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Solutions to Current Challenges in Widespread
Monitoring of Groundwater Quality
via Crowdsensing
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Wood5,6 , Brett W. Peters5, Na Wei4,5,7,8 , and Dong Wang2,3,5

Introduction
Community science, research conducted by members

of the general public in partnership with scientists (Kim
et al. 2011), can facilitate the widespread collection of
environmental data. Crowdsensing serves as a sub-field of
community science, in which the participants themselves
act as the “sensors,” relying on inexpensive (e.g., test
strips) or accessible technologies (e.g., smartphones)
to provide an easy-to-use detection or sensing method
for data collection (Shupe 2017; Muñoz et al. 2019).
Recently, crowdsensing has gained attention as a new
data collection paradigm across a diverse range of
applications, allowing researchers to obtain measurements
from nontechnical individuals in a scalable and efficient
way (Ganti et al. 2011; Hu et al. 2013; Kawajiri
et al. 2014; Wang et al. 2015). The crowdsensing approach
is advantageous in that: (1) it provides an infrastructure-
free solution; (2) the crowd acts as a “sensor network,”
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providing an efficient way to collect large amounts of data
quickly and inexpensively; and (3) active participation in
data collection allows the community to become more
informed and feel empowered to protect their natural
resources.

While crowdsensing has been successfully imple-
mented in many surface water applications (Liu
et al. 2005; Shiber 2005; Paul et al. 2015; Boakes
et al. 2016), the use of crowdsensing in groundwater
applications remains relatively rare, representing a
significant opportunity for data collection. In the United
States, groundwater is the drinking water source for
more than half of the population. However, groundwater
is susceptible to contamination (Reynolds et al. 2008),
often resulting from human activities and land-use
practices (Li et al. 2021). For example, the application
of excess fertilizers in agricultural areas (U.S. Geological
Survey 2015), improperly constructed or leaky septic
systems (Yates 1985), and spills or releases of stored
chemicals (U.S. Environmental Protection Agency 2015)
can all serve as sources of contamination in groundwater.
Depending on the specific nature of the contaminant,
dangerously high concentrations can persist for long peri-
ods of time in the subsurface and travel large distances
(Newell et al. 2020). Across the United States, approxi-
mately 40 million people, primarily in rural and suburban
communities, rely on private wells (Liu et al. 2005),
resulting in the inadvertent pumping and ingestion
of groundwater contaminants, exposing residents of
well-dependent households to potential health risks
unknowingly (Fewtrell 2004, U.S. Census Bureau 2011).
A recent study reported that 23% of private wells sampled
contained contaminants at levels of concern (Malecki
et al. 2017) and the number of groundwater systems in
violation of maximum contaminant limits is increasing
(Pennino et al. 2017), yet there are no federal laws or
central utilities to monitor well water quality.

Without federal regulations in place to ensure
access to clean water, community-level monitoring of
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groundwater quality in well-dependent communities is
critical to ensure human health and safety. However,
unique challenges and limitations exist relative to
traditional monitoring approaches at centralized water
distribution facilities. Specifically, scaling groundwater
monitoring efforts presents a significant challenge in well-
dependent communities. It is not feasible to implement
both frequent and widespread testing for contaminants
in individual wells to ensure water quality standards
are routinely met. Additionally, the analytical costs for
millions of samples would be exorbitant. Alternatively,
sensor networks could be installed to actively monitor
groundwater wells; however, the issues of access to, cost,
and maintenance of sensor networks prevent widespread
implementation. While state and federal agencies may
have funding to cover small-scale monitoring, compre-
hensive monitoring is not feasible, resulting in sparse
data in both time and space (Michener et al. 2012).

Using crowdsensing methods to monitor groundwa-
ter is novel and provides a straightforward and replicable
avenue to collect a vast amount of data. Here, we seek
to highlight how crowdsensing can be effectively used to
monitor groundwater quality in well-dependent communi-
ties. We will address current hurdles to widespread imple-
mentation of crowdsensing, including participant recruit-
ment, access to technology, and issues of data reliabil-
ity, as well as potential solutions that can be used to
enhance the efficacy of crowdsensing studies. We will
also present a case study from the University of Notre
Dame as a simple framework for the execution of large-
scale crowdsensing in well-dependent communities that
can be translated to other regions and extended temporally
to facilitate long-term monitoring via crowdsensing. The
adaptation of this framework to other locales can facil-
itate enhanced communication between local residents
and local governments, laying the groundwork for pol-
icy change targeted at improving groundwater quality for
well-dependent communities.

