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a b s t r a c t

Mass spectrometry-based biomolecular analyses have become permanent fixtures of academic, indus-
trial, and clinical research settings. The rise in utilization of mass spectrometry has, in turn, spurred on a
technological arms race, with every major vendor seeking to provide instrumentation that is more
sensitive, higher in resolution, or may otherwise offer fundamental advantages during analysis. Enabling
higher sensitivity, increased instrumental duty cycle, reduced analysis time and lower sample re-
quirements, gas phase ion separation techniques now provide a fourth dimension of analysis, enabling
rapid structural characterization and high throughput -omics profiling in a single run. Presented here is a
current review of the latest iterations and applications of high-end ion-mobility enabled instrumenta-
tion, the Agilent 6560 IM-QTOF, Waters Cyclic, Bruker timsTOF, and Thermo FAIMS Pro instrument
platforms. Describing their engineering developments and analytical successes over the past two de-
cades, we highlight notable advantages and considerations for novice and experienced biomolecular
researchers alike.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Having recently garnered significant attention and invigorated
utilization, the past six decades of instrumental development have
given way to a gilded era of Ion Mobility Spectrometry (IMS). With
the earliest reports of ion mobility provided over a century ago [1]
and the first published instrumental iteration nearing its sixtieth
anniversary [2], the analytical capacity and breadth of meaningful
applications have long been hindered by the rate of technical
development. With Drift Tube (DTIMS), Field Asymmetric Wave-
form (FAIMS), and Traveling Wave Ion Mobility (TWIMS) arriving
nearly twenty years apart e followed soon by Trapped Ion Mobility
(TIMS) e these ion separation modalities have long been relegated
to niche research focus and the analysis of structural conformation.

Within the past ten years, there has been a fundamental shift in
IM-based biomolecular analyses. While the potential improve-
ments in discovery -omics analyses that may be found through the
addition of ion separation regimes have long been suggested, it was
Department of Chemistry,
venue, Madison, Wisconsin
not until the commercialization of proteomics-specific IM instru-
mentation in the mid-2010s (Fig. 1) that these analytical im-
provements were realized, paving the way for current high-end ion
mobility instrumentation. “High-end” ion mobility instrumenta-
tion, as discussed below, refers to the latest iterations of four unique
IM paradigms that directly augment biomolecular investigation by
demonstrating significant improvements in sensitivity and sample
coverage or offering unparalleled success in analyte differentiation
and structural characterization through enhanced gas-phase reso-
lution (R > 200). While this generation of instrumentation may be
considered a competitive advantage in the pursuit of biological and
biomolecular insight, these flagship instruments have each estab-
lished their own niche advantages, use cases, and drawbacks
(Table 1). These unique instrumental capabilities, along with the
technological innovations that make them possible, are described
within this review. Surveying recent literature for four cutting-edge
instrumental platforms e the Agilent 6560 DTIMS, Waters Cyclic
IMS, Bruker timsTOF, and Thermo FAIMS Pro e it becomes imme-
diately clear that targeted and untargeted -omics investigations
comprise an increasingly large sector of utility in IMS research, with
structural investigations continuing to be a paradigm-defining
application. Given this reality, we will confine our discussion to
these areas to provide broad relevance with those more unique IMS
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Fig. 1. Timeline of analytical innovations and fundamental reports that gave rise to the current iterations of high-end ion mobility spectrometry instrumentation. Though current
high-end ion mobility instrumentation has seemed to arrive instantaneously and in proximity, these technical advances are the result of decades on incremental improvements.
Renderings of current IM instrumentation are placed next to the milestones responsible for their eventual development.

Table 1
General information on each IMS archetype and their advantages and drawbacks.

Instrument
platform

Agilent 6560 IM-QTOF Waters Select Series Cyclic IMS Bruker TimsTof Thermo FAIMS Pro

IMS type DTIMS CIMS TIMS FAIMS
CCS

measurement
Direct; more accurate Need calibration against known CCS Need calibration against known

CCS
None

IM Resolving
power

100e200 60-80 for single pass; >750 at 100þ passes >300 <30; substantial increases in
planar FAIMS.

Advantages Allows for first-principles
measurement of CCS

Can achieve super high IM resolving power and is
capable of tandem IMS

Very high duty cycle, built-in tools
augment MS2 coverage

Easy to interface with MS
platforms

Drawbacks Low duty cycle requires
multiplexing

Reduced transmission and low duty cycle with
multiple passes

Analysis of the collected data can
be complex

Cannot obtain CCS value

Recommended
Applications

Accurate CCS measurement Small molecule mixtures with small CCS difference;
IM separation of fragmentation ions.

Discovery-based omics; complex
biological mixtures.

Biological screening, discovery-
based or targeted omics
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applications being worthy of their own, independent review. Here
we seek to provide readers with heuristic guidance in experimental
2

design, as well as highlight analytical strengths of four IMS para-
digms that will facilitate future biomolecular analyses.
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2. Drift Tube Ion Mobility Spectrometry (DTIMS)

Among various ion mobility paradigms, Drift Tube Ion Mobility
Spectrometry (DTIMS) is often considered fundamental, as it was
the earliest developed. The distinctive feature of DTIMS is the
uniform electric field applied across the drift tube, which is filled
with a neutral buffer gas such as nitrogen or helium. This system,
then, can directly measure the amount by which an ion is slowed
due to collisions with the carrier gas as it passes through the tube.
The low, uniform electric field used in DTIMS is consistent with the
classical Mason-Schamp equation [3]. If the experiment parameters
are precisely controlled and recorded, DTIMS is the only ion
mobility paradigm that can provide precise collisional cross section
(CCS) measurement without the need for calibration ions [4]. The
long history of DTIMS development has been discussed in detail
elsewhere [5,6] but in this review we will confine our discussion to
a cutting-edge commercial DTIMS instrument, the Agilent 6560 Ion
Mobility Q-TOF. The successful application of DTIMS in structural
investigation and omics-related studies over the past two decades
are also discussed below.

2.1. Background and engineering developments

In 1998, with the advancement of high-speed electrical com-
ponents, David Clemmer and colleagues built the first drift tube
TOF-coupled ion mobility mass spectrometer, which enabled the
observation of drift time andm/z value for thewhole ion system [7].
In the following years, Richard Smith’s group integrated the elec-
trodynamic ion funnels at the front and at the rear of the drift tube
[8,9]. The introduction of ion funnels improves ion accumulation
efficiency and enhances detection sensitivity. In 2014, the first
commercial drift tube IM-MS system (6560 Ion Mobility Q-TOF)
was launched by Agilent Technologies [10]. This system has been
upgraded further with more precise gas control components [11].
The Agilent 6560 is composed of a 78 cm ring electrode-stacked
drift tube, bracketed by the ion funnels. Under this configuration,
ions travel through the drift tube under a uniform weak electric
field (10e20 V cm�1). Unlike another kind of drift tube IMS-TOF
launched by TOFWERK [12], in which the pressure of the drift
tube is around 760 Torr, the Agilent 6560 has a relatively low
pressure of around 4 Torr. Despite the low pressure of Agilent 6560
that results in fewer collisions between the analyzed ions and
neutral buffer gas, which limits the ion mobility resolving power to
around 60, the low-pressure system enables higher sensitivity of
the detection and is more suitable for complex samples analysis.

