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Abstract
Development of next-generation electronic devices calls for the discovery of quantum materials hosting novel electronic,

magnetic, and topological properties. Traditional electronic structure methods require expensive computation time and

memory consumption, thus a fast and accurate prediction model is desired with increasing importance. Representing the

interactions among atomic orbitals in material, a Hamiltonian matrix provides all the essential elements that control the

structure–property correlations in inorganic compounds. Learning of Hamiltonian by machine learning therefore offers an

approach to accelerate the discovery and design of quantum materials. With this motivation, we present and compare

several different graph convolution networks that are able to predict the band gap for inorganic materials. The models are

developed to incorporate two different features: the information of each orbital itself and the interaction between each

other. The information of each orbital includes the name, relative coordinates with respect to the center of super cell and

the atom number. The interaction between orbitals is represented by the Hamiltonian matrix. The results show that our

model can get a promising prediction accuracy with cross-validation.
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1 Introduction

It has long been the interest of physicist to discover the

electronic, magnetic, and topological properties based on

fundamental physics and electronic structure. Among all

the properties, one specifically intrigues us in this paper is

the band gap which directly reveals the conductivity of the

material. On the other hand, the Hamiltonian matrix cal-

culated by first-principles in tight-binding setup could be

used to represent fundamental physics and electronic

structure [36]. Traditionally, it costs days or even weeks to

compute the band gap in first-principles calculation using

Hamiltonian matrix. Instead, we incorporate Hamiltonian

matrix of inorganic crystalline systems in our network-

based machine learning framework for band gap prediction

so that band gap could be predicted in a much faster and

easier way.

Traditionally, convolutional neural network (CNN) [21]

has been used in real-space wavefunction-based analysis of

small molecules and orthogonal systems. However, for

nonorthogonal grids and large molecules, CNN-based
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methods are insufficient for the proper modeling since the

locality in infinite or nonorthogonal systems differs sub-

stantially from that in finite orthogonal systems. In other

words, the great diversity in condensed morphology of

materials limits the applications of current machine learn-

ing techniques such as CNN. More specifically, the

dimension of the Hamiltonian matrix is highly variant.

Thus, the Hamiltonian matrix does not fit directly in the

fixed local neighborhood of CNN. And the variant

dimension of Hamiltonian matrix prohibits generalization

of models trained on one Hamiltonian matrix to other

Hamiltonian matrix with different dimension.

Instead of treating Hamiltonian matrix as an image in

traditional CNN, we use graph to represent it. The reason is

that basis of atoms and mutual interactions in quantum

materials naturally encourage using the general graph

representation for materials. In particular, locality in

quantum material systems can be defined as graph nodes

apart from their actual grid and scale in real space. And the

interaction between elements represented by Hamiltonian

matrix is graph edges. In such a way, we can easily deal

with the variant dimension of number of elements and the

Hamiltonian matrix built from it. This whole graph builds

up the input of our machine learning pipeline, while the

output is the band gap. We set up a threshold for band gap

to make it a classification since whether the band gap is

relatively large or small is more of interest for material

study rather than a exact value.

With this input and output, we are able to leverage the

recent emerging graph convolutional networks (GCN) or

graph neural network (GNN) [4, 16, 19, 31]. In this paper,

we explore two different graph convolutional network

architectures to classify the band gap of the quantum

materials using their Hamiltonian matrices and atom basis.

The message passing graph network [11] conducts the

information aggregation of neighboring nodes in the graph.

On the other hand, Chebyshev convolution [7] leverages

the Chebyshev polynomial to accelerate the convolutional

operation in the spatial domain. The two methods are tested

on our collected dataset to predict the band gap. Detailed

procedure is plotted in Fig. 1. Compared with traditional

hand-crafted feature-based methods, the GCN-based ones

have better performance on this binary classification task.

2 Related work

Machine learning techniques provide a novel opportunity

to speed up materials discovery by utilizing data-driven

paradigms [10, 33, 37]. Instead of numerically solving

complex systems with quantum interactions, physical

quantities are statistically estimated based on a reference

set of known solutions. Machine learning, especially

supervised learning, has been applied to predictions of

phase stability [26], crystal structure [6, 15], electronic

structure [23, 33], molecule atomization energies [14],

effective potential for molecule dynamics [2, 3], and

energy functional for density functional theory [40].