Current Challenges in Crowdsensing

Participant Recruitment and Biases
Without sufficient participation at the right scale,

crowdsensing cannot be a viable way to generate large
environmental datasets to adequately monitor environ-
mental resources; therefore, participant recruitment is the
most fundamental component to a successful crowdsens-
ing project. Many studies that rely on participation of the
public often recruit participants from existing groups (Lit-
tle et al. 2016, Kim et al. 2011), and individuals who
are already involved with established volunteer programs
are more likely to participate if their current program is
partnered with a proposed project (Alender 2016). How-
ever, well-established programs or environmental groups
may not exist across all community types. For example, in
more spatially dispersed communities, a centralized envi-
ronmental group may not exist for researchers to use as a
framework for a crowdsensing study (Davis et al. 2014).

Potential participants may also have concerns over sharing
data that could potentially be tied back to their households
(e.g., well water quality), so ensuring anonymity in data
reporting can be important in making volunteers feel com-
fortable joining a study. Similarly, obtaining parental con-
sent/assent for crowdsensing studies conducted through
the classroom may reduce participation rates.

Additionally, maintaining participant engagement can
present a challenge. This can be a significant issue in con-
tributory studies, where volunteers assist in data collection
to address scientist-led questions (Lowry et al. 2019). In
contributory studies, the interests of volunteers and the
general public may not be addressed, which may limit
participation and a sense of data ownership in such studies
(Cornwall and Jewkes 1995; Shirk et al. 2012). With long-
term crowdsensing efforts, volunteer fatigue can occur
over time, whereby participants become disinterested and
engagement wanes (Deutsch and Ruiz-Córdova 2015).
Thus, providing motivation for participants to continue
to invest in crowdsensing studies is essential. Because of
volunteer fatigue, the average successful volunteer mon-
itoring programs only span three to seven years (Klang
and Heiskary 2000; Nerbonne and Nelson 2004; Deutsch
et al. 2009). Although short-term studies may success-
fully identify an issue, repeat monitoring is typically
required to assess progress, especially because water qual-
ity conditions are transient, and concerns can take decades
to resolve. Therefore, overcoming volunteer fatigue is
essential in creating and implementing meaningful long-
standing crowdsensing studies.

Participation in crowdsensing studies is generally
known to be influenced by education level, awareness of
an issue, social identities, and the resource type being
monitored (Shirk and Bonney 2015). A pre-established
interest in the environment will likely generate interest
from potential “crowdsensors,” as they are more likely
to be aware of local environmental concerns (Shirk and
Bonney 2015). Lack of interest in the environment or
awareness of local issues may be a barrier in using
broader public calls for participants through social media
or local advertisements. Many communities may not test
their water because they simply did not know it was
needed (Paul et al. 2015). Additionally, education level
may influence the participants’ background knowledge on
the issue at hand, in turn influencing their willingness
to participate. For example, in one study, 38% of
participants had a bachelor’s degree, which was 16%
higher than the city mean, and 57% were at least high
school graduates, which was 8% lower than the city
mean (Jakositz et al. 2020). This suggests that education
level may have unconsciously influenced participants’
willingness to join the study. Socioeconomic status, which
correlates heavily with education level, should also be
considered as a driver for participation (Deutsch and Ruiz-
Córdova 2015; Jakositz et al. 2020). This may select
against those who hold hourly positions, which may
decrease schedule flexibility and the ability to commit
time to a crowdsensing project (Spleen et al. 2014).
Finally, cultural identity may act as a motivating factor
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if participants’ culture places a high importance on
preserving certain natural resources (Ožana et al. 2019).

