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On the Equality of Modal Damping Power and
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Abstract— This letter establishes a relationship between
the concepts of damping torque and the dissipation of tran-
sient energy in a multimachine power system with constant
power loads. To that end, we present a mathematical proof
showing that, for a poorly-damped mode, the total damping
power stemming from the interaction of electromagnetic
torques and rotor speeds is approximately equal to the
average rate of transient energy dissipation in the system
corresponding to the modal oscillation. This is verified with
numerical studies on the IEEE 2-area 4-machine and 5-area
16-machine test systems.

Index Terms— Lyapunov methods, power systems, sta-
bility of linear systems, smart grid

[. INTRODUCTION

AMPING torque analysis, as introduced by Park in his

1933 paper [1] and furthered by Concordia [2], Shep-
herd [3], and notable others [4]-[6], help develop insightful
understanding of the stabilizing contributions coming from a
synchronous machine and its governor and excitation systems.
Complementary to this, the Lie derivative of a Lyapunov-like
transient energy function, derived in [7], is another control-
theoretic measure of system’s damping. The concepts of
passivity and positive realness have also been used to interpret
this complementary notion [8] and there exists a host of
publications that have focused on passivity-based damping
control [9], [10] of power systems.

Although some of the initial works listed above highlighted
an intuitive link between damping torque and dissipation of
transient energy (and indirectly with the passivity theory), it
is only in the recent works [11] and [12] that a rigorous
mathematical connection between the two has been established
for a single-machine-infinite-bus system. However, for multi-
machine systems such a connection is yet to be confirmed — in
this letter, we make a maiden attempt to fill this gap. This is
important given the critical emphasis attributed to the theory
of damping torque in power system stability analysis, as is
evident from classical textbooks like [13] and [14]. To that
end, we use a simplified mathematical model for multimachine
systems with constant power loads to establish an equivalence
between the average power dissipation due to the damping
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torques on the rotors and the average rate of transient energy
dissipation in the system. We emphasize that our focus is
on poorly-damped conditions posing stability challenges that
form the basic premise for both the theories.

The letter is structured as follows. In Section II we derive
a linearized representation of a multimachine system with
third-order synchronous generator model, lossless transmission
network, and constant power loads. Building on this model, in
Sections III and IV, we present a rigorous analytical proof of
the approximate equality of total damping power and average
rate of transient energy dissipation in the system, for poorly-
damped modes, under assumptions of constant mechanical
power input and constant field excitation. Case studies extend-
ing the proof to higher-order models are presented in Section
V, followed by conclusions in Section VI.

Symbols and notations: Quantities V;, 6;, Pr,, and Qp,
are respectively, the voltage magnitude, angle, and real and
reactive power loads at bus ¢ € {1,---,n}. Quantities J;,
Wi, E:ji, E;,;a T, Efa,, Hi, mélia x/qiv Ldis Tg;» Téoiv and
Téoi are respectively, the rotor angle, rotor speed, d- and g-axes
induced emfs, mechanical torque input, field circuit excitation
voltage, inertia constant, d- and g-axes transient reactances, d-
and g-axes synchronous reactances, and d- and g-axes open-
circuit transient time-constants of a generator connected to
bus i € {1, e ,ng}, ng < n. w, is the synchronous speed
and Yj;, e/>* is the (i, k)"-element of the network admittance
matrix. Symbol AZ; .. is the small-signal phasor representation
of the r™ modal component in x;. Superscripts T, *, and
H are respectively the transpose, conjugate, and Hermitian
operators. R{-} and 3{-} denote the real and imaginary parts
of a complex entity.

Il. SYSTEM MODEL: LINEARIZED REPRESENTATION

Consider a n—bus transmission system of which, without
loss of generality, first n, are generator buses. The network is
lossless and each synchronous generator is described by a one-
axis flux-decay model [7] with manual excitation. In addition,
we neglect the stator resistances and assume constant power
loads leading to the worst-case damping.

