [24] (RANDUTV from now on) on
shared- and distributed-memory architectures. Given an input matrix A of size m X n, the goal of
RANDUTV is to compute a factorization

A = U T Vv,
mxn mxXm mXn nXn

(1)

where the middle factor T is upper triangular (or upper trapezoidal in the case of m < n) and the
left and right factors U, V are orthogonal. The factorization is rank-revealing in the sense that

JA=U(,1:k)T(1:k,:)V*|| ~ inf{||A — B|| : B has rank k}. (2)

In a factorization resulting from RANDUTV, the middle matrix T often has elements above the diag-
onal that are very small in modulus, which means that the diagonal entries of T become excellent
approximations to the singular values of A. This type of factorization becomes useful for solving
tasks such as low-rank approximation, determining bases for approximations to the fundamental
subspaces of A, solving ill-conditioned or over-/under-determined linear systems in a least-square
sense, and estimating the singular values of A.

The randomized algorithm RANDUTYV that we describe and implement features the following
characteristics that in many environments make it preferable to classical rank-revealing factoriza-
tions such as column-pivoted QR (CPQR) and the singular value decomposition (SVD).

e The use of randomization in the algorithm is risk free in the sense that the computed matrices
U, T, and V necessarily satisfy (1), up to machine precision. The randomness in the algorithm
impacts only the question of how close to optimal (1) is at revealing the numerical rank.
That it to high probability reveals the rank almost as well as the SVD, and far better than
traditional CPQR, is well supported by both theoretical analysis and extensive numerical
experiments; we refer the interested reader to [24], and in particular to Figures 6-10.

e It casts most of its operations in terms of matrix-matrix multiplications, which are highly
efficient in parallel computing environments. It was demonstrated in [24] that a straight-
forward blocked implementation of RANDUTV executes faster than even highly optimized
implementations of CPQR in symmetric multiprocessing (SMP) systems. In this manuscript,
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we present an implementation that improves on the performances in [24] for SMP and ob-
tains similar findings for distributed-memory architectures.

e The factorization is built incrementally and can be halted once a specified tolerance has been
met. To be precise, if the execution halts once the top k rows of T have been constructed,
only O(mnk) flops will have been expended.

In this article, we present two efficient implementations for computing the RANDUTYV factoriza-
tion: the first is for shared-memory machines and the second is for distributed-memory machines.
Regarding shared-memory architectures, a previous work [24] proposed a blocked algorithm in
which parallelism was extracted on a per-task basis, relying on parallel BLAS implementations
and, hence, following a fork-join parallel execution model. Here, we propose a novel algorithm-
by-blocks [31], in which sequential tasks are dynamically added to a Directed Acyclic Graph (DAG)
and executed by means of a runtime task scheduler (1ibflame’s SuperMatrix [7]). This approach
enhances performance by mitigating the effects of the inherent synchronization points in fork-join
models and has shown its potential in other linear algebra implementations [8]. In addition, given
the recent improvements in terms of performance of modern SVD implementations (e.g., in Intel
MKL), we show how runtime-based implementations of RANDUTYV are still on par with them in
terms of performance. Regarding our second proposal, it is the first time a distributed-memory
version of RANDUTV is presented in the literature. Performance results reveal excellent scalability
compared with state-of-the-art distributed-memory implementations.

The main contributions of this article compared with the state-of-the-art are as follows.

(1) We propose a novel algorithm-by-blocks for computing the RANDUTV factorization that
maximizes performance at no programmability cost.

(2) We have integrated our solution with an existing task-based software infrastructure
(libflame SuperMatrix), providing an out-of-the-box implementation based on tasks for
RANDUTV.

(3) On shared-memory architectures, we provide a detailed study of the optimal block sizes com-
pared with a parallel-BLAS-based solution and report qualitative and quantitative differences
between them that can be of interest for the community. Similarly, we have carried out a de-
tailed performance and scalability study on two highly parallel shared-memory machines.

(4) Performance results reveal the benefits of the algorithm-by-blocks compared with the blocked
algorithm on our target testbed, yielding performance improvements between 1.73X and
2.54x for the largest tested matrices. Accelerations compared with proprietary MKL SVD im-
plementations also reveal substantial performance gains, with improvements up to 3.65x for
selected cases, and, in general, in all cases that involve relatively large matrices (n > 4,000)

(5) On distributed-memory architectures, the comparison in terms of execution time with
ScaLAPACK SVD, ScaLAPACK CPQR, and PLiC CPQR reveal consistent performance gains
ranging from 2.8X to 6.6X, and an excellent scalability on the tested platforms.

(6) On distributed-memory architectures, we provide a detailed performance study regarding
block sizes, grid sizes, threads per process, and more, on several nodes.

The article is structured as follows: Section 2 introduces our notation and briefly reviews
relevant concepts. In Section 3, we familiarize the reader with the RANDUTV algorithm that
was recently described in [24]. Sections 4 and 5 describe the shared- and distributed-memory
implementations that form the main contribution of this article. In Section 6, we present numerical
results that compare our implementations to highly optimized implementations of competing
factorizations. Section 7 summarizes the key findings and outlines some possibilities for further
improvements and extensions.
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2 PRELIMINARIES

We use the notation A € R™*" to specify that A is an m X n matrix with real entries. An orthogonal

matrix is a square matrix whose column vectors each have a unit norm and are pairwise orthogonal.

0i(A) represents the i-th singular value of A, and inf(A) = min{c;(A)}. The default norm || - || is
1

the spectral norm. We also use the standard matrix indexing notation A(c : d, e : f) to denote the
submatrix of A consisting of the entries in the c-th through d-th rows of the e-th through f-th
columns.

2.1 The Singular Value Decomposition (SVD)

Let A € R™" and p = min(m, n). It is well known [17, 34, 37] that any matrix A admits an SVD of
the form
A = U ) v,
mxn mxm mXn nXn
where U and V are orthogonal and ¥ is diagonal. We may also speak of the economic SVD of A,
given by
A = U 2 v,
mXn mXxXp pXp pXn
in which case U and V are not necessarily orthogonal (because they are not square), but their
columns remain orthonormal. The diagonal elements of ¥ are the singular values {o; }le of A.
These are ordered so that 0y > 03 > -+ > 051 2 0, 2 0. The columns u; and v; of U and V are
called the left and right singular vectors, respectively, of A.
A key fact about the SVD is that it provides theoretically optimal rank-k approximations to A.
Specifically, the Eckart-Young-Mirsky Theorem [14, 28] states that given the SVD of a matrix A as
described earlier and a fixed 1 < k < p, we have that

JA-=U(G,1:k)2(1:k,1:k)(V(:,1:k))*|| =inf{|]]A — B|| : B has rank k}.

A corollary of this result is that the subspaces spanned by the leading k left and right singular
vectors of A provide the optimal rank-k approximations to the column and row spaces, respectively,
of A. For instance, if P is the orthogonal projection onto the subspace spanned by the left singular
vectors of A, then PA = U(;,1 : k)X(1 : k,1 : k)(V(:,1 : k))*; thus, ||A — PA|| = inf{||A - B|| :
B has rank k}.

2.2 The QR Decomposition
Given a matrix A € R™"  let p = min(m, n). A QR decomposition of A is given by

A = 0 R,
mXn mXm mXn

where Q is orthogonal and R is upper triangular. If m > n, then any QR can be reduced to the
“economic” QR
A = Q R.
mxn mxXn nxn

The standard algorithm for computing a QR factorization relies on Householder reflectors (HQR).
A full discussion of the HQR algorithm can be found in [17, 34, 37]. To compute the factorization of
the matrix A, p Householder transformations must be computed and applied, where each House-
holder reflector has the following structure: H = I — rovv*. The outputs of HQR are an upper
triangular matrix R of the QR factorization, a unit lower triangular matrix V€ R™*? and a vector
t € R?. The matrix V stores the “Householder vectors” v; and the vector t stores the 7; values. The

ACM Transactions on Mathematical Software, Vol. 48, No. 2, Article 21. Publication date: May 2022.



Efficient Algorithms for Computing a Rank-Revealing UTV Factorization 21:5

Householder vectors v; and the scalar values 7; can be used to cheaply build or apply Q or Q* (see
Section 2.3). In this article, we make critical use of the fact that for m > n, the leading p columns
of Q form an orthonormal basis for the column space of A.

2.3 Compact WY Representation of Collections of Householder Reflectors

Let b, 0 < b < p be an integer which we will call the block size, let A € R™*", and let
H;, i=1,...,bbe Householder transformations. As a Householder transformation has the struc-
ture H; = I-r7;v;v}, an efficient application of it to a matrix A can be done with just a matrix-vector
product and a rank-1 update instead of a matrix-matrix product. Obviously, if the b Householder
transformations H; are applied one after another, the computation requires O(bmn) flops overall.
However, both operations (the product and the rank-1 update) are matrix-vector based; therefore,
they do not yield high performance on modern architectures.

If b Householder transformations must be applied, the product H = HyHp_; - - - HyH; may be
expressed in the form

H=I1-WSW",

where W € R™? is lower trapezoidal and S € R?? is upper triangular. This reformulation of the
product of Householder matrices is called the compact WY representation [33]. If the Householder
transformations H; are known, matrices W and S of the compact WY are inexpensive to compute.
Matrix W just comprises the Householder vectors v;, and matrix S can be cheaply computed from
the Householder vectors v; (or W) and the 7; values.

This expression can be used to build the product HA:

HA=A-WSW*A.

The computational cost of this formula is about the same. However, in this case, only matrix-
matrix operations are employed (once S is built). Since on modern architectures matrix-matrix
operations are usually much more efficient than matrix-vector operations, this approach will
yield higher performance. Recall that, due to the existence of cache memories and a much larger
flop-to-memory access ratio, the average cost in time of one flop (floating-point operation) in a
matrix-matrix operation is usually much smaller (several times) than the average cost of a flop in
a matrix-vector operation.

3 THE UTV FACTORIZATION

In this section, we discuss the rank-revealing UTV matrix factorization, establishing its usefulness
in computational linear algebra and reviewing efficient algorithms for its computation. In Sec-
tion 3.1, we review the classical UTV matrix decomposition, summarizing its benefits over other
standard decompositions, such as column-pivoted QR and SVD. In Section 3.2, we summarize a
recent work [24] that proposes a randomized blocked algorithm for computing this factorization.

3.1 The Classical UTV Factorization
Let A € R™" and set p = min(m, n). A UTV decomposition of A is any factorization of the form
A = U T Ve,
mxn mxm mXn nxn

()

where T is triangular and U and V are both orthogonal. In this article, we take T to be upper trian-
gular, which is typically the more convenient choice when m > n. It is often desirable to compute
a rank-revealing UTV (RRUTV) decomposition. For any 1 < k < p, consider the partitioning of T

Ty | Tiz
T — s 4
( Ty | T ) @
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where Ti; is k X k. We informally say that a UTV factorization is rank-revealing if

(1) inf(T1;) = ox(A),
() [ITo2ll = o41(A).

The flexibility of the factors in a UTV decomposition renders certain advantages over other
canonical forms, such as CPQR and SVD (note that each of these are special cases of UTV fac-
torizations). Since the right factor in CPQR is restricted to a permutation matrix, UTV has more
freedom to provide better low-rank and subspace approximations. Also, since UTV does not have
SVD’s restriction of diagonality on the middle factor, the UTV is less expensive to compute and
has more efficient methods for updating and downdating (e.g., see [3, 15, 29, 35, 36]).

3.2 The RANDUTYV Algorithm

In [24], a new algorithm called RANDUTV was proposed for computing an RRUTV factorization.
RANDUTYV is designed to parallelize well, enhancing the RRUTVs viability as a competitor to both
CPQR and SVD for a wide class of problem types. It yields low-rank approximations that are com-
parable to SVD in terms of optimality, while its computational speed is similar to that of CPQR. In
fact, as we will demonstrate, our new implementations of randUTV are often significantly faster
than state-of-the-art algorithms for computing the CPQR. Unlike classical methods for building
SVDs and RRUTVs, RANDUTV processes the input matrix by blocks of b contiguous columns.
RANDUTYV shares the advantage of CPQR in that the factorization is computed incrementally and
may be stopped early to incur an overall cost of O(mnk), where k is the rank of the computed
factorization.

