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Abstract

Development of next-generation electronic devices calls for the discovery of quantum materials hosting novel electronic,
magnetic, and topological properties. Traditional electronic structure methods require expensive computation time and
memory consumption, thus a fast and accurate prediction model is desired with increasing importance. Representing the
interactions among atomic orbitals in material, a Hamiltonian matrix provides all the essential elements that control the
structure—property correlations in inorganic compounds. Learning of Hamiltonian by machine learning therefore offers an
approach to accelerate the discovery and design of quantum materials. With this motivation, we present and compare
several different graph convolution networks that are able to predict the band gap for inorganic materials. The models are
developed to incorporate two different features: the information of each orbital itself and the interaction between each
other. The information of each orbital includes the name, relative coordinates with respect to the center of super cell and
the atom number. The interaction between orbitals is represented by the Hamiltonian matrix. The results show that our
model can get a promising prediction accuracy with cross-validation.
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1 Introduction

It has long been the interest of physicist to discover the
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the properties, one specifically intrigues us in this paper is
the band gap which directly reveals the conductivity of the
material. On the other hand, the Hamiltonian matrix cal-
culated by first-principles in tight-binding setup could be
used to represent fundamental physics and electronic
structure [36]. Traditionally, it costs days or even weeks to
compute the band gap in first-principles calculation using
Hamiltonian matrix. Instead, we incorporate Hamiltonian
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methods are insufficient for the proper modeling since the
locality in infinite or nonorthogonal systems differs sub-
stantially from that in finite orthogonal systems. In other
words, the great diversity in condensed morphology of
materials limits the applications of current machine learn-
ing techniques such as CNN. More specifically, the
dimension of the Hamiltonian matrix is highly variant.
Thus, the Hamiltonian matrix does not fit directly in the
fixed local neighborhood of CNN. And the variant
dimension of Hamiltonian matrix prohibits generalization
of models trained on one Hamiltonian matrix to other
Hamiltonian matrix with different dimension.

Instead of treating Hamiltonian matrix as an image in
traditional CNN, we use graph to represent it. The reason is
that basis of atoms and mutual interactions in quantum
materials naturally encourage using the general graph
representation for materials. In particular, locality in
quantum material systems can be defined as graph nodes
apart from their actual grid and scale in real space. And the
interaction between elements represented by Hamiltonian
matrix is graph edges. In such a way, we can easily deal
with the variant dimension of number of elements and the
Hamiltonian matrix built from it. This whole graph builds
up the input of our machine learning pipeline, while the
output is the band gap. We set up a threshold for band gap
to make it a classification since whether the band gap is
relatively large or small is more of interest for material
study rather than a exact value.

With this input and output, we are able to leverage the
recent emerging graph convolutional networks (GCN) or
graph neural network (GNN) [4, 16, 19, 31]. In this paper,
we explore two different graph convolutional network
architectures to classify the band gap of the quantum
materials using their Hamiltonian matrices and atom basis.
The message passing graph network [11] conducts the
information aggregation of neighboring nodes in the graph.
On the other hand, Chebyshev convolution [7] leverages
the Chebyshev polynomial to accelerate the convolutional
operation in the spatial domain. The two methods are tested
on our collected dataset to predict the band gap. Detailed
procedure is plotted in Fig. 1. Compared with traditional
hand-crafted feature-based methods, the GCN-based ones
have better performance on this binary classification task.

2 Related work

Machine learning techniques provide a novel opportunity
to speed up materials discovery by utilizing data-driven
paradigms [10, 33, 37]. Instead of numerically solving
complex systems with quantum interactions, physical
quantities are statistically estimated based on a reference
set of known solutions. Machine learning, especially
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supervised learning, has been applied to predictions of
phase stability [26], crystal structure [6, 15], electronic
structure [23, 33], molecule atomization energies [14],
effective potential for molecule dynamics [2, 3], and
energy functional for density functional theory [40].