The differential and algebraic equations describing the
system, as functions of state variables ¢;, w;, and Ef]i, and

algebraic variables #; and V; are described below.
(a) Generator buses (i =1, 2,... ng) :

5 = w; —ws (D
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@i _ Tm; Eq, Visin(6; — ;) N V2 sin2(6; — 0;) (qu' - miil)
ws  2H; 2H; x, 4H; Tq;xl
(2)
I T ) ©
doi dO,L' dz‘ dOi
oo Ey,Visin(6; — 0;) VP sin2(5; — 6,) (mqi - wfzi)
A :vfi 2 xqi:rii_
n
+ Pr,— Y ViViYiesin(9; — 6y)
k=1,k+i
(C))]
E/ Vicos(d; —0;)  V?2cos?(8; — 0;
0=gi=—Tt"—"1 ‘= -1 ,(1 i) +Qr, — Vi
xdi xdi
2. 2/ g n
— W + Z V; Vi, Yy, cos(0; — 0y,)
i k=1,k#i
(5)
(b) Load buses (i =ng+1, ng+2,... n):
n
O=fi=Pp,— Y ViViYigsin(0; — 0x) ©)
k=1,k+i
n
0=gi=Qr,+ D ViVpVicos(0; —0x) = ViV (1)

k=1,k+i
Linearizing (1) — (5) around an operating point, with V;  as
the voltage magnitude of bus 7 at that point and defining a
new variable v; = V;/V;,, we obtain
; . 417 11T T

(26 26 AE;| =M[A6 Aw AE,]" + N[A0 Av]
+ B [ AT AEfd
[0 0]'=c[as Aw AE,]"+ D[ A0 Av ]

]T
T
3
where, §, w, E(’l, 0, and v are the vectorized state and
algebraic variables of respective type, for instance, § =
[ 0; On, ]T and v = [ v; Un, ]T, and M, N,
B, C, and D are the Jacobian matrices obtained from lin-
earization (see, Appendix II). Finally, eliminating the algebraic
variables, we get

A[AS Aw AE,]T+B[ATm AEsq]"

)
where, A = M — ND 'C. It follows from the equations
above that A is of the form

(25 26 AE;]T:

0 I 0
A=| Az; 0 A3 (10)
A3z1 0 Agss

Apart from the state variables Ad;, Aw;, and AE(’N, the
output variable AT, , which is the electromagnetic torque
of generator ¢, is of specific interest to us. From the swing
equation this is expressed as AT,, = 72511‘ Aw; + ATy,,.

The notions of damping torque and damping power for
a given mode originate from the phasor representation (see,
Appendix I) of AT, in the Ad;, — Ad;, plane and the
power resulting from the interaction of the torque and the
speed. This is explained next.
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[1l. DAMPING POWER IN A MULTIMACHINE SYSTEM

Definition 1. For a mode r, the average damping power of
any i" machine due to AT, (t) over a cycle starting from
t = to, denoted by Py, , (to), is defined as

27

t0+wd
/ " ATe,; (1) Aw; . (t) dt.
to

wdr
2

Py, (o) == (11)

Using the phasor notation described in Appendix I, let
AT, (t) = 51 GUTt 4")/1 and A&M(t) = /82 Gdrt 4’}/2

€i,r

Therefore, Py, (to) =

21
Wy, / fotay,
2m to

B1 B2 wq,
47

e2ort B1 cos(wq,.t +v1) B2 cos(wg,t +v2) dt

eQO'rtO
2 op

t 27

B1 B2 wq, / 0t Ta, o0t

R e A e
47T t

cos(v1 — 72)

cos(2wq, t +v1 +y2) dt

(12)
Now, considering that our mode of interest is poorly-damped',

Amog.