The driving idea behind the structure of the RANDUTV algorithm is to build the middle factor T
with a right-looking approach, that is, in each iteration multiple columns of T (a block column) are
obtained simultaneously and only the right part of T is accessed. To illustrate, consider an input
matrix A € R™" and let p = min(m, n). A block size parameter b with 1 < b < p must be chosen
before RANDUTYV begins. For simplicity, assume that b divides p evenly. The algorithm begins by
initializing T® := A. Then, the bulk of the work is done in a loop requiring p/b steps. In the i-th
step (starting at 0), a new matrix T(*1 is computed with

TG o= (@) Oy

for some orthogonal matrices U® and V(. U® and V® are chosen such that:

e the leading (i + 1)b columns of T(*) are upper triangular with i + 1 diagonal blocks of
dimension b X b on the main diagonal.

e using the partitioning in Equation (4) to define Tl(:ﬂ) and Tz(;l), we have that inf (Tl(liﬂ)) ~
ok (A) and [TV || & gy (A) for 1 < k < (i + 1)b.

o T (k, k) ~ op(A) for 1 < k < (i + 1)b.

An example of the sparsity patterns for T as the algorithm advances is shown in Figure 1. As can
be seen, after each iteration, most of the “mass” or “norm” of the rest of the matrix (the bottom-
right part) is moved to the current diagonal block: a large part of the “mass” of the elements in
the bottom-right part of the matrix is moved to the current block column, the elements below the
diagonal of the current block column are nullified, and the current diagonal block is diagonalized.

Once T is upper triangular, U and V can then be built in the following way:

V= vOyW . ye/b-l) .= gOuy® .. ye/e-n),

ACM Transactions on Mathematical Software, Vol. 48, No. 2, Article 21. Publication date: May 2022.



Efficient Algorithms for Computing a Rank-Revealing UTV Factorization 21:7

NP PP PP PP ol .. " N
© o o|0 o 00 0 0|0 o o o o e o L] o oo
© o o|0 o 00 0 0|0 o o o o e o (] o oo
e o 0|0 o 0o (0 0 0|0 o o o o e o . o oo
After 0 steps: After 1 step: After 2 steps:

7O .— A T .= (U©@)*1O (0 7@ = (UW)y=TMy )

Fig. 1. An illustration of the sparsity pattern after the first three T have been computed for randUTV if
n =12,b = 3. randUTV continues until the entirety of T s upper triangular. A blank represents a nullified
element and the size of the dot represents an approximation of the absolute value of the element.

In practice, both V() and U are constructed in two separate stages and applied to T at
different points in the algorithm. We will henceforth refer to these matrices as v, UO((') and V’fl),

U/(;) for the first and second stages, respectively. First, VO(,i) is employed to move most of the “mass”

of the rest of the matrix (the bottom-right part) to the current block column. Then, Uo(f) is employed
to nullify all elements below the main diagonal (moving all of the “mass” of the current block
column below the main diagonal to the diagonal block), and then Vﬂ(i) and U;) are employed
to diagonalize the current diagonal block. Also, just one T matrix is stored, whose contents are
overwritten with the new TU*V at each step. Similarly, in case the matrices U and V are required
to be formed, only one matrix U and one matrix V would be stored. Therefore, the outline for
RANDUTYV is the following:

(1) Initialize T := A, V:=1, U :=1.
(2) fori=0,...,b/p—-1:
(i) Build V"),
(ii) Update Tand V: T « TV, V « VvV,
(iii) Build U".
(iv) Update T and U: T « (Uv(,i))*T, U« UUO(,i).
(v) Build Vﬂ(i) and U"Ei) simultaneously.
(vi) Update T, V, and U: T — (U;;")*TV("), Vo VV;), U UU;;).

The complete algorithm written with the FLAME methodology/notation is presented in Figure 2.
Given an m X n matrix A, this algorithm computes its UTV factorization A = UTV™*. The two
input parameters build_U and build_V are Boolean variables that indicate whether the orthogonal
matrices U and V must be built. The other input parameters q and b are the number of steps of
the power iteration process and the block size, respectively. In this algorithm, the unPIvoTED_QR
function computes the unpivoted QR factorization of the input parameter and returns the following
three results: the upper triangular factor R, the matrix with the Householder vectors, and the
upper triangular factor S of the compact WY representation. The SVD function computes the SVD
factorization of the input parameter and returns the following three results: the singular values in
the diagonal of the first output and the two orthogonal matrices U and V.

Next, the computation of the four transformations Vogi), Uu([i), V'B(i), and U’Ei) previously mentioned
is described in detail. In each case, we indicate the correspondence between each transformation
and the part of the above algorithm in which it is computed.
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21:8 N. Heavner et al.

Algorithm: [U, T, V] := RanDUTV (A, build_U, build_V, g, b)
T:=A

if (build_U)) then U := eYE( m(A), m(A))

if (build_V ) then V := eYE(n(A), n(A))

%I%) ,if (build_U) then U — (ULlUR),if(build7V)then V- (VL|VR)

where Ty is 0 X 0, Ug, has 0 columns, Vi, has 0 columns

Partition T —

while m(Trp) < m(A) do

Determine block size b = min(b, n(TgRr))
Repartition

Trs | Tre Too | To1 | Toz
To | 75 = Tio )T |Ti2 |
R Too | To1 | Ta2

if (build U) then (UL |Ug ) = (U |U1 U2 ), if (build V) then (Ve |V ) = (Vo Va|v2 )
where Ty is b X b, V] has b rows, U; has b rows

// Step 1. Reduction of the mass of T2 and Ty,

1. G ‘= GENERATE_IID_STDNORM_MATRIX(m(A) — m(Ty), b)
9 v — ((T11‘T12 )*(Tn Ty ))q(Tn‘le )*G

’ Tt | Tz To1 | Tz2 Tt | Toz
3. [Y, Wy, Sy ] = UNPIVOTED_QR(Y)

T | Ti2 Tiy | Ti2 Ty le)
4 4’7 = 4’7 — (22 ) e s
(T21 Tzz) (T21 Tzz) (T21 T ) VUV

5. if (build V) then (Vi[V; ) (vilvz)-(w|ve ) wysvwy

// Step 2. Annihilation of the strictly lower part of T1; and all of T;

6. [ (ﬁ) Wy, Sul ‘= UNPIVOTED_QR ((ﬁ))
T21 T21
Tio T, P
7. e = 2 - Wy St W [—=
(Tzz) (Tzz) vou U(Tzz)
5. if(buld Uthen (U1[02) = (Ui|G)-(Ui|U2 ) Wusuwy

// Step 3. Diagonalization of Tj;

9. [T, Us, Vsl = SVD(Tu)
10. T01 = T01 VS
11. le = U; le
12. if (build_U ) then U; = U Us
13. if (build V) then V; = Vi Vs

Continue with

Too | To1 | Toz
T T
(TTL TTR —| Two|Tu T2 |
BL12BR Tao | T21 | Ta2

if (build_U) then (ULlUR)H(Ug‘Ulle),if(build_V)then (VL|VR)H(VO‘V1|VZ)

endwhile

Fig. 2. The randUTV algorithm written with the FLAME methodology/notation. In this algorithm, the un-
pIvoTED_QR function returns three results: the upper triangular factor R, the matrix with the Householder
vectors, and the upper triangular factor T of the compact WY representation. The SVD function also returns
three results: the diagonal and the orthogonal matrices U and V.
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3.2.1 Building Véi). This transformation is constructed and applied to maximize the rank-
revealing properties of the final factorization. Specifically, consider the following partitioning at

step i of both matrices T and VO((i):

T—>( Trr | Trr ) Vo(ci)_> I l_O ,
Tor | Tp 0] (Va)sr
where the top left (TL) block of each partition is (i + 1)b X (i + 1)b and, hence, the top left part of

T represents the part already computed. Then, V,)(,i) is constructed such that the leading b columns

of (Vggi)) sr form an orthonormal approximate basis for the leading b right singular vectors of Tpg.
An efficient method for such a construction has been developed recently (e.g., see [20, 25-27, 32])

using ideas in random matrix theory. Vo(,i) is built as follows:

(1) Draw a thin Gaussian random matrix G() € R(m=10)xb,

(2) Compute Y := ((Tgr)*Tsr)? (Tzr)*G" for some small integer g.

(3) Perform the unpivoted QR factorization of Y@ to obtain an orthogonal 0 and upper trian-

gular R¥) such that Y = QOR®),

(4) Set (Vg")sr := Q1.

The parameter g, often called the “power iteration” parameter, determines the accuracy of the
approximate basis found in (V,,((i)) BR- Thus, raising q improves the rank-revealing properties of the
resulting factorization but also increases the computational cost. Since raising g too high can also
cause numerical overflow, in practice it is chosen to be small (g = 0, 1,2 are typical). For more
details, see [20].

The computation and application of the transformation v s performed in Step 1 of the
RANDUTV algorithm presented in Figure 2. This step comprises five sentences or lines labeled
from 1 to 5. Sentences 1 and 2 perform the “power iteration” process. Sentence 3 computes the or-
thogonal matrix Vo(,i). Sentences 4 and 5 apply this transformation to the output matrices T and V,
respectively. For reasons of efficiency in the application of the transformation, VD({i) is not explicitly
computed. Instead, the UNPIVOTED_QR returns factors Wy and Sy such that VD((i) =1-WySyWy

since these two factors allow application of v very efficiently.

3.2.2 Building Ug(f). This transformation is constructed and applied to satisfy both the rank-
revealing and upper triangular requirements of the RRUTV. Consider the following partitioning

at step i of both matrices T and Uo(,i):

Trr | Trr (i) I 0
T — , Uy’ — 7 s Tpr—=> (T | T2 ),
( TsL | Tar @ 0 | (U BR ( 1 ‘ 2 )

where the top left block (blocks with suffix TL) of each partition is ib X ib. As can be seen, the first
two expressions are analogous to those of the previous step. The last expression is a refining of
the first one so that T; has b columns.

To obtain (U,)(f) )Br such that ((Uo(f)) Br)" T is upper triangular, we may compute the unpivoted
OR factorization of T; to obtain w® s such that Ty = WWSH Next, observe that when the
building of Uo(,i) occurs, the range of the leading b columns of Tpgr is approximately the same
as that of the leading b left singular vectors of Tg. Therefore, the W) from the unpivoted QR
factorization also forms an orthonormal approximate basis for the leading b left singular vectors
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of Tgg. Thus, W is an approximately optimal choice of matrix from a rank-revealing perspective.
Therefore, we let (Uéi))BR =W,

This computation is performed in Step 2 of the RANDUTYV algorithm presented in Figure 2. This
step comprises three sentences labeled from 6 to 8. Sentence 6 computes the unpivoted QR of Tj.
Sentences 7 and 8 apply this transformation to the output matrices T and U, respectively. As before,

for reasons of efficiency in the application of the transformation U,)(f) , it is not explicitly computed.
The unPIVOTED_QR returns factors Wy and Sy such that Uo(f) =1-WySuW.

3.2.3 Building V"Ei) and U ;), These two transformations introduce more sparsity into T at low
computational cost, pushing it closer to diagonality and, thus, decreasing |T(k, k) — ok (A)| for
k=1,...,(i+1)b. They are computed simultaneously by calculating the SVD of the top left block
of Tgg of dimension b X b (called Ti;) to obtain Us(i), Vs(i), D(Si) such that Ty; = Us(i)D(Si)(VS(i))*. Then,
we set

1] o |o I] o |o

() ._ @ (i) ,_ 0
Vili=l o VP o LU = 0| U o
0o |1 o] o |1

Following the update step, T — (Ulgi) )*TV;), Ty, is diagonal.

This computation is performed in Step 3 of the RANDUTYV algorithm presented in Figure 2. This
step comprises five sentences labeled from 9 to 13. Sentence 9 computes the SVD of Tj;. Sen-
tences 10 and 11 apply these transformations to the output matrix T. Sentences 12 and 13 apply
these transformations to the output matrices U and V, respectively.

3.24 Computational Cost. When no orthonormal matrices are generated and g steps of power
iteration are applied, the computational cost in flops of the RANDUTYV factorization of an m X n
matrix by using the algorithm presented in Figure 2 is the following (see [24]):

3
(5+2q)mn®* — (3 + Zq)%.

Since the computational cost of the QR factorization of an m X n matrix is 2mn? — 2n®/3, the
computational cost of the RANDUTYV algorithm of square matrices for g =0, g =1, and ¢ = 2 is 3,
4, and 5 times as large as the computational cost of the QR factorization, respectively.