Access to Technology
Technology serves as the mechanism for participants

to become environmental sensors, allowing volunteers to
more easily collect, report, and/or share data via websites
or smartphone applications (Compas and Wade 2018).
Therefore, participants’ access to relevant technology is
a critical component to all crowdsensing studies. Limited
access to enabling technologies, like WiFi or smartphones,
may limit participation in crowdsensing studies in low-
income or rural settings (Hale et al. 2010), yet these
areas are often most susceptible to environmental impacts
(Strosnider et al. 2017). Although 93% of Americans use
the internet (Pew Research Center 2021a), the availability
of at-home broadband connections is lowest in rural
communities (only 72% of U.S. adults) compared to urban
and suburban communities (77–79% of U.S. adults).
Although smartphone usage has increased from 35% in
2011 to 85% in 2021 across the United States (Pew
Research Center 2021b), smartphone use is lowest in
rural communities as well (80% of U.S. adults versus
84–89% in suburban and urban communities). Therefore,
it is possible that using applications or websites for
data reporting may bias toward participants with more
experience with technology, which may in turn bias
data collection and under-represent households with lower
incomes or older occupants. It is possible that some
participants may not have experience using applications
(Kim et al. 2011), which could lead to issues with
recruitment early in the project or with data reporting
later. Finally, the cost may serve as a barrier to access;
the use of smartphone applications or websites may
present a financial challenge. Both application and website
development will likely require project leads to hire
personnel to create platforms for data entry, which may
be cost-prohibitive or delay project startup.

Current Limitations for Data Analysis and Reliability
Data reliability is a critical challenge in the data

analysis of crowdsensing systems (Wang et al. 2014;
Zhang et al. 2018; Liu et al. 2019). This is mainly due
to the fact that “crowdsensors” are often the members
of general public who may not provide as reliable
measurement as professionally trained individuals. Errors
in crowdsensing can arise for numerous reasons. For
example, issues with data reliability may arise from
inaccurate measurements, incorrect operation of sampling
equipment, or misunderstanding the instructions. A simple
approach to address such problems is to aggregate
crowdsensing data by averaging participant reports and
leveraging data denoising and smoothing techniques (e.g.,
majority voting, statistical filtering; Yang and Hong 2017;
Chen et al. 2020). However, a key limitation of these
approaches is that they treat all crowdsensing reports
as equally reliable and do not account for the fact that
different participants may have different reliability. For
example, the report from a participant who carefully

conducts a measurement is likely to be more accurate
than a participant who misinterprets the instructions. A
report from a reliable participant should not be treated
equally to a report from a less reliable one. However, what
makes this challenging is that neither the reliability of
participants, nor the correctness of their reports is known
a priori (Wang et al. 2012). Therefore, it is a critical
challenge to develop effective data analytic solutions
in crowdsensing systems that accurately estimate both
participant reliability and accuracy without a large amount
of prior knowledge.

Solutions to Overcome Barriers
in Crowdsensing Studies

Participant Recruitment and Biases
To effectively recruit participants and maintain their

engagement requires a multi-faceted approach. In fact,
most community science projects must be designed using
multiple recruitment approaches, attracting participants
through social media, word of mouth, public advertising,
information stands, and university partnerships (Jakositz
et al. 2020). Today, social media is a particularly useful
tool to attract individual participants to a research oppor-
tunity through posts across several popular platforms (e.g.,
Twitter and Facebook), allowing interested individuals to
find community science research projects relevant to their
specific interests with a simple keyword search (Bonnet
et al. 2014). Participation via social media platforms can
range in success, from a few hundred to hundreds of thou-
sands of participants (e.g., the Zooniverse project; Simp-
son et al. 2014). Additionally, placing public advertising
for participants in highly trafficked areas, such as a local
science museum, can be an extremely successful strategy
for recruiting participants from a targeted population (Jol-
lymore et al. 2017; Rodriguez et al. 2019), and the use
of presentations or interactive displays can inform poten-
tial participants about local environmental challenges in
their community to help create a common goal between
the researchers and volunteers.

Participant engagement should also involve establish-
ing connections with existing local networks and insti-
tutions, such as environmental groups or schools. For
example, members of environmental groups are gener-
ally more likely to have a passion for an environmental
subject and an educational background in an applicable
field (Paul et al. 2015; Farnham et al. 2017), suggesting
they may volunteer as “crowdsensors” more readily than
other groups. Schools may also serve as an ideal setting
to easily integrate crowdsensing projects directly via the
curriculum (Haynes et al. 2019). For example, BirdSleuth
from the Cornell Lab of Ornithology (www.BirdSleuth
.org) provides lessons and activities that can be incorpo-
rated into K-12 curricula that support various community
science projects. Working directly with science teachers or
hosting outreach events through local schools utilizes an
established, centralized infrastructure within the commu-
nity and can quickly reach a large number of participants
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both voluntarily or through class assignments (Compas
and Wade 2018; Haynes et al. 2019). Additionally, partic-
ipants with an interest in the subject or providing opportu-
nities for community-based problem solving may result in
higher engagement rates and help maintain involvement
(Haynes et al. 2019). Therefore, finding novel ways to
increase participants’ understanding of the issue and cen-
tering project goals around community concerns, as well
as getting participants excited, is essential (Compas and
Wade 2018; Haynes et al. 2019).