0

we may expand the exponential e “¢- and neglect the second
and higher order terms. On doing so, the first term in (12)
reduces to % B1 P €297t cos(y; — 72). With the same
assumption, the second term in (12) becomes negligible, and
can be ignored for mathematical tractability. This is because,
with |o,| << wq,, for a complete cycle of cos(2wg,t),
the €2t term remains almost constant, and therefore, the
positive and negative half cycles approximately add to zero.
Therefore, Py, . (to) = % B1 B2 €297t cos(yy — y2) =
3 R{AT., (to) AT, (to)}. Following which, it can be
interpreted that Py,  (to) is the average power due to the
component of Aﬁw(to) in the direction of Ad; (o).
Hereafter, in the letter, assuming all phasors are computed
at t =ty and powers are averaged over a cycle starting at ¢,
we shall drop the argument ¢y from our expressions.
Definition 2. For a system with ng, machines, the total
damping power of the system for a mode r, denoted by F,,,
is the sum of the average damping powers of all machines.

o9 poor damp. 1 9 - o
Py, = ;Pd” ~" 2 ;%{ATEM Aww}. (13)
Next, we present the following lemma expressing Py, in terms
of the block matrices in A.
Lemma 1. Under assumptions of constant power loads,
constant mechanical power input, and constant field excitation,

for a poorly-damped mode T,

1, .7, 7 2 2,71 -
Pdr =~ 5 Awr A31 P (wdTI+ Agg ) A31 A, (14)
TI
where, P is a diagonal matrix with P (i,1) = 7 i,
i~ Fd;

Proof. First, we express AT;M in (13) in terms of the state
variables using the swing equation (see, Section II) and the
linearized system description obtained in (9) and (10). To

I gee, [15] pg.4, a mode r is poorly-damped, if o < 0, with |o| << wd,.
and damping ratio ¢ = —a, /(02 + wgr)o'5 € (0,0.03).
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that end, we take the Laplace transform of AT, , with the
assumption that the inputs AT, =0 and AEq, = 0.

2H

ATe(s) = —— = Ad(s) = - (s) + Ass AE;(S)}
— —QUJIS_I {A21 + Aog (SI — A33)71A31} AWT(S)

2 K(s) Aw(s). )

Next, defining K, = K(jwg, ), we may re-write (13) as

Pd,« ~ % { i: Z K’L] ’I”ij T‘ALD:(T‘} = 7%{Awr K'I‘Awr}

= (16)
where, K;; .- is the (i, 7)™ element of K,.. Finally, we simplify
the expression in (16) using the propositions (i) — (iv) below.
2H

S

-1 T T
Propositions: (i) P A33P = Agg, (ii) Ag1P =

Aag,

T
(#47) 2 Ao H=2H Aaq,
(iv) V x € C"9, %{XHK,«X} = xH§R{K7~} X.

Propositions (i) — (i4i) are derived using the differential and
algebraic equations of the system modeled in Section II. These
propositions are then used to establish the symmetry of K.,
which is in-turn used in proving proposition (iv). Proof of
these propositions are outlined in Appendix II.

Using (iv) we reduce (16) as follows

H
Py ~ %AG)T R{K, Y AG,. (17)

R{K,} is the matrix of multimachine damping torque coeffi-
cients for mode r. It is expressed as follows,

R{K,} = —§R{ 2H
Jwd, Ws
2H
= o A23 (UJ?ITI =+ A332)

S

—1
<A21 + A2z (jwq, I— Azz) A31) }

-1
A31.

This, along with (i7) when substituted in (17) gives

1 JH T 2 2,1 o
Fo, = 5 Ady Az1 P (wg, I+ Ass”) Az Adr .

T

This concludes the proof. [

IV. CONSISTENCY OF DAMPING POWER WITH
TRANSIENT POWER DISSIPATION IN THE SYSTEM

For the system model in Section II, the Lyapunov energy
function W has been derived in [7] for assessing transient
stability?. In this section, we deduce an analytical relationship
between the Lie derivative of W along the system trajectories
and the total damping power of the system.

As derived® in [7], the derivative of W along
the trajectories of the system is expressed as W=

ng T
— 30 E—
value of this derrvatlve over a cycle can be calculated as W=
T
L5~ doi . [THT(AEY,)? dt. Assuming, in AE,,

T Lui=1 T4, 71’/@ to

(AE’ .)2. Following which, the average

the modal components AE’ 4. are poorly-damped sinusoids

2 for the expression of W, see, eqns (3.14) and (3.15) in [7]
3in eqn (3.17) of [7], for our model D; =0
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of different frequencies, the average value can be decoupled

as Woa —5 300 SO fir i (A, ,)? dt
(see, (23)—(25) in [11]). We use th1s to define the transient
power dissipation of a mode, discussed next.