3.25 A Numerical Example with a Precision Comparison. Let us show a short numerical example
of how the RANDUTV algorithm works. The matrix to be processed is a 6 X 6 matrix built as a
random permutation of the first mn positive numbers. For this example, we have used the block
size b = 2 and g = 2. In order to reduce the amount of data shown, the matrices in the example
are shown with only two decimal digits. Consider an input matrix initialized as

13 33 5 15 30 32
2 26 7 24 23 6
18 28 9 19 36 29

22 16 25 35 21 14
8§ 10 3 31 4 20
1 17 27 11 34 12
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After applying Step 1 of the first iteration (right transformations), matrix T becomes

=55.68 —15.37 | —4.32 -1.24 -6.99 5.17
—40.00 —0.84 0.66 13.01 1.26  —9.89
-59.40 -9.50 | =5.50 -=5.83 —0.21 1.97
—52.04 21.87 1.34 -4.74 -0.18 -3.99
-31.61 14.34 | —9.94 9.29 —-6.95 10.60
—-43.36  —3.34 | 18.42 -3.67 13.62 -3.27

T =

Observe how a large part of the “mass” of the matrix has been moved to the first block column
(the first two columns), especially the first one. After applying Step 2 of the first iteration (the left
triangularization), matrix T becomes

117.54 0.06 | —0.12 0.06 -0.09 0.05
0.00 -31.97 1.77  =3.30 1.27 0.45
0.00 0.00 | —4.07 —3.36 2.35 —-1.19
0.00 0.00 2.71 -17.03 0.68 3.27
0.00 0.00 | =9.10 1.32 -6.47 15.36
0.00 0.00 | 19.48 —-3.59 15.33 —4.38

Again, note how all of the “mass” in the first block column has been moved to the upper trian-
gular part of the diagonal b X b block and an important part of the “mass” of the top right part has
been moved to the bottom right part of the matrix. After applying Step 3 of the first iteration (the
SVD of the diagonal block), matrix T becomes

117.54  0.00 | —0.12 0.06 —0.09 0.05
0.00 31.97 1.77 —=3.30 1.27 0.45
0.00 0.00 | —4.07 -3.36 2.35 -1.19
0.00 0.00 2.71 —17.03 0.68 3.27
0.00  0.00 | —9.10 1.32 —-6.47 15.36
0.00 0.00 | 1948 -3.59 15.33 -4.38

The diagonal block has been diagonalized. The above three steps make up the first iteration. This
same process must be repeated for two more iterations to compute the RANDUTYV factorization of
the original matrix A.

Table 1 compares the precision of different factorizations for a small example (the 6 X 6 matrix
seen above). Each column in the table shows the diagonal of the obtained factors after the factor-
ization has been computed: the diagonal of ¥ (the singular values) for the SVD, the diagonal of R
for QR and CPQR, and the diagonal of T for RANDUTV (b = 2 in this case). The QR factorization
is not a rank-revealing tool; it is included simply as a reference. The CPQR shows a diagonal with
values similar in absolute value to the SVD (but special matrices are known on which it can fail).
On the other hand, the diagonals of RANDUTYV are closer to the singular values.

4 EFFICIENT SHARED-MEMORY RANDUTV IMPLEMENTATION

Since the shared-memory multicore/multiprocessor architecture is ubiquitous in modern comput-
ing, it is a prime candidate for an efficiently designed implementation of the RANDUTV algorithm
presented in Section 3.2.

Efficient implementations for modern architectures (ranging from unicore processors to SMP
to GPUs) must be strongly based on matrix-matrix operations since the ratio of flops to mem-
ory accesses in matrix-matrix operations is O (n) (O(n®) flops to O(n?) memory accesses), much
higher than those of vector-vector and matrix-vector operations. This increased ratio provides
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Table 1. Diagonals of the Obtained Factors for Several Factorizations

RANDUTV RaANDUTV RrRanNDUTV

SVD QR CPQR  ¢=0 g=1 g=2
1 11754 —3234 —6586  110.07 117.51 117.54
2 3276 -3504 —38.79 22.81 29.97 31.97
3 2941 2738 —23.15 30.83 29.41 29.92
4 17.74 -26.43 —17.36 11.18 14.09 17.18
5 10.85 —7.62 13.42 24.68 14.93 11.28
6 447 -1559 —7.07 4.56 4.47 4.47

For SVD the diagonal of X (the singular values) is shown, for QR and CPQR the
diagonal of R is shown, and for RANDUTYV the diagonal of T is shown for several
values of ¢ (in this case b = 2).

* kX k(o o o o 0 o ® o o |k Xk k Kk k Xk
O k k(e o o 0 0 o O @ @ |k Kk k Kk Kk *k
OO0 k(o © 0o 0 0 o O 0 @ %k *x *x *x Kk *k
O 0 O(e e e 0 o o O 0 O|% % %k * % %
OO0 O0fle e 0 0 0 @ O 0 Of|% % *x * %k %
OO0 Ofle e e 0 0 @ O 0 Of|% % *x * %k %
OO0 Ofle e e 0 0 0 O 0 O|% % *x * %k %
OO0 Ofle e e 0 0 @ O 0 O|%k % *x * * %
O 0 Ofle e e 0 0 0 O 0 O|%k % k * * %
(1) After Compute_dense_QR( Ay ) (2) After Apply_left_Qt_of_Dense_QR( Ao, A1)

Fig. 3. An illustration of the first tasks performed by a blocked algorithm for computing QR factorization.
The o symbol represents a non-modified element by the current task, x represents a modified element by
the current task, and o represents a nullified element (they are shown because they store information about
the Householder transformations that will be later used to apply them). The continuous lines surround the
blocks involved in the current task.

much higher performances on modern computers since current processors and GPUs can perform
many flops per memory access.

There are usually two options to reformulate an algorithm to employ matrix-matrix operations:
blocked algorithms and algorithms-by-blocks. Blocked algorithms execute several iterations of the
scalar algorithm at the same time, thus, computing multiple columns (or rows) of the desired result
in each iteration of its main loop. This design decision allows most of the computations to be cast in
terms of matrix-matrix operations (Level 3 BLAS). See Figure 3 for a graphical representation of a
blocked factorization (the text corresponds to a QR factorization, but an LU factorization would be
analogous). On the other hand, algorithms-by-blocks apply the scalar algorithm on square blocks
instead of scalars. By working on square blocks, matrix-matrix operations (Level 3 BLAS) can
be heavily employed. See Figure 4 for a graphical representation of an algorithm-by-blocks for
computing a factorization (the text corresponds to a QR, but an LU would be similar).

The main advantage of the RANDUTYV algorithm described earlier is its efficiency in parallel com-
puting environments mainly because it can be blocked easily. That is, it drives multiple columns of
the input matrix A to upper triangular form in each iteration of its main loop. This design allows
most of the operations to be cast in terms of the Level-3 BLAS (matrix-matrix operations) and,
more specifically, in xgemm operations (matrix-matrix products). As vendor-provided and open-
source multithreaded implementations of the Level-3 BLAS are highly efficient and close to the
peak speed, RANDUTV should yield high performance. Martinsson et al. [24] provided an efficient
blocked implementation of the RANDUTYV algorithm that was faster than competing rank-revealing
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(4) After Apply_left_Qt_of_Dense_QR( (5) After Apply_left_Qt_of_Dense_QR( (6) After Apply_left_Qt_of_td_QR( Ago,
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(7) After Apply_left_Qt_of_td_QR( Agy,  (8) After Apply_left_Qt_of_td_QR( Agy,  (9) After Apply_left_Qt_of_td_QR( Ago,

Aio, Aoz, Arz) Az, Aot, Azt ) Az, Aoz, A2z )

Fig. 4. Anillustration of the first tasks performed by an algorithm-by-blocks for computing the QR factoriza-
tion. The @ symbol represents a non-modified element by the current task, x represents a modified element by
the current task, and o represents a nullified element by the current task (they are shown because they store
information about the Householder transformations that will be used later to apply them). The continuous
lines surround the blocks involved in the current task.

factorizations, such as SVD and CPQR, despite RANDUTV having a much higher flop count than both
of them. As usual in many linear algebra codes, this blocked implementation of RANDUTYV kept all
of the parallelism inside the BLAS library.

In Section 4.1, we discuss a scheme called algorithms-by-blocks for designing more efficient
algorithms on architectures with multiple or many cores. Section 4.2 explores the application of
algorithms-by-blocks to RANDUTV. Sections 4.3 and 4.4 familiarize the reader with the software
used to implement algorithms-by-blocks and a runtime system to schedule the various matrix
operations, respectively.

4.1 Algorithms-by-blocks: An Overview

Pushing all parallelism into multithreaded implementations of the BLAS library can make pro-
gramming much easier, but its performance is limited for more than just a few cores [31], which
can become a serious limitation. Most high-performance blocked algorithms for computing factor-
izations (such as Cholesky, LU, and QR) involve at least one task in each iteration that works on
very few data (therefore, non-parallelized) and whose result is required in the following operations
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of the current iteration. These serial tasks usually involve the processing of blocks with at least
one small dimension b, where b is typically chosen to be 32 or 64, usually much smaller than the
matrix dimensions. For instance, in the blocked Cholesky factorization, this performance-limited
task is the computation of the Cholesky factorization of the diagonal block. In the blocked QR
and LU factorizations, this performance-limited part is the computation of the factorization of a
part of the current block column (see Step 1 in Figure 3). Thus, since these serial tasks form a syn-
chronization point, all but one core in the system are left idle during these computations. For only
four or five total cores, time lost is minimal. As the number of available cores increases, though, a
significant waste in efficiency builds up. The RANDUTV factorization is also affected by this prob-
lem, since each iteration contains three tasks of this type: the QR factorization of matrix Y, the QR
factorization of the current block column of T, and the SVD of the diagonal block of T.

This led us to seek a technique other than blocking to obtain higher performance, although we
will not abandon the strategy of casting most operations in terms of the Level-3 BLAS. The key lies
in changing the method with which we aggregate multiple lower-level BLAS flops into a single
Level-3 BLAS operation. Blocked algorithms do this by raising the granularity of the algorithm’s
main loop. In RANDUTYV, for instance, multiple columns of the input are typically processed in one
iteration of the main loop. Processing one column at a time would require matrix-vector operations
(Level-2 BLAS) in each iteration, but processing multiple columns at a time aggregates these into
much more efficient matrix-matrix operations (Level-3 BLAS).

The alternative approach, called algorithms-by-blocks, is to instead raise the granularity of the
data. With this method, the algorithm may be designed as if only scalar elements of the input are
dealt with at one time. Then, the algorithm is transformed into Level-3 BLAS by conceiving of
each scalar as a submatrix or block of size b X b. Each scalar operation turns into a matrix-matrix
operation, and operations in the algorithm will, at the finest level of detail, operate on usually
a few (between one and four, but usually two or three) b X b blocks. Each operation on a few
blocks is called a task. This arrangement allows more flexibility than blocking in ordering the op-
erations, eliminating the bottleneck caused by the synchronization points in the blocking method.
The performance benefits obtained by the algorithm-by-blocks approach with respect to the ap-
proach based on blocked algorithms for linear algebra problems on shared-memory architectures
are usually significant [7, 31].

4.2 Algorithms-by-blocks for RANDUTV

An algorithm-by-blocks for RANDUTV, which we will call RaANDUTV_AB, performs mostly the
same operations as the original. Therefore, its structure is the same as the one described earlier
(see Figure 2) and is not shown. The key difference is that this new philosophy of defining smaller
tasks (than those of blocked algorithms) that operate on square blocks can allow greater flexibility
in the order of completion.

As said before, the algorithms-by-blocks must raise the granularity of the data. Thus, a block
size b must be chosen (in practice, block sizes around b = 256 work well). For simplicity, assume
that b divides both m and n evenly. Recall that at the beginning of RANDUTYV, T is initialized with
T := A. Consider the following partitioning of the matrix T:

Bll BlZ e BlN

Bzt | Bz | - | Ban
T— . . . . ’

By | Byz | o0 | Bun

where each submatrix or block B;j is b X b, N = n/b, and M = m/b. Note that the rest of matrices
(G, Y, U, and V) must also be partitioned accordingly. In this partitioning, we have not employed
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the letter T for the above blocks to avoid confusion with the blocks T;; of the RANDUTV algorithm.
In that algorithm, Tj; is the b X b diagonal block being processed, T, is the right-bottom part of
the matrix to be processed, Ty is the left-top part of the matrix already processed, and so on. Thus,
their dimensions (except for T;;) depend on the current iteration of the algorithm. In contrast, all
of the B;; blocks are of dimension b x b.

Once the blocks have been defined, we must redefine all operations of the algorithm in terms
of these blocks. The blocks or submatrices B;; (and those of the rest of the matrices) are treated
as the fundamental unit of data in the algorithm so that each operation is expressed only in these
terms. Therefore, all of the computations that involve large parts of the matrices in the RANDUTV
algorithm (see Figure 2) must be broken into small tasks operating on these square blocks.