Once participants have been successfully recruited,
incentivizing participation can maintain engagement and
avoid volunteer fatigue. This can be done via educational
outcomes, prizes, or data sharing. Prizes, such as monetary
compensation, electronics, or books on the subject, offer
an alternative incentive that may be especially motivating
to younger audiences. Compensating participants for their
time with gift card rewards can encourage them to submit
their results (Kim et al. 2011). For school settings, creating
competitions between classrooms with prizes for the win-
ning classroom may increase completion rates. If prizes
can relate specifically to the topic of investigation (e.g.,
refillable water bottles for a water quality study), then a
virtuous cycle of engagement can emerge with prizes fur-
ther spreading awareness and amplifying recruiting efforts
throughout the community. Finally, open and frequent
communication via data sharing can motivate participants
to stay engaged and offers participants a way to see the
outcomes of their efforts (Rotman et al. 2014), as was doc-
umented throughout the CrowdHydrology project (Lowry
et al. 2019). The use of interactive website features, such
as maps, can allow study participants to explore the data
they had a hand in collecting, and provide teachers with
tools that can augment class assignments. Online plat-
forms can also provide an outlet for “crowdsensors” to
share photos and comments about their experiences as
well, creating a broader sense of community among the
participants and reinforcing the common goal.

Overcoming Limited Access to Technology
Crowdsensing studies inherently rely on some type

of technology; therefore, accessibility is key for engag-
ing across community types and gaining a comprehensive
understanding of the system of interest. Several studies
have shown that useful and uncomplicated technology that
has a clear benefit to volunteers is essential for motivat-
ing participation (Ali et al. 2021). When using websites
or smartphone applications, creating user-friendly inter-
faces with clear instructions and workflow for data entry
is essential, allowing participants to confidently enter their
data (Kim et al. 2011). If access to the internet is a bar-
rier to recruitment in a given community, partnering with
computer science teachers or local libraries can expand
participants’ ability to report data. Internet providers may
also be willing to sponsor crowdsensing activities and pro-
vide enhanced access to WiFi, as we have seen throughout
the ongoing COVID-19 pandemic. Using short message
service (SMS) technology can be useful in communities
where smartphones, and in turn access to applications, are

less common, whereby volunteers can then simply text in
their measurement results (Fienen and Lowry 2012). This
may also expand access to participants who are less tech-
nologically adept. Additionally, depending on community-
specific challenges, alternative “low-tech” solutions can
be adopted as needed, including using pre-paid envelopes
to mail in results or creating a centralized datasheet drop-
off location within the community.

Data Analysis and Reliability
One of the simplest ways to improve data quality and

reliability is to provide adequate training to volunteers.
Several studies have shown that with adequate training,
the quality of data collected by volunteers is comparable
to data collected by professionals across data types (e.g.,
chemical, physical, and biological; Rodrigues and Cas-
tro 2008; Loperfido et al. 2010; Stepenuck et al. 2011).
Training participants can range from in-person demon-
strations to short training videos (Lowry et al. 2019).
Additionally, over the last decade, many innovative algo-
rithms and quantitative frameworks have been developed
to ensure data reliability in crowdsensing studies after the
data has been collected. For example, technologies called
“truth discovery” frameworks address data reliability by
jointly assessing the reliability of data sources (e.g., partic-
ipants) and the correctness of their reported measurements
using models based on regression methods, such as princi-
pled estimation and machine learning (Wang et al. 2013;
Zhang et al. 2018; Sheng and Zhang 2019). Moreover,
contextual information can also be used to address data
reliability. For example, location information about the
data source can be incorporated into “context-aware” data
analytic models, which are designed to statistically assess
the reliability of a data source and the credibility of the
crowdsourced data (e.g., traffic conditions at a specific
site and time; Wang et al. 2013). However, as powerful
as these approaches are, these methods have their own
limitations as they are built using specific and poten-
tially restrictive theoretical assumptions that are required
to develop a robust and useable framework. For example,
they are not currently suited to dealing with data relat-
ing to measured variables that are spatially and tem-
porally correlated (Zhang et al. 2018; Ye et al. 2020).
Given that geologic formations and groundwater flows
can display a high degree of spatial and temporal corre-
lation (Dagan 1989), which in turn arises in groundwater
quality and risk assessment (Bolster et al. 2009), such
restrictions may limit the utility of these approaches in
groundwater-specific applications. As such, new frame-
works that build on these approaches, remove current
limitations, and incorporate multiple data sources with dif-
fering reliability must be established to jointly estimate
both source reliability and accuracy in reporting.