Definition 3. For a mode r, its average rate of transient
energy dissipation over a cycle (or simply, ‘transient power
dissipation’), denoted by Pyy,, is defined as

ng T/ to+ 27
Wy do; Wdp . 2
Py = e N~ Tdoi AE'g )2 dt. (18
Wy o ; Ta; — x/d ~/t0 ( ‘h,r) (18)

Theorem 1. (Main Result) Under assumptions of constant
power loads, constant mechanical power input, and constant
field excitation, for a poorly-damped mode r, Py is approx-
imately equal to Py, .

Proof. Using the phasor notation in Appendix I, and with
the assumptions and approximations as before (see, algebraic
manipulations in (12) and discussions following it), for a
poorly-damped mode, (18) can be expressed as follows,

g
Py, ~ 7‘AEQ (19)
2 = T4 —:Ed T

Further, using notations from (29), we may write AE’ =
(o, + der)AE:;i,,ﬂ = 2(or + jwa,)ere’ 0 Ypy . Next,

substituting this in (19) we get, '
Py, = 2|ér|® (07 +wi) q/gt,zr P Vg (20)
where, U, = {w%, ch’zng , ! and &, = ¢, e7r'o,
Since A, is an eigenvalue of the system, we may
write AV, = )\T\I/r,Twhere, the right eigenvector ¥, =
Us, Vo, Vg . Next, using the structure of A in

(10), we can split this into the following equations

Vg =T Asz3) ' Agy U5 and W, = /\i\r/w @1
Using these, along with (28) describing A&, =2 ¢, ¥, , we
may re-write (20) as follows

22, oy Al T T\—1

PWT ~ 2 ‘Cr| (0'7-+wdr) - A31 ()\TI— A33 )

2 Cy Arr (22)
_ AD
P (\I—Aszz) ' A —
(Ar 33) 8155\
Using proposition (4), this reduces to

1 .. 7 2 2,1 N

PWT% B} A&, Azl P (|)\r‘ I+ Ass ) A3 AG, . (23)

Finally, considering that the mode of interest is poorly-
damped, we substitute A\, = jwg, in (23). This leads to
Pw, ~ } AG, Agy P (W3 1+ Ags®) 'Agy Ad,, which
from Lemma 1 is P, . This concludes the proof. [J

Extensions to higher-order models: Next, we present the
generalized expressions of Py, and P, for higher-order
machine models relaxing some of the assumptions made in
Theorem 1. To that end, we do the following — (1) introduce
an exciter and a power system stabilizer (PSS) in the model
for modulating AFE;g4,, (2) include a g-axis damper winding,
and (3) introduce a speed governor for modulating* AT,,..

4

assumed, ATy, = Dgov,; Aw;
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Accounting for the damping contribution from these, the
expression of W and by extension Py, in (19) will be
modified. The modified expression for Py, is shown in (24).
In (24), the first, second, and the last terms are respectively,
the transient power dissipations in the field winding Pv‘f:eld,
damper Winding Py damp , and governor P7".

N
NZ xd f:r ) ‘ di,r

g
* Z 97!11 z) )AEdi’r

T,l ?R(AE AEf, )}

2 9
+ Z Dgovi
i=1
24

For the damping power, its expression Py in (17) would
remain the same with #{K,} modified as shown below.

. 2
AG;

R{K,} = %{Aza(wil + Asz?) 1(A31 + A33Azz) — Azz}

(25)
Note that, in (25), the block matrices Asz, Agy, and Agzg
are larger in dimensions compared to that in (17) to account
for the additional state variables like AE/,, AE ¢4, etc. which
are now concatenated to the vector AE(’I as the third entry.
Further, due to the speed feedback to governor and the washout
block in PSS, the terms Aso and A3z, are non-zero.

In Section V, we will numerically verify the equality be-
tween Py, and Py, , for higher-order models, with case studies
on two different IEEE test systems with damper windings,
different types of excitation systems, and PSSs.