The initial design and typical operation of DTIMS utilizes a single
pulse, which has an ion accumulation time of around 40e60 ms,
forcing all other ions to wait until the previous ion packet has
reached the detector. However, this long accumulation time brings
with it the potential for space-charge effects that cause loss of low
m/z (m/z < 250) ions [13]. Attempting to reduce the accumulation
time in single pulse mode would further reduce duty cycle. To
overcome these shortcomings, Agilent unveiled an ion multi-
plexing methodology. In multiplexed mode, ions are injected in
multiple packets at predetermined intervals. Although the first ion
packet is still traveling through the drift tube, the following ion
packet can also be injected. As each packet receives a shorter
accumulation time, this strategy serves to enhance duty cycle and
reduce the negative impacts of the space charge effects [14e17].
However, multiplexed mode results in overlapping ion mobility
spectra. To deconvolute the complicated ion mobility spectrum the
Hadamard Transformation algorithm was introduced to obtain
deconvoluted drift times [18,19]. Beyond this, high resolution
demultiplexing (HRdm) [20] with Hadamard Transformation can
also improve the signal-to-noise ratio [21,22] and lower the limit of
3

detection approximately 10-fold. The narrowed ion mobility peaks
resulting from the Hadamard Transformation provides an increase
in ion mobility resolving power from around 60 to between 100
and 200 [23].

2.2. Structural investigations

Collisional Cross Section (CCS) has emerged as the most ubiq-
uitous and widely used metric in ion mobility-based structural
analysis of gas-phase ions. Given the low uniform electric field
applied to the drift tube, DTIMS serves as the gold standard for CCS
measurement for structural investigations. CCS measurement has
been obtained for a broad range of ion species including small
organic compounds, carbohydrates, lipids, peptides, denatured
proteins, and native-like proteins [10,24e30], which have been
fundamental in enabling the CCS calibration of TWIMS and other
high-resolution ion mobility modalities [31]. These previous CCS
measurements were foundational to the instrumental success of
the Agilent 6560. Evolving from the criterion CCS measurement,
DTIMS experiments on the Agilent 6560 platform can also be per-
formed with CCS calibration with the so-called “single field” CCS
method, using calibration ions to simplify the CCS measurement.
Using this single field mode for CCS calibration, an interlaboratory
evaluation showed high reproducibility (an average, absolute bias
of 0.54%) of CCS measurement across different ion species can be
achieved [32]. Furthermore, based on the comprehensive CCS
database constructed via DTIMS, many machine learning methods
have also been developed to predict the CCS values in a short time
without the need of complicated modeling calculation [33e37].

Beyond the measurement of CCS values, one of the important
applications of DTIMS is the separation of isomers. Typical isomeric
species including metabolites [38], lipids [39,40], carbohydrates
[41], and peptides [42,43] are discussed extensively by other re-
views, but this section will focus the discussion on recent appli-
cations of the Agilent 6560 platform. For example, organic
pollutants per- and polyfluoroalkyl substances (PFAS) containmany
isobars and constitutional isomers, which will generate similar
fragment ions. Therefore, the traditional LC-MS/MS strategy is not
suitable for the analysis of these compounds. By introducing ion
mobility separation as an additional dimension, a lower detection
limit and higher confidence structural identification can be ach-
ieved [44,45] (Fig. 2). Other organic molecular isomer separation
applications include steroid metabolites [46e49], bile acids [50],
peptide conformers/isomers [43,51], and isobaric/isomeric bio-
markers in newborn screening [23]. Ozonolysis, Patern�o-Büchi re-
actions and cuprous ion-induced fragmentation have also been
coupled with IM separation to identify double bond position in
lipids [52e54]. Using the Agilent 6560 platform, the separation
capacity of glycan isomers can be further enhanced by the incor-
poration of metal ions [55,56] or derivatization [57]. Meanwhile, in
addition to the electrospray ionization source, the Agilent 6560 can
also be coupled to other ionization modalities to produce spatial
information for mass spectrometry imaging. The Julia Laskin group
has successfully used a desorption electrospray ionization source to
achieve high-resolution imaging of biomolecular isomers in tissue
[40,58,59]. Infrared matrix-assisted laser desorption electrospray
ionization (IR-MALDESI), developed by David Muddiman and col-
leagues, can also be coupled to the Agilent 6560 to separate
different analyte classes [60].

In addition to the separation of small molecular isomers,
another structural investigation application of DTIMS is to study
the gas-phase structures of large intact proteins or protein as-
semblies [61,62]. In native mass spectrometry, the non-covalent
interactions between proteins and ligands or proteins and pro-
teins can be preserved. Further, proteins with different charge



Fig. 2. (A) A representative schematic of the Agilent 6560 instrumentation. (B) The common RPLC-IMS-MS workflow to characterize isomers. (C) Isobaric and isomeric separation
can be achieved by the IMS distribution. (D) Drift time aligned MS/MS fragments of isobars can further validate the structural differences. Reprinted from Dodds et al. [44] with
permission.
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states can fold/unfold into different conformations due to the ex-
istence of secondary structure elements and Coulombic repulsive
forces. Using the Agilent 6560 platform, solvent evaporation con-
ditions and front end voltages can be tuned to best preserve the
native state [63]. Beyond this, collision-induced unfolding (CIU) is
gradually becoming a useful technique in the field of native ion
mobility mass spectrometry to study the conformation and stability
of intact proteins or protein complexes [64]. Ruotolo and colleagues
employed sulfur hexafluoride gas in the source region in front of
the Agilent 6560 drift tube to enhance collision activation efficacy
[65]. This modification significantly improves CIU performance,
allowing for the comparison of structure and stability between
monoclonal antibodies and their biosimilar therapeutics [65e68].
2.3. Relevance to -omics applications

Ion separation in DTIMS resides on the timescale of
4

milliseconds, making it suitable for coupling LC separations that
operate on the order of seconds. One advantage for DTIMS related
-omics studies is that, in addition to the retention time and accurate
mass, DTCCSN2 annotation can also be achieved in the same
experiment. Since the launch of Agilent 6560, numerous metab-
olomics investigations have been performedwith recorded DTCCSN2
annotation [69e74]. The Zheng-Jiang Zhu group collected more
than 5,000 empirical metabolite CCS values from literature to
predict the CCS for more than 1.6 million small molecules [75].
Beyond LC separation, electrophoretic separation, which exploits a
compound’s size and charge, operates under a similar mechanism
to ion mobility separation. The relationship between the effective
mobility and CCS values was evaluated by coupling capillary zone
electrophoresis (CZE) to DTIMS [76]. Lipidomic research has also
been widely explored on the Agilent 6560 platform [77e83].