For instance, the first instruction of Step 1 of the RANDUTV algorithm is the generation
of a matrix G with random normal entries. As this operation must be expressed only in
terms of square blocks, for the first iteration this operation will comprise the following tasks:
Generate_random( G; ), Generate_random( Gy ), ...Generate_random( Gy ), where the
routine Generate_random fills its argument (one square block of dimension b X b) with random
normal entries.

The two most computationally expensive parts in the algorithm are the following. The first
is the computation of matrix Y (the power iteration loop), performed in Step 1. The second is

the factorization of a column block and the updating of the corresponding matrices, which is
performed in Step 1 (factorization of Y) and in Step 2 (factorization of (%1

them next.

)) We comment on

4.2.1 Computation of Matrix Y. The computation of matrix Y in the power iteration loop is as

follows:
. T | Tio \"( T [T \\'( T[Tz |
Y := ((Tsr)"Tsr)*(Tpr)G = ¢
((Tsr)"TBr)(TBR) (( Ty ‘ Ta ) ( To ‘ Too Ty ‘ Ty

Although it is computationally very expensive, it comprises just a series of highly efficient
matrix-matrix products.

This operation will be broken into several tasks so that each calculates the product of two square
blocks of T and the accumulation into a block of Y. In the simplified case, where ¢ = 0, we have
M x N products of two blocks. For instance, in the first iteration, the list of tasks would be the
following (recall that matrix T is partitioned into square blocks B;;):

Y1 = Y1+ B;lGl,
Yl = Y1 + BZIGZ’
Yl = Y1 + B;1G3,
Y, = Y+ BTZGD
Y, = Y+ B;ZGz,

Y, = Y+ B§2G3,

In this case, the maximum number of tasks that can be executed in parallel depends on the num-
ber of block rows of Y since two accumulations on the same block row of Y cannot be performed
at the same time. In the first iteration of the algorithm, the number of block rows is M when the
product involves Tgr and N when the product involves Ty . As the algorithm advances, this paral-
lelism decreases in one unit for each iteration, which might be a limiting factor for the parallelism
in this operation, especially on small matrices and the last iterations.
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4.2.2  Incremental QR Factorization. The second most computationally expensive part in the
RANDUTYV algorithm is the factorization of a block column and the subsequent updating of the cor-
responding matrices. As can be seen, Step 1 of RANDUTYV requires the factorization of Y, whereas
Step 2 requires the factorization of (%i )

The traditional QR factorization of these block columns does not decompose this operation
into small tasks that operate on square blocks. Since an algorithm-by-blocks for computing the
RANDUTYV requires that the QR factorization performed inside works also on b x b blocks, we have
employed an alternative algorithm, usually known as the incremental QR factorization, based on
the idea of updating a QR factorization when more rows are added to the input matrix. See, for
example, [19, 30, 31] for details on this approach to the QR factorization. We shall refer to this
algorithm as QR_AB. We consider only the part of QR_AB that makes the first column of blocks
upper triangular since that is all that is required for RANDUTV_AB. In this way, this operation can
be conceptualized as occurring in an iteration with a high number of tasks, each one operating on
a few square blocks.

Figure 4 shows this process for a 9 X 9 matrix with block size b = 3. In this figure, the continu-
ous lines show the 3 X 3 block or blocks involved in the current task, e represents a non-modified
element by the current task, x represents a modified element by the current task, and o represents
a nullified element by the current task. The nullified elements are shown because, as usual, they
store information about the Householder transformations that will be later used to apply these
transformations. The first task, called Compute_dense_QR, annihilates the leading dense block Ay
by employing a QR factorization. The second task annihilates block A;g. This task is called Com-
pute_td_QR, where td stands for triangular-dense because of the shape of the two arguments: Ag
is triangular, whereas Aj is dense. Analogously, the third task annihilates block Ayy. After these
three tasks have been successfully executed, all of the elements below the main diagonal have been
annihilated and the rest of the matrix must be correspondingly updated.

The fourth task, called Apply_left_Qt_of dense_QR, applies the Householder transformations
obtained in the first task (and stored in Ayg) to block Ay;. The fifth task performs the same opera-
tion onto Ay;. The sixth task, Apply left Ot of td_QR, applies the transformations obtained in the
second task to blocks Ap; and A;;. The seventh task performs the same operation onto Ag; and
Ajp2. Analogously, the eighth and ninth tasks apply the same processing as the two previous ones
on the first and third row of blocks. By taking advantage of the zeros present in the factorizations
for each iteration, a well-implemented QR_AB cost essentially no more flops than the traditional
blocked unpivoted QR. The algorithm is described in greater detail in [7, 30, 31].

To obtain high performance when executing the previous incremental QR factorization in a
parallel environment, runtime systems should execute as many tasks as early and simultaneously
as possible. Note that in this small example of dimension 9 X 9, the fourth and fifth tasks can be
executed just after the first task since they need to access (read) only the strictly lower triangular
part of Agg. However, since the upper part of Ay is being updated by the second and third tasks,
runtime systems will not allow the early execution of the fourth and fifth tasks (at the same time
as the second and third tasks are executed). Therefore, Aoy becomes a false bottleneck or data
dependency. One way to fix this bottleneck and to increase the parallelism is to employ an auxiliary
square block to make a copy of Ag just after the first task has been executed. In fact, this copy
is an additional task (but much faster). In this case, the original fourth and fifth tasks could be
executed just after the copy while at the same time the second and third tasks are being computed
(and they are updating Ayp). In general, by employing two auxiliary blocks of dimension b x b (one
for the factorization of Y and another one for the factorization of the current block column of A),
the annihilation of the block column and the updating of the first block row could be executed at
the same time.
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The maximum number of tasks that can be executed in parallel depends on the number of block
rows to update when applying transformations from the right and the number of column blocks
to update when applying transformations from the left. For instance, in Figure 4, the maximum
number of tasks that can be executed in parallel is two: after executing task 1, tasks 2 and 3 can be
executed in parallel, and so on. In the first iteration of the algorithm, the number of block rows is
M when updating from the right or N when updating from the left. As the algorithm advances, this
parallelism decreases in one unit for each iteration, which might be a limiting factor, especially on
small matrices, the last iterations, and when no orthonormal matrices are built. In the latter case,
the maximum number of tasks that can be executed in parallel is larger since blocks of matrix T
could be updated at the same time as blocks of U and/or V.

4.2.3  Variants of the RANDUTV_AB Algorithm. Next, we describe some improvements to the
previous algorithm. Considering the earlier comments, we have implemented and assessed the
following variants of the RANDUTV_AB algorithm.

e Variant v@0: This is a naive implementation of the basic RANDUTV_AB algorithm described
earlier.

e Variant v@1: Two auxiliary blocks of dimension b X b have been employed to remove data
dependencies and bottlenecks, and increase parallelism when computing the incremental
OR factorization. This improvement has also been applied to the next variants.

e Variant v02: In each iteration, the computation of the SVD of the diagonal block has been
moved upwards to be able to unlock as many tasks as soon as possible to increase the par-

allelism. Once the current block column, (%i

(22 ) is updated (and maybe matrices U and V), the computation of the SVD of the Tj; can
be computed to minimize the fork-join effect and activate as many tasks as possible.

e Variant v03: This implementation increases the parallelism of the computation of the matrix
Y in each iteration by rewriting each product by using an auxiliary matrix of the same size
as Y (and another one of the same size as G). Recall that this power iteration consists of a
series of matrix-matrix products, where the second matrix is a block column. The shape of
this second matrix clearly limits the parallelism since several tasks (block-block products)
must be accumulated onto the same block of Y.

The technique employed is to rewrite each matrix-matrix product into the same number
of block-block products, but accumulating on different left-hand sides by using an auxiliary
matrix. For instance, the product Y := TG is rewritten as:

), has been upper-triangularized and before

Y := TG = (T, To) (gz) = TgGg + ToGo,

where Tg contains the even block columns of T, Tp contains the odd block columns of T, Gg
contains the even block rows of G, and Gp contains the odd block rows of G.
This expression is computed as

Y = TgGg
Z = ToGo
Y = Z+Y.

In this sequence, in the first iteration of the algorithm, the first line allows execution of up
to M tasks simultaneously, whereas the second line allows execution of up to M more tasks
simultaneously. In this way, the number of tasks that can be concurrently executed is twice
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the original number, with the only drawback being up to M additional tasks of accumulation
(Y := Z +Y), which are very simple and fast.

Variant v04: This implementation increases the parallelism of the QR updates from both the
left side and the right side.

When computing a dense QR factorization of a block or a triangular-dense QR factorization
of two blocks (see Figure 4), the maximum number of tasks that can be executed in parallel
depends on the number of blocks to be updated with that block factorization. The larger the
number of blocks to be updated, the larger the parallelism.

A way to increase this parallelism is to apply the incremental QR factorization described
earlier to the even block rows of Y, whereas at the same time the incremental QR factoriza-
tion is applied to the odd block rows of Y. Hence, the maximum number of tasks is twice the
original number, with the only drawback being that at the end, the second block row must
be nullified (with additional tasks). Although the second block row is upper triangular, in
order to simplify the programming, the usual triangular-dense QR factorization is employed.
For instance, at the beginning of the first iteration, once Y has been computed, Y, and Y;
are triangularized at the same time. Then, the first block row of A can be updated with the
transformations of Y, at the same time as the second block row of A is updated with the
transformations of Y;, thus doubling the number of available tasks. Then, Y, and Y3 must be
nullified and the corresponding blocks updated at the same time, and so on. Finally, block Y;
should be nullified based on Y, with additional tasks that were not in the original algorithm.
This method is a modification of one of the communication-avoiding QR factorizations pre-
sented in [16, 22], adapted to work with Householder transformations and well suited for
square matrices.

e Variant v05: This implementation can improve performance by using a hierarchical storage
in main memory. Instead of storing the data in column-major order, each matrix is stored in

a block column-major order with block size b (the same as the algorithmic block size).

4.3 The FLAME Abstraction for Implementing Algorithm-by-blocks

A nontrivial obstacle to implementing an algorithm-by-blocks is the issue of programmability.
Using the traditional approach of calls to LAPACK [1] and BLAS [23] libraries for the computa-
tional steps, keeping track of indexing quickly becomes complicated and error prone. The FLAME
(Formal Linear Algebra Methods Environment) project [18, 21] is one solution to this problem.
FLAME is a framework for designing linear algebraic algorithms that departs from the traditional
index-based-loop methodology. Instead, the input matrix is interacted with as a collection of
submatrices, basing its loops on re-partitionings of the input. The FLAME API [5] for the C lan-
guage codifies these ideas, enabling a user of the API to code high-performance implementations
of linear algebra algorithms at a high level of abstraction. Furthermore, the methodology of the
FLAME framework and its implementation in terms of the libflame library [38] makes it a
natural fit for use with an algorithm-by-blocks. Thus, the actual code for the implementation of
RANDUTV_AB looks practically the same as the written version of the algorithm given in Figure 2
since all of the changes are performed inside each operation.

4.4 Executing the Algorithm-by-blocks

The runtime system called SuperMatrix [7] is an integral part of the 1ibflame distribution and
has been leveraged to expose and exploit task-level parallelism in RANDUTV_AB. The execution
of any program proceeds in two phases: the analysis stage and the execution stage.
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Operation Operands
In In/Out
Generate_normal_random Gy
Generate_normal_random Gy
Gemm_tn_oz: C = A*B Ay | Go Yo
Gemm_tn_oz: C = A*B Ao | Go Y;
Gemm_tn_o0o:C=C+A*B A | Gr Yo
Gemm_tn_oo: C=C+ A*B A | Gy Y1
Comp_dense_QR Yo, So
Copy Yo Ey
Comp_td_QR Y(), Yl, 51
Apply_right_Q_of _dense_QR | E, So Ao
Apply_right_Q_of dense_QR | Ej So A1
Apply_right_Q_td_QR Y; S1 Ago, Aot
Apply_l’ight_Q_td_QR Y] S 1 AlO, A11
Comp_dense_QR Ago, Xo
COpy Aoo D()
CompftdeR Ago, A10, X1
Apply_left_Qt_of dense_QR Dy | Xo Aot
E Apply_left_Qt_of td_QR A | Xq Ao1, Al
Keep_upper_triang Aoo
Set_to_zero Ay
SVd_Of_blOCk Aoo, Po, Q()
Gemm_abta: A = B*A Py Aot
Svd_of block A11, Py, Qo
Gemm_aabt: A = AB* Qo Aot

Fig.5. Alist of the operations queued up by the runtime during the analyzer stage of the RANDUTV algorithm
in the simplified case that the block size b is n/2. The In column specifies pieces of required input data. The
In/Out column specifies required pieces of data that will be altered upon completion of the operation. The
execution of the RANDUTYV algorithm-by-blocks comprises two phases. In the first stage (the analysis), the
runtime builds the list of tasks recording the dependencies. In the second stage (the scheduling/dispatching
stage), the runtime schedules and executes the tasks in the queue dynamically. The tasks may be completed
in any order that does not violate the data dependencies encoded in the table.