More specifically, for the band gap prediction by
machine learning, deep neural networks have been
used [39, 43]. Besides, Joohwi Lee et al. [22] used linear
regression and support vector machine to predict band gap.
Similarly, support vector machine was employed by Ya
Zhuo et al. [45]. Ghanshyam Pilania et al. [35] leveraged
Gaussian process regression. Rajan et al. [38] used many
algorithms including kernel ridge regression, support vec-
tor machine, Gaussian process regression and bagging.
Similar to the previous works, Olsthoorn et al. [30] used
kernel ridge regression and deep neural network for band
gap prediction. Pilania et al. [34] later published another
paper using the popular kernel ridge regression. The tree-
based method was also used: Logan Ward et al. [1] used
random forest to predict band gap. But all of the work
mentioned above ignore the Hamiltonian matrix which is
important in deciding the band gap of material. One reason
would be the variant dimension of it. In fact, some authors
mentioned above intentionally limit the scope of the
material they study to fix the dimension of the elements.
These all imply that a graph-based learning which incor-
porated the variant dimension of Hamiltonian matrix is the
choice.

The variant dimension of Hamiltonian matrix makes it
ideal for GCN. Meanwhile, GCN has great advance
recently in pattern recognition and data mining. Generally
speaking, there are mainly two structures for supervised
learning in GCN: spectral method and spatial method. For
spectral method, two representative methods are [19] and
[7]. They tried to leverage the eigenspace of the graph
Laplacian matrix to make the prediction. Such a method
has a more profound mathematical theory foundation but is
bad at transferring from the graph learned to the graph
unseen in the test set. For spatial methods, Justin Gilmer
et al. laid the foundation in their recent work [11]. In the
same year, William Hamilton et al. published [13]. Both of
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these methods focus on the neighborhood of node in the
graph and hence gain the ability to transfer from the graph
learned to the graph unseen. Later on, spatial method
becomes the mainstream of the study in the field of GCN
with many works contributed. For a more comprehensive
literature review, Wu gave a summary [41]. In our paper,
we used the two most representative GCN: [7] from
spectral method and [11] from spatial method to test their
difference in performance.

3 Method
3.1 Problem formulation

In materials science, the material’s band gap is an impor-
tant property governing whether the material is metal or
non-metal. In this study, we aim to use GCN to predict the
band gap given the Hamiltonian of the material. Band gap
is described by a nonnegative real number, E, € R and
E,>0. To simplify the problem, threshold is applied to
split E, into two categories. Hence, we have ¢ =1 for
E, > 0.2 and ¢ = 0 for E; <0.2. The band gap is set to 0.2
because it creates a balanced binary label for our dataset.
Namely, it splits the dataset in half. These two classes
represent the metal and non-metal classes as the learning
target. Finally, the learning problem is defined with a cross-
entropy loss:

0 = argmin, — (fo(x)log(c) + (1 — fy(x)) log(1 — ¢))
(1)

where ¢ = f;(x) is the prediction, x is the input represen-
tation of Hamiltonian, and fy(-) is the function with train-
able parameters 0.

3.2 Hamiltonian matrix

We will focus on the 2D Hamiltonian matrix that repre-
sents the fundamental physics of materials. Specifically,
Hamiltonian matrix of a physical system contains all the
operators of the kinetic and potential energies. Let the
Hamiltonian operator H for an N-particle condensed matter
system be

I—jzzlv:An+v7 (2)

where T), indicates the kinetic energy operators for each
particle, and V is the potential energy operator between
particles.

To facilitate the calculation, the Hamiltonian operator
can be represented as a 2D numerical matrix. In detail, the
representation of an operator can be obtained through the

integral with the basis of a Hilbert space. In the condense
matter system, the wavefunctions {¢;} of orbitals from all
atoms in the material system can form a Hilbert space.
Therefore, the element in the matrix representation of
Hamiltonian H;; can be calculated from

Hj = / o;Ho;d’r, (3)

resulting in an M x M Hamiltonian matrix H = {H;;} with
M as the total number of orbitals. In this paper, the
Hamiltonian is computed from a super cell of 7 x 7 x 7 =
343 unit cells. Each cell contains several atoms with a finite
number of orbitals. In Fig. 2, we visualize the Hamiltonian
matrix for a sample in the Li-Al-Si material system with
M = 243. Note that, in order to keep consistency with our
experiment, we consider only the center 3 x 3 x 3 = 27 of
the 343 for computation cost. In the example of Fig. 2,
with 9 orbitals, we obtained a square matrix of dimension
27 x 9 = 243 filled with the real part value. The imaginary
parts are so small that we can neglect them. The sidebar of
Fig. 2 ranges from 0.0 to 1.4, while it represents the
energies of the orbitals in material.