More specifically, for the band gap prediction by

machine learning, deep neural networks have been

used [39, 43]. Besides, Joohwi Lee et al. [22] used linear

regression and support vector machine to predict band gap.

Similarly, support vector machine was employed by Ya

Zhuo et al. [45]. Ghanshyam Pilania et al. [35] leveraged

Gaussian process regression. Rajan et al. [38] used many

algorithms including kernel ridge regression, support vec-

tor machine, Gaussian process regression and bagging.

Similar to the previous works, Olsthoorn et al. [30] used

kernel ridge regression and deep neural network for band

gap prediction. Pilania et al. [34] later published another

paper using the popular kernel ridge regression. The tree-

based method was also used: Logan Ward et al. [1] used

random forest to predict band gap. But all of the work

mentioned above ignore the Hamiltonian matrix which is

important in deciding the band gap of material. One reason

would be the variant dimension of it. In fact, some authors

mentioned above intentionally limit the scope of the

material they study to fix the dimension of the elements.

These all imply that a graph-based learning which incor-

porated the variant dimension of Hamiltonian matrix is the

choice.

The variant dimension of Hamiltonian matrix makes it

ideal for GCN. Meanwhile, GCN has great advance

recently in pattern recognition and data mining. Generally

speaking, there are mainly two structures for supervised

learning in GCN: spectral method and spatial method. For

spectral method, two representative methods are [19] and

[7]. They tried to leverage the eigenspace of the graph

Laplacian matrix to make the prediction. Such a method

has a more profound mathematical theory foundation but is

bad at transferring from the graph learned to the graph

unseen in the test set. For spatial methods, Justin Gilmer

et al. laid the foundation in their recent work [11]. In the

same year, William Hamilton et al. published [13]. Both of

Fig. 1 Visualization for pipeline
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these methods focus on the neighborhood of node in the

graph and hence gain the ability to transfer from the graph

learned to the graph unseen. Later on, spatial method

becomes the mainstream of the study in the field of GCN

with many works contributed. For a more comprehensive

literature review, Wu gave a summary [41]. In our paper,

we used the two most representative GCN: [7] from

spectral method and [11] from spatial method to test their

difference in performance.

3 Method

3.1 Problem formulation

In materials science, the material’s band gap is an impor-

tant property governing whether the material is metal or

non-metal. In this study, we aim to use GCN to predict the

band gap given the Hamiltonian of the material. Band gap

is described by a nonnegative real number, Eg 2 R and

Eg � 0. To simplify the problem, threshold is applied to

split Eg into two categories. Hence, we have c ¼ 1 for

Eg [ 0:2 and c ¼ 0 for Eg � 0:2. The band gap is set to 0.2

because it creates a balanced binary label for our dataset.

Namely, it splits the dataset in half. These two classes

represent the metal and non-metal classes as the learning

target. Finally, the learning problem is defined with a cross-

entropy loss:

ĥ ¼ argminh �
�
fhðxÞ logðcÞ þ ð1 � fhðxÞÞ logð1 � cÞ

�

ð1Þ

where ĉ ¼ fĥðxÞ is the prediction, x is the input represen-

tation of Hamiltonian, and fhð�Þ is the function with train-

able parameters h.

3.2 Hamiltonian matrix

We will focus on the 2D Hamiltonian matrix that repre-

sents the fundamental physics of materials. Specifically,

Hamiltonian matrix of a physical system contains all the

operators of the kinetic and potential energies. Let the

Hamiltonian operator Ĥ for an N-particle condensed matter

system be

Ĥ ¼
XN

n¼1

T̂n þ V̂ ; ð2Þ

where T̂n indicates the kinetic energy operators for each

particle, and V̂ is the potential energy operator between

particles.

To facilitate the calculation, the Hamiltonian operator

can be represented as a 2D numerical matrix. In detail, the

representation of an operator can be obtained through the

integral with the basis of a Hilbert space. In the condense

matter system, the wavefunctions fuig of orbitals from all

atoms in the material system can form a Hilbert space.