V. CASE STUDIES
A. |EEE 2-area 4-machine Kundur Test System

Consider the 4-machine system® in [13] with two-axis
machine model (includes field and g-axis damper winding) and
DC1A excitation system [13] for each synchronous generator.
The network is lossless and the total load of the system
is 2,734 MW. Under nominal conditions, the system has a
poorly-damped mode at 0.67 Hz with a damping of 2.9%.
For this poorly-damped mode, in Fig. 1, we show that for
small perturbation® in the system, across operating points,
the total damping power is numerically equal to the sum
of the average rates of transient energy dissipations in the
field and damper windings. The operating point is varied by
progressively reducing the tie flow between buses 7 and 9
from 433 MW under nominal condition to —400 MW while
maintaining the total load of the system constant.

Validation under large disturbances: Next, we consider
the same system, but with flux-decay machine model (only
field winding) and IEEE ST1A excitation system [13] on
all generators. Additionally, generator 1 is equipped with a
PSS. We simulate a 5-cycle three-phase self-clearing fault
near bus 8. From the detrended time-domain responses, using
Aw; as the reference, we next estimate [16] the relative
modeshapes for all Aw;, AT, AE, , AE} , and AEy,-s
for the poorly-damped mode. The Pd” and Py, . of all 4
generators as computed using these modeshapes are shown in
Table I. As can be seen, for the small-signal (linearized) model,

3 slightly modified to include a third line between buses 7 — 8 and 8 — 9
6 one-time 0.2 s unit pulse disturbance in the excitation system reference
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%1073
— Py, —o-Py, — P — Py
10F ]
=
ALl |
0 C L L L L L L L L ]
400 -300 -200 -100 0 100 200 300 400

tie flow, MW

Fig. 1: Equality of Py, and Py, (= Pv‘field + P damp) for the poorly-
damped mode, across dlfterent operating points in the 4—machine system.

TABLE |: DAMPING AND DISSIPATIVE POWERS IN 4—MACHINE
SYSTEM MODEL FOR THE POORLY-DAMPED MODE
small-signal model time-domain responses
Pa; . Pwi Pa; . Pwi
2 e, [? 2 e, 2 2o, 2 [e,|?
Gl 0.0382 0.2294 0.0361 0.2274
G2 0.0321 —0.1830 0.0340 —0.1877
G3 0.0435 0.0794 0.0405 0.0754
G4 0.0521 0.0401 0.0472 0.0390
Sum 0.1659 0.1659 0.1578 0.1541

the equality of P, and Py, is verified. Further, the values
estimated from post-fault time-domain responses indicate that
the approximate equality of P; and Py, holds even under
large disturbances.

B. IEEE 5-area 16-machine NY-NE Test System

Next, consider the 16—machine New York-New England
test system in [17] with two-axis machine model. Generators
G1 — G8 have DCI1A exciters, G9 is equipped with a ST1A
exciter and a power system stabilizer (PSS), and the remaining
generators have manual excitation. The machine and the
network data can be obtained from [17]. The system has a
poorly-damped mode at 0.56 Hz with 2.8% damping. In Fig
2, corresponding to this particular mode, the consistency of
total damping power and sum of power dissipation in machine
windings is shown for pulse disturbances®.
%1073
— P, —o-Py — pl

Pdamp

pu
[\ =~
‘ ‘
=
=
L

1.2 1.3 1.4 1.5 1.6 1.7
total load, MW «10%

Fig. 2: Equality of Py, and Py, (= Py field | Py 4amPy for the poorly-
damped mode, across different operating pomts in the 16 —machine system.

VI. CONCLUSIONS

A mathematical proof was presented for the approximate
equality of total damping power and the average rate of
transient energy dissipation in a multimachine power system,
under assumptions of poor-damping like lossless transmission
network, constant power loads, constant mechanical power in-
put, and constant excitation voltage. Numerical studies showed
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the equality holds true even when some of these assumptions
are relaxed. Future work will focus on establishing this con-
nection for more realistic load models.