3.3 Graph representation of Hamiltonian

Hamiltonian contains more concentrated information and
lower input dimension than wavefunctions or charge den-
sity. Thus, directly using Hamiltonian for prediction may
reduce the model complexity and relieve the demand of big
data for model training. However, due to different atom
composition in each condensed matter system, the size of
Hamiltonian varies greatly. To handle the diversity of input
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Fig. 2 The Hamiltonian matrix of Li-Al-Si. The side bar from 0.0 to
1.4 represents the energies of orbitals in material
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dimension, we propose using a graph to store the Hamil-
tonian matrix in this learning task.

A weighted undirected graph is constructed from the
Hamiltonian matrix to encode interaction and symmetric
information of the quantum system. As indicated in Eq. 3,
the matrix element Hj; represents the interaction intensity
between the i-th orbital and the j-th orbital in the con-
densed matter system. Then, if the orbitals are represented
by M vertices in a graph, such as V = {v;},_,.,,, naturally,
the interaction between orbitals can be described by the
edges in the graph. Noting that, according to Eq. 3, inter-
actions exist for each pair of orbitals in the system, which
results in a complete graph. Here, we only consider the
interaction stronger than a threshold 7, to reduce the
computational burden. Finally, a graph G = (¢, V, £), with
E={(ej,i./)}ijer,.m for M vertices, is built for each
Hamiltonian matrix. Specifically, e; is the edge which
represents the interaction between i-th and j-th orbitals; its
weight is the real part of complex number H;; in Hamil-
tonian matrix. In practice, the scale of the imaginary part is
negligible comparing with the real part. Hence, the real
part of the complex number is a close approximation to the
modulus of the complex number.

For each node inside the graph, we have the following
node feature vector representation. In Table 1, a summary
of feature components for the node and edges is listed. Two
types of features are included here: the node feature and
edge feature. For the three node features, they are con-
catenated into vectors. The edge feature is organized as the
graph adjacency matrix. The “Type” here illustrates the
data type of each feature, such as vector or scalar, integer
or real number. The “Description” here represents the
physics meaning of the features. The collection of node
features for all nodes in 3 x 3 x 3 unit cells of a Li-Al-Si
sample is visualized in Fig. 3. The sidebar corresponds to
the three features of atomic number, atom coordinate, and
orbit type. More specifically, the one-hot vector of orbit
type ranges from O to 1; atom number ranges from 3 to 14;
and coordinate ranges from —2 to 2. Combining them, we
have a range from —2 to 14.

With the graph represented Hamiltonian, we investigate
two types of GCNs to learn the information for the band
gap prediction.

3161.Li-Al-Si
| 12
200 !
! - 10
150 L8
L6
100
4
2
50 ‘
: 0
s
0 ! -2

0.0 2.5 5.0 7.5 10.0 12,5 15.0

Fig. 3 Visualization of node features for Li-Al-Si. Each row of the
matrix represents a node feature in the 3 x 3 x 3 unit cells. The
sidebar from —2 to 14 incorporates the one-hot encoding of orbit type,
atom number, and coordinates with detail in Table 1

3.4 Message passing graph network

A single graph convolutional block is composed of update
functions ¢ and aggregation functions p, such as

Xik = Y(ew, Vi), k € N(i)

V = Pylobal ( U ii)
E= )

where A/ (i) stands for the neighborhood of node i. The
function p is order-invariant aggregation. p,,.,; aggregates
information from all the edges connecting to the node i.
Pglobal SUmMmarizes the information globally. The function
¢° predicts the global attribute. The x;, updated by func-
tion 1, is a learned vector representation for each node that
could be updated multiple times.

This general framework can be implemented with dif-
ferent flexible variants. In [11], the message passing neural
network is proposed to allow long range interactions

Table 1 Feature component

used in the GCN methods Physics feature Data type Physics meaning
Node Atomic number 1 Integer Number of protons
Atom coordinates 3 Real 3D location in the unit cell
Orbit type 1 x 16 One hot s,p,d, ...
Edge Interaction 1 Real Real part of H;;
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between nodes in the graph for molecular properties pre-
diction. A modified version is implemented here where
both ¥ and ¢° are multilayer perception; p..; is local
average function; pggp, is global average function with
random dropout of nodes.