Compared to the nearly 100% duty cycle in TIMS, the poor duty
cycle in DTIMS hinders further application in -omics applications.
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This limitation is largely mitigated when operating in multiplexed
mode [19]. The Smith group first used ion multiplexing to identify
and quantify liver fibrosis proteins from blood serum [84]. Another
successful proteomic application is the identification of host pro-
tein signatures to evaluate the treatment effect of pulmonary
tuberculosis [85]. More recently, multiplexed DTIMS has also been
used in metabolomics. Compounds of emerging concern (CEC) in
human urine samples were investigated and a comprehensive CCS
database was built using the Agilent 6560 platform [86]. Untar-
geted metabolomics demultiplexing analysis can also be achieved
[16]. To simplify the ion mobility-mass spectrometry-based -omics
workflow and the detection of low abundance ions, the Smith
group developed PNNL Preprocessor, which can integrate data
interpolation, demultiplexing, multidimensional smoothing, and
saturation repair functions. The PNNL Preprocessor software is
proven to have faster processing speed and yields greater lipid
annotation in lipidomics analyses [87].

2.4. Considerations and future directions

Considering CCS values have high inter-laboratory reproduc-
ibility compared to inconsistent retention times in LC separations,
DTIMS, the only direct CCS measurement paradigm, continues to
play an important role in the ionmobility field. It is conceivable that
in the future each ion will have an accurate CCS value determined
by DTIMS as an intrinsic property like the mass-to-charge ratio.
However, the current iteration of DTIMS presents some limitations.
Poor duty cycle resulting from the tradeoff between ion accumu-
lation time and total time in the drift tube hinders ion utilization
efficiency. Advanced ion injection strategies, such as multiplexing,
require further development to overcome this obstacle. As
mentioned above, the low-pressure (4 Torr) environment in the
drift tube of the Agilent 6560 platform further limits the ion
mobility resolving power due to fewer collisions between ions and
neutral buffer gas. Further increasing pressure in the drift tube will
be an effective way to enhance the ion mobility resolving power.
Overall, we foresee that DTIMS will play an increasingly important
role in the future of scientific research.

3. Cyclic Ion Mobility Spectrometry (CIMS)

Cyclic Ion Mobility Spectrometry (CIMS) is a unique entry in the
high-resolution IMS family. It is based on Traveling Wave IMS
(TWIMS), which was developed in the early 2000s and commer-
cialized soon after by Waters Corporation [88,89]. In accordance
with other IMS modalities, it is readily interfaced between liquid
chromatography separations and mass spectrometry. While
TWIMS is a commonly employed and successfully commercialized
IMS modality, its earlier iterations failed to provide resolving
powers greater than 50 [90]. Such low resolving powers struggle to
differentiate CCS values that differ by less than 1%. TWIMS reso-
lution increases roughly with the square root of path length, so
overcoming these diminishing returns necessitates ultra-long path
length devices [91]. CIMS has been developed to achieve high
resolution separations by extending the traditionally short TWIMS
path length and enabling analytes to undergo multiple passes [92]
(Fig. 3), substantially improving resolution. CIMS technology was
commercialized in a tandem IMS time-of-flight mass spectrometry
system by Waters Corporation in 2019 as the Select Series Cyclic
IMS and is one of the only ultra-long path length IMS platforms to
be commercialized [93e95]. Since the resolving power of the IMS
separation is proportional to the number of passes around the path,
resolving power and analysis time are easily tunable by the oper-
ator, allowing for convenient optimization [92]. The system does,
however, require some tradeoffs at higher resolving powers.
5

Principally, as higher resolving powers are achieved, a narrower
CCS window must be measured, otherwise higher mobility com-
pounds would wrap around those of lower mobility. Due to this
complication, the Waters Cyclic IMS provides a very powerful
platform when targeted super-high-resolution separations are
desired, but it is not generally suitable for discovery-based appli-
cations. A brief comparison of Waters' TWIMS-based IM-MS of-
ferings is highlighted in Table 2, should this IM paradigm be of
further interest.

3.1. Operating principles and engineering

The CIMS cell is effectively a circular TWIMS cell that has been
modified with an ion entry/exit port. A relatively mature IMS
archetype, traditional TWIMS separates ions in a drift tube-like
fashion. Instead of applying a constant potential, however, ions
are subjected to uniform “waves” of potential that travel the length
of the cell. Higher-mobility ions are able to “surf” these waves more
effectively and are overtaken by them less often than low-mobility
ions [91]. TWIMS analysis utilizes pulsed ion injection, much like
DTIMS, bringing with it the same shortcomings described above. To
overcome this limitation, the Select Series CIMS contains a quad-
rupole mass filter and an ion trap upstream from the CIMS cell,
where ions are accumulated prior to injection and analysis [92]. It
should be noted that CCS value measurements in CIMS must be
obtained from careful calibration of the instrument and not phys-
ical/electronic characteristics alone. Although uncertainty and
variation in “true” CCS value is still a limiting factor, relatively
recent progress in optimization of TWIMS calibration has made
high-confidence calibration much more reliably achievable, an
especially important consideration for super-high resolution CIMS
[97,98].

One of the largest drawbacks to CIMS’ application in -omics
investigations is the necessity to eject ions from the cyclical flight
path. Since the CIMS cell contains an ouroboric ion path, ejection of
certain ions will become necessary after a certain number of passes
to prevent higher mobility ions from overtaking those with lower
mobility. This results in the potential for extremely high-resolution
separations at the cost of sample coverage and CCS range. If tar-
geted high-resolution separation is all that is desired, the system
can be utilized in “IM Isolation” mode, where all ions outside of a
desired mobility range are immediately ejected during the first
pass, and the remainder may continue being separated in subse-
quent passes. TheWaters Cyclic is also the only platform on this list
capable of true tandem IMS. It can be operated in IMSn mode,
where ions are separated as normal in the CIMS cell, then instead of
being sent to the TOF for MS analysis, selected packets will be
reintroduced to the pre-array store andmay then be reinjected into
the CIMS cell under different conditions at theoretically unlimited
number of times [92].

In terms of resolving power, the Select Series CIMS has a single
pass resolving power of 60e80, and this value should theoretically
increase by the square root of the number of passes. Experimen-
tally, this relationship remains true to the theory, with resolving
powers of ~750 observed after 100 passes [92]. Giles et al. report ion
losses of less than 2.5% per pass through the CIMS loop for small
relatively stable ions though it is expected that this value will vary
greatly between analyte families and robustness [92].

3.2. Structural investigations

Since the introduction of the first commercialized ion mobility
mass spectrometer, the Waters Synapt HDMS, TWIMS has been
widely used in structural investigation of different ion species such
as small organic compounds, glycans, peptides, and proteins. The



Fig. 3. (A) A schematic of the Waters cyclic IMS instrumentation. (B) The cyclic IMS cell. (C) Pre- and post-store devices enable the multifunction of cyclic IMS. Reprinted from Eldrid
et al. [96] with permission. Copyright 2019 American Chemical Society.

Table 2
Comparison of three different IM-MS systems from the Waters company.

Model Lauch
Year

IMS Advantages Drawbacks

Select Series
Cyclic IMS

2019 Cyclic IMS technology.
Resolving power:
60-80 for single pass;
>750 for 100þ passes

High ion mobility resolving power; suitable for structural
investigations of small molecules and protein complexes

Reduced transmission and “wrap-up” effect due to multiple
passes in cIM devices hinder omics-related applications

Synapt XS 2019 T-Wave IMS
technology.
Resolving power z25

Enhanced sensitivity and resolution compared to previous
Synapt Model; suitable for omics-related research

Limited ion mobility resolving power

MALDI Synapt
G2-Si
HDMS

2013 Versatile MS platform for ESI and MALDI; suitable for mass
spectrometry imaging
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Waters Cyclic, with high resolving power and unique geometry,
further enhances structural investigations.