(1) In the analysis stage, instead of executing the code sequentially, the runtime builds a list of
tasks recording the dependency information associated with each operation and placing it
in a queue. An example of the queue built up by the runtime for RANDUTV_AB for the case
that A € R™" and the block size is b = n/2 is given in Figure 5.

(2) In the execution stage, the tasks in the queue are dynamically scheduled and executed. Each
task is executed as soon as its input data become available and a core is free to complete the
work but keeps a sequentially consistent order among tasks.

Figure 6 shows an actual DAG that illustrates the data dependencies between tasks for the
complete execution. From the code perspective, the main FLAME formulation (see Figure 2)
remains unchanged, replacing the actual calls to BLAS/LAPACK codes by the task creation —
including input/output per-task data — and its addition to the DAG. From that point on, the
scheduling/dispatching stage is transparent for the developer.

5 EFFICIENT DISTRIBUTED-MEMORY RANDUTV IMPLEMENTATION

Distributed-memory computing architectures are commonly used for solving large problems as
they extend both memory and processing power over single systems. In this section, we discuss
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I:l Comp_td_QR I:l Copy 4 Comp_dense_QR . GEMM ’ Generate_normal_random

D Svd_of _block D Set_to_zero . Apply_left_Qt_of dense_ QR O Keep_upper_triang @ Apply_right Q_td_QR . Apply_right_Q_of dense_QR

Fig. 6. Complete Directed Acyclic Graph exposed to the runtime task scheduler during the dispatching stage
in the simplified case that the block size is b = n/2. The colors used for each task follow the convention
employed in Figure 5.

an efficient implementation of RANDUTV for distributed-memory architectures. In Section 5.1, we
discuss the infrastructure employed to implement and assess our new codes. In Section 5.2, we
describe the implementation of RANDUTYV in distributed-memory architectures.

5.1 ScaLAPACK Overview

The ScaLAPACK (Scalable LAPACK) software library [6, 9, 11] was used in the presented im-
plementations since it provides a wide functionality to implement linear algebra applications on
distributed-memory architectures. This library provides much of the functionality of LAPACK for
distributed-memory environments. It hides most of the communication details from the developer
with an object-based API, where each matrix’s object information is passed to library routines. This
design choice enhances the programmability of the library, enabling codes to be written similarly
to a standard LAPACK implementation. However, as it is implemented in Fortran-77, its object
orientation is not perfect and the programming effort is larger.

In addition to a wide functionality to implement new linear algebra codes, ScaLAPACK provides
an efficient SVD and a Level-2 BLAS CPQR. A Level-3 BLAS CPQR from the PLiC library [4],
based also on ScaLAPACK, was employed. The availability of these factorizations is key to being
able to assess and compare our new distributed-memory RANDUTV code. Another advantage of
ScaLAPACK is that it is usually included in MKL, which increases its portability and simplifies its
download and installation.

ScaLAPACK was designed to be portable to a variety of computing distributed-memory archi-
tectures and relies on only three external libraries. The first is the sequential LAPACK [1]. The
second is the sequential BLAS (Basic Linear Algebra Subroutines) [12, 13, 23], providing specifi-
cations for the most common operations involving vectors and matrices. The third is the BLACS
(Basic Linear Algebra Communication Subroutines), which, as the name suggests, is a specifica-
tion for common matrix and vector communication tasks [2]. The PBLAS library is a key mod-
ule inside ScaLAPACK. It comprises most BLAS routines rewritten for use in distributed-memory
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environments. This library is written using a combination of the sequential BLAS library and the
BLACS library.

All ScaLAPACK routines assume the so-called “block-cyclic distribution” scheme [10]. The
block-cyclic distribution scheme involves four parameters. The first two, m; and b, define the
block size, that is, the dimensions of the submatrices used as the fundamental unit for communica-
tion among processes. Despite this flexibility, nearly all of the linear algebra main routines usually
employ m;, = n;, for the purpose of simplicity. The last two parameters, typically called P and Q,
determine the shape of the logical process grid.

5.2 Implementation of RANDUTYV in Distributed-Memory Architectures

In this section, we describe our implementations of the RANDUTV algorithm on distributed-
memory architectures.

Since Algorithm 2 is very rich in BLAS-3 operations and this type of operation can also be
very efficient in distributed-memory architectures, we have employed this same algorithm for the
distributed-memory implementation.

The distributed-memory implementation of RANDUTV uses the standard blocked algorithm of
[24] rather than the algorithm-by-blocks approach (as discussed in Section 4.2) to assess a fair com-
parison since the only available SVD and CPQR factorizations employed the blocked algorithms
approach as well. The use of the ScaLAPACK library to implement the RANDUTYV algorithm allows
for a more fair comparison since the underlying basic building blocks (matrix-matrix products,
Householder transformations, etc.) of all of the assessed routines are basically the same.

Unlike the algorithm-by-blocks approach on shared-memory architectures, the algorithm-by-
blocks approach has some issues on distributed-memory architectures. The DAG allows execution
of any task as soon as its operands are ready, but the higher efficiency of collective communications
needs a more coordinated methodology. Although this has been avoided in some high-performance
distributed-memory libraries by using special languages, they do not provide for an SVD and CPQR
factorizations to compare with our RANDUTV.

Like in some other factorizations (QR, SVD, etc.), when applying RANDUTV to a matrix with
m > n, it is best to perform an unpivoted QR factorization first and then perform the RANDUTV
factorization on the resulting square triangular factor.

The two most computationally expensive parts in the RANDUTV algorithm are the following: the
computation of matrix Y (in Step 1), and the updating of matrices T, U, and V with the Householder
transformations of QR factorizations (in Steps 1 and 2).

5.2.1 Computation of Matrix Y. Even for g = 0, the computation of matrix Y is one of the
most expensive parts in this algorithm. As this operation is basically a series of matrix-matrix
products on distributed data, this operation is usually very efficient, and its speed is determined
by the ScaLAPACK library being employed. To build matrix Y, a series of matrix-matrix products
(routine pdgemm of ScaLAPACK) must be employed.

5.2.2 QR Factorization and Updating. The other most expensive part in the RANDUTV algorithm
is the updating of the corresponding matrices after the QR factorization of some block columns.
Matrix Y and block (E) must be factorized in Step 1 and Step 2, respectively.

Since matrix Y is a block column, to factorize it and to update the corresponding parts of T
and V, routines pdgeqr?2 (to factorize Y), pdlarft (to compute factor Sy ), and pdlarfb (to update
matrices T and V) have been employed. Obviously, the most expensive part is the updating with
the pdlarfb routine of matrices T and V from the right after the factorization of Y. Since this
updating requires a product such as A(I - Wy Sy Wy;) = A — AWy Sy Wy, efficient general (pdgemm)
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and triangular (pdtrmm) matrix-matrix products are usually employed inside the pdlarfb routine,
which guarantees high performance.

The factorization of (T“) and the corresponding updates are analogous. In this case, T is up-
dated from the left and U is updated from the right. As before, these updates require only efficient
general (pdgemm) and triangular (pdtrmm) matrix-matrix products.

On the other side, on distributed-memory machines, we implemented and assessed another
approach for computing QR factorization and updating a matrix by using the incremental QR fac-
torization. This incremental QR factorization is similar to the method employed in task scheduling
for shared-memory machines (but without task scheduling since ScaLAPACK does not allow it).
In our approach to the incremental QR factorization and updating, each block iteration has two
stages. The first stage is to compute the dense QR of the diagonal block and then apply the updat-
ing of the rest of the corresponding matrices. The second stage is to annihilate all square blocks
below the diagonal block by moving the “mass” to the diagonal block with the corresponding
update. This second stage is the so-called triangular-dense QR factorization since the top block is
already triangular (the diagonal block) and the bottom block is dense (the block to be annihilated).

5.2.3 Other Operations. Two computationally cheaper operations in each iteration of the
RANDUTYV algorithm are the SVD of the diagonal block and its corresponding updates (in Step
3) and the generation of matrix G (in Step 1). The computation of the SVD of the diagonal block in
each iteration, Ty, is very fast since no communication is required. To compute it, routine dgesvd
from LAPACK is employed. Then, the updating of matrices T, U, and V requires employment of
the output matrices Us and Vs of this SVD. These updates require products with replacement (one
operand is also the result), such as A := AB. Therefore, a small auxiliary space and an additional
copy have been employed in addition to the pdgemm routine. However, the overall cost of this part
is much smaller since only small parts of T, U, and V (some block rows and block columns) must
be updated.

The other operation discussed earlier, the generation of matrix G, was performed in parallel,
avoiding any performance bottleneck. Unlike uniform random number generators, LAPACK and
ScaLAPACK do not include a normal random number generator, which is key in each iteration to
forming an orthonormal approximate basis for the leading b right singular vectors of T, (in Step 1).
Thus, the Box-Mueller transformation method was employed to convert uniform variates to nor-
mal variates.

To conclude, it is obvious that general matrix-matrix multiplications (pdgemm) form the domi-
nant cost within the implementation of RANDUTV. Since this operation belongs to Level-3 BLAS
and can be very efficiently implemented on this type of architecture, the final implementation of
RANDUTV can be expected to be very efficient.

6 PERFORMANCE ANALYSIS

In this section, we investigate the speed of our new implementations of the algorithm for com-
puting the RANDUTV factorization and compare it to the speeds of highly optimized methods for
computing the SVD and the CPQR factorization. In all of the experiments, double-precision real
matrices were processed.

To fairly compare the different implementations being assessed, the flop count or the usual flop
rate could not be employed since the computation of the SVD, CPQR, and RANDUTYV factorizations
require a very different number of flops (the dominant n*-term in the asymptotic flop count is very
different). Absolute computational times are not shown either since they vary greatly because of
the large range of matrix dimensions assessed in the experiments. Therefore, scaled computational
times (absolute computational times divided by n®) are usually employed. Hence, the lower the
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scaled computational times, the better the performance. Since all of the implementations being
assessed have asymptotic complexity O(n®) when applied to an n X n matrix, these graphs better
reveal the computational speed (as in time-to-solution). Those scaled times are multiplied by a
constant (usually 10'%) to make the figures in the vertical axis more readable.

On the other hand, a few plots show speedups. The speedup is usually computed as the
quotient of the time obtained by the serial (one core) implementation and the time obtained by
the parallel implementation (on many cores). Thus, this concept communicates how many times
the parallel implementation is as fast as the serial one. Hence, the higher the speedups, the
better the performance of the parallel implementation. This measure is usually very useful in
checking the scalability of an implementation. Note that in this type of plot, every implementation
compares against itself on one core.

Some additional plots show scaled velocities. In those plots, one of the methods is chosen as a
reference with a velocity of 1, and the other methods are scaled accordingly. Thus, this concept
communicates how many times faster some method is compared to the chosen one as reference 1.
Hence, the higher the velocity, the better the performance.

The important question of the algorithm’s accuracy and ability to reveal the rank of the target
matrix is addressed in [27]. To summarize, the rank-revealing properties far exceed those of the
standard QR factorization and, in certain cases, they can approach that of the theoretically optimal
SVD. We refer the reader to [27] for a thorough discussion.

6.1 Accuracy

We computed the following residuals for all of our new shared- and distributed-memory imple-
mentations for computing the RANDUTYV factorization: ||[A—UTV*||p, [I-U*U||f, [I-V*V||p, and
[[svd(A) — svd(T)||r, where svd(X) is a vector with the singular values of X ordered. In all of the
experiments performed on many matrix dimensions and block sizes, the maximum residuals of
the new implementations of RANDUTV were similar to the analogous residuals that we computed
in other factorizations, such as SVD, CPQR, and QR.

6.2 Computational Speed on Shared-Memory Architectures

6.2.1 Experimental Setup. We employed the following computers in the experiments with
shared-memory architectures:

e marbore: It featured two Intel Xeon CPUs E5-2695 v3 (2.30 GHz), with 28 cores and 128 GB of
RAM in total. In this computer, the so-called Turbo Boost mode of the two CPUs was turned
off in our experiments.