APPENDIX |
PHASOR NOTATION

For an autonomous system x(¢) = Ax(t), assume there are
m oscillatory modes in the response, each due to a complex-
conjugate eigenvalue pair A\, (= o, + jwg,) and \; of A.
The time evolution of any i state variable ;(t) can then be
expressed as the sum of m modal constituents, as in (26)

m m «
i) = Y wir(t) = Y {M ey + Metwi, b 26)
r=1 r=1
where, ¢, = ¢ x(0), and ¢! and W, are respectively the left
and right eigenvectors of A corresponding to the eigenvalue A,
with ;. as the i entry of W,.. Denoting 2¢,; 2 Bi reior,
x;,»(t) reduces to

z; (1) =2 %{e)‘rtcrwi,r} = Bir eort cos(wg,.t +vir). 27

This sinusoidal variation is represented in the dynamic
phasor (mentioned as ‘phasor’ going forward) notation using
the magnitude and phase of the signal, as shown in eqn (28).

. A . .
i) = Bir et LNy = 2¢r Yig eort (28)

)

The phasor &; ,.(t) is rotating at the modal frequency wy, with
its amplitude having an exponential decay. Next, from (27),

@i (t) = Biy €7 {0y cos(wa, b+ Yiy) — wa, sin(wg,t -+
Yi,r) }. Therefore,
Fir(t) = (o7 + wa,) Tin(t): (29)

APPENDIX Il
PROOF OF PROPOSITIONS

Observe that, from (8), the matrices can be structured as

0 0
N =| N21 N2

N31 Ng3
:| D B

Di1 D12
D21 D22

Following the notation that Dy (4, §) is the (i,7)™ element

of the (k,1)" submatrix Dy of D, we may write ¥V j # i

0 I 0
M= | Mz21 0 Mgz
Ms; 0 Msg
0 Ci3

_ | Cu1
C_{ 0 Co3

C21

. of; .
Du2(i.f) = Vig 2 | = —VigVio¥iysin(6y, —6,) (0w
i lo
. dg; . .
D21(i,j) = 831 = Vi VjoYij sin(0iy — 05,) = D12(j, 1)
i lo
(30b)
ca_Ofi | _vovoye , N y
D11(i,5) = 55~ | = Vi Vi Yij cos(Big — 0jy) = D11(j. )
i lo
(30c)
. 0g; .
Da2(4,5) = Vi, 8‘%' = Viy Vi Yij cos(0iy — 04,) = D22(j,%).
i lo
(30d)
Similarly, it can be shown that,
| 0g |
Di12(i,4) = V;, v 0— 26 0— D21 (3,19). 31
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Therefore, frgm eqns (30a), (30b), and (31), it can be
inferred that D;, = D2;. Additionally, from eqns (30c) —
(30d), D7, = Dy; and Dy, = Day. Thus, D' = D. Further,
D being real and symmetric implies D is also real and
symmetric, D =D .

Proof of Prop. (i) : Recal, A =M —ND 'C

1 C
= A3z =Msz3— [ N31 N3z |D { 13}

Cos
T (32)
r T T T -7 [N
— A33 = M33 - [C13 C23} D g‘l
N3z
From eqns (3) and (4) observe that, V j # i,
Naq (i, i) — % | _g. Crali. i) — s —0: (33
31(, ) a9; |,~ 0 13(3,7) om; |, (33)
and for elements on the principal diagonal,
) o8 Vig sin(8iy — i) [ Td; — Ta,
N3 (i,7) = 0, |~ 7, < . ) (34a)
o Ofi | Vigsin(dig — 04p)
Cus(i,i) = 9Eq |y 7, (34b)

Further note, N3; and C;3 are rectangular matrices of dimen-
sions R™s*™ and R"*"s respectively. Therefore, combining
eqns (33) and (34) we get

—1 T
P Ci3 =Ns;

(35)
Similarly, from eqns (3) and (5), V j # 1,
OE!, dg;
N P oA — . qa; — . C P — 7 d
32(747.7) Vjo 8‘/J o 0; 23(17]) 3E{;J 0 ; an
Yo Vi, cos(8i, — 03,) [ Td, — Ty,
N P — 1 % | _ "% %0 0 i i
00 =Ygy |7, 7,
- 9gi | _ Vigcos(diy — i)
Caalini) = 9Eq |o g,
Therefore, following arguments as before,
-1 T
P Cs3 = Ngjs (36)

OF!

i

35,

Finally, observe that Mgz € R"™9*"s with Ms3(i,j) =
r: 0 V j #i. This implies Mgz is diagonal.