Case Study: SmartWater Crowdsensing Project
Land use in Northern Indiana is primarily agricul-

tural, and the high permeability of the regional aquifer
increases the susceptibility of groundwater reserves to
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Figure 1. The SmartWater Project’s framework to engage local schools in a large-scale crowdsensing experiment to test
groundwater quality across community types.

nitrate (NO3
−-N) contamination (Indiana Department of

Environmental Management 2016). Many households
within the region are well-dependent, and homeowners
are singularly responsible for monitoring their well water
quality; however, without regular monitoring, residents in
well-dependent households are at a greater risk of ingest-
ing water with elevated NO3

−-N concentrations. Addi-
tionally, many developments at the rural–urban interface
are developed with houses on relatively small lots rely-
ing on shallow wells and septic systems for water supply
and wastewater treatment, creating further pathways for
nitrate contamination. Consuming water with high NO3

−-
N concentrations can result in myriad health concerns,
including increased risks for certain cancers, birth defects,
and thyroid problems with prolonged exposure. It can
cause low blood oxygen and lead to methemoglobinemia,
which carries a 7–8% fatality rate in infants (Fan and
Steinberg 1996). Thus, Northern Indiana presents an ideal
geographical setting to test a crowdsensing approach as an
efficient and reliable way to monitor NO3

−-N contamina-
tion in groundwater wells where a central utility does not
exist. Moreover, groundwater contamination is spatially
variable across much of Northern Indiana as a result of
the influences of both agriculture and contamination from
suburban septic systems; for example, only one in three
houses in Granger, Indiana, has high levels of NO3

−-N
and the mechanisms driving fine-scale spatial patterns are
unclear. This highlights the need for individual households
in the region to understand their own well water qual-
ity, especially as national characterizations of well water
quality have not been conducted in the past decade (e.g.,
Nolan et al. 2002; Rupert 2008; Burow et al. 2010). Thus,
researchers at the University of Notre Dame initiated the

SmartWater Crowdsensing (SWC) project, which seeks
to provide an adaptable framework for monitoring well
water contamination by utilizing the collective power of
humans as “environmental sensors” through novel recruit-
ment, experimental design, and data analysis approaches
(Figure 1). Here, we present preliminary findings and
insights from the first round of SWC experiments from
Fall 2019, though the experiment has continued through
the present. We aim to provide researchers with a gener-
alized crowdsensing framework, which can be adapted to
other locales to facilitate both long-term and widespread
monitoring efforts.

Using Established Connections to Recruit Local
Crowdsensing Participants

In recruiting participants, we sought to have repre-
sentation from a breadth of well-dependent residential
types, including urban fringe, suburban, and rural. Given
the interest in replicability, the SWC project approached
recruitment through building networks within school dis-
tricts. Along with university outreach resources, a pre-
vious Notre Dame crowdsensing project provided initial
connections with science teachers from local elementary
schools (Wei et al. 2017) and established a starting point
to expand our recruitment efforts in the school district
to work with high school teachers in the area. To incen-
tivize teachers to incorporate the SWC project into their
curriculum, we provided a mini-lesson, including a pre-
sentation covering the importance of groundwater quality
and key terms or ideas that met state curriculum require-
ments (doe.in.gov/standards). We also offered the option
for our project coordinator to go to each classroom to
present the lesson to enhance in-person engagement with
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(A) (B) (C)

Figure 2. Comparison of test strip NO3
−-N concentrations versus NO3

−-N concentrations measured in the lab by community
type: (A) urban, (B) suburban, and (C) rural. The dashed gray line is the 1:1 line, along which laboratory and test strip
concentrations would match exactly. The solid black line shows trend in the data for each community type.

the student participants, with the particular objective of
minimizing any additional planning or other burdens on
the teacher.