Complex small molecule mixtures, such as petroleum, contain
many isobaric and isomeric compounds, which provides an ideal
application scenario for ion mobility differentiation. For example,
the Waters Cyclic can help to identify the CH- and CHS- petroleum
species solely on structural difference, whereas traditional mass
spectrometry may fail to resolve these species due to the small
3.4 mDa SH4/C3 mass difference [99]. The IM isolation function,
which focuses on specified mobility regions, can help to reduce the
interferences of isobaric compounds. Notably, gradually increasing
the number of passes from 1 to 10 has demonstrated gradual sep-
aration of isomeric benzo[b]naphtho[2,3-d]thiophene and anthra
[2,3-b]thiophene [99]. Other similar complex mixture separations
on Waters Cyclic include lipid isomers [100,101], crude oil com-
pounds [102,103], environmental contaminants [104e107], natural
compounds [108], isomeric drugs and related metabolites
[109e111]. Beyond this, Gabe Nagy and colleagues also utilized the
Waters Cyclic to study the effect of isotopic substitutions in iso-
topologues and isotopomers on the mobility change [112]. Sur-
prisingly, two deuterated palmitic acid isotopomers with
deuterium labeled at different positions show different mobility.
This finding challenges the classical Mason�Schamp equation, in
which isotopomers should not be resolved given their identical
mass and structure. Given this finding, access to this ultra-high-
6

resolution IM technology may prompt reevaluation of tradition
IMS theory. Furthermore, temporal compression was found to be
capable to improve the IMS peak intensity in CIMS [113].

Glycan sequencing is challenging in analytical science due to the
complexity of the monosaccharide building blocks, which contain
several chiral centers. The anomericity and regiochemistry of the
linkages between the monosaccharides further complicate struc-
tural characterization. The Waters Cyclic offers several advantages
for the elucidation of glycan structure. First, high-resolution ion
mobility with multiple passes facilitates separation of oligosac-
charides [114e116]. For example, mixtures of three penta-
saccharides cannot be resolved in 1-pass (R~65). However, after 5-
passes the resolving power increases to ~145, allowing facile sep-
aration of pentasaccharides constituents [114]. This application,
however, is not immune to the “wrap-up” effect. In this example
separation, 7 CIMS passes will result in the IM peak of the low-
mobility branched mannopentaose being overtaken by the
highest-mobility cellopentaose, which will distort the IM mea-
surement for different ion species [117]. To overcome this issue, IM
isolation mode can be used to select a specific ion mobility range,
allowing for target molecules to complete a higher number of
passes. The other advantage of the Waters Cyclic in glycan analysis
is the unique IMSn function. Not only are the glycan precursor ions
isomeric, but also the product ions. The engineering design of the
Waters Cyclic allows the selection and dissociation of the precursor
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ions with a specific ion mobility range and can further separate
product ions, an approach similar toMSn. The isomeric disaccharide
and trisaccharide building blocks of the glycans display specific ion
mobility fingerprints and diagnostic fragmentation patterns, which
enable the sequencing of oligosaccharides [118e120]. As well, the
Waters Cyclic also demonstrates potential in assigning exact fucosyl
[121] and sulfate [122] positions and elucidating the structure of
glycopeptides [123].

Peptide isomers resulting from the stereoisomerism and
chemical modification of different residues are difficult to analyze
due to their identical mass and possible co-elution in reversed-
phase liquid chromatography. Compared to other advanced ion
mobility paradigms, the Waters Cyclic has a trap cell, in which
precursor ion can be fragmentated by collision-induced dissocia-
tion (CID) prior to entry into the CIM separator. Fragment ions of
isomerized peptides will display a recognizable arrival time shift,
which can be used for the site-specific localization of isomerization
[42,124e126]. As an example, 4 passes with resolving power
around 130 in the Waters Cyclic was found to be sufficient to map
the racemization or L/D-amino acid substitution site in protein
therapeutics [127]. Other successful applications of the Waters
Cyclic include the separation of cross-linking peptides [128] and
the assignment of disulfide bridge pairing [129].

Finer gas-phase structure of proteins can be provided by multi-
pass separation in the Waters Cyclic. Meanwhile, the increased
length of IM separation will also increase the time of protein ions
spent in the gas phase. Thalassinos and colleagues used the Waters
Cyclic to study the gas phase stability of protein ions and found the
native protein conformation is stable on the order of hundreds of
milliseconds [96]. Further, the IMSn function of the Waters Cyclic
can separately slice specific ion mobility range of proteins ion to
perform the collision-induced unfolding (CIU) experiments, which
will provide more detailed information about the protein unfolding
pathway [96,130,131]. In addition, the Waters Cyclic can be further
retrofitted with an electron capture dissociation (ECD) cell either in
front or rear of the cIM separator to enhance top-down protein
characterization [132]. Similarly, VickiWysocki and colleagues have
incorporated a simple surface-induced dissociation (SID) cell into
the Waters Cyclic instrument, which enables surface-induced
unfolding (SIU) experiments [133,134]. It should be noted that
this is also the first commercialization of SID, which will provide
new insight into the analysis of proteins and protein complexes.
3.3. Considerations and future directions

With increasing CIMS pass numbers, time spent within the CIMS
flight path will increase. Across all IM paradigms longer flight times
are associated with reduced transmission, leading to a reduction in
sensitivity. Additionally, the existence of the “wrap-up” effect
resulting from multiple passes may hinder the accurate measure-
ment of m/z and arrival time for the whole ion system. The above
features limit application of the Waters Cyclic in omics-related in-
vestigations. Furthermore, the CCS measurement of target ions is
also an issue for Waters Cyclic. The electrical field in the CIMS
separator is not uniform, which means the CCS values cannot be
calculated from first principles. The current work-around is to use
calibration ions; however, the CCS values of calibrant ions obtained
from DTIMS have an experimental uncertainty between 0.5% and
2% [10]. Although single-pass CCS measurements on the Waters
Cyclic agree well with the literature, multi-pass CCS measurement
cannot be reliably achieved until the validation of higher accuracy
CCS standards. Nevertheless, the customizable ion mobility
resolving power and unique IMSn function of the Waters Cyclic
promise to bring more exciting IMS applications in the future.
7

4. Trapped Ion Mobility spectrometry (TIMS)

Trapped ion mobility spectrometry (TIMS) is a relatively recent
addition to the bioanalytical toolbox, and was patented in the late
2000s by Melvin Park and associates at Bruker Daltonics [135].
Despite the short turnaround time since its commercialization in
2017 as the timsTOF line of instruments, TIMS has quickly matured
into a powerful and convenient platform for a wide variety of
structural analyses and discovery-based investigations. Specifically,
TIMS provides a sensitive and flexible platform that is well suited to
add another dimension of separation in between existing chro-
matographic and mass spectrometry-based workflows [136e138].
In addition to the ESI-based instrumentation that brought TIMS
into the spotlight, Bruker has recently unveiled TIMS units with
matrix-assisted laser desorption/ionization (MALDI) imaging
capability that is consistent with the current gold-standard [139].
An optional MALDI-2 postionization laser and TIMS’ unique
parallel-accumulation serial fragmentation (PASEF) capabilities
round out the modality as an impressive, highly sensitive platform
for modern structural biology and -omics investigations [140,141].