Its OS was GNU/Linux (kernel version 2.6.32-504.el6.x86_64). GCC compiler (version
6.3.0 20170516) was used. Intel Math Kernel Library (MKL) version 2018.0.1 Product Build
20171007 for Intel(R) 64 architecture was employed since LAPACK routines from this library
usually deliver much higher performance than LAPACK routines from the Netlib repository.

e mimir: It featured two Intel Xeon CPUs Gold 6254 (3.10 GHz), with 36 cores and 791 GB of
RAM in total. The Max Turbo Frequency of the CPUs was 4.00 GHz.

Its OS was GNU/Linux (kernel version 5.0.0-32-generic). Intel C compiler (version
19.0.5.281 20190815) was used. Intel Math Kernel Library (MKL) version 2019.0.5 Product
Build 20190808 for Intel(R) 64 architecture was employed because of the same reason given
earlier.

e makalu: It featured two Intel Xeon CPUs Gold 6138 (2.00 GHz), with 40 cores and 92 GB of
RAM in total. The Max Turbo Frequency of the CPUs was 3.70 GHz.
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Its OS was GNU/Linux (kernel version 4.19.0-13-amdé64). Intel C compiler (version 18.0.1
20171018) was used. Intel Math Kernel Library (MKL) version 2018.0.1 Product Build
20171007 for Intel(R) 64 architecture was employed because of the same reason given earlier.

Unless explicitly stated otherwise, all of the experiments employed all cores in the computer
and were extracted from a single run. When using routines of MKL’s LAPACK, optimal block sizes
determined by that software were employed. In a few experiments, in addition to MKL’s LAPACK
routines, we also assessed Netlib’s LAPACK 3.4.0 routines. In this case, the NETLIB term is used.
When using routines of Netlib’s LAPACK, several block sizes were employed and best results were
reported. For the purpose of a fair comparison, these routines from Netlib were linked to the BLAS
library from MKL.

All matrices used in the experiments were randomly generated. Similar results for RANDUTV
were obtained on other types of matrices, since one of the main advantages of the RANDUTV
algorithm is that its performance does not depend on the matrix being factorized.

The following implementations were considered in the experiments:

e MKL SVD: The routine dgesvd from MKL LAPACK implementation was used to compute
the Singular Value Decomposition.

e NETLIB SVD: Same as the previous one, but the code for computing the SVD from the refer-
ence Netlib LAPACK was employed.

e MKL SDD: The routine dgesdd from MKL was used to compute the Singular Value Decom-
position. Unlike the previous SVD, this one uses the divide-and-conquer approach. This code
is usually faster, but it requires a much larger auxiliary workspace when the orthonormal
matrices are built.

e NETLIB SDD: Same as the previous one, but the code for computing the SVD with the divide-
and-conquer approach from Netlibs LAPACK was employed.

e MKL CPQR: The routine dgeqp3 from MKL’s LAPACK was used to compute the column-
pivoting QR factorization.

e RANDUTV_PBLAS (RANDUTV with parallel BLAS): This is the traditional implementation for
computing the RANDUTYV factorization that relies on the parallel BLAS to take advantage of
all of the cores in the system. The parallel BLAS implementation from MKL was employed
with these codes for the sake of a fair comparison. Our implementations were coded with
libflame 38, 39] (release 11104).

e RANDUTV_AB (RANDUTYV with algorithm-by-blocks): These are our new implementations
for computing the RANDUTYV factorization by scheduling all of the tasks to be computed in
parallel and then executing them with serial MKL BLAS. Our implementations were also
coded via libflame.

e MKL QR: The routine dgeqrf from MKL LAPACK implementation was used to compute the
QR factorization. Although this routine does not reveal the rank, it was included in some
experiments as a performance reference for the previous implementations.

For each experiment, two plots are shown:

e The left plot shows the performances when no orthonormal matrices are computed. In this
case, just the singular values are computed for the SVD, just the upper triangular factor R
is computed for the CPQR and the QR, and just the upper triangular factor T is computed
for the RANDUTV. In the latter case, the algorithm of Figure 2 is invoked with arguments
build_Uand build_V set to false.

e The right plot shows the performance when all orthonormal matrices are explicitly formed
in addition to the singular values (SVD), the upper triangular matrix R (CPQR), or the upper
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Fig. 7. Scaled time of RANDUTV implementations versus block size on matrices of dimension 20,000 x 20,000
in makalu.
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Fig. 8. Scaled time versus matrix dimension for SVD implementations for both Netlib and MKL libraries.

triangular matrix T (RANDUTV). In this case, matrices U and V are computed for the SVD,
matrix Q is computed for the CPQR and the QR, and matrices U and V are computed for
the RANDUTV. In the latter case, the algorithm of Figure 2 is called with both arguments
build_Uand build_V set to true. The right plot slightly favors CPQR and QR since only one
orthonormal matrix is formed.

6.2.2 Block Size Impact in RANDUTV. Figure 7 shows the scaled computational times obtained
by two implementations for computing the RANDUTYV factorization (RANDUTV_PBLAS and the
basic RANDUTV_AB v@1) on several block sizes when processing matrices of dimension 20,000 X
20,000. The aim of these two plots is to determine the optimal block sizes and to illustrate the im-
pact of a proper block size selection on the overall attained performance. The other factorizations
(SVD and CPQR) are not shown since in those cases the optimal block sizes were determined by In-
tel’s software. Optimal block sizes are about 160 and 320 for RANDUTV_PBLAS and RANDUTV_AB
v0@1, respectively. This is a common observation on many task-parallel implementations, as small
block sizes favor task-parallelism, whereas large block sizes usually reveal better per-task perfor-
mance. As usual, those optimal sizes slightly depended on matrix dimensions: the larger the matrix
dimensions, the slightly larger the block sizes.

6.2.3  Performance of State-of-the-Art SVD Factorizations. Figure 8 compares the scaled times of
four implementations for computing the SVD factorization: MKL SVD, MKL SDD, NETLIB SVD, and
NETLIB SDD. Performance is shown with respect to matrix dimensions. Block sizes similar to those

ACM Transactions on Mathematical Software, Vol. 48, No. 2, Article 21. Publication date: May 2022.



21:26 N. Heavner et al.

Scaled velocity vs. matrix dim. of UTV AB Scaled velocity vs. matrix dim. of UTV AB
in makalu without ON matrices forq = 0 in makalu with ON matrices forq = 0
2.0
£1.751 £ 1.50
[ [
Qo Qo
» 1.504 v 125/
[5} @
@1.25 .5 1.004
<1.001 <
2 20.75
9 0.75 g
T 0504 UTV AB V00 q=0 - UTV AB v04 q=0 0.50 UTVAB V00 q=0 -~ UTV AB v04 q=0
o — UTVABV01gq=0 -¥— UTVABV05q=0 el - UTVABV01qg=0 -¥- UTVABV05q=0
% 0.25 —@- UTVABV02qg=0 -A— UTVABV06 q=0 % 0.251 —@- UTVABV02qg=0 -A— UTVABV06q=0
& UTV AB v03 q=0 UTV AB v07 g=0 & UTV AB v03 g=0 UTV AB v07 g=0
0.00 T T T T 0.00 T T T T
0 4000 8000 12000 16000 0 4000 8000 12000 16000
Matrix dimensions Matrix dimensions
Scaled velocity vs. matrix dim. of UTV AB Scaled velocity vs. matrix dim. of UTV AB
in makalu without ON matrices for q = 2 in makalu with ON matrices for q = 2
2.004
T T
£ 1.754 £ 1.504
v [N
Qo o v
v 1.50 v 1.25
- = o
o | o g
§1.25 -E’ 1.004
< 1.001 <
z 20.751
3 0.751 g
T 0501 UTVAB V00 q=2 -4 UTV AB v04 q=2 T 0.501 UTVAB V00 q=2 -4 UTV AB v04 q=2
o B UTVABVOlg=2 ~¥- UTVABVO5q=2 o M UTVABVOlg=2 ~¥- UTVABVO5q=2
< 0.251 ® UTVABV02q=2 A~ UTVAB V06 g=2 5 0.251 @ UTVABV02q=2 A~ UTVAB V06 g=2
I UTV AB v03 q=2 UTV AB v07 q=2 & UTV AB v03 q=2 UTV AB v07 q=2
0.00 - - - T 0.00 - - - T
0 4000 8000 12000 16000 0 4000 8000 12000 16000
Matrix dimensions Matrix dimensions

Fig.9. Scaled velocity versus matrix dimension for the RANDUTV_AB implementations in makalu. In all plots,
the performance of the v0® variant is 1 for each matrix size. The first row shows results for ¢ = 0, whereas
the second row shows results for ¢ = 2.

in the previous figure were used for Netlib’s routines and the best results were reported. When no
orthonormal matrices are computed, both the traditional SVD and the divide-and-conquer SVD
render similar performance for this matrix type. In this case, MKL routines are up to about 14
times as fast as Netlib’s routines. In addition, the performance of both Netlib’s routines degrades
drastically for matrices of dimension larger than n = 3,000. This is caused because the usual
algorithm for computing the SVD (the one employed by Netlib) contains a higher ratio of BLAS-
1 and BLAS-2 operations, typically memory bound, making the overall algorithm more sensitive
to memory bandwidth. A matrix of dimension n = 3,000 requires about 69 MB, whereas the L3
cache size of marbore is 70 MB (2 X 35 MB per socket). A matrix of dimension n = 4,000 (when
the performance drops) requires 122 MB, which is much larger than the cache of marbore. This
same degradation happens in Netlib’s CPQR and MKL CPQR (see next plots) since the underlying
algorithms also perform only half of the flops in efficient BLAS-3 operations. When orthonormal
matrices are computed, the traditional SVD is much slower than the divide-and-conquer SVD. In
this case, the MKL SVD routine is up to 24.4 times as fast as the NETL1B SVD, and the MKL SDD
routine is up to 3.4 times as fast as the NETL1B SDD. Note how MKL codes for computing the SVD
are up to more than one order of magnitude faster than reference Netlib codes, showing the great
performance achieved by the tuned Intel implementation.

6.2.4  Performance of RANDUTV Variants. Figure 9 compares the scaled performance of the pro-
posed implementations of RANDUTV_AB in Section 4.2.3 with respect to matrix dimensions for
q = 0 (top plots) and g = 2 (bottom plots). As usual, a range of block sizes was tested, and perfor-
mance for the best block size was reported. The performance of the basic variant (v0@) was chosen
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Fig. 10. Scaled time versus matrix dimension for RANDUTV implementations in makalu.

as a reference for each matrix size. In addition to the variants described in Section 4.2.3, two more
variants are reported. The v@6 variant simultaneously combines the methods in the v@1, vo2, vo3,
and v04 variants; the v@7 variant simultaneously combines the methods in the v01, v02, v03, vo4,
and v@5 variants. To avoid the overhead of the increased parallelism (the additional tasks) when
there are already many tasks to process, both variants increase parallelism only when there are
fewer row or column blocks to process than cores. As 40 cores were employed and the usual block
size is about 320, this threshold was about 13,000.! Observe how the v@1 variant clearly outper-
forms the basic v00 variant. In contrast, the v02 variant does not introduce significant performance
improvements with respect to the v@1 variant. On the other side, the v03 and v04 variants yield
performance improvements of around 20% for small and medium matrices (when the dimension is
smaller than about 12,000 or 14,000) with respect to the v@1 variant. This improvement is smaller
when orthonormal matrices are built, since there is more potential task parallelism under those
circumstances. When the matrix dimension is more than 40 (the number of cores in the tested
machine) times the optimal block size, there is no gain and there is a performance penalty from
increasing the parallelism since there is plenty of parallelism, and the overhead to increase par-
allelism reduces performance. As can be seen, the performance improvement of the v06 and vo7
variants is much larger when no orthonormal matrices are built. In those cases, it is usually be-
tween 30% and 50% faster; in some cases, it is up to 80% faster. Unless explicitly stated otherwise,
the next experiments show results for the v@7 variant.

Figure 10 compares the scaled times of both implementations of RANDUTV (RANDUTV_PBLAS
and RANDUTV_AB) with respect to matrix dimensions. Again, only performance results for opti-
mal block sizes are reported. When no orthonormal matrices are built, RANDUTV_AB is between
2.7 (@ = 0) and 3.4 (¢ = 2) times as fast as RANDUTV_PBLAS for the largest matrix size; when
orthonormal matrices are built, RANDUTV_AB is between 2.2 (¢ = 0) and 2.7 (¢ = 2) times as fast
as RANDUTV_PBLAS for the largest matrix size.