Through targeted recruitment in partnership with
school programs, we engaged 70 students from well-
dependent households in Northern Indiana for our first
round of experiments in September 2019; however, our
sampling efforts were not evenly distributed across com-
munity types. We obtained samples from 35 students
representing the suburban residential development, 24 rep-
resenting urban fringe neighborhoods, and 11 representing
rural areas. Students were trained to collect water sam-
ples and measure NO3

−-N concentrations with test strips
via an in-person demonstration. Additionally, as train-
ing videos have been shown to ensure the accuracy of
data submitted by volunteers (Lowry et al. 2019), training
videos were available on the data submission portal for
students to reference as the experiment progressed. Each
student received a test kit containing NO3

−-N test strips
and sample tubes, as well as instruction sheets and label-
ing materials. For 4weeks, students used simple, inexpen-
sive NO3

−-N test strips (approximately 44 cents per test
strip), which work based on a colorimetric reaction, to
estimate NO3

−-N concentrations from their tap at home
three times per week (12 total over the course of the exper-
iment). Their estimated concentration data were directly
entered into a web portal that had been created specifi-
cally for the project. In addition to test strip data, students
also submitted one water sample each week (four total
over the course of the experiment) for comparison with
the test strip measurement taken on the same day; we then
measured the true NO3

−-N concentrations in the labora-
tory (cadmium reduction method on a Lachat QuickChem
Autoanalyzer; American Public Health Association 2017)
to assess the accuracy and reliability of each student’s test
strip measurements using our novel modeling approach (as
described below).

Briefly, we found that the students’ test strip mea-
surements often underestimated the true NO3

−-N con-
centrations in the samples (using a simple estimate of

mean absolute error). Interestingly, the effect was more
pronounced in the urban and suburban communities
(Figure 2); however, we are still exploring the drivers of
this phenomenon. Additionally, error in test strip measure-
ments increased with NO3

−-N concentration, suggesting
that students were able to accurately analyze NO3

−-N
concentrations using the test strips when concentrations
were low; however, when concentrations increased, stu-
dents’ accuracy declined, and their test strip measurements
underestimated actual NO3

−-N concentrations (as mea-
sured in the laboratory). This “testing error” may have
health implications in households where the true NO3

−-
N concentrations are over the 10 mg/L maximum con-
taminant limit set by the U.S. Environmental Protection
Agency, inadvertently resulting in an increased risk of
infant methemoglobinemia and some cancers for home-
owners using unfiltered drinking water.

Incentivizing Student Participation
While 4weeks is a relatively short time to engage

with participants, we wanted to motivate students to
continue participating over the course of the experiment.
To ensure continued participation from students, we
originally chose to raffle off gift cards from popular
food chains to incentivize student engagement, beginning
approximately halfway through the experiment. The
introduction of incentives increased participation by
approximately 12%; however, some students reported that
the gift card raffle did not motivate them to submit
their data because they felt they were unlikely to win
or because the chains chosen were not accessible where
they lived. Additionally, we were unable to directly tie
incentivization of participation to improved quality in
reporting.

Based on this feedback, we adjusted our incentive
program for future rounds of SWC experiments. We devel-
oped a more inclusive incentive program, where students
received groundwater themed stickers for each week they
successfully submitted all test strip measurements and
water samples. If all test strips and water samples were
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submitted for the experiment, they receive a reusable
water bottle to reward 100% submission. Finally, stu-
dents received a certificate for participating in the SWC
research project that could be listed on a resume or college
application.

Technological Barriers in Data Submission
In the first round of experiments, we experienced

technological barriers which varied by community type.
At the rural school, using the website to enter data was
challenging. Many students did not have internet access
at home, which forced them to wait for an appropriate
time in class to use a school computer. Teachers reported
that internet issues resulted in many students forgetting
to submit their data or feeling like they did not have
adequate time during the school day to enter the results.
To adapt for any participants who may not have consistent
internet access, a printed data sheet for recording results
and a pre-stamped envelope was provided upon request
to give students the option to send in their results by mail
for future experiments. In contrast, students at the urban
school did not find our original website user friendly,
despite having internet access. The main critiques were
that the website was not smartphone-friendly and appeared
outdated. They also found it inconvenient to bring their
school laptops home to record their data each week.
Based on student feedback, we created a more user-
friendly smartphone application with the goal of improved
convenience and access for students to report their test
strip results.