4.1. Operating principles and engineering

The TIMS separation principle is effectively inverted from
traditional ion mobility modalities. In drift tube-style devices,
rotationally averaged collisional cross sections (CCS) of gas-phase
ions are measured by accelerating them through an environment
populated with inert gas, which impedes ion motion toward the
detector in a way that is proportional to the ions’ CCS. In TIMS, ions
are immobilized in a region filled with moving gas. This trapping is
accomplished inside a segmented linear quadrupole ion trap. In this
TIMS cell, different plates along the length vary the potential on
ions as a function of distance, so that ions with larger CCS values
will be pushed further along the cell due to the energy they receive
from the carrier gas (Fig. 4) [142]. The accumulated ions can then be
eluted through the TIMS analyzer by sequentially lowering the
position-dependent plate potential as a function of time. This
sequence of accumulation and elution can be adjusted to optimize
for fast scans (tens of ms) or for high resolution separations (hun-
dreds of ms) [143]. Using optimized stepping scan functions can
provide IMS resolving powers >300 while reducing overall exper-
iment time, and increasing duty cycle [144]. As detailed below,
there are a host of parameters specific to the TIMS cell and
accompanying ion optics that may be altered and optimized to
meet experiment-specific needs. By elongating the TIMS cell and
creating two separate trapping regions within, the first “ion accu-
mulation trap” can collect ions while the second trap analyzes a
previously collected batch. This technique, dubbed Parallel
Accumulation-Serial Fragmentation (PASEF), provides a duty cycle
of up to 100%, albeit usuallywith a reduction inmaximum resolving
power [145]. PASEF can be harnessed to successfully increase MS/
MS coverage and maintains the sensitivity of the TIMS cell [137].
The extra dimension of separation that TIMS provides, when
combined with the potential to create highly reproducible data
sets, and high ionization efficiency makes it a very attractive plat-
form for data-independent acquisition (DIA) experiments. Dubbed
“diaPASEF,” this acquisition mode has been shown to overcome
traditional drawbacks to the technique such as low ion utilization
and convoluted spectra [146].

Much like other high-resolution IMS techniques, and unlike
drift-tube IMS, the CCS of ions cannot be readily calculated from
first principles. Instead, instruments must be calibrated with
standards of accurately known CCS values. A properly calibrated
TIMS produces CCS values that are reproducible, accurately
matching drift-tube values to around 1% and demonstrating high



Fig. 4. A schematic representation of the position and time-dependent potential inside the TIMS cell. By establishing a rising edge in the accumulation and trapping steps, ions that
receive more energy from the carrier gas are physically pushed further along the cell, and this separation in space during the trapping step allows for sequential elution once the
potential gradient is lowered. Reprinted from Ridgeway et al. [142] with permission.
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reproducibility [147,148]. Calibration has even been validated by
inserting a drift tube before the TIMS cell, thereby comparing CCS
values from both IMS modalities in tandem and with the exact
same analytes [149].
4.2. Role in structural investigations

Due to its high resolving power, easy interfacing between liquid
chromatography and mass spectrometry, and high duty cycle, TIMS
separations have quickly been adopted for a wide variety of
structural characterization. Fast, simple, and effective analysis of
chiral compounds can be achieved in the gas phase thanks to the
TIMS cell [150]. Impressively, the high resolution capabilities also
allow for separation of isobaric lysine propionylation and acrolei-
nation, which have CCS values that differ by as lowas 1% [151]. TIMS
has been utilized effectively in data-dependent acquisition PASEF
(DDA-PASEF) mode to determine the mechanisms of SARS-CoV-2
host protein interactions and identify binding motifs [152]. In
terms of tertiary and quaternary structure of proteins, TIMS has
demonstrated the ability to conveniently separate complex
antibody-drug conjugate mixtures prior to MS analysis, allowing
for high-throughput structural characterization of multiple attri-
butes in top-down analysis [153].

Cross-linking mass spectrometry is a proteomic technique that
involves intensive data analysis to differentiate cross-linked pep-
tides from linear digested ones. TIMS provides a convenient way to
easily discriminate linked and non-reacted peptides by CCS, and
provides more robust information than can be gleaned from MS
analysis alone [154]. This distinction can even be automated to
determine in real time which CCS values represent species of in-
terest [155]. The application of TIMS with another structural pro-
teomic technique, fast photochemical oxidation of proteins (FPOP),
improves quality of analysis and even enables resolution of
different modifications on the same amino acid residue, as well as
the ability to differentiate peptides based on location of backbone
oxidation [156,157]. The structural applications of TIMS are
apparent in top-down investigations as well, where it has been
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used to differentiate protein conformations based on differing
amounts of intra-protein disulfide bonds [158].

TIMS has also been used successfully to analyze isomeric opioid
metabolites in human urine, and does so with better precision and
reproducibility than standard multiple reaction monitoring (MRM)
techniques [159]. Analysis of isomeric compounds is an especially
important task in analysis of lipids since much of the diversity in
the lipidome stems from isomeric species. The addition of TIMS in
lipidomic workflows allows for more robust characterization while
maintaining high sensitivity and vastly increases MS/MS coverage
in the resulting data [160,161]. TIMS’ ability to interfacewithMALDI
imaging produces a system that can provide a useful dimension to
deconvolute lipidomic imaging data [162].
4.3. Relevance to -omics applications

The Bruker timsTOF lineup is tailored to -omics applications first
and foremost. The convenient and rapid high-quality IMS separa-
tions pair extremely well with high-resolution imaging capabilities
and rapid MS acquisition. Proteomics is currently the most mature
of the -omic disciplines, and TIMS analysis aids in pushing the
envelope on both targeted and discovery-focused investigations.
TIMS has been shown to decrease spectral complexity in prote-
omics by separating peptides prior to MS analysis [163]. The
reduction in co-fragmentation is an added benefit to the extra
dimension of separation provided by IMS in general. TIMS has been
utilized to successfully improve quantitation using isobaric tags
without increasing experiment time [164], and is suitable for label-
free phosphoproteomics [165]. Due to the relationship between
timescale of TIMS scan and MS scan, it is possible to measure
multiple different peptides in each ionmobility scan. Using this in a
targeted proteomics approach has been achieved in parallel reac-
tion monitoring (PRM-PASEF) workflows [166,167]. This method-
ology allows for absolute quantitation of endogenous peptides
when isotopically labeled standards are spiked into bottom-up
samples. With the high sensitivity enabled via PASEF, this tech-
nique has been successfully employed to monitor pathogenesis,
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progression, and biomarkers of various diseases, and in the locali-
zation of glycation sites in human serum albumin [168e170].
Software packages that leverage PASEF parameters can be
employed to improve run-to-run reproducibility of PRM experi-
ments [171].