3.5 Chebyshev convolution

For k-th vertex-wised signal v, the convolution operation
on graph G such as v, * G can also be defined in the fre-
quency domain. To analyze graph G in Fourier domain, one
essential operation is to obtain the graph Laplacian L =
D — E where E = {e;} and D is the diagonal degree matrix
with D; = Zi e, or as a
L=1,—DY2ED1/2) The Laplacian can be diagonal-
ized by its graph Fourier modes U = [ug,uy, ..., Up—1]
such that L = UAU” where A = diag([4o, 1, ..., Au—1])
are the frequencies of the graph. Finally, a signal v; is
filtered by gy as

i = 80(L)vk = go(UAU" ) v = Ugo(A)U v (5)

normalized form

Convolution with constant neighbors could use nonpara-
metric filter such as go(A) = diag(0) where 0 € RY is
trainable variables. However, it is not localized in space.
Therefore, polynomial parametrization is used to construct
the localized filters go(A) = S 5" ¢ A* which limit the
shortest path distance to K (e.g., within the K-th order
neighbors of a vertex) ([7]). In order to further accelerate
the computation of the multiplication with the Fourier basis
U, Chebyshev polynomial Ty (x) is used to build the filter

K-1
80 (A) = Z 0k Ty (/\) . (6)
k=0
As a result, the filtering operation can be written as
K-1
Y. = 80 (L))C = Z Qka (L—)Vk (7)
k=0

where 0 is the trainable parameters for a single output
channel.

4 Experiments
4.1 Dataset

We collected 530 half-Heusler compounds from the
Materials Project database [17] using the data mining
approach. A total of 233 samples are used after cleaning
the dataset. Each of the generated raw Hamiltonian sample
contains three atoms where each atom has a maximum of
16 orbitals. The Hamiltonian matrices are all calculated

within 7 X 7 x 7 = 343 unit cells. The real values of target
band gap fall in the range of [0,5.6]. We choose a
threshold 0.2 to produce binary labels (E, > 0.2 as ¢ = 1
and E; <0.2 as ¢ = 0). This results in a balanced subset
with 116 positive samples and 117 negative samples.

4.2 Features

We generate two different features for GCN-based methods
and shallow methods, respectively. The feature used in
GCN-based approaches is already presented before.

For shallow methods, a set of fixed length features is
created to include both atomic and interaction information.
To limit the total dimension of feature, only the Hamilto-
nian from the center unit cell is selected for use. Zeros
padding is used to accommodate size variation in the
Hamiltonian for different samples. In detail, all Hamilto-
nian are embedded in the square matrix of size 48 x 48
where each side corresponds to the three atoms each with
16 orbitals. The interaction features are the vectorization of
the square matrix, which results in dimension of 2,304. The
atomic features are the concatenation of the atomic number
and atom coordinate feature in Table 1. Finally, the com-
bination of the two features results in a set of features with
a dimension of 3 + 3 x 3 + 2304 = 2316.

4.3 Experiment settings

Five popular shallow classification methods are evaluated,
including decision tree, Naive Bayes, Multilayer percep-
tion, SVM and random forest. Three variations in the
features are used in these experiments: (1) Interaction only,
(2) Atom only, and (3) Both atom and interaction. Since the
class distribution is balanced, the baseline performance of
random output is 50%. Reported results are binary classi-
fication accuracy by fivefold cross-validation.