Therefore, the element in the matrix representation of

Hamiltonian Hij can be calculated from

Hij ¼
Z

uiĤujd
3r; ð3Þ

resulting in an M �M Hamiltonian matrix H ¼ fHijg with

M as the total number of orbitals. In this paper, the

Hamiltonian is computed from a super cell of 7 � 7 � 7 ¼
343 unit cells. Each cell contains several atoms with a finite

number of orbitals. In Fig. 2, we visualize the Hamiltonian

matrix for a sample in the Li-Al-Si material system with

M ¼ 243. Note that, in order to keep consistency with our

experiment, we consider only the center 3 � 3 � 3 ¼ 27 of

the 343 for computation cost. In the example of Fig. 2,

with 9 orbitals, we obtained a square matrix of dimension

27 � 9 ¼ 243 filled with the real part value. The imaginary

parts are so small that we can neglect them. The sidebar of

Fig. 2 ranges from 0.0 to 1.4, while it represents the

energies of the orbitals in material.

3.3 Graph representation of Hamiltonian

Hamiltonian contains more concentrated information and

lower input dimension than wavefunctions or charge den-

sity. Thus, directly using Hamiltonian for prediction may

reduce the model complexity and relieve the demand of big

data for model training. However, due to different atom

composition in each condensed matter system, the size of

Hamiltonian varies greatly. To handle the diversity of input

Fig. 2 The Hamiltonian matrix of Li-Al-Si. The side bar from 0.0 to

1.4 represents the energies of orbitals in material
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dimension, we propose using a graph to store the Hamil-

tonian matrix in this learning task.

A weighted undirected graph is constructed from the

Hamiltonian matrix to encode interaction and symmetric

information of the quantum system. As indicated in Eq. 3,

the matrix element Hij represents the interaction intensity

between the i-th orbital and the j-th orbital in the con-

densed matter system. Then, if the orbitals are represented

by M vertices in a graph, such as V ¼ fvigi¼1:M , naturally,

the interaction between orbitals can be described by the

edges in the graph. Noting that, according to Eq. 3, inter-

actions exist for each pair of orbitals in the system, which

results in a complete graph. Here, we only consider the

interaction stronger than a threshold sh to reduce the

computational burden. Finally, a graph G ¼ ðc;V; EÞ, with

E ¼ fðeij; i; jÞgi;j21;2;:::M for M vertices, is built for each

Hamiltonian matrix. Specifically, eij is the edge which

represents the interaction between i-th and j-th orbitals; its

weight is the real part of complex number Hij in Hamil-

tonian matrix. In practice, the scale of the imaginary part is

negligible comparing with the real part. Hence, the real

part of the complex number is a close approximation to the

modulus of the complex number.

For each node inside the graph, we have the following

node feature vector representation. In Table 1, a summary

of feature components for the node and edges is listed. Two

types of features are included here: the node feature and

edge feature. For the three node features, they are con-

catenated into vectors. The edge feature is organized as the

graph adjacency matrix. The ‘‘Type’’ here illustrates the

data type of each feature, such as vector or scalar, integer

or real number. The ‘‘Description’’ here represents the

physics meaning of the features. The collection of node

features for all nodes in 3 � 3 � 3 unit cells of a Li-Al-Si

sample is visualized in Fig. 3. The sidebar corresponds to

the three features of atomic number, atom coordinate, and

orbit type. More specifically, the one-hot vector of orbit

type ranges from 0 to 1; atom number ranges from 3 to 14;

and coordinate ranges from -2 to 2. Combining them, we

have a range from -2 to 14.

With the graph represented Hamiltonian, we investigate

two types of GCNs to learn the information for the band

gap prediction.

3.4 Message passing graph network

A single graph convolutional block is composed of update

functions / and aggregation functions q, such as

xik ¼ wðeik; vkÞ; k 2 NðiÞ

�xi ¼ qlocal

� [

k2NðiÞ
xik

�

�v ¼ qglobal

�[

i

�xi

�

ĉ ¼ /cð�vÞ

ð4Þ

where NðiÞ stands for the neighborhood of node i. The

function q is order-invariant aggregation. qlocal aggregates

information from all the edges connecting to the node i.

qglobal summarizes the information globally. The function

/c predicts the global attribute. The xik, updated by func-

tion w, is a learned vector representation for each node that

could be updated multiple times.

This general framework can be implemented with dif-

ferent flexible variants. In [11], the message passing neural

network is proposed to allow long range interactions

Table 1 Feature component

used in the GCN methods
Physics feature Data type Physics meaning

Node Atomic number 1 Integer Number of protons

Atom coordinates 3 Real 3D location in the unit cell

Orbit type 1 � 16 One hot s; p; d; . . .