0
Using D ' =D ', and the results (35) and (36), eqn (32)
can be rewritten as

-1.T 1] C
P A3sP=Ms3— | N31 N3z |D [Ciz

This concludes the proof. [
Proof of Prop. (ii) : It can be seen from eqns (2) and (3)
that blocks Mgy and Ma3 are diagonal. Also,

May (i, 1) — 8E(lh . Vi sin(d; — 0;) (Td; — x;il
o Oy Vio sin(d; — 6;)
Ma3z(i,1) = = -0 w
23009 = 35 |, 2H; @, :
Therefore, we my write
T 2H
Ms; P = -—— Mas (37)

S
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where H is diagonal with H(i,i) = H;.
Now, as before, for N and C matrices,

. Ow; . of;
N = =0; C = =0. Al
21 (4, J) a0, |, 0; 11(4,7) 2, |, 0 s0,
N (Z Z) _ &bi _ Ws Efl]io Vio COS(5i0 - eio)
21\%, - 891 0 o 2H1 m/d
B wsVi% sin 2(6;, — 0i,) (azqi — xiii )
2H; IqifE:j,
Cu(i,i) = 2L Egy, Vi cos(3ig — big)
11 f— =
’ 651' 0 x:i
!
2 (T T %4\ _ 2 H; .
Vio sin 2(d;,, 910)( mqix&' )— o Na21(i,1)

Combining these with the fact that, No; € R™9*™ and Cy; €
R™*"s we may write,

T 2 H
Ci1 = No2i1. (38)
Ws
Similarly, it can be shown that
T 2H
Ca1 = N2z (39
S
Now, recall A = M — ND ' C. Therefore,
A3; =Ms; — [ N33 Nzz |D { C; }
T (40)
T T T T -7 | N
— Az P = MjysP — [011 021] D 3L p
32

Next, using D~ =D ' and results (35) — (39) in (40)

T 2 H 2 H -1|C
Az, P = » M2z — o [NZI sz}D C:z
S S
_ 2 H Ass
Ws

This concludes the proof. [
Proof of Prop. (iii) : As before, observe from (2) that Mg,
is diagonal. Therefore, we may write

H My = M2, H. 41)

-1 1C11

Also, Az1 =Mg; — [ N21 Nz |D C
21
T T T |2 Ny, H
T T -
— 2 AnH=MyH - [Cj; Cpy | D 7

42)

Finally, substituting (38), (39), and (41) in (42)

T -1 [C
2A2H=2HMz; — 2H [Ng; N33 |D [cﬂ

=2H Asq.

This concludes the proof. [
Proof of Prop. (iv) : From the definition of K, and (15),

. T T T -1 T
KT, — —%{Ale + A31 (]wdrl - A33) (A23 H)}
Ws Jwd,.
2 T T . —1,F
= ,%{AmH + Az P (jwg, I — P AgsP)
Ws Jwd,.

—1

P '(H Az3)"}.
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Using propositions (i) — (ii4) we can re-write K as

2H

Ws jwdr

1
K; = {A21 + A23 (jwgq, I — Asz) A31} =K.

(43)
Next, for any x = x; + jXg, with x3,x5 € R"

x Ko = (xf = jxd) (ROKr) + 7S (K:)) (1 +x2). (44)
Also, since K, = KTT, we may write

X,{%(KT)XQ = xg%(KT)xl and x{?}%(KT)XQ = xg%(Kr)xl.
45)
The identities in (45) reduces the real part of (44) as follows

§R{XHK7’X} = xlTS‘%(Kr)xl + x2T§R(KT)x2
= X?ER(KT)xl + xg%(KT)XQ -|-jX,{§R(Kr)X2 — jxg%(Kr)xl
= XH%{KT} X.

This concludes the proof. [ (46)
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