A two-layer MPNN and a three-layer Chebyshev con-
volutional network are built upon the Hamiltonian matrix.
For Chebyshev convolutional network, the convolutional
filter size in those three layers is chosen as {1, 2, 2},
respectively, to gradually increase the receptive field.
Leaky-ReLU is adapted for nonlinear activation. At last, a
global average pooling layer followed by a softmax layer
outputs the probabilities of input graph that belong to the
two categories. For both methods, Adam optimizer with a
fixed learning rate of 0.001 and weight decay of 5e-4 is
used. The training is performed up to 2,000 epochs. The
two GCNs are implemented in PyTorch Geometric and
trained on an Nvidia Titan X GPU.
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4.4 Results

We report the classification accuracy of the shallow
methods using the fivefold cross-validation in Table 2. For
“Method,” it illustrates the list of the methods we used.
The “Interaction” column represents the result of consid-
ering only orbitals’ interaction while leaving atoms’
information apart. Conversely, the “Atom” column repre-
sents the result of considering only atoms’ information
(atom number, atom coordinate, etc.) while leaving the
orbitals interaction apart. The meaning of “Atom +
Interaction” in traditional machine learning methods rep-
resents the result of concatenating atoms and interactions
as input feature vectors. As for the graph neural network,
“Atom + Interaction” represents the result of using the
whole graph with atoms as nodes and interactions as
adjacency matrix for input. Among the different variations
of features, using both atom and interaction usually
achieves the best performance. The Interaction features
alone achieve the similar performance with the combina-
tion of Interaction and Atom feature. This demonstrates the
importance of using the Hamiltonian to represent the
material. The experiments on shallow methods confirm that
the interaction embedded in the Hamiltonian contains the
key information for the band gap prediction. Therefore,
using graph to model this interaction structure of the
Hamiltonian and applying GCN for learning process pro-
vide an advanced solution to this task.

The learning curves of MPNN and Chebyshev network
are shown in Fig. 4. The same cross-validation set gener-
ated with the same random seed is used here for fair
comparison. Without the random dropout module, the
Chebyshev network clearly has over fitting on the valida-
tion accuracy curve with nearly 68% accuracy while it has
98% accuracy on the training set. By applying the random
dropout module, there is only 10% difference of accuracy
in training and validation for MPNN. We also report
numerical performance of all fivefold in Table 2.

We also explore the case that includes the neighboring
unit cell for the classification task. When only center unit
cell was used, one can observe from the results that the

10 comparison of MPNN and Chebyshev
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----- MPNN-val
—— Chebyshev-train
09 ..... Chebyshev-val
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Fig. 4 Learning curves of the two GCN-based methods on onefold

GCN-based method is better than traditional shallow
methods. This is due to more accurate and compact graph
representation of the Hamiltonian data. By further includ-
ing the neighboring unit cells, feature dimension will dra-
matically increase to 20,000 for shallow methods. This
high dimension input is unacceptable for shallow methods
before effective dimension reduction technique is applied.
But the GCN-based methods can handle this case naturally.
As shown in Table 2, Chebyshev convolution-based net-
work achieves similar performance with the eight times
larger input. With the limited training samples, the high
dimensional input may not directly benefit the prediction.
When training with sufficient data, we can expect the GCN
to achieve much better performance in learning the peri-
odic structure information in the Hamiltonian for the
physical properties prediction.

5 Conclusion

Previous work in the field has been developed along two
routes: (1) predict the matrix elements (i.e., the hopping
parameters) in the Hamiltonians of a set of similar material
systems and create electronic band structures from the

Table 2 Results on the success

rates (%) of band gap Method Interaction Atom Atom+Interaction
classification Shallow Decision tree 5275 63.59 57.83
Naive Bayes 57.03 57.45 61.78
Multilayer perceptron 64.91 52.84 66.16
SVM 67.89 55.40 66.23
Random forest 66.16 64.80 67.84
GCN MPNN w/o neighbor cell - - 69.12
Cheb. Conv. w/o neighbor cell - - 70.39
Cheb. Conv. w/ 1st neighbor cells - - 70.43
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learned Hamiltonians [12, 25]; (2) learn from the electronic
band structures and make predictions for the material
Hamiltonians [42].

Unlike previous work, our work presents a general
model that learns from the Hamiltonians for a large set of
diverse inorganic materials with complex chemical for-
mulas and predicts electronic structure-based materials
properties (metal/non-metal classification) through a novel
graph neural network framework.

Furthermore, the present approach is not limited to the
metal/nonmetal classification. It opens new avenues for a
broad range of scientifically and technologically critical
applications such as topologically trivial/nontrivial quan-
tum materials with diverse topological invariants, strong/
weak light absorber materials for novel photovoltaics, and
ideal/poor solid-state hosts of point defects for single-
photon quantum emitters.
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