6.2.5 Performance of RANDUTV versus State-of-the-Art SVD Factorizations. Figure 11 shows the
scaled times of the best implementations with respect to matrix dimensions. In this case, RAN-
DUTV_AB is usually faster when no orthonormal matrices are built, and this performance im-
provement is more evident when orthonormal matrices are built. Actually, the performance of
RANDUTV_AB, MKL SVD, and MKL SDD are similar or even faster than MKL CPQR, a factoriza-
tion that requires much fewer floating point operations.

INote that the optimal block size also depends on the matrix size. Therefore, as the matrix size increases or decreases, the
threshold could also be affected by a larger or smaller optimal block size.
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Fig. 11. Scaled time versus matrix dimension for the best implementations. The top row shows results for
marbore with 28 cores, the middle row shows results for mimir with 36 cores, and the bottom row shows
results for makalu with 40 cores.

Table 2 summarizes the ratios of the speed of RANDUTV_AB and the other rank-revealing fac-
torizations normalized to its execution time on the largest matrix dimension with data shown in
Figure 11. The performance improvement is significantly larger when orthonormal matrices are
built and g = 0, but gains are still present when no orthonormal matrices are built and g = 2.

6.2.6  Scalability and Efficiency Analysis. Figure 12 shows the speedups obtained by the best
implementations on the three machines. The top row shows results of marbore on matrices of
dimension 14,000 X 14,000, the middle row shows results of mimir on matrices of dimension
18,000 x 18,000 (the largest dimension in which all the best implementations could be run), and
the bottom row shows results of makalu on matrices of dimension 20,000 X 20,000. Recall that in
this figure every implementation compares against itself on one core.
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Table 2. Performance Ratios of RANDUTV_AB versus That of the Other
Rank-Revealing Factorizations on the Largest Matrices in the Three Machines

No orthonormal matrices  Orthonormal matrices
UTvV UTV UTvV UuTvV UTV  UTV
VS. VS. VS. vs. vs. VS.

q Machine SDD SVD CPQR SDD SVD CPQR
0 marbore 154 1.53 11.07 3.65 5.24 5.89
0 mimir 1.74 1.77 9.50 4.51 5.65 5.08
0 makalu 2.19 1.63 10.87 5.97 5.99 6.14
1 marbore 1.19 1.18 8.53 3.17 4.55 5.11
1 mimir 1.33 1.38 7.38 3.85 4.86 4.36
1 makalu 1.66 1.20 8.04 5.01 5.03 5.15
2 marbore 0.97 0.96 6.95 2.79 4.01 4.50
2 mimir 1.10 1.15 6.16 3.42 4.39 3.94
2 makalu 1.29 0.94 6.31 4.26 4.32 4.43
A value of 2.00 in a cell means RANDUTV_AB is twice as fast.

The scalability of RANDUTV_AB is always similar or even better than the scalability of the highly
efficient unpivoted QR factorization, and it does not depend on whether the orthonormal matrices
are built. Note that it always grows whenever more cores are employed. In contrast, the SVD
factorizations perform very well in one case (even with a slight superspeedup): when orthonormal
matrices are built using 18 cores or fewer in mimir. In all other cases, the speedups are usually
modest when no orthonormal matrices are built, and the scalability even drops (the speedups do
not grow much) when going from half the number of cores to the full number of cores. All in all,
the scalability of RANDUTV_AB is similar (or even better) to that of the QR factorization and much
higher than the rest of the implementations.

Another goal of this study was to measure the efficiency of the implementations. There are
multiple definitions of efficiency in parallel environments. One of the most popular definitions is
the speedup divided by the number of cores. According to this definition, the maximum efficiency
is 1, which represents the fraction of the system that is doing useful work. Figure 13 shows the
efficiency obtained by the best implementations on the three machines. The top row shows re-
sults of marbore on matrices of dimension 14,000 X 14,000, the middle row shows results of mimir
on matrices of dimension 18,000 X 18,000 (the largest dimension in which all of the best imple-
mentations could be run), and the bottom row shows results of makalu on matrices of dimension
20,000 X 20,000. Recall that, also in this figure, every implementation compares against itself on
one core. As can be seen, in all cases the efficiency of RANDUTV_AB is either the highest one or
the second highest one. RANDUTV_AB is the only factorization that achieves an efficiency similar
to or higher than 50% (the speedups are higher than half the number of cores) when employing the
maximum number of cores in both architectures, whereas the efficiency of all of the other factoriza-
tions are usually lower. In contrast, the efficiency of SVD factorizations is usually lower except for
mimir when orthonormal matrices are built. The efficiency of CPQR factorizations is even lower.

Another way of assessing the efficiency of the new RANDUTV_AB codes on shared-memory
architectures is to compare their times with those of the QR factorization. Recall that the computa-
tional cost in flops of the RANDUTYV algorithm for ¢ = 0,q = 1,and ¢ = 2is 3, 4, and 5 times as large
as the computational cost of the QR factorization, respectively, when no orthonormal matrices are
built. When factorizing matrices of dimension 30,000 on makalu and no orthonormal matrices are
built, the quotient of the times of the RANDUTV_AB for ¢ = 0, ¢ = 1, and g = 2 and the time of
the QR factorization is 3.14, 4.24, 5.40, respectively. As can be seen, those figures are very close
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Fig. 12. Speedups versus number of cores for the best implementations. The top row shows results for
marbore with up to 28 cores and m = n = 14,000, the middle row shows results for mimir with up to 36 cores
and m = n = 18,000, and the bottom row shows results for makalu with up to 40 cores and m = n = 20,000.

to the theoretical quotients of 3, 4, and 5. Hence, for ¢ = 2, the RANDUTV is only about 8% less
efficient (5.40 vs. 5) than the QR factorization from the MKL library, which is well known to be
very efficient.

6.2.7 Detailed Performance Analysis. Figure 14 reports task execution traces (obtained
through code instrumentation by means of the Extrae/Paraver framework?) on makalu, for
n = 8,192 and b = 320 running on 40 cores. Note that, for the purpose of our experiment, the
maximum potential task parallelism in this case is around (8,192/320 =~ 26). This will ultimately

Zhttps://tools.bsc.es/paraver.
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Fig. 13. Efficiency versus number of cores for the best implementations. The top row shows results for
marbore with up to 28 cores and m = n = 14,000, the middle row shows results for mimir with up to 36 cores
and m = n = 18,000, and the bottom row shows results for makalu with up to 40 cores and m = n = 20,000.

limit the performance of those variants that do not automatically increase the degree of task

parallelism.

The experiment comprises four successive executions —v@5 and v@7 without and with construc-
tion of orthonormal matrices. The top traces illustrate the execution of tasks following the color
convention in Figure 5; the plots in blue represent instantaneous core occupation. A number of
caveats can be extracted from the observation of the traces:

o First, observe the considerable reduction in execution time from the v@7 implementations
compared with their v@5 counterparts.
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Fig. 14. Detailed execution traces for two different variants of the algorithm-by-blocks for randuTV with
n = 8,192 and b = 320 on makalu, using 40 threads. From left to right: v@5 without orthonormal matrices,
v@7 without orthonormal matrices, v@5 with orthonormal matrices, and v@7 with orthonormal matrices. The
plot on the top shows the dataflow task execution, using the same color convention as that used in Figure 5;
the plot on the bottom reports the instantaneous core occupation for each execution.

Table 3. Detailed Time Percentage Distribution Per Task Type for Variants vo5 and v@7 for
randUTV, with n = 8,192 and b = 320 on makalu, using 40 Threads

v05 (no ON) 0.16 2.66 0.70 19.57 1.33 29.76 0.01 0.62 4480 0.01 0.06 0.66
v@7 (noON) 0.29 252 127 17.70 225 26.63 0.02 056 4843 0.01 0.04 0.65

v05 (ON) 013 1.79 045 1211 245 5323 0.02 039 2922 0.00 0.04 0.51
v@7 (ON) 0.17 158 0.79 11.22 4.22 4942 0.01 036 3201 0.01 0.03 043

Colors follow the convention in Figure 5.

e This improvement is more evident when orthonormal matrices are not computed, as paral-
lelism in those cases is more scarce; hence, the improvements of our techniques to expose
extra task parallelism are more evident.

e All in all, the primary source of the observed performance improvement, as suggested in
previous sections, is the increase of task parallelism (and, hence, core occupation). This phe-
nomenon can be observed in the occupation plots, which clearly report extra occupation
throughout the whole computation in v@7 compared with their v@5 counterparts.

Figure 15 contains a histogram of core occupations for the same experiments as those reported
in Figure 14. In the figure, low percentages mean that cores are idle most of the time. Note the
qualitative and quantitative differences between v@5 and v@7: whereas the first present a peak
core occupation around 26 (recall the potential task parallelism calculated earlier), variant vo7
increases this potential parallelism and exhibits a large percentage of time (around 42%) using 40
cores in the case of computing orthonormal matrices (this percentage is also significantly larger
when orthonormal matrices are not computed).

Finally, Table 3 lists the percentage of time devoted for each task type for the same round of
experiments. Note how all implementations are heavily xgemm based, and how extra xgemm tasks
are generated in all cases in variants v@7 compared with their v@5 counterpart, yielding higher
performance.

ACM Transactions on Mathematical Software, Vol. 48, No. 2, Article 21. Publication date: May 2022.



Efficient Algorithms for Computing a Rank-Revealing UTV Factorization 21:33

Core occupation distribution
T I T

M UTV AB \05 G=2 without ON matrices.

40 |— | EEEEEEEE UTV AB V07 q=2without ON matrices .
[ UTV AB V05 q=2 with ON matrices.
1 UTVAB\07 g=2 with ON matrices

Percentage of time

0 10 20 30 40
Number of cores

Fig. 15. Histogram of core occupation for two different variants of the algorithm-by-blocks for randuTV, with
n = 8,192 and b = 320 on makalu, using 40 threads.. Low percentages mean that cores are idle most of the
time.

6.2.8 Concluding Remarks for Shared-memory Architectures. In conclusion, RANDUTV_AB is
the clear winner over competing factorization methods in terms of raw speed when orthonormal
matrices are required and the matrix is not too small (n > 4,000). In terms of scalability, RAN-
DUTV_AB outperforms the competition as well. Also, the algorithm-by-blocks implementation
gives noticeable speedup over the blocked PBLAS version. Although the accuracy of SVD is much
higher, the fact that RANDUTV_AB can compete with MKL SVD at all in terms of speed is remark-
able given the large effort usually invested by Intel on its software. This is evidenced by the fact
that the MKL CPQR is left in the dust by both MKL SVD and RANDUTV_AB, each of which costs
far more flops than MKL CPQR. The scalability results of RANDUTV_AB and its excellent timing
evince its potential as a high-performance tool in shared-memory computing.

6.3 Computational Speed on Distributed-Memory Architectures

The experiments on distributed-memory architectures reported in this subsection were performed
on two computers:

o ua: A cluster of HP computers. Each node of the cluster contained two Intel Xeon CPU X5560
processors at 2.8 GHz, with 12 cores and 48 GB of RAM in total. The nodes were connected
with an Infiniband 4X QDR network. This network is capable of supporting 40 Gb/s signaling
rate, with a peak data rate of 32 Gb/s in each direction.

Its OS was GNU/Linux (version 3.10.0-514.21.1.el7.x86_64). Intel’s i fort compiler (version
12.0.0 20101006) was employed. LAPACK and ScaLAPACK routines were taken from the Intel
Math Kernel Library (MKL) version 10.3.0 Product Build 20100927 for Intel(R) 64 architecture,
since this library usually delivers much higher performance than LAPACK and ScaLAPACK
codes from the Netlib repository.

e skx: Nodes with Skylake architecture of the stampede2 supercomputer. Each node of the
cluster contained two Intel Xeon CPU Platinum 8160 processors at 2.1 GHz, with 48 cores
and 192 GB of RAM in total. The nodes were connected with a 100 Gb/s Intel Omni-Path
(OPA) network with a fat tree topology.

Its OS was GNU/Linux (version 3.10.0-957.5.1.el7.x86_64). Intel’s ifort compiler (version
18.0.2) was employed. LAPACK and ScaLAPACK routines were also taken from the Intel
Math Kernel Library (MKL) version 2018.0.2 Product Build 20180127 for Intel 64 architecture.

Most of the experiments were run in the first computer since in the second one the number of
available hours was limited. Unless explicitly stated otherwise, the following plots show results
from the first computer.
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Fig. 16. Scaled time versus block size on 96 cores arranged as a 6 X 16 mesh.