Yet more nanoLC-coupled workflows have been optimized for
peptide biomarker detection and targeting [172]. The human car-
diac proteome has been analyzed and demonstrates high repro-
ducibility and number of protein identifications [173]. The timsTOF
is also well suited to the generation of spectral libraries due to its
high sensitivity [174,175]. It has also been shown that the TIMS cell
is capable of interfacing with ECD and can readily differentiate the
histone proteoform in this modality [176]. On the subject of peptide
and protein fragmentation, TIMS parameters can be utilized to
fragment these larger biomolecules in the TIMS cell itself, providing
a “pseudo-MS3” analysis for top-down or middle-down proteomics
[177].

Single-cell proteomic analyses are substantially improved
through utilization of timsTOF technology, as the high sensitivity
and duty cycle capabilities have shown promise in dealing with the
inherent extreme sample-limited conditions [178e181]. These ca-
pabilities have even been leveraged to measure peptide stereo-
chemistry within a single cell [182]. Even so, new developments
offer a glimpse of an even higher sensitivity for the instrument in
the future, with work being done to produce a brighter ion beam
and lower the limit of detection even further [183]. Recent work has
been done to enable sub-cellular MALDI MS analysis of single or-
ganelles thanks to the timsTOF’s MALDI capabilities and aptitude
for sample-limited conditions [184].

Metabolic and lipidomic workflows on the timsTOF are able to
reap the rewards of TIMS0 capabilities as well. Taking advantage of
the system’s high resolution mass spectrometry and ion mobility,
human urine metabolites can be targeted and analyzed with rela-
tively little sample preparation [185,186]. The high resolution ca-
pabilities of TIMS analysis also allow highly effective separation and
discrimination of biologically relevant lipid species based on CCS
differences far below 1% [187]. As always, PASEF remains relevant in
metabolomic workflows, increasing the number of features with
high-quality MS/MS spectra associated [188]. These qualities have
enabled targeted and untargeted metabolic profiling of such wide-
ranging systems as extra virgin olive oil, mosquitoes, and breast
cancer cell lines [188e190]. Additionally, the MALDI capabilities of
the timsTOF Pro are effectively supplemented by the high-quality
IMS separation. Traditionally, MALDI imaging of small molecules
is impeded by high amounts of low-mass interferences that origi-
nate from the matrix. By performing a high-quality IMS separation
prior to mass spectrometry analysis, these interferences can be
cleaned up, and higher quality data is obtained. The high perfor-
mance of the timsTOFMALDI imaging system has been leveraged in
spatial metabolomic inquiries on human kidneys [191]. TIMS has
been used to study human colorectal cancer from a metabolic and
multi-omic point of view and has been used to identify genomic
perturbations associated with mitochondrial dysfunction and poor
disease prognosis [192,193]. Recent work has used MALDI-TIMS
imaging for structural elucidation of modified Lipid A in bacterial
colonies [194].

Due to the complexity inherent in acquiring and analyzing 4-
dimensional chromatography-TIMS MS/MS data, many different
software packages have been published for a wide variety of TIMS-
specific applications. MaxQuant and the associated MaxDIA are
broadly applicable software packages for shotgun proteomics and
DIA analysis respectively [195,196]. OpenSWATH is an open-source
DIA tool that has been adapted for use with diaPASEF experiments
[146,197]. MaxLynx is another package built upon the MaxQuant
environment and is designed specifically for cross-linking mass
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spectrometry analysis [198]. MSFragger and IonQuant are two
PASEF-compatible software packages from the Nesvizhskii group
that purport to improve unique peptide IDs and fast label-free
quantitation when compared to MaxQuant and the popular soft-
ware PEAKS [199]. Analyzing DIA data can be accomplished with
and without a spectral library, and these two approaches each
come with perks and drawbacks. According to Wen et al., with the
current state of the workflow, libraries will provide a higher
number of both precursor identifications and missing values.
Despite this, both library-based and library-free analyses lead to
comparable conclusions [200]. Machine and deep learning strate-
gies have been harnessed to improve peptidomic identifications,
and to build computational CCS libraries with high accuracy
[201,202]. Neural networks (NN) have recently proven to be effec-
tive in analyzing DIA proteomics data, and this DIA-NN technology
has been added to the Bruker PaSER 2022 software release [203].
Finally, for simple visualization and indexing of large datasets,
AlphaTims and the OpenTIMS suite are designed for fast access to
raw data [203e206].

4.4. Future directions and considerations

Although this may seem like a plethora of software, the relative
novelty of the platform dictates that many needs are still unful-
filled. As a newer entrant to the field, TIMS technology lacks
pragmatic guidance on method building, and there is a need to
rigorously evaluate and develop methodologies that can be
disseminated throughout the community. For more mature prote-
omic platforms, this seminal development work has already been
conducted, and users are able to select published and validated
methods for common analyses with high confidence. Community
efforts to develop standard proteomic, metabolomic, and lipidomic
methods on the timsTOF would enable greater access to such a
promising platform. There are also certain formative questions that
remain unanswered about the system. For example, there is evi-
dence that although the system is indeed suitable for native pro-
teomics, CCS distributions can vary widely across trappingmethods
[207]. In a similar vein, recent work indicates that small molecule
CCS values are influenced by solvent conditions and trapping pa-
rameters, and these effects should be noted by users [208]. These
drawbacks are certainly unfortunate, but many of these gaps in
knowledge are due in large part to the relative novelty of the
platform as a whole. With time and increased utilization, it is
anticipated that many of these needs will be addressed as the sci-
entific community continues to embrace this convenient and
powerful family of instruments. One future development that may
prove to be impactful is tandem TIMS [209]. The yet uncommer-
cialized technology has been utilized to probe protein structure
changes as a function of the proteoform and shows the ability to
maintain highly charged non-covalent protein assemblies
[210,211]. It remains to be seen whether this development is useful
enough for widespread adoption, or whether drawbacks will
render it a niche addition to the TIMS family. Despite these un-
knowns, the extensive publication record of this instrumental
regime in its nascent lifetime indicates TIMS and the Bruker tim-
sTOF have a bright future in the analytical fields and promise to
push the boundaries of modern ion-mobility spectrometry.

5. Differential ion mobility & Field Asymmetric Waveform
ion mobility spectrometry (FAIMS)

Standing in contrast to each of the previously discussed ion
mobility paradigms, differential ion mobility spectrometry (DIMS)
provides a unique entry into the realm of high-end ion mobility
instrumentation in the form of Field Asymmetric-Waveform Ion
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Mobility Spectrometry (FAIMS). Whereas TWIMS, TIMS, and DTIMS
exploit the instantaneousmobility of gas phase ions in the presence
of a constant electric field, DIMS is so named for its ability to exploit
the different mobilities of gas phase ions when in the presence of
low and high electric fields. While the storied development and
analytical success of DIMS has been detailed elsewhere [212], we
will confine our discussion to that of FAIMS, as this sector of dif-
ferential ion mobility has seen successful commercialization and
significant implementation in structural elucidation and cutting-
edge mass spectrometry based biomolecular investigations. As
demonstrated across the past decades of development, the flexible,
compact design of various FAIMS implementations have been
specially tailored to provide higher separation capacity and
analytical sensitivity while providing topical considerations in
experimental design.