Edge Interaction 1 Real Real part of Hij

Fig. 3 Visualization of node features for Li-Al-Si. Each row of the

matrix represents a node feature in the 3 � 3 � 3 unit cells. The

sidebar from �2 to 14 incorporates the one-hot encoding of orbit type,

atom number, and coordinates with detail in Table 1
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between nodes in the graph for molecular properties pre-

diction. A modified version is implemented here where

both w and /c are multilayer perception; qlocal is local

average function; qglobal is global average function with

random dropout of nodes.

3.5 Chebyshev convolution

For k-th vertex-wised signal vk, the convolution operation

on graph G such as vk � G can also be defined in the fre-

quency domain. To analyze graph G in Fourier domain, one

essential operation is to obtain the graph Laplacian L ¼
D� E where E ¼ feijg and D is the diagonal degree matrix

with Dii ¼
P

j eij or as a normalized form

L ¼ In � Dð�1=2ÞEDð�1=2Þ. The Laplacian can be diagonal-

ized by its graph Fourier modes U ¼ ½u0; u1; . . .; uM�1�
such that L ¼ UKUT where K ¼ diag

�
½k0; k1; . . .; kM�1�

�

are the frequencies of the graph. Finally, a signal vk is

filtered by gh as

yk ¼ gh
�
L
�
vk ¼ gh

�
UKUT

�
vk ¼ UghðKÞUTvk: ð5Þ

Convolution with constant neighbors could use nonpara-

metric filter such as ghðKÞ ¼ diagðhÞ where h 2 RM is

trainable variables. However, it is not localized in space.

Therefore, polynomial parametrization is used to construct

the localized filters ghðKÞ ¼
PK�1

k¼0 hkK
k which limit the

shortest path distance to K (e.g., within the K-th order

neighbors of a vertex) ([7]). In order to further accelerate

the computation of the multiplication with the Fourier basis

U, Chebyshev polynomial TkðxÞ is used to build the filter

gh
�
K
�
¼

XK�1

k¼0

hkTk
�
~K
�
: ð6Þ

As a result, the filtering operation can be written as

yk ¼ gh
�
L
�
x ¼

XK�1

k¼0

hkTk
�
~L
�
vk ð7Þ

where hk is the trainable parameters for a single output

channel.

4 Experiments

4.1 Dataset

We collected 530 half-Heusler compounds from the

Materials Project database [17] using the data mining

approach. A total of 233 samples are used after cleaning

the dataset. Each of the generated raw Hamiltonian sample

contains three atoms where each atom has a maximum of

16 orbitals. The Hamiltonian matrices are all calculated

within 7 � 7 � 7 ¼ 343 unit cells. The real values of target

band gap fall in the range of
�
0; 5:6

�
. We choose a

threshold 0.2 to produce binary labels (Eg [ 0:2 as c ¼ 1

and Eg � 0:2 as c ¼ 0). This results in a balanced subset

with 116 positive samples and 117 negative samples.

4.2 Features

We generate two different features for GCN-based methods

and shallow methods, respectively. The feature used in

GCN-based approaches is already presented before.

For shallow methods, a set of fixed length features is

created to include both atomic and interaction information.

To limit the total dimension of feature, only the Hamilto-

nian from the center unit cell is selected for use. Zeros

padding is used to accommodate size variation in the

Hamiltonian for different samples. In detail, all Hamilto-

nian are embedded in the square matrix of size 48 � 48

where each side corresponds to the three atoms each with

16 orbitals. The interaction features are the vectorization of

the square matrix, which results in dimension of 2,304. The

atomic features are the concatenation of the atomic number

and atom coordinate feature in Table 1. Finally, the com-

bination of the two features results in a set of features with

a dimension of 3 þ 3 � 3 þ 2304 ¼ 2316.

4.3 Experiment settings

Five popular shallow classification methods are evaluated,

including decision tree, Naive Bayes, Multilayer percep-

tion, SVM and random forest. Three variations in the

features are used in these experiments: (1) Interaction only,

(2) Atom only, and (3) Both atom and interaction. Since the

class distribution is balanced, the baseline performance of

random output is 50%. Reported results are binary classi-

fication accuracy by fivefold cross-validation.

A two-layer MPNN and a three-layer Chebyshev con-

volutional network are built upon the Hamiltonian matrix.

For Chebyshev convolutional network, the convolutional

filter size in those three layers is chosen as {1, 2, 2},

respectively, to gradually increase the receptive field.