All matrices used in these experiments were randomly generated since they can be generated
much faster and the cluster was being heavily loaded by other users.
The following implementations were assessed in the experiments of this subsection:

e ScCALAPACK SVD: The routine called pdgesvd from MKL’s ScaLAPACK is used to compute
the SVD.

e ScALAPACK CPQR: The routine called pdgeqpf from MKL’s ScaLAPACK is used to compute
the CPQR factorization.

e PLIC CPQR: The routine called pdgeqp3 from the PLiC library (Parallel Library for Con-
trol) [4] is used to compute the CPQR factorization by using BLAS-3. This source code was
linked to the ScaLAPACK library from MKL for the purpose of a fair comparison.

e RANDUTV: A new implementation for computing the RANDUTYV factorization based on the
ScaLAPACK infrastructure and library. This source code was linked to the ScaLAPACK li-
brary from MKL for the purpose of a fair comparison.

e SCALAPACK QR: The routine called dgeqrf from MKL’s ScaLAPACK is used to compute the
QR factorization. Although this routine does not reveal the rank, it was included in some
experiments as a reference for the others.

Like in the previous subsection on shared-memory architectures, two plots are shown for every
experiment. The left plot shows the performance when no orthonormal matrices are computed (the
codes compute just the singular values for the SVD, the upper triangular matrix R for the CPQR
and the QR factorizations, and the upper triangular matrix T for the RANDUTYV factorization). The
right plot shows the performance when, in addition to those, all orthonormal matrices are explicitly
formed (matrices U and V for SVD and RANDUTV and matrix Q for QR and CPQR). Recall that the
right plot slightly favors CPQR and QR since only one orthonormal matrix is built.

The first task was to assess the QR factorization and our implementation of the incremental QR
factorization on distributed-memory machines. We assessed several nodes, several mesh configura-
tions, block sizes, and matrix sizes. In all cases, the QR factorization in ScaLAPACK clearly outper-
formed our incremental QR factorization. For instance, when computing the QR factorization of
matrices of dimension 25,600 X 25,600, the speed of the QR factorization in ScaLAPACK (pdgeqrf)
was 370 GFlops/s, whereas the speed of the incremental QR factorization was 250 GFlops/s. Be-
cause of this performance gap, we did not implement a full RANDUTV based on the incremental
QR factorization. The following plots report results and performance when employing the usual
OR factorization.

Figure 16 shows the performance of all implementations described earlier on several block sizes
when using 96 cores arranged as a 6 X 16 mesh on matrices of dimension 25,600 X 25,600. As can
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Table 4. Ratios of the Speed of Distributed-Memory RANDUTV
versus That of the Other Rank-Revealing Factorizations on the
Largest Matrices in Some Configurations of the Two Machines

No ON matrices ON matrices
UTv UTvV UTvV UTV

VS. VS. VS. VS.
g Machine Mesh SVD CPQR SVD CPQR
0 ua 4x12 542 266 662 172
0 ua 6x16 337 18 673 114
0 skx 24%32 543 304 2140 195
1 ua 4x12 369 181 523 136
1 ua 6x16 232 130 536 091
1 skx 24%x32 436 244 1841 1.68
2 ua 4x12 279 137 433 112
2 ua 6x16 182 102 449  0.76
2 skx 24%32 357 200 1617 147

A value of 2.00 in a cell means RANDUTV is twice as fast. Only PLiC
CPQR factorization is included since it is usually much faster than
ScaLAPACK CPQR.

be seen, most implementations perform slightly better on small block sizes, such as 32 and 64,
the only exception being PLiC CPQR, which performs a bit better on large block sizes when no
orthonormal matrices are built.

Figure 17 shows the performance of all of the implementations for many topologies on matrices
of dimension 20,480 X 20,480. The top row shows the results on one node (12 cores), the second
row shows the results on two nodes (24 cores), the third row shows the results on four nodes
(48 cores), and the fourth row shows the results on eight nodes (96 cores). As can be seen, the best
topologies are usually p X g, with p slightly smaller than q.

Figure 18 shows the performance versus matrix dimensions on two different numbers of cores:
48 cores arranged as 4 X 12 (top row) and 96 cores arranged as 6 X 16 (bottom row). As can be
easily seen, RANDUTYV is usually much faster than the other rank-revealing factorizations. As ex-
pected, RANDUTYV is slower than the QR factorization; a non-rank-revealing factorization is in-
cluded as a reference. On medium and large matrices, the performance of ScaLAPACK CPQR is
much lower than that of RANDUTV, whereas the performance of PLiC CPQR is more similar to
that of RANDUTYV. Nevertheless, recall that the precision of CPQR is usually much smaller than
that of RANDUTV.

Table 4 summarizes the ratios of the speed of distributed-memory RANDUTV and the other two
best rank-revealing factorizations (the time of the other factorizations divided by the time of the
RANDUTV) on the largest matrix dimension with data shown in Figure 18 and Figure 21. In this
table, a value of 2.00 in a cell means that RANDUTV_AB is twice as fast. The performance gap
is much larger when orthonormal matrices are built and ¢ = 0; the gap is not so large when
orthonormal matrices are built and g = 2.

In distributed-memory applications, the traditional approach creates one process per core.
However, creating fewer processes and then a corresponding number of threads per process can
improve performance in some cases. Obviously, the product of the number of processes and the
number of threads per process must be equal to the total number of cores. The advantage of
this approach is that the creation of fewer processes reduces the communication cost, which is
usually the main bottleneck in distributed-memory applications. In the case of linear algebra
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Fig. 17. Scaled times on several topologies on matrices of dimension 20,480 x 20,480.
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Fig. 18. Scaled time versus matrix dimension on two different numbers of cores. The top row shows results
on 48 cores arranged as 4 X 12; the bottom row shows results on 96 cores arranged as 6 X 16.

applications, creating and using several threads per process can be easily achieved by employing
shared-memory parallel LAPACK and BLAS libraries. Nevertheless, great care must be taken
to ensure a proper pinning of processes to cores, since performance drops markedly otherwise.
This was achieved by using the -genv I_MPI_PIN_DOMAIN socket flag when executing the
mpirun/mpiexec command in the machine used in the experiments.

Figure 19 shows the scaled timings of the factorizations of matrices of dimension 25,600 X 25,600
on 96 cores when using several configurations with different numbers of threads per process. These
plots include the results on a complete set of topologies to isolate the effect of the increased num-
ber of threads. As usual, the left three plots show performance when no orthonormal matrices are
built and the right three plots show performance when orthonormal matrices are built. The top
row shows performance when one process per core (96 processes) and then one thread per process
are created (96 X 1 = 96). The second row shows performance when one process per two cores
(48 processes) and then two threads per process are created (48 X 2 = 96). The third row shows
performance when one process per three cores (32 processes) and then three threads per process
are created (32 X 3 = 96). As can be seen, the SVD increases performance only when orthonor-
mal matrices are created, whereas RANDUTV increases performance in both cases (both with and
without orthonormal matrices).

Table 5 shows the best timing (in seconds) for several topologies with 96 cores so that a finer
detail comparison can be achieved. Matrices being factorized are 25,600 X 25,600. As can be seen,
SVD increases performance 13% when orthonormal matrices are built, whereas RANDUTV with
q = 2 improves performance 20% in both cases. Performance usually increases when using two
threads per process but remains similar or drops when using more than two threads per process.
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Fig. 19. Scaled times on several topologies on matrices of dimension 25,600 X 25,600.

Table 5. Best Timing in Seconds of Several Topologies with 96 Cores on
Matrices of Dimension 25,600 X 25,600 Considering Several Numbers of
Threads Per Process

No ON matrices
Threads per process

ON matrices
Threads per process

Factorization 1 2 3

1 2 3

SVD 393.9 644.0 6453
RANDUTV g =0 117.0 102.7 112.2
RANDUTV g =1 168.6 1425 160.1
RANDUTV g =2 2167 180.4 207.8

1494.1 1336.4 1318.0
2142 1923  203.7
2721 2323 2514
327.5 2717  298.7
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Fig. 20. Speedups versus number of cores for all of the implementations on matrices of dimension 20,480 x
20,480.

Figure 20 shows the speedups obtained by all of the implementations on matrices of dimension
20,480 % 20,480. Recall that in this plot, every implementation compares against itself on one core.
The best topologies have been selected for the following number of cores: 3 X 4 for 12 cores, 6 X 4
for 24 cores, 4 X 12 for 48 cores, and 6 X 16 for 96 cores. When no orthonormal matrices are built,
speedups of RANDUTYV on the largest number of cores (96) are between 47.1 (¢ = 0) and 43.3 (¢ = 2).
When orthonormal matrices are built, speedups of RANDUTV on the largest number of cores (96)
are between 49.3 (¢ = 0) and 44.7 (¢ = 2). In both cases, the efficiency is close to 50%. When no
orthonormal matrices are built, speedups of RANDUTYV are a bit lower than those of QR factoriza-
tion; when orthonormal matrices are built, speedups of RANDUTV are a bit higher than those of
QR factorization. In both cases, the speedups of RANDUTV are much higher than those obtained by
the SVD and the CPQR factorization, showing the great scalability potential of this factorization.

As previously done on shared-memory architectures, an additional way of assessing the effi-
ciency of the new RANDUTV codes on distributed-memory architectures is to compare their times
with the times of the QR factorization. As said before, when no orthonormal matrices are built, the
computational cost in flops of the RANDUTV algorithm for ¢ = 0,q = 1,and g = 21is 3, 4, and 5 times
as large as the computational cost of the QR factorization, respectively. When factorizing matrices
of dimension 25,600 on 96 cores of ua organized as a 6 X 16 mesh and no orthonormal matrices are
built, the quotient of the times of the RANDUTYV for ¢ = 0, ¢ = 1, and q = 2 and the time of the QR
factorization is 3.58, 5.18, and 6.62, respectively. On the other hand, when factorizing matrices of
dimension 40,960 on 768 cores of skx organized as a 24 X 32 mesh and no orthonormal matrices
are built, the quotient of the times of the RANDUTV for ¢ = 0, g = 1, and g = 2 and the time of the
OR factorization is 3.65, 4.55, and 5.56, respectively. As can be seen, those quotients are very close
(closer in the second case) to the theoretical quotients of 3, 4, and 5. Hence, on skx for g = 2, the
RANDUTV is only 11.8% less efficient than the QR factorization from the MKL ScaLAPACK library.

Figure 21 shows the performance versus matrix dimensions on 16 nodes of skx (768 cores in
total arranged as a 24 X 32 logical mesh). The goal of this experiment was to assess a much larger
number of cores than previous experiments as well as a more performant platform with more
modern hardware and software. As can be seen, the performances of RANDUTV are much higher
than those of ScaLAPACK codes. When orthonormal matrices are built, PLiC CPQR is much closer
to RANDUTYV, and the ScaLAPACK SVD shows a performance drop between matrix sizes 20,480
and 25,600.

In summary, RANDUTV is significantly faster than the available distributed-memory implemen-
tations of SVD. It also matches the best CPQR implementation tested. RANDUTV is known to reveal
rank far better than CPQR [24]. It also furnishes orthonormal bases for the row space and for the
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Fig. 21. Scaled times versus matrix dimensions on 768 cores (arranged as 24 X 32) of skx.

(numerical) null space of the matrix. This means that just matching the speed of CPQR represents
a major gain in information at no additional computational cost. Furthermore, RANDUTYV is faster
than even CPQR in the case that orthonormal matrices are required. We finally observe that the
potential for scalability of RANDUTYV is a clear step above competing implementations for rank-
revealing factorizations in distributed memory.

7 CONCLUSIONS

We have described two new implementations of the RANDUTV algorithm for computing a rank
revealing factorization matrix, targeting shared-memory and distributed-memory architectures,
respectively.

Regarding shared memory, the new implementation proposes an algorithm-by-blocks that, built
on top of a runtime task scheduler (1ibflame’s SuperMatrix) implements a dataflow execution
model. Based on a DAG, this model reduces the amount of synchronization points, increasing
performance on massively parallel architectures. Actually, performance results on up to 40 cores
reveal excellent performance and scalability results compared with state-of-the-art proprietary
libraries.

We have also proposed a distributed-memory algorithm for RANDUTYV. This proposal leverages
the classic blocked algorithm rather than the algorithm-by-blocks, and makes heavy use of ScaLA-
PACK. Performance results show competitive performance and excellent scalability compared with
alternative state-of-the-art implementations.

In this article, we focused exclusively on the case of multicore CPUs with shared-memory
and homogeneous distributed-memory architectures. We expect that the relative advantages
of RANDUTV will be even more pronounced in more severely communication-constrained
environments, such as GPU-based architectures (composed of one or many nodes). Variations of
the method modified for such environments is proposed as future work.
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