5.1. Background and engineering developments

While the conceptualization and invention of FAIMS is unclear,
credit may most broadly be given to Russian scientists circa 1980,
with the earliest literature appearing in the 1990s, prior to the
technology reaching the United States [213]. At the time, traditional
IM modalities capable of exploiting gas phase mobility of ions
required sub-ambient pressure, forcing confinement of these sep-
aration strategies to settings where high vacuum and stable tem-
perature could be achieved. In contrast, FAIMS, which operates at
atmospheric pressure and near-ambient conditions, offered the
first suitable mechanism for field deployment and detection of a
broad range of chemical species [213]. In FAIMS, ions are introduced
between two planar or cylindrical electrodes and are the propelled
toward the detector by a carrier gas. An asymmetric waveform
voltage e referred to as the Dispersion Voltage (DV) e is then
applied to a single electrode such that the oscillating high and low
electric fields yield equivalent time-voltage integral (Fig. 5)
[213,214]. The oscillating high and low fields, each of opposite
polarity, impart a force on gas phase ions orthogonal to the carrier
gas, causing ions to migrate towards the opposing detector in a
fashion consistent with their response to high and low fields. The
dispersion voltage alone would ultimately cause all ions to contact
the electrodes and be neutralized. To account for this, a second
voltagee the Compensation Voltage (CV), constant in both polarity
and amplitudeemay be applied to the opposite electrode, allowing
for responsive ions to drift safely towards the detector. When the
DV and CV are held constant, FAIMS devices operate as an ion filter,
as only those ions compatible with chosen voltages will reach the
detector. This strategy is fundamental to biomolecular separation,
as discussed below, but would present infinitesimally low duty
cycle in complex mixture analysis. As such, all but the most
specialized FAIMS devices have the capacity to sweep through a
range of compensation voltages or may otherwise operate at a
range of voltages for the duration of the experiment. These FAIMS
principles, which are comprehensively explained elsewhere [214],
give rise to multiple unique FAIMS implementations, with planar
and cylindrical instruments being the focus of our discussion.

Though fundamental differences in planar and cylindrical FAIMS
devices may be the subject of a separate, comprehensive review,
topical considerations arise fromhoweach geometry influences the
achievable electric field. Planar FAIMS, using flat plate electrodes,
reminiscent of traditional DIMS, allows for homogenous electric
fields across the FAIMS device, which provides narrow peak widths
and therefore higher peak capacity [215,216]. Shvartsburg and
colleagues have repeatedly demonstrated the utility of the FAIMS
regime for biomolecular separation and distinction of isoforms, as
shown below. Early on, Shvartsburg et al. [217] validated that
smaller planar gaps allow for higher electric fields, allowing for
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shorter analyses without sacrificing resolution and later demon-
strated that reducing gas flow allows for even higher peak capacity
[218]. Later hybrid FAIMS-IMS implementations were able to in-
crease gas-phase resolution even further [219]. While FAIMS’
operation at atmospheric pressure offers utility in field applications
[220], this can present limitations when coupling FAIMS to modern
mass spectrometers with strict gas requirements and pressure
limits. Baird et al. [221] demonstrated a means of removing buffer
gas constraints when coupling planar FAIMS to orbitrap mass
spectrometers, while Shvartsburg et al. [222] demonstrated FAIMS
may be used in low pressure regimes, paving the way for future
instrumental implementations and coupling to activation
electronics.

Contrasting planar FAIMS, electric fields applied in cylindrical
FAIMS are inherently non-homogenous. This lack of uniformity
ultimately reduces the achievable peak capacity compared to
planar FAIMS, lowering the achievable gas phase resolution. How-
ever, non-homogenous electric fields provide a means of ion
focusing, resulting in significantly higher sensitivity, and making
this FAIMS regime more suited to discovery-based -omics in-
vestigations. In addition, the geometry of cylindrical FAIMS (Fig. 5)
is more amenable to controlling temperature stability, which
greatly improves ion transmission [215,223]. Similar to planar
FAIMS, recent reports have improved analytical performance by
decreasing electrode gap widths, which provided a four-fold in-
crease in peak capacity and 98% increase in identifiable proteins
[224]. Noting the complementary benefits in these two popular
FAIMS implementations, it becomes clear to what research in-
terests each lends its analytical capability.
5.2. Structural investigations

Due to the propensity for operating at higher electric fields,
higher peak capacity, and demonstrated gas phase resolution,
planar FAIMS has been extensively employed for the separation of
diverse sets of isomeric and isobaric biomolecules. Recently
employed to identify isotopic shifts on organic molecules [225],
separate polyproline isomers [226] and classify lipid isomers
[227,228], this separation modality exhibits innate propensity to
glean minute structural differences from relevant biomolecules. A
more active sector of research, however, is the utilization of FAIMS
to separate and identify peptide/protein isoforms. Given the ubiq-
uity of protein phosphorylation and challenges in site localization,
these biomolecules made for an excellent analytical subject in early
analyses [229e232]. Concurrently, Shvartsburg et al. [233]
demonstrated separation of peptide sequence isomers employing a
similar strategy in the analysis of methylated histones [234]. This
latter work was further expanded by Garabedian et al. [235],
Shliaha et al. [236], and Baird et al. [237], the latter of which
detailed high mobility and mass resolution. Given its suitability for
localizing and distinguishing post-translational modifications
(PTMs), planar FAIMS has also been used to separate and identify
isomeric glycopeptides [238]. While the structural complexity of
glycosylation still outpaces the analytical power of FAIMS, Pathak
et al. [239] successfully separated isomeric glycopeptides. Addi-
tionally, FAIMS has also been employed to analyze both small and
large proteins [240]. These targeted studies demonstrate the
capability of FAIMS as an ion separation and ion filtering technique
and highlight the distinct analytical power it may present. Even
more noteworthy is the extensive utilization of FAIMS within
-omics investigations, which have aided in cementing FAIMS as
capable far beyond structural investigations [241].



Fig. 5. A) Schematic of planar FAIMS depicting typical ion movement in response to a given asymmetrical dispersion voltage (DV); a compensation voltage applied to the opposing
electrode allows for detection of ions with compatible electrophoretic character. B) Schematic of cylindrical FAIMS, the implementation available in the Thermo FAIMS Pro. Multiple
unique CVs may be applied in each run to improve sample coverage and profiling depth.
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5.3. Relevance to -omics applications

Though several commercial FAIMS offerings exist, the rise in
access to and adoption of orbitrap mass spectrometers within
-omics investigations has served to establish the Thermo Fisher
FAIMS Pro as the most ubiquitous analytical platform. Given the
ability of FAIMS to operate at a range of CVs e providing unique ion
filtering at each e the FAIMS pro has been extensively employed in
proteomics, as it provides a facile avenue towards comprehensive
sample coverage. This is exemplified in the numerous reports of
FAIMS within bottom-up analyses, namely Hebert et al. [242] who
provided early reports of comprehensive bottom-up analyses with
FAIMS, demonstrating how ion separation can be used to augment
existing analytical techniques [243e248]. Of significant interest at
the time of review is the analytical sensitivity enabled through
FAIMS [249,250]. FAIMS has aided in analysis of iPSC-derived
neurons [251], has shown utility in single-shot proteomics when
using short LC gradients [252,253], and has even been coupled with
machine learning [253] to identify >2,800 proteins from a single
nanogram of material [254]. Demonstrating extreme sensitivity e

having demonstrated the ability to identify >1,000 proteins from
individual cells [255], FAIMS presents itself as a meaningful mo-
dality in the nascent field of single-cell proteomics [179,256] that
can be further enhanced through instrumental application pro-
gramming interfaces (APIs) [257].