Leaky-ReLU is adapted for nonlinear activation. At last, a

global average pooling layer followed by a softmax layer

outputs the probabilities of input graph that belong to the

two categories. For both methods, Adam optimizer with a

fixed learning rate of 0.001 and weight decay of 5e-4 is

used. The training is performed up to 2,000 epochs. The

two GCNs are implemented in PyTorch Geometric and

trained on an Nvidia Titan X GPU.
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4.4 Results

We report the classification accuracy of the shallow

methods using the fivefold cross-validation in Table 2. For

‘‘Method,’’ it illustrates the list of the methods we used.

The ‘‘Interaction’’ column represents the result of consid-

ering only orbitals’ interaction while leaving atoms’

information apart. Conversely, the ‘‘Atom’’ column repre-

sents the result of considering only atoms’ information

(atom number, atom coordinate, etc.) while leaving the

orbitals interaction apart. The meaning of ‘‘Atom ?

Interaction’’ in traditional machine learning methods rep-

resents the result of concatenating atoms and interactions

as input feature vectors. As for the graph neural network,

‘‘Atom ? Interaction’’ represents the result of using the

whole graph with atoms as nodes and interactions as

adjacency matrix for input. Among the different variations

of features, using both atom and interaction usually

achieves the best performance. The Interaction features

alone achieve the similar performance with the combina-

tion of Interaction and Atom feature. This demonstrates the

importance of using the Hamiltonian to represent the

material. The experiments on shallow methods confirm that

the interaction embedded in the Hamiltonian contains the

key information for the band gap prediction. Therefore,

using graph to model this interaction structure of the

Hamiltonian and applying GCN for learning process pro-

vide an advanced solution to this task.

The learning curves of MPNN and Chebyshev network

are shown in Fig. 4. The same cross-validation set gener-

ated with the same random seed is used here for fair

comparison. Without the random dropout module, the

Chebyshev network clearly has over fitting on the valida-

tion accuracy curve with nearly 68% accuracy while it has

98% accuracy on the training set. By applying the random

dropout module, there is only 10% difference of accuracy

in training and validation for MPNN. We also report

numerical performance of all fivefold in Table 2.

We also explore the case that includes the neighboring

unit cell for the classification task. When only center unit

cell was used, one can observe from the results that the

GCN-based method is better than traditional shallow

methods. This is due to more accurate and compact graph

representation of the Hamiltonian data. By further includ-

ing the neighboring unit cells, feature dimension will dra-

matically increase to 20,000 for shallow methods. This

high dimension input is unacceptable for shallow methods

before effective dimension reduction technique is applied.

But the GCN-based methods can handle this case naturally.

As shown in Table 2, Chebyshev convolution-based net-

work achieves similar performance with the eight times

larger input. With the limited training samples, the high

dimensional input may not directly benefit the prediction.

When training with sufficient data, we can expect the GCN

to achieve much better performance in learning the peri-

odic structure information in the Hamiltonian for the

physical properties prediction.

5 Conclusion

Previous work in the field has been developed along two

routes: (1) predict the matrix elements (i.e., the hopping

parameters) in the Hamiltonians of a set of similar material

systems and create electronic band structures from the

Table 2 Results on the success

rates (%) of band gap

classification

Method Interaction Atom Atom?Interaction

Shallow Decision tree 52.75 63.59 57.83

Naive Bayes 57.03 57.45 61.78

Multilayer perceptron 64.91 52.84 66.16

SVM 67.89 55.40 66.23

Random forest 66.16 64.80 67.84

GCN MPNN w/o neighbor cell – – 69.12

Cheb. Conv. w/o neighbor cell – – 70.39

Cheb. Conv. w/ 1st neighbor cells – – 70.43

Fig. 4 Learning curves of the two GCN-based methods on onefold
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learned Hamiltonians [12, 25]; (2) learn from the electronic

band structures and make predictions for the material

Hamiltonians [42].

Unlike previous work, our work presents a general

model that learns from the Hamiltonians for a large set of

diverse inorganic materials with complex chemical for-

mulas and predicts electronic structure-based materials

properties (metal/non-metal classification) through a novel

graph neural network framework.

Furthermore, the present approach is not limited to the

metal/nonmetal classification. It opens new avenues for a

broad range of scientifically and technologically critical

applications such as topologically trivial/nontrivial quan-

tum materials with diverse topological invariants, strong/

weak light absorber materials for novel photovoltaics, and

ideal/poor solid-state hosts of point defects for single-

photon quantum emitters.
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