Assuring Data Privacy and Consent Forms
To address any concerns about data sharing or privacy

and to engage minors as participants, student participation
in the project was permitted only with parental consent
and student assent. Due to possible connections between
water quality and property values, we also cannot assume
that all homeowners would be amenable to participation,
which may result in variable participation rates in other
locales. In the consent form, we expressly stated all data
would be de-identified and remain confidential due to
the connection between well-water quality and property
values. Fortunately, we did not receive any negative
feedback from concerned parents who did not want their
children to participate. However, many teachers did report
that it would have been better for students to have
additional time to talk through participation with their
parents and return the consent form. Therefore, providing
ample time (>1 week) for participants to provide consent
will be important moving forward.

A Novel Approach to Address Data Reliability
To overcome the challenge of data reliability in

crowdsensing, we developed a novel modeling approach
that uses a statistical approach (e.g., the maximum
likelihood estimation method in truth discovery; Wang
et al. 2014) to assess the reliability of participants
and correct reported values of nitrate concentrations.
As part of this, the model incorporates spatiotemporal

correlation in nitrate concentrations at neighborhood
scales. Unlike previous approaches assessing reliability in
crowdsensing, our solution embraces an interdisciplinary
approach, called dynamic latent feature modeling (Zhang
et al. 2019), that integrates observations and latent features
that may affect NO3

−-N concentrations in the spatiotem-
poral domain. We first pre-process our raw survey results
by converting each context variable (e.g., lawn fertilizer
application, pet activities, age of septic tanks, etc.) in the
survey to binary data and concatenate them together. With
the converted context variables, we derive a set of latent
variables through an iterative process called statistical
expectation–maximization algorithm (Zhang et al. 2019);
we consider these latent variables to be an emergent prop-
erty of our model. Thus, correlation in nitrate concentra-
tions between physical locations in a neighborhood can
be inferred from our crowdsensing data and compared to
those predicted by the external databases. This comparison
can aid in identifying reliable data sources and reducing
“crowdsensor” error. A key benefit of this approach is
that it can tackle the data reliability challenge without
requiring perfect knowledge of the measured variables a
priori (i.e., actual measurements of water contamination,
reliability of participants). Furthermore, this estimation
framework is flexible and can be further extended to inte-
grate additional physical constraints and expert knowledge
(e.g., distance to farms or other sources of contamination
along with mathematical estimates of dilution and decay).

The weekly paired test strip and water sample mea-
surements have allowed us to assess and reduce the
error on the students’ remaining test strip measurements
(Figure 3). Overall, our modeling approach reduced error
in individual measurements by 10% (Figure 3A) and error
for individual households by 37% (Figure 3B). We also
observed a 54% reduction in error in individual mea-
surements in the rural community, compared to 8% and
16% in the suburban and urban communities, respectively
(Figure 3A). When pooling results by household, error
reductions were similar between rural (47%) and urban
(50%) communities, and reductions in error for individ-
ual households were less in suburban communities (27%;
Figure 3B). Our results suggest that sampling the same
household multiple times may result in an overall error
reduction and assist in ascertaining the “true” NO3

−-N
concentration of an individual’s well water.

Conclusions
Crowdsensing approaches to groundwater monitor-

ing are novel and exciting avenues that can advance our
understanding of how to collect a large amount of data
that is reliable, scalable, and replicable across communi-
ties. Here, we have provided a brief overview of current
approaches, highlighting potential barriers to widespread
adoption of crowdsensing in environmental monitoring
contexts and presented some potential solutions. With
thoughtful design, crowdsensing may soon be applied
broadly in well-dependent communities across the coun-
try. This is particularly promising when partnering with
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Figure 3. Mean absolute error for test strip NO3
−-N concentrations for both raw data and with the novel SWC modeling

approach for both (A) individual water sample (n = 111) and (B) households (n = 70). Mean absolute error is defined as the
average of the absolute difference between each pair of test strip and laboratory measured NO3

−-N concentrations. Data are
separated by community type, with overall mean absolute errors shown to the right of the dashed gray line on both panels.

local schools, which act as an ideal centralized infrastruc-
ture through which to engage large groups of the popula-
tion. A clear barrier to the widespread use of crowdsensing
is data credibility; therefore, establishing clear methods
to assess “crowdsensor” reliability will be essential for
implementing this method broadly. The SWC methodol-
ogy we highlight may offer a scientifically based and for-
malized approach to “clean” crowdsensing data and ensure
its reliability. Such rigorous crowdsensing approaches can
enable the community to take a greater stake in the own-
ership of their local water quality and feel empowered
to make improvements to enhance the health of their
community.
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