Though discovery-based analyses are a permanent fixture
within proteomics, FAIMS has also been extensively employed to
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benefit quantitative proteomics investigations. Beyond improve-
ments in sample coverage, FAIMS e operating both as an ion
focusing agent and ion filter e improves quantitative accuracy by
reducing the quantity of co-isolated precursors, with numerous
reports detailing the improvements achieved [258e260]. Several
reports have also detailed the ability of FAIMS to provide equivalent
or higher quantitative accuracy [261] without reducing identifica-
tion rates [260,262], as well as showing utility in creating custom
analysis pipelines [263]. The analytical capacity of FAIMS is further
expanded when targeting a specific biomolecular class. As in all ion
mobility regimes, biomolecule subspecies (i.e., phosphopeptides,
glycopeptides, etc.) bear similarities in mobility with one another,
making them easily distinguishable from other analytes. As such,
FAIMS parameters may be tuned to specifically target these species
and has been employed in quantitative investigations
[262,264,265]. PTM analyses via FAIMS extend beyond quantitative
proteomics [266] as FAIMS also provides benefits in global
[248,267e269] and targeted [270] PTM profiling from a variety of
biological sources.

FAIMS has also been leveraged in more niche scenarios,
including those where significant sample limitations exist. Of in-
terest, Cooper and colleagues have utilized liquid extraction surface
analysis (LESA) in combination with FAIMS to analyze both heat
preserved tissue [271] and dried blood spots [272], resulting in a
50% increase in protein identifications from the latter report. Other
unique applications of FAIMS include the use of real time searching
(RTS) to determine temporal protein expression [273], monitoring
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host cell proteins produced during expression of biotherapeutics
[274], as well as using FAIMS filtering to selectively analyze the
cysteinome [247], SUMOylated peptides [275], crosslinked peptides
[276] and identify PTM cross-talk sites [277]. However, among
these unique applications, special attention may be drawn to
direct-infusion shotgun proteome analysis (DI-SPA), recently
demonstrated by Meyer et al. [278]. Given the value in quantitative
proteomic measurements, innovations that provide higher
throughput, lower analysis time, and higher accuracy are of para-
mount importance. Meyer demonstrated that utilizing FAIMS
filtering in combination with data independent acquisition (DIA)
results in astonishingly high throughput, having acquired >45,000
quantitative measurements from 132 samples in ~4.4 hours. DI-SPA
is sure to provide a framework for future high-throughput prote-
omics workflows, and was even recently adapted to PRM analyses
[279].

While bottom-up proteomics applications occupy the largest
swath of FAIMS-based -omics investigations, there is growing in-
terest in using FAIMS for larger protein fragments and intact pro-
teins [280], as well as metabolomics analyses [281,282]. Though
analysis of histone isoforms was repeatedly mentioned in the dis-
cussion of planar FAIMS for structural characterization, reinforcing
the biological relevance and complexity of these biomolecules,
FAIMS has also been employed for discovery-based middle-down
histone investigations. Utilizing multiple ion separation regimes,
Garabedian et al. [235] were able to identify methylated, trime-
thylated, acetylated and phosphorylated histone variants, while
Shliaha et al. [283] were able to confidently identify histone iso-
forms from mouse embryonic stem cells. Moving beyond these
middle-down analyses, top-down and native mass spectrometry
have also demonstrated improvements when FAIMS is incorpo-
rated. Fulcher et al. [284] successfully employed FAIMS for top-
down proteomic investigations of Alzheimer’s Disease brain tis-
sue, while Griffiths et al. [285] identified proteoforms from tissue
samples using LESA-FAIMS. Gerbasi et al. [286] reported increased
proteoform identification through inclusion of FAIMS, while Kau-
lich et al. [287] further illustrates this point in their utilization of
FAIMS CV stepping. Circular FAIMS has also been used for native
mass spectrometry analyses [288], illustrating that FAIMS may be
tailored for fragile ions where maintaining tertiary structure is
paramount. Moving in the opposite direction, FAIMS is also
increasingly employed for metabolomic investigations, aided
largely by the capacity to sample airborne analytes and design
miniaturization [289]. Traditional untargeted metabolomics
studies have detailed the utility of FAIMS in separation and
distinction of metabolite isomers [290], screening potential biofluid
biomarkers [291], identifying airborne chemical constituents [292]
and comprehending differences in fecal microbes in response to
disease [293]. These studies, however, are more akin to the
numerous proteomics investigations listed above, as analytes of
interest are obtained from solution or tissue. More interestingly,
volatile organic solvents [294] (VOCs) are easily sampled from
above urine [295e299] and stool [300] for the detection of irritable
bowel syndrome (IBS) [295,300], diagnosis of diabetes [298], and
identification of cancer [296,297,299]. These recent applications,
covering a broad spectrum of biomolecular species, serve to high-
light the applicability and utility of modern FAIMS implementa-
tions and commercial offerings.

5.4. Considerations and future directions

While the analytical advantages of incorporating FAIMS to an
existing workflow have been extensively described, this technique
is not without drawbacks or topical considerations. Namely, when
it comes to structural investigations of biomolecules, FAIMS offers
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no ability to measure collisional cross section (CCS) directly [42].
This is in stark contrast to other ion mobility regimes that place this
ability within reach. As such, the correct assignment of ion con-
formations in FAIMS analyses hinges on the availability and purity
of biomolecule standards, whichmay limit the breadth of discovery
sought in high-throughput experiments. In addition, FAIMS devices
display a physical limitation of only being able to operate at a single
CV at a given time. As such, FAIMS is ultimately a scanning tech-
nique, allowing only compatible ions to travel safely between the
electrodes and is therefore significantly lower in throughput than
other IM modalities. These limitations being well-known, future
FAIMS innovations are likely to center on achieving faster ion
separations without sacrificing sensitivity or resolution, and
incorporation of rapid electric field switching that would allow
broader collection of ions to be scanned within a unit time. Further,
given the power and utility of instrument APIs, one can imagine a
scenario in which FAIMS’ voltages are controlled in a similar
fashion, providing a means of targeted ion selection and intelligent
precursor isolation. Nevertheless, modern FAIMS is a powerful
analytical technique, providing significant improvements in sample
coverage and high sensitivity across -omics investigations. This IM
paradigm, relatively nascent within the field, is sure to experience
significant growth and higher utilization in coming years.

6. Conclusion

Modern ionmobility mass spectrometry instrumentation grants
unparalleled access in metabolomics, proteomics, and structural
investigations. As biological mass spectrometry continues to grow
in ubiquity and access to high-end instrumentation becomes more
achievable, utilization and expansion of IM-based methodologies
will grow in capability and efficacy. While it is likely the next
decade of instrumentation will present new, improved capabilities
that far outpace current capacity, today’s high end ion mobility
instrumentation may be remembered as an inflection point in the
history of IMS technology. Having described relevant innovations,
meaningful applications, and potential limitations and drawbacks
of four high-end IM instrument paradigms, this review may serve
as a reference point for novice and established researchers seeking
to begin or further their ion mobility-based biomolecular
investigations.
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